
FAMILYAU ee
ER Cf

EN

SIEENE See]“It must be used for the Personal Computer attached the Trade Mark of MSX

54GoldStar

Language specification for MSX BASIC

CHAPTER 1

GENERAL INFORMATION ABOUT MSX BASIC

MSX BASIC is an extended version to the Microsoft standard Basic version
4.5, which includes supports to graphics, music and various peripheralsattached to MSX Home and Personal computer. Generally, MSX BASIC is
designed to follow the GW-BASIC which is a standard Basic in l6-bit
machine world. But the major effort was made to make the whole system
as flexible and expandable as possible.
Also MSX BASIC is featured with up to 14 digits accuracy double
precision BCD arithmetic function. This means arithmetic operations
no more generate strange round errors that confuse novice users. Every
trancendental functions are also calculated with this accuracy. 16
bit signed integer operation is also available for faster execution.

1.1 MODES OF OPERATION

When MSX BASIC is initialized, it displays the prompt "Ok". "ok"
indicates MSX BASIC is at command level; that is, it is ready to accept
commands. At this point, MSX BASIC may be used in either of two modes:
direct mode or indirect mode.

In direct mode, MSX BASIC statements and commands are not preceded
by line numbers. They are executed as they are entered. Results of
arithmetic and logical operations may be displayed immediately and
stored for later use, but the instructions themselves are lost after
execution. Direct mode is useful for debugging and for using MSX BASIC
as a "calculator" for quick computations that do not require a complete
program.
Indirect mode is used for entering programs. Program lines are preceded
by line numbers and are stored in memory. The program stored in memory
is executed by entering the RUN command.

1.2 LINE FORMAT

Language specification for MSX BASIC

MSX BASIC program lines have the following format (square brackets
indicate optional input):
nnnnn BASIC statement [:BASIC statement...] <carriage return>
More than one BASIC statement may be placed on a line, but each must
be separated from the last by a colon.
An MSX BASIC program line always begins with a line number and ends
with a carriage return. A line may contain a maximum of 255 characters.

1.2.1 Line Numbers

Every MSX BASIC program line begins with a line number. Line numbers
indicate the order in which the program lines are stored in memory.
Line numbers are also used as references in branching and editing.
Line numbers must be in the range O0 to 65529 and only integer type
nuber can be used.
A period (.) may be used in LIST, AUTO, and DELETE commands to refer
to the current line.

1.3 CHARACTER SET

The MSX BASIC character set consists of alphabetic characters, numeric
characters, special characters ‚graphic characters and both hirakana
and katakana characters.
The alphabetic characters in MSX BASIC are the upper case and lower
case letters of the alphabet.
The MSX BASIC numeric characters are the digits O through 9.
In addition, the following special characters are recognized by MSX

BASIC:

Character Action
Blank
Eguals sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket

++

nne

Language specifi

Sivann

—_

<rubout>
<escape>
<tab>

<line feed>
<carriage

return>

1.4 CONSTANTS

Constants are t
two types of con
A string constan
enclosed in doub

Examples:

"HELLO"
"$25,000
"Number

Numeric constant:
constants cannot
constants:
1. Integer cons

2. Fixed-point
constants

3. Ploating-poi
constants

cation for MSX BASIC

Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Won sign or integer division symbol
At sign
Underscore
Deletes last character typed.
Escapes
Moves print position to next tab stop.
Tab stops are set every eight columns.
Moves to next physical line.
Terminates input of a line.

he values MSX BASIC uses during execution. There are
stants: string and numeric.

t is a sequence of up to 255 alphanumeric characters
le quotation marks.

00"
of Employees"

s are positive or negative numbers. MSX BASIC numeric
contain commas. There are six types of numeric

tants Whole numbers between -32768 and 32767. Integer
constants do not contain decimal points.
Positive or negative real numbers, i.e., numbers
that contain decimal points.

nt Positive or negative numbers represented
exponential form (similar to scientific
notation). A floating-point constant consistsof an optionally signed integer or fixed-point
number (the mantissa) followed by the
E and an optionally signed integer
exponent). The allowable range
floating-point constants is 10-64 to 10+63.

Language specification for MSX BASIC

Examples:
235.988E-7 = „0000235988
2359E6 =2359000000

(Double precision floating-point constants
are denoted by the letter D instead of E.)

4. Hex constants Hexadecimal numbers, denoted by the prefix
&H.

Examples:
&H76
&H32F

5. Octal constants Octal numbers, denoted by the prefix &0.

Examples:
80347

6. Binary constants Binary numbers, denoted by the prefix &B.

Examples:
&B01110110
&B11100111

1.4.1 Single And Double Precision Form For Numeric Constants
Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 6 digits
of precision, and printed with up to 6 digits of precision. Double
precision numeric constants are stored with 14 digits of precision
and printed with up to 14 digits. Double precision is the default
for constant in MSX BASIC.

A single precision constant is any numeric constant that has one of
the following characteristics:

1. Exponential form using E.

2. A trailing exclamation point (!).
Examples:
-1.09E-06
22.51

A double precision constant is any numeric constant that has one of
these characteristics:

Language specification for MSX BASIC

1. Any digits of number without any exponential or type specifier.
2. Exponential form using D.

3. A trailing number sign (#).
Examples:
3489
345692811
-1,09432D-06
3489.04
7654321.1234

1.5 VARIABLES

Variables are names used to represent values used in a BASIC program.
The value of a variable may be assigned explicitly by the programmer,
or it may be assigned as the result of calculations in the program.
Before a variable is assigned a value, its value is assumed to be zero.

1.5.1 Variable Names And Declaration Characters
MSX BASIC variable names may be any length. Up to 2 characters are
significant. Variable names can contain letters and numbers. However,
the first character must be a letter. Special type declaration
characters are also allowed--see below.
A variable name may not be a reserved word and may not contain embedded
reserved words. Reserved words include all MSX BASIC commands,
statements, function names, and operator names. If a variable begins
with FN, it is assumed to be a call to a user-defined function.
Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign ($) as the last character.
For example: AS = "SALES REPORT".
The dollar sign is a variable type declaration character; that is,it "declares" that the variable will represent a string.
Numeric variable names may declare integer, single precision, or double
precision values. The type declaration characters for these variable
names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name is double precision.

Language specification for MSX BASIC

Examples of MSX BASIC variable names:

PI* Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares an integer value,
NS Declares a string value.
ABC Represents a double precision value,

There is a second method by which variable types may be declared. The
MSX BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may be included
in a program to declare the types for certain variable names. Refer
to the description for these statements.

1.5.2 Array Variables
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable
that is subscripted with an integer or an integer expression. An arrayvariable name has as many subscripts as there are dimensions in the
array. For example V(10) would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-dimension array, and
so on. The maximum number of dimensions for an array is 255. The
maximum number of elements is determined by memory size.
1.5.3 Space Requirements

The following table lists only the number of bytes occupied by the
values represented by the variable names.

Variables Type Bytes

Integer 2
Single Precision 4
Double Precision 8

Arrays Type Bytes

Integer 2 per element
Single Precision 4 per element
Double Precision 8 per element

Strings
3 bytes overhead plus the present contents of the string.

1.6 TYPE CONVERSION

When necessary, MSX BASIC will convert a numeric constant from one
Eype to another. The following rules and examples should be kept in
mind.

Language specification for MSX BASIC

1.

4.

If a numeric constant of one type is set equal to a numeric
variable of a different type, the number will be stored as
the type declared in the variable name. (If a string variable
is set equal to a numeric value or vice versa, a "Type mismatch"
error occurs.)
Example:

10 A%=23.42
20 PRINT A%

RUN
23

During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the same
degree of precision, i.e., that of the most precise operand.
Also, the result of an arithmetic operation is returned tothis degree of precision.
Examples:
10 D=6/7! The arithmetic was performed in double
20 PRINT D precision and the result was returned
RUN in D as a double precision value.
.85714285714286

10 D!=6/7 The arithmetic was performed in double
20 PRINT D! precision and the result was returned
RUN to D! (single precision variable),857143 rounded, and printed as a single

precision value.
Logical operators convert their operands to integers and return
an integer result. Operands must be in the range -32768 to
32767 or an "Overflow" error occurs.
When a floating-point value is converted to an integer, the
fractional portion is truncated.
Example:

10 C%=55.88
20 PRINT C%

RUN
55

If a double precision variable is assigned a single precision
value, only the first six digits of the converted number will
be valid. This is because only six digits of accuracy were
supplied with the single precision value.
Example:

10 A!=SQR(2)
20 B=A!

Language specification for MSX BASIC

30 PRINT A!,B
RUN
1.41421 1.41421

1.7 EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators which produces
a single value.
Operators perform mathematical or logical operations on values. The
MSX BASIC operators may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical
4. Functional

Each category is described in the following sections.

1.7.1 Arithmetic Operators
The arithmetic operators, in order of precedence, are:
Operator Operation Sample Expression

7 Exponentiation xy
- Negation =x

*/ Multiplication, Floating- {sy
point Division X/Y

+ Addition, Subtraction x+Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained.

1.7.1.1 Integer Division And Modulus Arithmetic
Two additional operators are available in MSX BASIC:

Integer division is denoted by the yen symbol. The operands are
truncated to integers (must be in the range -32768 to 32767) before
the division is performed, and the quotient is truncated to an integer.
Example:

Language specification for MSX BASIC

10w4=2
25.68w6.99=4

Integer division follows multiplication and floating-point division
in order of precedence.
Modulus arithmetic is denoted by the operator MOD. Modulus arithmetic
yields the integer value that is the remainder of an integer division.
Example:

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=1 (25/6=4 with a remainder 1)

Modulus arithmetic follows integer division in order of precedence.
1.7.1.2 Overflow And Division By Zero -
If, during the evaluation of an expression, division by zero is
encountered, the "Division by zero" error message is displayed and
execution of program terminates.
If overflow occurs, the "overflow" error message is displayed and
execution terminates.

1.7.2 Relational Operators
Relational operators are used to compare two values. The result of
the comparison is either "true" (-1) or "false" (0). This result may
then be used to make a decision regarding program flow. (See
description for "IF" statements.)
The relational operators are:
Operator Relation Tested Example

= Equality x=Y

> Ineguality XOY

< Less than x<Y

> Greater than x>Y

<= Less than or equal to Xx<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable.)
When arithmetic and relational operators are combined in one expression,
the arithmetic is always performed first. For example, the expression

Language specification for MSX BASIC

X+YK(T-1)/Z

is true if the value of X plus Y is less than the value of T-1 divided
by Z.

More examples:
IF SIN(X)<0 GOTO 1000
IF I MOD J<>0 THEN K=K+1

1.7.3 Logical Operators
Logical operators perform tests on multiple relations, bit manipulation,
or Boolean operations. The logical operator returns a bitwise result
which is either "true" (not zero) or "false" (zero). In an expression,
logical operations are performed after arithmetic and relational
operations. The outcome of a logical operation is determined as shown
in Table 1. The operators are listed in order of precedence.
Table l. MSX BASIC Relational Operators Truth Table

NOT
Xx NOT Xx

1 0
0 1

AND
x Y Xx AND Y
1 1 1
z 0 0
0 1 0
0 0 0

OR
Xx Y XOR Y
1 1 1
1 0 1
0 1 1
0 0 0

XOR
x Y Xx XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

EQV
Xx 1 X EQV Y
1 1 1
1 0 0
0 1 0

_10-—

Language specification for MSX BASIC

0 0 1

IMP
Xx Y Xx IMP Y
1 gl 1
1 0 0
0 1 1
0 0 1

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a true or false value to be used in a decision .

