HOW TOPROGRAM
~ YOUR

- MSX COMPUTER
LIKE A PROFESSIONAL

Tim 'H_artnell - '_

=7

B e b A e

Interface Publications

I L ONDON - MELBOURNE INEEEEEN

How to Program your MSX
Computer like a Professional

Tim Hartnell

¥

First published in the UX by:
Imerface Publications,

9-11 Kensington High Street,
London W2 SNP

Copyright © Tm Hartnell, 1584
First printing October 1385

ISBN 0 947695 28 1

The programs in this book have been inciuded for their instructional _value-
They have been tested with care, but are not guaranteed for any particular
purpose. Whilst every care has been taken, the publishers cannot be held
responsible for any running mistakes which may occur.

ALL RIGHTS RESERVED

No use whatsoever may be made of the contents of this volume — programs
and/or text — except for private study by the purchaser of this volume, without
the prior written permission of the copyright holder.

Reproduction in any form or for any purpose is forbidden.

Books published by Interface Publications are distributed in the UK by WHS
Distributors, St. John's House East Street, Leicester LE1 6NE (0533 551196) and
in Australia and New Zealand by PITMAN PUBLISHING. Any queries regarding
the contents of this volume should be directed by mail to Interface
Publications, 9-11 Kensington High Street, London W8 5NP.

MSX® is a trademark of Microsoft. All references to this in this volume are to
be recognized as reference to, and acknowledgement of, the trademark. This
book is not sponsored nor approved by, nor connected with Microsoft nor any
MSX computer manufacturer.

Cover art — David John Rowe
Cover design — Richard Kelly
Printed and Bound by Short Run Press Ltd, Exeter

Contents

Forewordcoveiinoiiineiiiineisesiriinnecacaanen v
One - Putting things on the screen 1
Two - Ringing the changes b & ale Baii TR 5 o o e 9
Three -~ Descent into chaosooveeueuuenn.. 17
Four - Round andround we go................c.cc..... 23
Five - Changing in mid-stream0cuu... 33
Six - Stringing along 41
Seven - Agameandatest0uiurinnnn.. 53
Eight - Reading DATA ...ttt aannnnn. 61
Nine - Getting listedcooiinininnenn... 63
Ten - Thesoundof music..............coouueuvnnnnn.. 69
Eleven - Functional fun................................ 83
Twelve - Adding life to programs 87
Thirteen - Graphics galoreccvuuun.... 97
Fourteen - Animation and sprites 109
Fifteen - MSX Checkerscoueiinennnnnnnnn. 133
Sixteen - Creating and playing adventures................ 139
Seventeen - Structured programming techniques 159
Appendix - Computer terms.ovvueeenneenn... 169

iii

v

f —

Foreword

You've bought a great computer, and this book will show you how
to get the most out of your machine, quickly and easily. In the book,
I've assumed that this is the first time you've learned to program,
and that your MSX computer is the first one you've handled.
Therefore, if I start talking about material you already know, just
skip over it.

If you’ve had previous experience with programming in BASIC, you
may want to turn straight to those sections which show you how to
make the most of your MSX machine using its unique sound and
graphic capabilities. We’ll be looking at such things as creating
weird sound effects and music, animated ‘arcade’ displays with user-
defined sprites, and much more. You’ll see, if you glance through the
book, that there are a number of major programs ready to be typed
in and run. These include the board games Othello and Checkers,
plus animated graphic games like Monster Chase and Multi-Sprite
Zap Out.

This book is intended to be used as a work book, to be read through
with your computer turned on. To get the most value out of the
book, you should enter each example program as you come to it.

I’ve assumed that you've followed the instructions which came with
your machine which show you how to connect your computer to the
television and to a cassette recorder. Although there is little point in
saving the short demonstration programs, there are many of the
longer programs you’ll want to keep on tape. If you do this, you’ll
find you have quite a good library of programs by the time you finish
this book.

Once you've followed the instructions which came with the machine
which tell you how to hook it up to the TV and cassette recorder,
turn the page and let’s get on with the fun and action.

Tim Hartnell,
London, 1984.

vi

Tim Hartnell is one of the most widely-published computer authors
in the world. Recent books include Tim Hartnell’'s QL Handbook
and The Big Fat Book of Computer Games. He is also the author of
the acclaimed work Exploring Artificial Intelligence on your Micro-
computer. The book includes 13 major ‘intelligent’ programs which
will run on your MSX machine.

vii

viii

P Y

CHAPTER ONE
Putting Things on the Screen

We start learning to program using the most commonly-used
command in BASIC, the word PRINT.