Example:
IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range -32768 to 32767. (If the
operands are not in this range, an error results.) If both operands
are supplied as O0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers in bitwise fashion, i.e,each bit of the result is determined by the corresponding bits in the
two operands.
Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used
to "mask" all but one of the bits of a status byte at a machine 1/0
port. The OR operator may be used to "merge" two bytes to create a
particular binary value. The following examples will help demonstrate
how the logical operators work.
63 AND 16=16 63=binary 111111 and 1l6=binary 10000, so 63 AND 16=16.

15 AND 14=14 15=binary 1111 and l4=binary 1110, so 15 AND l4=14
(binary 1110).

-1 AND 8=8 =l=binary 1111111111111111 and 8=binary 1000, s0 -1
AND 8=8.

4 OR 2=6 4=binary 100 and 2=binary 10, so 4 OR 2=6 (binary 110).
10 OR 10=10 l0=binary 1010, so 1010 OR 1010= 1010 (decimal 10).
-1 OR -2=-1 -1l=binary 1111111111111111 and -2=binary 1111111111111110,

so -1 OR -2=-1. The bit complement of sixteen zerosis sixteen ones, which is the two's complement
representation of -1.

NOT X=-(X+1) The two's complement of any integer is the bit
complement plus one.

1.7.4 Functional Operators

— is

Language specification for MSX BASIC

A function is used in an expression to call a predetermined operation
that is to be performed on an operand. MSX BASIC has "intrinsic"
functions that reside in the system, such as SQR (square root) or SIN
(sine).
MSX BASIC also allows "user-defined" functions that are written by
the programmer. See descriptions for "DEF FN",

1.7.5 String Operations
Strings may be concatenated by using +.

Example:

10 A$="FILE" : B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW "+A$+B$
RUN
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that are
used with numbers:

= <> < > <=

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes
are the same, the strings are equal. If the ASCII codes differ, the
lower code number precedes the higher. If during string comparison
the end of one string is reached, the shorter string is said to be
smaller. Leading and trailing blanks are significant.
Examples:

WAA "AB"
"FILENAME"="FILENAME"
NXGn>"x4n
"CL ">"CL"
"kg">"KG"
"SMYTH"<" SMYTHE"
B$<"9/12/83" where B$="8/12/83"

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison
expressions must be enclosed in quotation marks.

1.8 PROGRAM EDITING

The Full Screen Editor equiped with MSX BASIC allows the user to enter
program lines as usual, then edit an entire screen before recordingthe changes. This time-saving capability is made possible by special

-12-

Language specification for MSX BASIC

keys for cursor movement, character insertion and deletion, and line
or screen erasure. Specific functions and key assignments are discussed
in the following sections.
With the Full Screen Editor, a user can move quickly around the screen,
making corrections where necessary. The changes are entered by placing
the cursor on the first line changed and pressing <RETURN> at the
beginning of each line. A program line is not actually changed until
<RETURN> is entered from somewhere within the line.
Writing Programs

Within MSX BASIC, the editor is in control any time after an OK prompt
and before a RUN command is issued. Any line of text that is enteredis processed by the editor. Any line of text that begins with a number
is considered a program statement.
Program statements are processed by the editor in one of the following
ways:

1. A new line is added to the program. This occurs if the line
number is valid (O0 through 65529) and at least one non-blank
character follows the line number.

2. An existing line is modified. This occurs if the line number
matches that of an existing line in the program. The existingline is replaced with the text of the new line.

3. An existing line is deleted. This occurs if the line number
matches that of an existing line, and the new line contains
only the line number.

4. An error is produced.

If an attempt is made to delete a non-existent line, an
"Undefined line number" error message is displayed.
If program memory is exhausted, and a line is added to the
program, an "Out of memory" error is displayed and the line
is not added.

More than one statement may be placed on a line. If this is done,
the statements must be separated by a colon (:). The colon does not
have to be surrounded by spaces.
The maximum number of characters allowed in a program line, including
the line number, is 255.

Editing Programs
Use the LIST statement to display an entire program or range of lines
on the screen so that they can be edited. Text can then be modified
by moving the cursor to the place where the change is needed and
performing one of the following actions:

_13—

Language specification for MSX BASIC

1. Typing over existing characters
2. Deleting characters to the right of the cursor
3. Deleting characters to the left of the cursor
4. Inserting characters
5. Appending characters to the end of the logical line

These actions are performed by special keys assigned to the various
Full Screen Editor functions (see next section).
Changes to a line are recorded when a carriage return is entered while
the cursor is somewhere on the line. The carriage return enters all
changes for that logical line, no matter how many physical lines are
included and no matter where the cursor is located on the line.

Full Screen Editor Functions
The following table lists the hexadecimal codes for the MSX BASIC
control characters and summarizes their functions. The Control-key
sequence normally assigned to each function is also listed. These
conform as closely as possible to ASCII standard conversions.
Individual control functions are described following the table.

Table 1. MSX BASIC Control Functions. The ASCII control key is entered
by pressing the key while holding down the Control key.
Hex. Control Special
Code Key Key Function
01 A Ignored
02 * B Move cursor to start of previous word
03+ C Break when MSX BASIC is waiting for input
04 * D Ignored
05 * E Truncate line (clear text to end of logicalline)
06 * F Move cursor to start of next word
07 * G Beep
08 H Back Space Backspace, deleting characters passed over
09 I Tab Tab (moves to next TAB stop)
0A* J Line feed
0B * K Home Move cursor to home position
oc * L CLS Clear screen
oD * M Return Carriage return (enter current logical line)
0E * N Append to end of line
or * 0 Ignored
10 * P Ignored
11 * Q Ignored
12 * R INS Toggle insert/typeover mode

4 —

Language specification for MSX BASIC

13 s Ignored
M®: q Ignored
15% U Clear logical line
16 * Vv Ignored
17* W Ignored
18* x Select Ignored
19 * ï Ignored
l1A* 4 Ignored
1B [ESC Ignored
1C * fw Right arrow Cursor right (íw is Won sign)
1D * |] Left arrow Cursor leftl1E* * Up arrow Cursor up
1F * _ Down arrow Cursor down
7F DEL DEL Delete character at cursor

Note: Those keys marked with asterisk(*) cansels insert mode
when editor is in insert mode.

PREVIOUS WORD

The cursor is moved left to the previous word. The previous
word is defined as the next character to the left of the cursor
in the sets A-Z, a-z, or 0-9.

BREAK
Returns to MSX BASIC direct mode, without saving changes that
were made to the line currently being edited.

TRUNCATE
The cursor is moved to the end of the logical line. The
characters it passes over are deleted. Characters typed {from
the new cursor position are appended to the line.

NEXT WORD
The cursor is moved right to the next word. The next word
is defined as the next character to the right of the cursorin the sets A-Z, a-z, or 0-9.

BEEP
The beep sound will be produced.

BACKSPACE
Deletes the character to the left of the cursor. All characters
to the right of the cursor are moved left one position.
Subsequent characters and lines within the current logicalline are moved up (wrapped).

TAB
TAB moves the cursor to the next tab stop overwriting blanks.
Tab stops occur every 8 characters.

CURSOR HOME
Moves the cursor to the upper left corner of the screen. The
screen is not blanked.

CLEAR SCREEN

Language specification for MSX BASIC

Moves the cursor to home position and clears the entire screen,
zeiardiess of where the cursor is positioned when the key is
entered.

CARRIAGE RETURN
A carriage return ends the logical line and sends it to MSX
BASIC.

APPEND
Moves cursor to the end of the line, without deleting the
characters passed over. All characters typed from the new
position until a carriage return are appended to the logical
line.

INSERT
Toggle switch for insert mode. When insert mode is on, the
size of the cursor is reduced and characters are inserted at
the current cursor position. Characters to the right of the
cursor move right as new ones are inserted. Line wrap is
observed.
When insert mode is off, the size of cursor returned to normal
size and typed characters will replace existing characters
on the line.

CLEAR LOGICAL LINE
When this key is entered anywhere in the line, the entire
logical line is erased.

CURSOR RIGHT
Moves the cursor one position to the right. Line wrap is
observed.

CURSOR LEFT
Move the cursor one position to the left. Line wrap is
observed.

CURSOR UP
Moves the cursor up one physical line (at the current position).

CURSOR DOWN
Move the cursor down one physical line (at the current
position).

Logical line Definition with INPUT

Normally, a logical line consists of all the characters on each of
the physical lines that make up the logical line, During execution
of an INPUT or LINE INPUT statement, however, this definition is
modified slightly to allow {for forms input. When either of these
statements is executed, the logical line is restricted to characters
actually typed or passed over by the cursor. Insert mode and the delete
function only move characters which are within’ that logical line, and
Delete will decrement the size of the line.

—16—

Language specification for MSX BASIC

Insert mode increments the logical line except when the characters
moved will write over non-blank characters that are on the same physicalline but not part of the logical line. In this case, the non-blank
characters not part of the logical line are preserved and the characters
at the end of the logical line are thrown out. This preserves labels
that existed prior to the INPUT statement. If an incorrect character
is entered as a line is being typed, it can be deleted with the <Back
Space> key or with Control-H. and they backspacing over a character
and erasing it. Once a character(s) has been deleted, simply continue
typing the line as desired.
To delete a line that is in the process of being typed, type Control-U.
To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. MSX BASIC will
automatically replace the old line with the new line.
To delete the entire program currently residing in memory, enter the
NEW command. NEW is usually used to clear memory prior to entering
a new program.

1.9 Special keys
NSX BASIC supports several special keys as follows.
1.9.1 Function Keys

MSX BASIC has 10 pre-defined function keys. The current contents of
these keys are displayed on the last line on the screen and can be
re-defined by program with KEY statement. The initial values for each
keys are:

Fl color [b] [b] = blank character
F2 auto[b] [cr]= carriage return
F4 goto[b] [u] = cursor up character
F5 list[b] [els]=clear screen character
F5 run[cr]
F6 color 15,4,7[cr]
F7 cload"
F8 cont[cr]
F9 list. [er] [u] [u]
F10 [cls]run[cr]

Function keys are also used as event trap keys. See ON KEY GOSUB and
KEY ON/OFF/STOP statement for details.

1.9.2 Stop key
When MSX BASIC is in command mode, the STOP key has no effects to the
operation, MSX BASIC just ignores it.
When MSX BASIC is executing the program, pressing the STOP key causes

zij

Language specification for MSX BASIC

suspension of the program execution, and MSX BASIC turn on the cursor
display to indicate that the execution is suspended. Another STOP
key input resumes the execution, If the STOP key and control key are
pressed simultaneously, MSX BASIC terminates the execution and return
to command mode with following message.

Break in nnnn

where nnnn is the program line number where the execution stopped.

1.10 ERROR MESSAGES

If an error causes program execution to terminate, an error messageis printed. For a complete list of MSX BASIC error codes and error
messages, see Appendix A.

if ==

Language specification for MSX BASIC

2.1

2.1.1

CHAPTER 2

MSX BASIC COMMANDS, STATEMENTS AND FUNCTIONS

Commands, Statements, and Functions except I/O
Commands except I/O

AUTO [<line number>[,<increment>]]

CONT

To generate a line number automatically after every carriage
return.
AUTO begins numbering at <line number> and increment each
subsequent line number by <increment>. The default for both
value is 10. If <line number> is followed by a comma but
<increment> is not specified, the last increment specified in
an AUTO command is assumed.