Type the following on your computer:

PRINT 2

Until you press the RETURN key, the computer will do nothing.
Specifically, at this point, it will ignore the command PRINT 2.
Press RETURN now, and you should see the number 2 appear
underneath the words PRINT 2. This is the way PRINT works. It
takes the information which follows the command PRINT, with a
few exceptions which we’ll learn about shortly, and PRINTS this on
the screen which is, after all, exactly what you’d expect it to do.

But your computer is not completely stupid. That is, it can do more
than just blindly print what you tell it to. If the word PRINT is
followed by a sum, it will work it out before printing, and give you
the result. Try it now. Enter the following line, then press RETURN:

PRINT S + 3

You should see the figure 8 appear. The computer added 5 and 3
together, as instructed by the plus (+) sign, then printed the result on
the screen. It can do subtraction as well (clever inventions, these
computers). Type in this, and press RETURN to see subtraction
(and PRINT) at work:

PRINT 7 - 2

Now the computer can - of course - carry out a wide range of
mathematical tasks, many of them far more sophisticated than

1

How to program your MSX computer like a professional

simple addition and subtraction. But there is a slight hitch. When it
comes to multiplication, the computer does not use the X symbol
you probably used at school. Instead, it uses an asterisk (*) and for
division the computer uses a slash (/).

Doing more than one thing at once

The computer is not limited to a single operation in a PRINT
statement. You can combine as many as you like. Try the next one,
which combines a multiplication and a division. Type it in, then
press RETURN to see the computer evaluate it:

PRINT 5x%3/2

This seems pretty simple. Just type in the word PRINT, follow it
with the information you want the computer to print, and that’s all
there is to it. But, it is not quite as simple as that! Try the next one
and see what happens:

FRINT testing

That doesn’t look too good. Instead of the word testing we've got a
zero. The computer thought we wanted a ‘variable’, rather than the
word testing. We won’t try to explain the meaning of the word
variable at this point (it’s not on the curriculum for this chapter), but
it means simply that the computer thought you wanted to print a
number which had the name of testing. Foolish machine.
Computers may be very, very clever machines, but they need to be
led by the hand, like a very stupid child, and told exactly what to do.
Give them the right instructions and they will carry them out
tirelessly and perfectly, without an error. But give them incorrect
instructions, or — even worse — confuse them, and they give up in
despair, or do something quite alien to your intentions.

Strings

If you want the computer to print the word testing, you must put
quote, or speech, marks around the words, like this:

FPRINT "testing"

LA

Putting things on the screen

This time when you press the RETURN key, the word testing will
appear at the top of the screen. This is worth remembering. When
you want the computer to print out some words, or a combination of
words, symbols, spaces and numbers, you need to put quote marks
around the material you want to print. Information held in this way
between quote marks is called a most peculiar name in computer
circles. The jargon for the information enclosed in quote marks is
‘string’. So, in our example above, the word testing, when enclosed
in quote marks, is a string. You can, in fact, get away with just the
first quote mark so the line reads PRINT *“testing but this is not good
practice.

Our first program

Type the following into your computer. Notice that each line starts
with a number. Type this into the computer, and follow this with the
other material.

1@ PRINT "Jack and Jill"

Type in the next line, the one starting with 20, and press RETURN
once you have it in place. You'll see, by the way, that your MSX
computer automatically turns words like PRINT into capital letters
when the program is listed out, even if you entered them in small
letters. Text within quote marks is not changed from small to capital
letters by the computer. Now enter the rest of the lines in this
program:

2@ PRINT "went up the hill"
30 PRINT "to fetch a pail"”
4@ FRINT "of water"

When you run this you’ll see the following (if all is well):

Jack and Jill
went up the hill

to fetch a pail
of water

e T ———

How to program your MSX computer like a professional

Adding new lines

The computer, clever beast that it is, allows you to enter your lines in
any order you choose. It will then sort them into order for you.
Although our first program, and most of the other ones in this book,
are numbered in 10’s, starting at 14, there is no particular reason
why you should follow this convention if you do not want to.
However, there is a reason for leaving ‘gaps’ in the counting.
Although our first program could easily be numbered in I’s, it would

leave no room to add later lines, if we decided there was a need to do
sO.

To see the computer sorting lines into order, adding the following:

25 REM a line in the middle

Now type in LIST, to get the computer to list out the current
program it is holding, and you’ll see line 25 neatly in its proper
numerical place. Now, run the program again. You should find that
line 25 made no difference at all to it.

Making remarks

Why did the computer decide to ignore line 25? The word REM
stands for remark, and is used within programs when we want to
include information for a human being reading the program listing.
You’ll find REM statements scattered throughout the programs in
this book. In each and every case, the computer ignores the REM
statements. They are only there for your convenience, for the
convenience of the programmer, or of someone else reading the
program.

Often you’ll use REM statements at the beginning of the program,
like this one:

S5 REM Jack and Jill poem
You may wonder why this would be necessary. After all, it is pretty

obvious that the computer is holding a ‘Jack and Jill poem’, even
without the line S REM statement. You are right. In this case, there is

4

Putting things on the screen

little point in adding a title REM statement to this program. But
have a look at some of the more complicated programs a little
further on in this book. Without REM statements you'd have a
pretty difficult time trying to work out what the program was
supposed to do.

REM statements are often scattered throughout programs. They
serve to remind programmers what each section of the program is
supposed to do. Once you've been programming a while, you'll be
amazed at how many programs you'll collect in listing form which -
when you go back to them in a month or two - will seem totally
obscure. You won’t have a clue how the program works, or even
more important, what on earth it is, or what it is supposed to do.
This is where you’ll find REM statements invaluable.

It is worth getting into good habits early as a programmer. So, I
suggest you start right now adding REM statements to programs. If
you come across programs, or program fragments, in this book
which you want to keep, and which do not have REM statements,
get into the habit of using them by adding REM statements to these
programs. And make sure you use them in your original programs.

Back to PRINT

Let’s return to the subject of the PRINT command. Empty your
computer’s memory by entering NEW and then pressing RETURN.
Type the following program into your computer and run it:

S CLS

18 PRINT 1,2

15 PRINT

20 PRINT 13233

25 PRINT

3@ PRINT "MSX computer"
35 PRINT

42 PRINT "23 + 34 = "3;23 + 34
45 PRINT

S@ PRINT 2%3

55 PRINT

6@ PRINT 375

65 PRINT

7@ PRINT "The answer is " ;23+5-7/6

5

T —————

How 10 program your MSX computer like a professional
There is a lot we can learn from this program.

Firstly, as in the Jack and Jill program, the computer executes a
program line by line, starting at the lowest numbered one and
proceeding through the line numbers in order until it runs out of
numbers, when it stops. (You'll discover that this orderly
progression of line numbers does not always apply, as there are ways
of making the computer execute parts of a program out of strict
numerical order, but for the time being it is best to assume that the
program will be executed in order.)

Look first to line 10 of your program. You can see that there is a
comma between the | and the 2. This has the effect of making the
computer print the numbers with a wide space between them. The
comma can be used in this way to space out numbers neatly for a
table of results or a similar purpose. (Try PRINT 1,,2 and see what
effect this has.) When you use a comma in this way, to divide the
things which follow a PRINT statement (but not when the comma is
inside a string, that is, between quote marks) you’ll find it divides the
screen up into neat little rows. Try PRINT 1,2,3 and see the result of
the commas. Then you can try the effect of PRINT 1,,,2,,,3,,,4,,,
5,,,6,,,7,,,8,,,9,,,0 to make it perfectly clear what is going on.

The third line of the program, 15, is just the word PRINT with
nothing following it. This has the effect, as you can see in the display
on your screen, of putting a blank line between those lines which
include material after the word PRINT. The same comment, of
course, applies to lines 25, 35, 45, 55 and 65.

Line 20 has three numbers (1, 2 and 3) separated not by commas (as
in line 10) but by semicolons (;). Instead of separating the output of
the numbers as the comma did, you’ll see that it causes them to be
printed with a single space on either side of them. When printed,
numbers are always followed by a space. Positive numbers are also
preceded by a space. You use the semicolon when you want printed
material to follow other printed material without a break.

Line 30 is a word, and this is a ... If you mentally said ‘string’ when
you came to those dots, then you’'re learning well. This word is a
string, in computer terms, because it is enclosed within quote marks.

Line 48 is rather interesting. For the first time we have included
numbers and a symbol (=) within a string. As you can see the
computer prints exactly what is within the quote marks, but works
out the result of the calculation for the material outside the quote
marks, giving -- in this case — the result of adding 23 to 24. Try to
remember that the computer considers everything within quote
marks as words, even if it is made up from numbers, symbols, or
even just spaces, or any combination of them, while it counts every-
thing that is not within quotes in a PRINT statement as a number.
This is why it got so upset earlier when we told it to print the word
testing without putting the word in quote marks. It looked for a
number which was called testing and because it could not find one
(as we had not told the computer to let testing equal some numerical
value), it refused to co-operate.