If AUTO generates a line number that is alteady being used, an
asterisk is printed after the line number to warn the user that
any input will replace the existing line. However, typing a
carriage return immediately after the asterisk will save the
line and generate the next line number.

AUTO is terminated by typing Control-C or Control-STOP. The
line in which Control-C is typed is not saved. After Control-C
is typed, BASIC returns to command level.

To continue program execution after BREAK or STOP in execution.
DELETE [<line number>][-<line number>]

LIST

To delete program lines.
BASIC always returns to command level after a DELETE is executed.
If <line number> does not exist, an 'Illegal function call’ error
occurs.
[<line number>[-[<line number>]]]
To list all or part of the program.

=19=

Language specification for MSX BASIC

LLIST

NEW

RENUM

If both <line number> parameters are omitted, the program islisted beginning at the lowest line number.

If only the first <line number> is specified, that line is listed.
If the first <line number> and "-" are specified, that line and
all higher-numbered lines are listed.
If "-" and the second <line number> are specified, all lines
from the beginning of the program through that line are listed.
If both <line number> parameters are specified, the range from
the first <line number> through the second <line number> islisted.
Listing is terminated by typing "CTRL" and "STOP" keys at same
time. Listing is suspended by typing "STOP" key. and it is
resumed by typing "STOP" key again.
[<line number>[-[<line number>]]]

To list all or part of the program on the printer. (See the
LIST command for details of the parameters)

To delete entire program from working memory and reset allvariables.
[[<new number>][,[<old number>][,<increment>]]]
To renumber program lines.
<new number> is the first line number to be used in the new
sequence. The default is 10. <old number> is the line in the
current program where renumbering is to begin. The default is
the first line of the program. <increment> is the increment
to be used in the new sequence. The default is 10.
RENUM also changes all line number references following GOTO,
GOSUB, THEN, ELSE, ON..GOTO, ON..GOSUB and ERL statements to
reflect the new line numbers. If a nonexistent line number
appears after one of these statement, the error message 'Undefined
line nnnn in mmmm' is printed. The incorrect line number
reference(nnnn) is not changed by RENUM, but line number mmmm
may be changed.
NOTE: RENUM cannot be used to change the order of program lines
(for example, RENUM 15,30 when the program has three lines
numbered 10, 20 and 30) or to create line numbers greater than
65529. An ‘Illegal function call' error will result.

RUN [<line number>]
To execute a program.
If <line number> is specified, execution begins on that line.Otherwise, execution begins at the lowest line number.

_ 90 —

Language specification for MSX BASIC

TRON/ TROFF

CLEAR

To trace the execution of program statements.
As an aid in debugging, the TRON statement (executed in either
the direct or indirect mode) enables a trace flag that printseach line number of the program as is executed. The numbers
appear enclosed in square brackets. The trace flag is disabled
with the TROFF statement (or when a NEW command is executed).

[<string space>[,<highest location>]]
To set all numeric variables to zero, all string variables to
null, and close all open files, and optionally, to set the end
of memory.

<string space>
Space for string variables. Default size is 200 bytes.
<Highest location>
The highest memory location available for use by BASIC.

DATA <list of constants>
To store the numeric and string constants that are accessed by
the program's READ statement (s).
DATA statements are nonexecutable and may be placed anywhere
in the program. A DATA statement may contain as many constants
as will fit on a line (separated by commas), and any number of
DATA statements may be used in a program. The READ statements
access the DATA statements in order (by line number) and the
data contained there in may be thought of as one continuous list
of items, regardless of how many items are on a line or where
the lines are placed in the program.
<list of constants> may contain numeric constants in any format;i.e.,fixed point, floating point, or integer. (No numeric
expressions are allowed in the list.) String constants in DATA
statements must be surrounded by double quotation marks onlyif they contain comma, colons, or significant leading or trailing
spaces. Otherwise, quotation marks are not needed.
The variable type (numeric or string) given in the READ statement
must agree with the corresponding constant in the DATA statement.
DATA statements may be read from the beginning or specified line
by use of the RESTORE statement.

DIM <list of subscripted variables>
To specify the maximum values for array variable subscripts and
allocate storage accordingly.
If an array variable name is used without a DIM statement, the
maximum value of its subscript(s) is assumed to be 10. If a
subscript is used that is greater than the maximum specified,
a ‘Subscript out of range! error occurs. The minimum value for
a subscript is always 0.

21 —

Language specification for MSX BASIC

DEFINT <range(s) of letters>
DEFSNG <range(s) of letters>
DEFDBL <range(s) of letters>
DEFPSTR <range(s) of letters>

To declare variable type as integer, single precision, double
precision, or string.
DEFINT/SNG/DBL/STR statements declare that the variable names
beginning with the letter(s) specified will be that type variable.
However, a type declaration character always takes precedence
over a DEFxxX statement in the typing of a variables. (See the
end of section 1.5.1, for details of declaration characters.)

DEF FN<name>[(<parameter list>)]=<function definition>
To define and name a function that is written by the user.
<name> must be a legal variable name. This name, preceded by
FN, becomes the name of the function. <parameter list> is
comprised of those variable name in the function definition that
are to be replaced when the function is called. The items in
the list are separated by commas. <function definition> is an
expression that performs the operation of the function. It islimited to one line. Variable names that appear in this
expression serve only to define the function; they do not affect
program variables that have the same name. A variable name used
in a function definition may or may not appear in the parameterlist. If it does, the value of the parameter is supplied when
the function is called. Otherwise, the current value of the
variable is used.
The variables in the parameter list represent, on a one-to-one
basis, the argument variables or values that will be given in
the function call.
If a type is specified in the function name, the value of the
expression is forced to that type before it is returned to the
calling statement. If a type is specified in the function name
and the argument type does not match, a 'Type mismatch' error
occurs.
A DEFFN statement must be executed before the function it defines
may be called. If a function is called before it has been
defined, an 'Undefined user function! error occurs. DEFFN isillegal in the direct mode.

DEFUSR[<digit>]=<integer expression>
To specify the starting address of an assembly language
subroutine.
<digit> may be any digit from O0 to 9. The digit corresponds
to the number of the USR routine whose address is being specified.If <digit> is omitted, DEFUSRO is assumed. Tt: value of <integer
expression> is the starting address of the USR routine

DE

Language specification for MSX BASIC

ERASE

END

ERROR

Any number of DEFUSR statements may appear in a PIogran to
redefine subroutine starting addresses, thus allowing accessto as many subroutines as necessary.
<list of array variables>
To eliminate arrays from a program

Arrays may be redimensioned after they are ERASEd, or the
previously allocated array space in memory may be used for other
purposes. If an attempt is made to redimension an array without
first ERASEing it, a '"Redimensioned array’! error occurs.

To terminate program execution, close all files and return to
command level.
END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a BREAK
message to be printed. An END statement at the end of a programis optional.
<integer expression>
To simulate the occurrence of an error or to allow error codes
to be defined by the user.
The value of <integer expression> must be greater than 0 and
less than 255. If the value of <integer expression> equals an
error code already in use by BASIC, the ERROR statement will
simulate the occurrence of that error, and the corresponding
error message will be printed.
To define your own error code, use a value that is greater than
any used by BASIC for error codes. See Appendix A for a list
of error codes and messages. (It is preferable to use the highestavailable values, so compatibility may: be maintained when more
error codes are added to BASIC.) This user defined error code
may then be conveniently handled in an error trap routine.
Example:

10 ON ERROR GOTO 1000

120 IP A$="y" THEN ERROR 250

1000 IF ERR=250 THEN PRINT "sure?"

If an ERROR statement specified a code for which no error message
has been defined, BASIC responds with the message 'Unprintableerror’. Execution of an ERROR statement for which there is no
error trap routine causes an 'Unprintable error! error messageto be printed and execution to halt.

Language specification for MSX BASIC

FOR <variable>=x TO y [STEP z]

NEXT [<variable>][,<variable>...]
note: <Variable> can be integer, single-precision or double-

precision. where x,y;z are numeric expressions.
To allow a series of instructions to be performed in a loop a
given number of times.
<variable> is used as a counter. The first numeric expression
(x) is the initial value of the counter. The second numeric
expression (y) is the final value of the counter. The program
lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by
the amount specified by STEP. A check is performed to see if
the value of the counter is now greater than the final value
(y) . If it is not greater, BASIC branches back to the statement
after the FOR statement and the process is repeated. If it is
greater, execution continues with the statement following the
NEXT statement. This is a FOR...NEXT loop. If STEP is not
specified, the increment is assumed to be one.
If step is negative, the final value of the counter is set to
be less than the initial value. The counter is decremented each
time through the loop, and the loop is executed until the counteris less than the final value.
The body of the loop is executed one time at least if the initial
value of the loop times the sign of the step exceeds the final
value times the sign of the step.
FOR...NEXT loops may be nested, that is, a POR...NEXT loop may
be placed within the context of another FOR...NEXT loop. When
loops are nested, each loop must have a unique variable name
as its counter. The NEXT statement for the inside loop must
appear before that for the outside loop. If nested loops have
the same end point, a single NEXT statement may be used for all
of them. Such nesting of POR...NEXT loops is limited only by
available memory.

The variable(s) in the NEXT statement may be omitted, in which
case the NEXT statement will match the most recent FOR statement.
If a NEXT statement is encountered before its corresponding FOR
statement, a 'NEXT without FOR' error message is issued and
execution is terminated.

GOSUB <line number>

RETURN [<line number>]
To branch to subroutine beginning at <line number> and return
from a subroutine.
<line number> is the first line of the subroutine. A subroutine
may be called any number of times in a program, and a subroutine

24 —

Language specification for MSX BASIC

may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.
The RETURN statement (s) in a subroutine cause BASIC to branch
back to the statement following the most recent GOSUB statement.
A subroutine may ‘contain more than one RETURN statement, should
logic dictate a return at different points in the subroutine,
Subroutines may appear anywhere in the program, but it is
recommended that the subroutine be readily distinguishable from
the main program. To prevent inadvertent entry into the
subroutine, it may be preceded by a STOP, END, or GOTO statement
that directs program control around the subroutine. Otherwise,
a 'RETURN without GOSUB' error message is issued and execution
is terminated.

GOTO <line number>
To branch unconditionally out of the normal program sequenceto a specified <line number).

If <line number> is an executable statement, that statement and
those following are executed. If it is a nonexecutable statement,
execution proceeds at the first executable statement encountered
after <line number>.

IP <expression> THEN <statement(s) |<line number>BE|IF <expression> GOTO <line number>
[ELSE <statement (s) |<line number>]

To make a decision regarding program flow based on the result
returned by an expression.
If the result of <expression> is not zero, the THEN or GOTO clause
is executed. THEN may be followed by either a line number for
branching or one or more statements to be executed. GOTO is
always followed by a line number. If the result of <expression>is zero, the THEN or GOTO clause is ignored and the ELSE clause,if present, is executed. Execution continues with the next
executable statement.
Example:
A=l:B=2 -> A=B is zero (FALSE).
A=2:b=2 -> A=B is not zero (TRUE).

IF... THEN...ELSE statements may be nested. Nesting is limited
only by the length of the line. If the statement does not contain
the same number of ELSE and THEN clauses, each ELSE is matched
with the closest unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT "A=c"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B. It will print "A<>C" when A=B
and B<>C.

If an IF...THEN statement is followed by a line number in the

Language specification for MSX BASIC

INPUT

direct mode, an 'Undefined line' error results unless a statement
with the specified line number had previously been entered in
the indirect mode.

["<prompt string>";]<list of variables>
To allow input from the keyboard during program execution.
When an INPUT statement is encountered, program execution pauses
and a question mark is printed to indicate the program is waiting
for data. If "<prompt string>" is included, the string is printed
before the question mark. The required data is then entered
at the keyboard.
The data that is entered is assigned to the variable(s) given
in <variable list>. The number of data items supplied must be
the same as the number of variables in the list. Data items
are separated by commas.

The names in the <list of variables> may be numeric or string
variable names (including subscripted variables). The type of
each data item that is input must agree with the type specified
by the variable name. (Strings input to an INPUT statement need
not be surrounded by quotation marks.)
Responding to input with the wrong type of value (string instead
of the numeric, etc.) causes the message "?Redo from start"
to be printed. No assignment of input value is made until an
acceptable response is given.
Example:
list
10 INPUT "A and B";A,B
20 PRINT A+B
ok
run
A and B? 10,80
?Redo from start
A and B? 10,20
30

Ok

Responding to INPUT with too many items causes the message "?Extra
ignored" to be printed and the next statement to be executed.
Example:list
10 INPUT "A and B";A,B
20 PRINT A+B
Ok
run
A and B? 10,20,30
?Extra ignored
30

Ok

ni DI me

Language specification for MSX BASIC

Responding to INPUT with too few item causes two question marks
to be printed and a wait for the next data item.
Example:list
10 INPUT "A and B";A,B
20 PRINT A+B
Ok
run
A and B? 10 (The 10 was typed in by the user)
ee (The 20 was typed in by the user)
Ok

Escape INPUT by typing Control-C or the "CTRL" and "STOP" keys
simultaneously. BASIC returns to command level and types "ok".
Typing CONT resumes execution at the INPUT statement.

LINE INPUT ["<prompt string>";]<string variable>
3 To input an entire line (up to 254 characters) to a string
variable, without the use of delimiters.
The prompt string is a string literal that is printed at the
console before input is accepted. A question mark is not printed
unless it is part of the prompt string. All input from the end
of the prompt to the carriage return is assigned to <string
variable».
Escape LINE INPUT by typing Control-C or the "CTRL" and "STOP"
keys simultaneously. BASIC returns to command level and types
"ok", Typing CONT resumes execution at the LINE INPUT statement.

[LET] <variable>=<expression>
+ To assign value of an expression to a variable.
Notice the word LET is optional; i.e., the equal sign is
sufficient when assigning an expression to a variable name.

LPRINT [<list of expressions>]
LPRINT USING <string expression>;<list of expressions>

3 To print data at the line printer. (see PRINT and PRINT USING
statements below for details.)

MIDS(<string exp. 1>),‚n[,m])=<string exp.2 >
+ To replace a portion of one string with another string.

The character in <string exp.l>, beginning at position n, are
replaced by the characters in <string exp.2>. The optional m

refers to the number of characters from <string exp.2> that will
be used in the replacement. If m is omitted or included, the
replacement of characters never goes beyond the original length
of <string exp.l>.

ON ERROR GOTO <line number>
3 To enable error trapping and specify the first line of the error

97

Language specification for MSX BASIC

handling subroutine.
Once error trapping has been enabled all errors detected,
including direct mode errors (e.g., SN (Syntax) errors), will
cause a jump to the specified error handling subroutine. If
<line number> does not exist, an ‘Undefined line number’ error
results. To disable error trapping, execute an ON ERROR GOTO
0. Subseguent errors will print an error message and halt
execution. An ON ERROR GOTO 0 statement that appears in an error
trapping subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is recommended
that all error trapping subroutines execute an ON ERROR GOTO
0 if an error is encountered for which there is no recovery
action.
If an error occurs during execution of an error handling
subroutine, the BASIC error message is printed and execution
terminates. Error trapping does not occur within the error
handling subroutine.

ON <expression> GOTO <list of line number>
ON <expression> GOSUB <list of line number>

To branch to one of several specified line numbers, depending
on the value returned when an expression is evaluated. The valu.
of <expression> determines which line number in the list will
be used for branching. For example, if the value is three, the
third line number in the list will be the destination of the
branch. (If the value is a noninteger, the fractional portionis discarded.)
In the ON...GOSUB statement, each line number in the list must
be the first line number of a subroutine.
If the value of <expression> is zero or greater than the number
of items in the list (but less than or equal to 255), BASIC
continues with the next executable statement. If the value of
<expression> is negative or greater than 255, a 'Illegal function
call! error occurs.

POKE <address of the memory>,<integer expression>
7

PRINT

To write a byte into a memory location.
<address of the memory> is the address of the memory location
to be POKEd. The <integer expression> is the data (byte) to
be POKEd. It must be in the range 0 to 255. And <address of
the memory> must be in the’ range -32768 to 65535. If this value
is negative, address of the memory location is computed as
subtracting from 65536. For example, -1 is same as the 65535
(=65536-1). Otherwise, an 'Overflow'! error occurs.
[<list of expressions>]
To output data to the console.
If <list of expressions> is omitted, a blank line is printed.If <list of expressions> is included, the values of the

_98—

Language specification for MSX BASIC

PRINT

expressions are printed at the console. An expression in thelist may be a numeric and/or a string expression. (Strings must
be enclosed in quotation marks.)
The position of each printed item is determined by the punctuation
used to separate the items in the list. BASIC divides the line
into print zones of 14 spaces each. In the <list of expressions>,
a comma causes the next value to be printed at the beginning
of the next zone. A semicolon causes the next value to be printed
immediately after the last value. Typing one Oor more spaces
between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the <list of expressions>,
the next PRINT statement begins printing on the same line, spacing
accordingly. If the <list of expressions> terminates without
a comma or a semicolon, a carriage return is printed at the end
of the line. If the printed line is longer than the console
width, BASIC goes to the next physical line and continues
printing.
Printed numbers are always followed by a space. Positive numbers
are preceded by a space. Negative numbers are preceded by a
minus sign.
A question mark may be used in place of the word PRINT in a PRINT
statement.
USING <string expression>;<list of expressions>
To print strings or numerics using a specified format.
<list of expressions> comprises the string expressions or numeric
expressions that are to be printed, separated by semicolons.
<string expression> is a string literal (or variable) comprising
special formatting characters. These formatting characters (see
DONes CCEMING the field and the format of the printed strings
or numbers.
When PRINT USING is used to print strings, one of three formatting
characters may be used to format the string field:
un
Specifies that only the first character in the given string is
to be printed.
Example:
AS="Korea"
Ok
PRINT USING "!";A$
J
Ok

"&n spaces&”

Specifies that 2+n characters from the string are to be printed.

26

Language specification for MSX BASIC

If the '4&' signs are typed with no spaces, two characters will
be printed; with one space three characters will be printed,
and so on. If the string is longer than the field, the extra
characters are ignored. If the field is longer than the string,
the string will be left-justified in the field and padded with
spaces on the right.
Example:
A$="Korea"
Ok
PRINT USING "& &";A$
Japa
Ok

van

Specifies that the whole character in the given string is
be printed.
Example:
A$="Korea"
Ok
PRINT USING "I love @ very much.";A$
I love Korea very much.
Ok

to

When PRINT USING is used to print numbers, the following specialcharacters may be used to format the numeric field:

A number sign is used to represent each digit position. Digit
sitions are always filled. If the number to be printed has
ewer digits than positions specified, the number will
right-justified (preceded by spaces) in the field.

be

A decimal point may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as 0
necessary). Numbers are rounded as necessary.
Example:
PRINT USING "###.##";10.2,2,3.456,.24
10.20 2.00 3.46 0.24

Ok

“;n

if

A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed before
or after the number.

Example:

— 30 —

Language specification for MSX BASIC

PRINT USING "+###.4#";1.25,-1.25
+1.25 -1.25

Ook

PRINT USING "###.##+";1.25,-1.25a 1.25-

A minus sign at the end of the format field will cause negative
numbers to be printed with a trailing minus sign.
Example:
PRINT USING "###.##-";1.25,-1.25
1.25 1.25-

Ok

nen
A double asterisk at the beginning of the format string causes
leading spaces in the numeric field to be filled with asterisks.
The ** also specifies positions for two or more digits.
Example:
PRINT USING "**#,##";1.25,-1.25
**1.25#-1,25
Ok

gw
A double won sign causes a yen sign to be printed to the immediate
left of the formatted number. The ww specifies two more digit
positions, one of which is the won sign. The exponential format
cannot be used with ww. Negative numbers cannot be used unless
the minus sign trails …o the right.
Example:
PRINT USING "WW&###,##";12.35,-12.35
w12.35 -w12,35

Ok
PRINT USING "ww&4##, ##-";12.35,-12.35
w12.35 w12.35-

Ok

kkyn
The **w at the beginning of a format string combines the effects
of the above two symbols. Leading spaces will be asterisk-filled
and a won sign will be printed before the number. **w specifies
three more digit positions, one of which is the Won sign.
Example:
PRINT USING "**w#,##";12.35
*w12.35
Ok

— 31

Language specification for MSX BASIC

A comma that is to the left of the decimal point in a formatting
string causes a comma to be printed to the left of every third
digit to the left of the decimal point. A comma that is at the
end of the format string is printed as part of the string. A
comma specifies another digit position. The comma has no effectif used with the exponential format.
Example:
PRINT USING "##4#, .##";1234.5
1,234.50
Ok
PRINT USING "####,##,";1234.5
1234.50,
Ok

Four carats may be placed after the digit position characters
to specify exponential format. The four carats allow space for
E+xx to be printed. Any decimal point position may be specified.
The significant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or — is specified,
one digit position will be used to the left of the decimal point
to print a space or minus sign.
Example:
PRINT USING "##.##°7°°";234.56
2.35E+02

Ok
PRINT USING "#.##°77%-";-12.34
1.23E+01-
Ok
PRINT USING "%+#.##°°°";12.34,-12.34
+1.23E+01-1.23E+01
Ok

“9
If the number to be printed is larger than the specified numeric
field, a percent sign is printed in front of the number. Also,
if rounding causes the number to exceed the field, a percent
sign will be printed in front of the rounded number.

Example:
PRINT USING "##.##";123,45
3123.45
Ok
PRINT USING ",##";,999
41.00
Ok

If the number of digits specified exceed 24, an 'Illegal function

ja

Language specification for MSX BASIC

call' error will result.
READ <list of variables>

+ To read values from a DATA statement and assign them to variables.
A READ statement must always be used in conjunction with a DATA
statement. READ statements assign variables to DATA statement
values on a one-to-one basis. READ statement variables may be
numeric or string, and the values read must agree with the
variable types specified.will result.

If they do not agree, a 'Syntax error!

A single READ statement may access one or more DATA statements
(they will be accessed in
may access the same DATA statement. If the number of variables
in <list of variables> exceeds the number of elements in the
DATA statement (5), an

order), or several READ statements

'Out of DATA' error will result. If the
number of variables specified is fewer than the number of elements
in the DATA statement (s),
reading data at the first unread element. If there are no
subseguent READ statements, the extra data is ignored.

subseguent READ statements will begin

To reread DATA statements from the start, use the RESTORE
statement.

REM <remark>
3 To allow explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as entered
when the program is listed.
REM statements may be branched into (from a GOTO or GOSUB
statement), and execution will continue with the first executable
statement after the REM statement.
Remarks may be added to the end of a line by preceding the remark
with a single quotation mark instead of :REM.

Do not use this in a
legal data.