So line 40 treats the first part, within quote marks, as a string, and
the second part, outside quote marks, as numerical information
which it processed.

In line 50 we see the asterisk (*) used to represent multiplication and
the computer quite reasonably works out what 2 times 3 is and prints
the answer 6. In line 60 we come across a new, and strange sign,

This means ‘raise to the power’ so line 64 means print the result of 3
raised to the fifth power. In ordinary arithmetic, we indicate this by
putting the 5 up in the air beside the three. However, it is pretty
difficult for a computer to print a number halfway up the mast of
another number, so we use the " symbol to remind us (by pointing
upward) that it really means ‘print the second number up in the air’.

The final line of this program combines a string (‘the answer is’) with
numerical information (23 + 5 - 7/6). You can see that, as expected,
the computer works out the sum before printing the answer, and
prints the string exactly as it is. Look closely at the end of the string.
You’ll see there is a space there. After the closing quote there is a
semicolon which, as we learned in line 20, joins various elements of a
PRINT statement together. This semicolon means that the result of
the calculation is printed up next to the end of the string.

This brings us to the end of the first chapter of the book. I’m sure
you’ll be pleased at how much you’ve learned so far and are looking
forward to continuing your learning. But now you’ve earned a
break. So take that break and then come back to the book to tackle

the second chapter.

B . el

CHAPTER TWO
Ringing the Changes

It’s all very well getting things onto the computer’s screen as we
learnt to do in the last chapter, but from time to time you'll discover
we need to be able to get printed material off the screen during a
program, to make way for more PRINT statements. We do this with
a command called CLS, for CLear the Screen.

Clear that screen
Enter the following program into your computer and run it.

12 PRINT "testing"
20 INPUT As
30 CLS

When you run the program, you’ll see the word ‘testing’ appear
under the program listing, more or less as you’d expect. However,
below it you’ll see a question mark. Where did that come from? The
question mark is known as an input prompt. An input prompt,
which appears in a program when the computer comes to the word
INPUT, means the computer is waiting for you to enter something
else into the machine, or just to press RETURN. You’ll recall that we
spoke earlier about strings, and about how they were anything
which was enclosed within quote marks. In line 20 above the
computer is waiting for a string input (because the A which follows
the word INPUT is, in turn, followed by a dollar sign). You can
either enter a word, a number, any combination of words, numbers
and/or symbols in response to a string input. (But you can only type
in a number in response to a numerical input. If you just press the
RETURN key when the computer wants a number, the computer
will assume you want zero.)

gy SET—————— '

How to program ybur MSX computer like a professional

Anyway, when you respond to the input prompt by pressing
RETURN, you’ll see the screen clears and the word testing
disappears. Where did it go? We pointed out that the computer
works through a program in line order. Firstly the program printed
testing on the screen with line 16 and then progressed to line 20,
where it waited for an input (or for you to press RETURN). Once
you’ve done this in line 20, the computer moved along to line 30
where it found CLS and obeyed that instruction. The instruction
was to clear the screen, so the computer did just that and the screen
cleared.

Run the program a few times, until you’ve got a pretty good idea of
what is happening, and you’ve followed through - in your mind - the
sequence of steps the computer is executing.

Doing it automatically

Instead of waiting for you to press the RETURN key, you can write a
program which clears the screen automatically, as our next example
demonstrates. Enter this next program into your computer, type in
RUN and then ENTER (or just press the F5, Function 5, key which
has exactly the same effect), and then sit back for the Amazing
Flashing Word demonstration. Note that you must have spaces on
either side of words like FOR and TO.

S CLS:KEY OFF

12 PRINT "autotesting
20 FOR A=1 TO 202

30 NEXT A

42 CLS

5@ FOR A=1 TO 200

6@ NEXT A

7@ GOTO 1@

Run this program, and you’ll see the word autotesting alternatively
flashing off and on at the top of the screen. What is happening here?
Let’s look at the program and go through it line by line. Firstly, as
you’ve probably guessed, line 5 uses CLS to clear the screen and
then, after the colon (:) obeys the KEY OFF command to turn off
the words across the bottom of the screen. Then, your MSX machine
gets to line 10, which prints the word autotesting at the top of the

10

Ringing the changes

screen. Next, the computer comes to line 26, where it meets the word
FOR. We'll be learning about FOR/NEXT loops (as they are
called) in detail in a later chapter, but all you need to know here is
that the computer uses FOR/NEXT loops for counting. In this
program, lines 2@ and 3@ (the FOR is in line 20, the NEXT in line 30)
tell the computer to count from one to 589 before moving on.