RESTORE [<line number>]

DATA statement as it would be considered

; To allow DATA statements
After a RESTORE statement
accesses the first item

accesses the first item

to be reread from a specified line.
is executed, the next READ statement

in the first DATA statement in the
program. If <line number> is specified, the next READ statement

in the specified DATA statement. If
a nonexistent line number is specified, an 'Undefined Line number!
error will result.

RESUME
RESUME 0
RESUME NEXT
RESUME <line number>

33

Lang

STOP

SWAP

uage specification for MSX BASIC

: To continue program execution after an error recovery procedure
has been performed.
Any one of the four formats shown above may be used, depending
upon where execution is to resume:
RESUME or RESUME 0
Execution resumes at the statement which caused the error.

RESUME NEXT
Execution resumes at the statement immediately following the
one which caused the error.

RESUME <line number>
Execution resumes at <line number>

A RESUME statement that is not in an error trap subroutine causes
a 'RESUME without’ error.

To terminate program execution and return to command level.
STOP statement may be used anywhere in a program to terminate
execution. When a STOP statement is encountered, the following
message is printed:

Break in nnnn (nnnn is a line number)

Unlike the END statement, the STOP statement does not close files.
Execution is resumed by issuing a CONT command.

<variable>,<variable>
+ To exchange the value of two variables.

Any type of variable may be SWAPed (integer, single precision,
double precision, string), but the two variable must be of the
same type or a 'Type mismatch! error results.

4

Language specification for MSX BASIC

2.1.3 Functions, except I/O
ABS(X)

3 Returns the absolute value of the expression X.

ASC(X$)
3 Returns a numerical value that is the ASCII code of the firstcharacter of the string X$. If X$ is null, a 'Illegal functioncall' error is returned.

ATN(X)
+ Returns the arctangent of X in radians. Result is in the range-pi/2 to pi/2. The expression X may be any numeric type, but
the evaluation of ATN is always performed in double precision.

BIN$(n)
3 Returns a string which represents the binary value of the decimal
argument.
n is a numeric expression in the range -32768 to 65535. Ifnis negative, the two's complement from is used. That is, BIN$(-n)
is the same as BIN$(65536-n).

CDBL(X)
; Converts X to a double precision number.

CHRS(I)
+ Returns a string whose one element is the ASCII code for I. ASC$
is commonly used to send a special character to the console,
etc.

CINT(X)
3 Converts X to a integer number by truncating the fractional
portion. If X isn't the range -32768 to 32767, an 'Overflow'
error occurs.

cos (X)
3 Returns the cosine of X in radians. COS(X) is calculated to
double precision.

CSNG(X)
3 Converts X to a single precision number.

CSRLIN
; Returns the vertical coordinate of the cursor.

ERL/ERR
3 When an error handling subroutine is entered, the variable ERR
contains the error code for error. and the variable ERL contains
the line number of the line in which the error was detected.
The ERR and ERL variables are usually used in IF...THEN statements
to direct program flow in the error trap routine.
If the statement that caused the error was a direct mode

Language specification for MSX BASIC

statement, ERL will contain 65535. To test if an error occurred
in a direct statement, use

IF 65535=ERL THEN ……...

Otherwise, use
IF ERL=<line number> THEN …..IF ERR=<error code> THEN....

Because ERL and ERR are reserved variables, neither may appear
to the left of the equal sign in a LET (assignment) statement.

EXP(X)
3 Returns e to the power of X. X must be <=145.06286085862. If

EXP overflows, the 'Overflow' error message is printed.
FIX(X)

; Returns the integer part of X (fraction truncated). PIX(X) is
equivalent to SGN(X)*INT(ABS(X)). The major difference between
FIX and INT is that FIX does not return the next lower number
for negative X.

FRE(0)
FRE("")

; Arguments to FRE are dummy arguments. FRE returns the number
of bytes in memory not being used by BASIC.

FRE(0) returns the number of bytes in memory which can be used
for BASIC program, text file, machine language program file,etc. FRE("") returns the number of bytes in memory for string
space.

HEXS (X)
3 Returns a string which represents the hexadecimal value of the
decimal argument.
n is a numeric expression in the range -32768 to 65535. Ifnis negative, the two's complement from is used. That is, HEX$(-n)
is the same as HEX$(65536-n).

INKEY$
; Returns either a one-character string containing a character
read from the keyboard or a null string if no key is pressed.
No characters will be echoed and all characters are passed through
to the program except for Control-C, which terminates the program.

INPUTS (X)
3 Returns a string of X characters, read from the keyboard. No
character will be echoed and all character: are passed through
except Control-C, terminates the execution of the INPUTS function.

INSTR([I,]X$,Y$)
3 Searches for the first occurrence of string Y$ in X$ and returnsthe position at which the match is found. Optional offset I

a TG ie

Language specification for MSX BASIC

sets the position for starting the search. I must be in the
range 0 to 255, If ISLEN(X$) or if X$ is null or if Y$ cannot
be found or if X$ and Y$ are null, INSTR returns 0. If only
Y$ is null, INSTR returns I or 1. X$ and Y$ may be stringvariables, string expressions, or string literals.

INT(X)
3 Returns the largest integer <=Xx.

LEFTS(XS,I)
3 Returns a string comprising the leftmost I characters of X$.
I must be in the range 0 to 255. If I is greater than LEN(XS),
the entire string (X$) is returned. If I=0, a null string (length
zero) is returned.

LEN(X$)
3 Returns the number of characters in X$. Nonprinting characters
and blanks are counted,

LOG(X)
; Returns the natural logarithm of X. X must be greater than zero.

LPOS(X)
; Returns the current position of the line printer print head within
the line printer buffer. Does not necessarily give the physical
position of the print head. X is a dummy argument.

MIDS(X$,I[,9])
; Returns a string of length J characters from X$ beginning with
the Ith character. I and J must be in the range 1 to 255. If
J is omitted or if there are fewer than J characters to the right
of the Ith character, all rightmost characters beginning with
the Ith character are returned. If I>LEN(X$), MIDS returns a
null string.

ocT$(n)
3 Returns a string which represents the octal value of the decimal
argument.
n is a numeric expression in the range -32768 to 65535. If n
is negative, the two's complement from is used. That is, OCT$(-n)
is the same as OCT$(65536-n).

PEEK(I)
3 Returns the byte (decimal integer in the range 0 to 255) read
from memory location I. I must be in the range -32768 to 65535.
PEEK is the complementary function to the POKE statement.

POS(I)
; Returns the current cursor position. The leftmost position is
0. I is a dummy argument.

RIGHTS (X$,I)
; Returns the rightmost I characters of string XS. If I=LEN(X$),
return X$. If I=0, a null string (length zero) is returned.

en

Language specification for MSX BASIC

RND(X)
3 Returns a random number between 0 and 1. The same sequence of
random number is generated each time the program is RUN. If
x<0, the random generator is reseeded for any given Xx. X=0
repeats the last number generated. X>0 generates the next random
number in the sequence.

SGN(X)
3 Returns 1 (for X>0), O0 (for X=0), -1 (for X<0).

SIN(X)
3 Returns the sine of X in radians. SIN(X) is calculated to double
precision.

SPACE$ (X)
3 Returns the string of spaces of length Xx. The expression Xx

discards the fractional portion and must be range 0 to 255.

SPC(I)
3 Prints I blanks on the screen. SPC may only be used with PRINT
and LPRINT statements. I must be in the range 0 to 255.

SQR(X)
3 Returns the square root of X. X must be >=0.

STRS$(X)
3 Returns a string representation of the value of KX.

STRING$(1,J)
STRING$(I,X$)

3 Returns a string of length I whose characters all have ASCII
code J or the first character of the string X$.

TAB(I)
3 Spaces to position I on the console. If the current print
position is already beyond space I, TAB does nothing. Space
0 is the leftmost position, and the rightmost position is the
width minus one. I must be in the range 0 to 255. TAB may only
be used with PRINT and LPRINT statements.

TAN(X)
3 Returns the tangent of X in radians. TAN(X) is calculated to
double precision. If TAN overflows, an 'Overflow' error will
occur.

USR[<digit>] (X)
3 Calls the user's assembly language subroutine with the argument

X. <digit> is in the range 0 to 9 and corresponds to the digit
supplied with the DEFUSR statement for that routine. If <digit>is omitted, USRO is assumed.

VAL (XS)
+ Returns the numerical value of the string X$. The VAL functionalso strips leading blanks, tabs, and linefeeds from the argument

_38—

Language specification for MSX BASIC

string. For example
PRINT VAL(" “J2)
-7
Ok

VARPTR(<variable name>)
VARPTR(#<file number>)

+ Returns the address of the first byte of data identified with
<variable name>. A value must be assigned to <variable name>
prior to execution of VARPTR. Otherwise, an 'Illegal functioncall' error results. Any type variable name may be used (numeric,
string, array), and the address returned will be an integer in
the range -32768 to 32767. If a negative address is returned,
add it £o 65536 to obtain the actual address,
VARPTR is usually used to obtain the address of a variable or
array 80 it may be passed to an machine language subroutine.
A function call of the form VARPTR(A(0)) is usually specified
when passing an array, so that the lowest-address element of
the array is returned.
All simple variables should be assigned before calling VARPTR
for an array because the address of the arrays change whenever
a new simple variable is assigned. If &#<file number> is
Specified; VARPTR returns the starting address of the file control
ock.

9

Language specification for MSX BASIC

2.2 Device specific statements and functions.
=-- Expanded statements and functions for MSX —--

2.2.1 Statements
SCREEN [<mode>][,<sprite size>] [,<key click switch>]

[,<cassette baud rate>][,<printer option>]
+ To assign the screen mode, sprite size, key click, cassette baud
rate and printer option.
<mode> should be set to 0 to select 40x24 text mode, l to select
32x24 text mode, 2 to select high resolution mode, 3 to select
multi color (low-resolution mode).

0:40x24 text mode
1:32x24 text mode
2:high resolution mode
3:multi color mode

<sprite size> determines the size of sprite. Should be set to
0 to select 8x8 unmagnified sprites, l to select 8x8 magnified
sprites, 2 to select 16x16 unmagnified sprites, 3 to select 16x16
magnified sprites. NOTE: If <sprite size> is specified, the
contents of SPRITE$ will be cleared.

0:8x8 unmagnified
1:8x8 magnified
2:16x16 unmagnified
3:16x16 magnified

<key click switch> determines whether to enable or disable the
key click. Should be set to 0 to disable it.

O:disable the key click
non zero:enable the key click

Note that in text mode, all graphics statements except 'PUT
SPRITE' generate an 'Illegal function call' error. Note also
that the mode is forced to text mode when an 'INPUT' statement
is encountered or BASIC returns to command level.
<cassette baud rate> determines the default baud rate for
succeeding write operations. 1 for 1200 baud, and 2 for 2400
baud. Baud rate can also be determined using CSAVE command with
baud rate option.
Note that when reading cassette, baud rate is automatically
determined, so the user don't have to know in what baud rate
the cassette is written. <printer option> determines if the
printer in operation is 'MSX printer' (which has 'graphics symbol
and 'HIRAGANA' capability) or not. Should be non-0 if the printer
does not have such capability. In this case, graphics symbols

40 —

Language specification for MSX BASIC

are converted to spaces, and HIRAGANA characters are converted
to equivalent KATAKANA characters.

WIDTH <width of screen in text mode>
3 To Set the width of display during text mode, Legal value is
1..40 in 40x24 text mode, 1..32 in 32x24 text mode.

CLS
3 To clear the screen. Valid in all screen modes.

LOCATE [<x>][,<y>][;<cursor display switch>]
+ To locate character position for PRINT. <cursor display switch>
can be specified only in text mode.

O:disable the cursor display
l:enable the cursor display

COLOR [<foreground color>][;<background color>][,<border color>]
3 To define the color. Defaults to 15,4,7. The argument can be
in the range of 0..15. Actual color corresponding to each value
is as follows.

0 transparent
1 black
2 medium green
3 light green
4 dark blue
5 light blue
6 dark red
7 cyan
8 medium red
9 light red
10 dark yellow
11 light yellow
12 dark green
13 magenta
14 gray
15 white

PUT SPRITE <sprite plane number>[,<coordinate specifier>][,<color>]
[,‚<pattern number>]

3 To set up sprite attributes.
<sprite plane number> may range from 0 to 31.

<coordinates specifier> always can come in one of two forms:
STEP (x offset, y offset) or
(absolute x; absolute y)

The first form is a point relative to the most recent point
referenced. The second form is more common and directly refers
to a point without regard to the last point referenced. Examples
are:

—41-

Language specification for MSX BASIC

(10,10) absolute form
STEP (10,0) offset 10 in x and 0 iny(0,0) origin

Note that when Basic scans coordinate values it will allow them
to be beyond the edge of the screen, however values outside the
integer range (-32768 to 32767) will cause an overflow error.
And the values outside of the screen will be substituted with
the nearest possible value. For example, 0 for any negative
coordinate specification.
Note that (0,0) is always the upper left hand corner. It may
seem strange to start numbering y at the top so the bottom left
corner is (0,191) in both high-resolution and medium resolution,
but this is the standard.
Above description can be applied wherever graphic coordinate
is used.
XxX coordinate <x> may range from -32 to 255. Y coordinates <y>
may range from -32 to 191. If 208 (&HD0) is given to <y>, all
sprite planes behind disappears until a value other than 208
is given to that plane. If 209 (&HD1) is specified to <y>, then
that sprite disappears from the screen. (Refer to VDP manual
for further details.)
When a field is omitted, the current value is used. At start
up, color defaults to the current foreground color.
<pattern number> specifies the pattern of sprite, and must be
less than 256 when size of sprites if 0 or l, and must be less
than 64 when size of sprites is 2 or 3. <pattern number> defaults
to the <sprite plane number>. (See also SCREEN statement and
SPRITE$ variable)

CIRCLE <coordinate specifier>,<radius>[,<color>]
:

[;<start angle>][;,<end angle>][,<aspect ratio>]
To draw an ellipse with a center and radius as indicated by thefirst of its arguments.
<coordinate specifier> specifies the coordinate of the center
of the circle on the screen. For the detail of <coordinate
specifier>, see the description at PUT SPRITE statement.
The <color> defaults to foreground color,
The <start angle> and <end angle> parameters are radian arguments
between O and 2*PI which allow you to specify where drawing of
the ellipse will begin and end. If the start or end angle is
negative, the ellipse will be connected to the center point with
a line, and the angles will be treated as if they were positive
(Note that this is different than adding 2*PI).
The <aspect ratio> is for horizontal and ‘vertical ratio of the
ellipse.

42

Language specification for MSX BASIC

DRAW <string expression)3 To draw gure according to the graphic macro language.
The graphic macro language commands are contained in the string
expression string. The string defines an object, which is drawn
when BASIC executes the DRAW statement. During execution, BASIC
examines the value of string and interprets single letter commands

ie the contents of the string. These commands are detailed
elow:

The following movement commands begin movement from the last
point referenced. After each command, last point referenced
is the last point the command draws.

;Moves up
;iMoves down
Moves left
sMoves right
;Moves diagonally up und right
;Moves diagonally down and right
Moves diagonally down and left
;Moves diagonally up and left

zomnwroc ssssssss

n in each of the preceding commands indicating the distance to
move, The number of points moved is n times the scaling factor
(set by the S command).

M X,y ;iMoves absolute or relative. If x has a plus
sign(+) or a minus sign(-) in front of it, itis relative. Otherwise, it is absolute.

The aspect ratio of the screen is 1. So 8 horizontal points
are equal in length to 8 vertical points. í

The following two prefix commands may precede any of the above
movement commands.

B ;Moves, but doesn't plot any points.
N ;Moves, but returns to the original position

when finished.
The following commands are also available:

An iSets angle n. mn may range from O0 to 3, where
0 is O0 degree, 1 is 90, 2 is 180, 3 is 270.

0
1

l--+--3
l

2

cn iSets color n. n may range 0 to 15.

_43—

Language specification for MSX BASIC

sn iSets scale factor. n may range from 0 to 255.
n divided by 4 is the scale factor. For example,if n=l, then the scale factor is 1/4. The scale
factor multiplied by the distance given with
the U,D, L, R,E,F,G,H, and relative M commands
gives the actual distance moved. The default
value is 0, which means 'no-scaling' (i.e.
same as S4)

X<string variable»;
;Executes substring. This allows you to execute
a second string from within a string.
Example A$="U80RB0D80L80":DRAW "XA$;"

->Draws a square
In all of these commands, the n,x, or y argument can be a constant
like 123 or it can be '=<variable>;' where <variable> is the
name of a numeric variable. The semicolon (;) is required when
you use a variable this way, or in the X command. Otherwise,
a semicolon is optional between commands. Spaces are ignored
in string. Foe example, you could use variables in a move command
this way:

x1=40:X2=50
DRAW "M+=xl;,-=Xx2"

The X command can be a very useful part of DRAW, because you
can define a part of an object separate from the entire object
and also can use X to draw a string of commands more than 255
characters long.

LINE [<coordinate specifier>]-<coordinate specifier>[,<color>]
[,<BiBE>

3 To draw line connecting the two specified coordinate. For thedetail of the <coordinate specifier>, see description at PUT
SPRITE statement.
If 'B'is specified, draws rectangle. If 'BF' is specified, fills
rectangle.

PAINT <coordinate specifier>[,<paint color>][,<color regarded
as border>]

3 To fill in an arbitrary graphics figure of the specified fillcolor starting at <coordinate specifier>. For the detail of
the <coordinate specifier>, see the description at PUT SPRITE
statement. PAINT does not allow <coordinate specifier> to
out of the screen.
Note that PAINT must not have border for high resolution graphics,
border can be specified only in multicolor mode. In
resolution graphics mode, paint color is regarded as border color.

PSET<coordinate specifier>[,<color>]
PRESET<coordinate specifier>[,<color>]

Language specification for MSX BASIC

+ To set/reset the specified coordinate. For the detail of the
SCODAte specifier>, see the description at PUT SPRITE
statemen
The only difference between PSET and PRESET is that if no <color>
is given in PRESET statement, the background color is selected.
When a <color> argument is given, PRESET is identical to PSET.

KEY <function key #>,<string expression>
+ To set a string to specified function key. <function key #>
must be in the range l to 10. <string expression> must be within
15 characters.
Example:

KEY l, "PRINT TIME$"+CHR$(13)
A$="Japan"
KEY 2,A$

KEY LIST
3 To list the contents of all function keys.

Example:
KEY LIST
color
auto
gotolist
run
color 15,7,7
cload"
contlist
run

Ok

"color" aligns with key "fl", "auto" with "f2", "goto" with "£3",
and so on. Position in the list reflects the key assignments
Note that control characters assigned to a function key is
converted to spaces.

KEY ON|OFF
3 To turn on/off function key display on 24th line of text screen.

ON KEY GOSUB <list of line numbers>
3 To set up a line numbers for BASIC to trap to when the function
keys is pressed.
example

ON KEY GOSUB 100,200,,400,,500
When a trap occurs, an automatic KEY(n)STOP is executed so receive
traps can never take place. The RETURN from the trap routine
will automatically do a KEY(n)ON unless an explicit KEY(n)OFF

_45-—

Language specification for MSX BASIC

has been performed inside the trap routine.
Event trapping does not take place when BASIC is not executing
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

KEY (<function key #>) ON/OFF/STOP
7 To activate/deactivate trapping of the specified function key
in a BASIC program.
A KEY(n)ON statement must be executed to activate trapping of
function key. After KEY(n)ON statement, if a line number is
specified in the ON KEY GOSUB statement then every time BASIC
starts a new statement it will check to see if the specified
key was pressed. If so it will perform a GOSUB to the line number
specified in the ON KEY GOSUB statement.
If a KEY(n)OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.
If a KEY(n)STOP statement has been executed, no trapping will
take place, but if the specified key is pressed this is remembered
so an immediate trap will take place when KEY(n)ON is executed.
KEY(n)ON has no effect on whether the function key value are
displayed at the bottom of the console.

ON STRIG GOSUB <list of line numbers>
ì

STRIG

To set up a lirie numbers for BASIC to trap to when the trigger
button is pressed.
Example:

ON STRIG GOSUB ,200,,400
When the trap occurs an automatic STRIG(n) STOP is executed so
receive traps can never take place. The RETURN from the traproutine will automatically do a STRIG(n)ON unless an explicit
STRIG(n)OFF has been performed inside the trap routine.
Event trapping does not take place when BASIC is not executing
a program. When an error trap (resulting {from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

(<n>) ON/OFF/ STOP
To activate/deactivate trapping of trigger buttons of joy sticksin a BASIC program.
<n> can be in the range of 0..4. If <n>=0, the space bar is
used for a trigger button. If <n> is either l or 3, the trigger
of a joy-stick 1 is used. When <n> is either 2 or 4, joy-stick2.
A STRIG(n)ON statement must be executed to activate trapping

_ 46 —

Language specification for MSX BASIC

of trigger button. After STRIG(n)ON statement, if a line number
is specified in the ON STRIG GOSUB statement then every time
BASIC starts a new statement it will check to see if the triggerbutton was pressed. If so it will perform a GOSUB to the line
number specified in the ON STRIG GOSUB statement.
If a STRIG(n)OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.
If a STRIG(n)STOP statement has been executed, no trapping will
take place, but if the trigger button is pressed this is
remembered so an immediate trap will take place when STRIG(n)ON
is executed.

ON STOP GOSUB <line number>
+ To set up a line numbers for BASIC to trap to when the
Control-STOP key is pressed.
When the trap occurs an automatic STOP STOP is executed so receive
traps can never take place. The RETURN from the trap routine
will automatically do a STOP ON unless an explicit STOP OFF has
been performed inside the trap routine.
Event trapping does not take place when BASIC is not executiog
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

The user must be VERY careful when using this statement. For
example, following program cannot be aborted. The only way leftis to reset the system!
example: 10 ON STOP GOSUB 40

20 STOP ON
30 GOTO 30
40 RETURN

STOP ON/OFF/STOP
3 To activate/deactivate trapping of a control-STOP.

A STOP ON statement must be executed to activate trapping of
a control-STOP. After STOP ON statement, if a line number is
specified in the ON STOP GOSUB statement then every time BASIC
starts a new statement it will check to see if a control-STOP
was pressed. If so, it will perform a GOSUB to the line number
specified in the ON STOP GOSUB statement.
If a STOP OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.
If a STOP STOP statement has been executed, no trapping will
take place, but if a control-STOP is pressed this is remembered
so an immediate trap will take place when STOP ON is executed.

ON SPRITE GOSUB <line number>

Ss

Language specification for MSX BASIC

: To set up a line number for BASIC to trap to when the spritescoincide.
When the trap occurs an automatic SPRITE STOP is executed so
receive traps can never take place. The RETURN from the traproutine will automatically do a SPRITE ON unless an explicit
SPRITE OFF has been performed inside the trap routine.
Event trapping does not take place when BASIC is not executiog
a program. When an error trap (resulting from an ON ERROR
statement) takes place this automatically disables all trapping
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

SPRITE ON/OFF/STOP
; To activate/deactivate trapping of sprite in a BASIC program.

A SPRITE ON statement must be executed to activate trapping of
sprite. After SPRITE ON statement, if a line number is specified
in the ON SPRITE GOSUB statement then every time BASIC starts
a new statement it will check to see if the sprites coincide.
If so it will perform a GOSUB to the line number specified in
the ON SPRITE GOSUB statement.
If a SPRITE OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.
If a SPRITE STOP statement has been executed, no trapping will
take place, but if the sprites coincide this is remembered so
an immediate trap will take place when SPRITE ON is executed.

ON INTERVAL=<time interval> GOSUB <line number>
7 To set up a line number for BASIC to trap to time interval.
Generates a timer interrupt at every <time interval>/60 second.
When the trap occurs an automatic INTERVAL STOP is executed so
receive traps can never take place. The RETURN from the traproutine will automatically do a INTERVAL ON unless an explicit
INTERVAL OFF has been performed inside the trap routine.
Event trapping does not take place when BASIC is not executing
a program. When an error trap (resulting {from an ON ERROR
statement) takes place this automatically disables all traps
(including ERROR, STRIG, STOP, SPRITE, INTERVAL and KEY).

INTERVAL ON/OFF/STOP
3 To activate/deactivate trapping of time interval in a BASIC
program.
A INTERVAL ON statement must be executed to activate trapping
of time interval. After INTERVAL ON statement, if a line number
is specified in the ON INTERVAL GOSUB statement then every time
BASIC starts a new statement it will check the time interval.If so it will perform a GOSUB to the line number specified in
the ON INTERVAL GOSUB statement.

Language specification for MSX BASIC

If a INTERVAL OFF statement has been executed, no trapping takes
place and the event is not remembered even if it does take place.
If a INTERVAL STOP statement has been executed, no trapping will
take place, but if the timer interrupt occur, this is remembered
so an immediate trap will take place when INTERVAL ON is executed.

VPOKE <address of VRAM), <value to be written>
; To poke a value to specified location of VRAM. <address of VRAM>
can be in the range of 0..16383. <value to be written> should
be a byte value.

BEEP
3 To generate a beep sound. Exactly the same with outputting
CHRS(7).

MOTOR [<ON|OFF>]

To change the status of cassette motor switch. When no argumentis given, flips the motor switch. Otherwise, enables/disables
motor of cassette.

SOUND <register of PSG>,<value to be written>
; To write value directly to the <register of PSG>.

PLAY <string exp for voice l>[,<string exp for voice 2> [,<string exp
for voice 3)>]]

+ To play music according to music macro language.
PLAY implements a concept similar to DRAW by embedding a "music
macro language" into a character string. <stting exp for voice
n> is a string expression consisting of single character music
commands. When a null string is specified, the voice channel
remains silent. The single character commands in PLAY are:

A to G with optional #,+,0r -
;Plays the indicated note in the current octave.
A number sign(#) or plus sign(+) afterwards
indicates a sharp, a minus sign(-) indicates
a flat. The #,+, or - is not allowed unlessit corresponds to a black key on a piano. For
example, B# is an invalid note.

on iOctave. Sets the current octave for the
following notes. There are 8 octaves, numbered
l to 8. Each octave goes from C to B. Octave
4 is the default octave.

Nn ;Plays note n. n may range from O0 to 96. n=0
means rest. This is an alternative way of
selecting notes besides specifying the octave(0
n) and the note name (A-G). (The C of octave

—49-—

Language specification for MSX BASIC

Ln
4 is 36.)

Sets the length of the following notes. The
actual note length is 1l/n. n may range {from
l to 64, The following table may help explainthis:
Length Equivalent
Ll whole note
12 half note
L3 one of a triplet of three

half notes (1/3 of a 4 beat
measure)

L4 quarter note
L5 one of a quintuplet (1/5

of a measure)
L6 one of a quarter note triplet

L64 sixty-forth note
The length may also follow the note when you
want to change the length only for the note.
For example, Al6 is equivalent to L16A. The
default is 4.

;Pause(rest). mn may range from l to 64, and
figures the length of the pause in the same
way as L(length). The default is 4.

3 (Dot or period) After a note, causes the note
to be played as a dotted note. That is, its
length is multiplied by 3/2. More than one
dot may appear after the note, and the lengthis adjusted accordingly. For example, "A..."
will play 27/8 as long, etc. Dots may also
appear after the pause(P) to scale the pause
length in the same way.

;Tempo. Sets the number of quarter notes in
a minute. mn may range from 32 to 255. The
default is 120.

Volume. Sets the volume of output. n may range
from 0 to 15. The default is 8.

;Modulation. Sets period of envelope. n may
range from l to 65535. The default is 255.

;Shape. Sets shape of envelope. n may range
from l to 15. The default is 1. The pattern
set by this command are as follows:

_50-—

Language specification for MSX BASIC

0,1,2:3,9 \

14 ZON ON/ ONS ON

Xx<variable>;
jExecutes specified string.

In all of these commands the n argument can be a constant like
12 or it can be "=<variable>;" where variable is the name of
a variable. The semicolon(;) is required when you use a variable
in this way, and when you use the X command. Otherwise, a
semicolon is optional between commands.
Note that values specified with above commands will be reset
to the system default when beep sound is generated.

MAXFILES=<expression>
; To specify the maximum number of files opened at a time,

<expression> can be in the range of 0..15. When 'MAXFILES=0'
is executed, only SAVE and LOAD can be performed.

arb ae

Language specification for MSX BASIC

OPEN "

ì

PRINT
PRINT

INPUT

The default value assigned is 1.

<device_descriptor>[<file name>]" [FOR <mode>]
AS [#]<file number>

To allocate a buffer for I/O and set the mode that will be used
with the buffer.
This statement opens a device for further processing. Currently,
following devices are supported.

CAS: cassette
CRT: CRT screen
GRP: Graphic screen
LPT: line printer

Device descriptors can be added using the ROM cartridge. See
SLOT.MEM for further details.
<mode> is one of the following:

OUTPUT : Specifies sequential output mode
INPUT : Specifies sequential input mode
APPEND : Specifies sequential append mode

<file number> is an integer expression whose value is between
one and the maximum number of files specified in a MAXFILES=
statement.
<file number> is the number that is associated with the file
for as long as it is OPEN and is used by other I/O statements
to refer to the file.
An OPEN must be executed before any I/O may be done to the file
using any of the following statements, or any statement or
function requiring a file number:

PRINT #, PRINT # USING
INPUT #, LINE INPUT #

INPUT$S, GET, PUT

#<file number>,<exp>
#<file number>, USING <string expression>;<list of expression>
To write data to the specified channel. (See PRINT/PRINT USING
statements for details.)
#<file number>,<variable list>
To read data items from the specified channel and assign them
to program variables.
The type of data in the file must match the type specified by
the <variable list)». Unlike the INPUT statement, no question
mark is printed with INPUT# statement.
The data items in the file should appear just as they would ifdata were being typed in response to an INPUT statement. With

— 52 —

Language specification for MSX BASIC

numeric values, leading spaces, carriage returns, and line feeds
are ignored. The first character encountered that is not a space,carriage return, or line feed is assumed to be start of a number.
The number terminates on a space, carriage return, line feed,
or comma.

Also, if the BASIC is scanning the data for a string item, leading
spaces, carriage returns and line feeds are ignored. The firstcharacter encountered that is not a space, carriage return, or
line feed is assumed to be the start of a string item. If thisfirst character is a double-quotation mark ("), the string item
will consist of all characters read between the first quotation
mark and the second. Thus, a quoted string may not contain a
quotation mark as a character.
If the first character of the string is not a quotation mark,
the string is an unguoted string, and will terminate on a comma,
carriage return, line feed, or after 255 characters have been
read. If end of file is reached when a numeric or string item
is being INPUT, the item is terminated.

LINE INPUT #<file number>,<string variable>
+ To read an entire line (up to 254 characters), without delimiters,
from a sequential file to a string variable.
<file number> is the number which the file was OPENed.

<string variable> is the name of a string variable to which the
line will be assigned.
LINE INPUT# reads all characters in the sequential file up to
a carriage return. It then skips over the carriage return/line
feed sequence, and the next LINE INPUT# reads all characters
up to the next carriage return. (If a line feed/carriage return
sequence is encountered, it is preserved. That is, the line
feed/carriage return characters are returned as part of the
string.)
LINE INPUT# is especially useful if each line of a file has been
broken into fields, or if a BASIC program saved in ASCII mode
is being read as data by another program.

INPUTS(n, [#]<{file number>)
7 To Return a string of n characters, read from the file. <file
number> is the number which the file was OPENed.

CLOSE [[4#]<{file number>[,<file number>]]
3 To close the channel and releases the buffer associated with
it. If no <file number>'s are specified, all open channels are
closed.

SAVE "<device descriptor>[<file name>]"
3 To save a BASIC program file to the device. Control-Z is treated
as end-of-file.

zS5j=

Language specification for MSX BASIC

LOAD "<device_descriptor>[<file name>]"
ì

MERGE

BSAVE

BLOAD

To load a BASIC program file from the device.
LOAD closes all open files and deletes the current program from
memory. However, with the "R" option, all data files remain
OPEN and execute the loaded program.
If the <file name> is omitted, the next program, which should
be an ASCII file, encountered on the tape is loaded. Control-Z
is treated as end-of-file.
"<device descriptor>[<{file name>]"
To merge the lines from an ASCII program file into the program
currently in memory.

If any lines in the file being merged have the same line number
as lines in the program in memory, the lines from the file will
replace the corresponding lines in memory.

After the MERGE command, the MERGEd program resides in memory,
and BASIC returns to command level,
If the <file name> is omitted, the next program files, it should
be ASCII file, file encountered on the tape is MERGEd. Control-Z
is treated as end-of-file.
"<device descriptor>[<file name>]",<top adrs>,<end adrs>

[:<execution adrs>]
To save a memory image at the specified memory location to the
device. (Currently, only CAS: is supported.)
<top adrs> and <end adrs> are the top address and the end address
of the area to be saved.

If <execution adrs> is omitted, <top adrs> is regarded as
<execution adrs>.
Example:

BSAVE "CAS:TEST", 4HAOOO , SHAFFF
BSAVE "CAS:GAME", &HE0OO , SHEOFF, &HEO20

"<device_descriptor>[<file name>] "[,R] [,<offset>]
To load a machine language program from the specified device.
(Currently only CAS: is supported.)
If R option is specified, after the loading, program begins
execution automatically from the address which is specified at
BSAVE.

The loaded machine language program will be stored at the memory
location which is specified at BSAVE. If <offset> is specified,a addresses which are specified at BSAVE are offset by thatvalue.

Language specification for MSX BASIC

If the <file name> is omitted, the next machine language programfile encountered is loaded.
CSAVE "<file name>"[,<baud rate>]

3 To save a BASIC program file to the cassette tape.
BASIC saves the file in a compressed binary (tokenized) format.
ASCII files take up more space, but some types of access requirethat files be in ASCII format. For example, a file intended
to be MERGEd must be saved in ASCII format. Programs saved in
ASCII may be read as BASIC data files and text files. In that
case, use the SAVE command.

<baud rate> is a parameter {from 1 to 2, which determines the
default baud rate for every cassette write operations. l for
1200 baud, 2 for 2400 baud. The default baud rate can also be
set with SCREEN statement.

CLOAD ["<file name>"]
+ To load a BASIC program file from the CNT.

CLOAD closes all open files and deletes the current program from
memory. If the <file name> is omitted, the next program fileencountered on the tape is loaded. For all cassette read
operations, baud rate is determined automatically.

CLOAD? ["<file name>"]
3 To verify a BASIC program on CMT with one in memory.

CALL <name of expanded statement>[(<argument list>)]
3 To invoke an expanded statement supplied by ROM cartridge. See

SLOT.MEM for further details. '_' is an abbreviation for 'CALL',
so the next 2 statements have the same meaning.

CALL TALK("Yamashita", "Hayashi", "Suzuki GSX400FW")
_TALK("Yamashita", "Hayashi", "Suzuki GSX400FW")

55

Language specification for MSX BASIC

2.2.2 Functions
POINT(<X coordinate>,<Y coordinate>)

3 Returns color of a specified pixel.
VPEEK(<address of VRAM>)

3 Returns a value of VRAM specified.in the range of 0..16383.
STICK (<n>)

+ Returns the direction of a joy-stick.

<address of VRAM) can be

<n> can be in the range
of 0..2. If <n>=0, the cursor key is used as a joy-stick. If
<n> is either l or 2, the joy-stick connected to proper portreturned. Otherwise, valueis used. When neutral, 0 is
corresponding to direction is returned.

u
8 | 2

\1 7
\I/

7a/lZIN6 | 4
5

STRIG(<n>)
+ Returns the status of a trigger button of a joy-stick. <n> can
be in the range of 0..4. If <n>=0, the space bar is used for
a trigger button. If <n> is either 1 or 3, the trigger of a
joy-stick 1 is used. When <n> is either 2 or 4, joy-stick 2.
0 is returned if the trigger is' not being pressed, -1 is returned
otherwise.

PDL (<n>)
3 Returns the value of a paddle. <n> can be in the range of 1..12.

When <n> is either 1, 3, 5, 7, 9 or
to port 1 is used. When 2, 4,
connected to port 2 is used.

PAD(<n>)

11, the paddle connected
6, 8, 10 or 12, the paddle

7 Returns various status of touch pad. <n> can be in the range
of 0..7.
When 0..3 is specified, touch pad
l is selected, when 4..7, port 2.
When <n>=0 or 4, the status of touch
touched, 0 when released.
When <n>=l or 5, the X-coordinate
6, Y-coordinate is returned.
When <n>=3 or 7, the status of switch

_56—

connected to joy stick port

pad is returned, -1 when

is returned, when <n>=2 or

on the pad is returned,

Language specification for MSX BASIC

-1 when being pushed, 0 otherwise.
Note that coordinates are valid only when PAD(0) (or PAD(4))
is evaluated. When PAD(0) is evaluated, PAD(5) and PAD(6) are
both affected, and when PAD(4), PAD(1) and PAD(2).

PLAY(<play channel>)
3 Returns the status of a music queue. <n> can be in the range
of 0..3. If <n>=0, all 3 status are ORed and returned. If <n>
is either 1,2 or 3, -1 is returned if the queue is still in
operation, i.e., still playing. O0 is returned otherwise.
Note that immediate after the PLAY statement is issued, the PLAY
function returns -1l regardless to the actual status of the music
queue.

EOF (<file number>)
7 Return -1 (true) if the end of a sequential file has been reached.
Otherwise, returns 0. Use EOF to test for end-of-file while
INPUTing, to avoid 'Input past end' errors.

Language specification for MSX BASIC

2.2.3 Special variables
Pollowing are the special variables for MSX. When assigned, the content
is changed, when evaluated, the current value is returned.
TIME (type: unsigned integer)

+ The system internal timer, TIME is automatically incremented
l everytime VDP generates interrupt (60 times per second),

thus, when an interrupt is disabled (for example, when
manipulating cassette), it retains the old value.

SPRITE$(<pattern number>) (type: string)
3 The pattern of sprite.
<pattern number> must be less than 256 when size of sprites is
0 or l, less than 64 when size of sprites is 2 or 3.
The length of this variable is fixed to 32 (bytes). So, if assign
the string that is shorter than 32 character, the chr$(0)s are
added.

Examplelist
100 SCREEN 3,3
110 A$=CHRS$ (1) +CHRS (3) +CHRS (7) +CHRS (&HF) +CHRS$ (&H1F)
+CHRS (&H3F) +CHRS (&H7F) +CHRS (&HFF)
120 SPRITE$(1)=A$
130 SPRITES$(2)=A$+A$
140 SPRITES (3) =A$+A$+AS
150 SPRITES(4)=A$+AS+AS+A$
160 PUT SPRITE 1, (20,20) ,15
170 PUT SPRITE 2,(60,20) ‚15
180 PUT SPRITE 3, (100,20) ,15
190 PUT SPRITE 4,(140,20) ,15
200 GOTO 200
Ok
run

HRA KK AAN ARKANNKANNNRNRNRAANNRN* *
* Note: Following two are system variables which can be evaluated *
« or assigned like other ordinary variables. Prepared for *
* advanced programmers only. If you don't know the meaning, *
u never use. 5
* *
KAKKEN KRK KAAK KKK KR RKK KKKKK KRK KRKKRRKKeeVDP (<n>) (type: unsigned byte)

3 If <n> is in the range of 0..7, specifies the current value of
VDP's write only register. If <n> is 8, specifies the statusregister of VDP. VDP(8) is read only.

BASE (<n>) (type: integer)
3 Current base address for each table. The description of <n>
follows next.

-58-—

Language

voOonan

SwUNKOo

LEET

KHhkhp BUNHO

Khkhh oan
LEET

= o

specification for MSX BASIC

base of name table for text mode. \meaningless
base of pattern generator table for text mode. > 40 * 24
meaningless
meaningless Ji

base of name table for text mode. \base of color table for text mode. \base of pattern generator table for text mode. > 32 * 24
base of sprite attribute table for text mode. /base of sprite pattern table for text mode. Ú

base of name table for high-resolution mode.
base of color table for high-resolution mode.
base of pattern generator table for high-resolution mode.
base of sprite attribute table for high-resolution mode.
base of sprite pattern table for high-resolution mode.

base of name table for multi-color mode.
meaningless
base of pattern generator table for multi-color mode.
base of sprite attribute table for multi-color mode.
base of sprite pattern table for multi-color mode.

Language specification for MSX BASIC

2.2.4 Machine dependent statements and function
HAK KAARKKR KAAR NKK NRRRAR KKKARK* *
* Note: Following statements and function access machine's I/O port *
* directly. So, the programs that use those statements and *
* functions will not be compatible with MSX systems released *+ future. Programs distributed to the public should not use *
* those statements and functions. ï
* *
* *eeOUT <port number>,<integer expression>

7 To send a byte to a machine output port.
<port number> and <integer expression> are in the range 0 to
255. <integer expression> is the data (byte) to be transmitted.

WAIT <port number>,I[,J]
; To suspend program execution while monitoring the status of a
machine input port.
The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern.
The data read at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with integer expression I. If
the result is zero, BASIC loops back and reads the data at the
port again. If the result is non-zero, execution continues with
the next statement. If J is omitted, it is assumed to be zero.

INP(<port number>I)
7 Returns the byte read from the port I. I must be in the range,

0 to 255. INP is the complementary function to the OUT statement.

Note: In above statements and functions, <port number> is handled with
l6bit number to support Z80's capability that accesses I/O port
with [BC] register pair. However, statndard MSX system does
not support those extended I/O address space, port number larger
than 255 is meaningless.

=i6Û ==

Language specification for MSX BASIC

CHAPTER 3

APPENDIX

A. Summary of error codes and error messages

code
1

7

message
NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed, unmatched
FOR statement variable.

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.)

RETURN without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

Out of DATA
A READ statement is executed when there are
no DATA statement with unread data remaining
in the program.

Illegal function call
A parameter that is out of the range is passed
to a math or string function. An FC error
may also occur as the result of:
l. a negative or unreasonably large subscript.
2. a negative or zero argument with LOG.
3. a negative argument to SQR.
4. an improper argument to MID$, LEFT$, RIGHTS,

INP, OUT, PEEK, POKE, TAB, SPC, STRING$,
SPACE$, INSTR$ or ON...GOTO.

Overflow
The result of a calculation is too large to
be represented in BASIC's number format.

Out of memory
A program is too large, has too many files,has too many FOR loops or GOSUBs, too many
variables, or expressions that are too

ai =

Language specification for MSX BASIC

complicated.
8 Undefined line number

A line reference in a GOTO, GOSUB,
IF... THEN...ELSE is to a nonexistent line.

9 Subscript out of range
An array element is referenced either with
a subscript that is outside the dimensions
of the array, or with the wrong number of
subscripts.

10 Redimensioned array
Two DIM statements are given for the same array,or DIM statement is given for an array after
the default dimension of 10 has been established
for that array.

11 Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power.

12 Illegal direct
A statement that is illegal in direct mode
is entered as a direct mode command.

13 Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

14 Out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, untilit runs out of memory.

15 String too long
An attempt is made to create a string more
than 255 character long.

16 String formula too complex
A string expression is too long or too complex.
The expression should be broken into smaller
expressions.

17 Can't continue
An attempt is made to continue a program that:
1. has halted due to an error,2. has been modified during a break in

execution, or

62 —

Language specification for MSX BASIC

18

19

20

21

22

23

24

25

26

49

50

51

52

3. does not exist.
Undefined user function

FN function is called before defining it with
the DEF FN statement.

Device I/O error
An I/O error occurred on a cassette, printer,
or CRT operation. It is a fatal error; i.e.,
BASIC cannot recover from the error.

Verify error
The current program is different {from the
program saved on the cassette.

No RESUME
An error trapping routine is entered but
contains no RESUME statement.

RESUME without error
A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
An error message is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

Missing operand
An expression contained an operator with no
operand following it.

Line buffer overflow
An entered line has too many characters.

Unprintable errors
These codes have no definitions. Should be
reserved for future expansion in BASIC.

FIELD overflow
A FIELD statement is attempting allocate more
bytes than were specified for the record length
of a random file in the OPEN statement. Or,
the end of the FIELD buffer is encountered
while doing sequential I/O(PRINT#, INPUT#) to
a random file.

Internal error
An internal malfunction has occurred. Report
to Microsoft the conditions under which the
message appeared.

Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of

ij

Language specification for MSX BASIC

53

54

55

56

57

58

59

60

255

the range of file numbers specified by MAXFILE
statement.

File not found
A LOAD, KILL, or OPEN statement references
a file that does not exist in the memory.

File already open
A sequential output mode OPEN is issued for
a file that is already open; or a KILL is given
for a file that is open.

Input past end
An INPUT statement is executed after all the
data in the file has been INPUT, or for null
(empty) file. To avoid this error, use the
EOF function to detect the end of file.

Bad file name
An illegal {form is used for the file name with
LOAD, SAVE, KILL, NAME, etc.

Direct statement in file
A direct statement is encountered while LOADing
an ASCII format file. The LOAD is terminated.

Sequential I/O only
A statement to random access is issued for
a sequential file.

File not OPEN
The file specified in a PRINT#, INPUT#, etc.hasn't been OPENed.

Unprintable error
These codes have no definitions. Users may
place their own error code definitions at the
high end of this range.

3GoldStar

582 -026A