To stop the program, press Ctrl and the STOP key.

So, it waits for a moment while counting from one to 564. Then it
comes to line 4@, which is the command CLS, which tells the
computer to clear the screen. The computer then encounters, in lines
50 and 60, another FOR/NEXT loop, so waits a while as it counts
from one to 500 again. Continuing on in sequence, it comes to 78
where it finds the instruction GOTO 14. This, as is immediately
obvious, tells the computer to go to line number 14. When the
computer gets to line 7, it obeys the GOTO instruction, and starts
over from line 10, going through the autotesting printing, counting
to 500, clearing the screen, counting to 504 again, and then coming
to GOTO 14 so that it starts all over again.

Changing program lines easily

Your computer is provided with an EDIT function which makes it
very simple to change the contents of lines within programs. Get rid
of the current program by typing the word NEW and then pressing
the RETURN key. Then enter the following program into your
computer. DO NOT RUN THE PROGRAM. I want to explain
something about it before you do.

12 REM an edit test
20 PRINT "test again"

3@ FRINT "and again"

If you want to alter lines which are on the screen, all you have to do is
use the arrow keys to move the cursor to the required position, then
make the desired changes.

You just move the cursor (that ‘blob’ which follows you around on
the screen is the cursor) to the action of line which you want to

11

How to program your MSX computer like a professional

change. It is a little different when you want to change lines which
are not currently on the screen. You have to bring them into sight so
you can run the cursor over them. If you wanted to change, say, line
19, all you’d need to do would be to enter LIST 18, followed by the

RETURN key, and line 18 would be reprinted below the rest of the
listing.

If you wanted to add an extra word between ‘an’ and ‘test’, you
would move the cursor across till it was in the space between the
words, and then press the key marked with the letters INS (for
Insert) before you type in the new word. Try it now, adding the word
‘exciting’ before the word ‘edit’, so that your line looks like this:

10 REM an exciting edit test

Then, press the RETURN key again, then type in LIST (or press
function key 4, which has the same effect as typing in LIST) and
press RETURN again. This time, when the program is listed, you’ll
see the new version of line 14 is included within the program.

That was simple, wasn’tit. Itis just as easy to delete a word, or letter,
as it is to add one. Type in LIST 26, and once the line appears on the
screen, use the arrow keys to position the cursor where you want it.
Now press the DEL (for delete) key, to erase the letters you wish to
remove.

If you only have a letter or two wrong within a line, you just move
the cursor to the error and then type in the correct letter or letters.
These will automatically replace the incorrect material.

Now, these instructions may seem a little complex, and they
certainly do not need to be mastered before you can continue your
learning. If you’re not sure how a particular line should be edited,
and you can’t be bothered looking it up in your instruction manual,
or in this book, just type the whole line again, and when you press
RETURN the new line will automatically take the place of the old
one within the listing.

12

Ringing the changes

Getting the program back

If you want to see a complete listing after it has vanished once a
program has been run, all you need to do (as we mentioned briefly a

little earlier) is to type in the word LIST, then press the RETURN
key.

Then, the whole program listing will appear on the screen. Another
way of doing this is to press the key marked ‘F4’. This stands for
‘function four’. The function keys are preprogrammed on the MSX
machines to make it simple to access often-used commands. The
first five are the most useful. These are:

- COLOR
- AUTO
- GOTO
- LIST

- RUN

DN &E W -~

It is pretty obvious what these stand for and they can save a little
time when you’re programming on your computer. I suggest you
copy out the names of the five, with their corresponding numbers,
on a little strip of paper, and place this strip above the keys. Then,
you’ll know without hesitation what they stand for. You’ll probably
find, as I have, that a list placed on the computer as I’ve suggested is
much simpler to read than are the words at the bottom of the screen.

If you hold down the SHIFT key, some of the function keys have
other functions. These are:

- COLOR
CLOAD”
- CONT

- LIST.

- RUN

S g

1

If you want to define a function key to your own purposes, as I often
do when programming, you just enter a command like the following:

key 1,"CLS:LIST"+CHR$(13)

13

.

T R N ol e WS,

—

How 1o program your MSX computer like a professional

This will assign function key one to automatically clear the screen
and list your program. The + CHRS(13) is the way to program a
press of the RETURN key into the function key definition. If you
didn’t include this, you'd have to press function key one and then
press the RETURN key to get it to carry out the commands you'd
programmed into the key. Function keys automatically revert to
their old functions when you turn the computer off then on again, so
you’ll need to redefine the keys you want each time you turn the
MSX computer on.

There is no reason, when using list, why you must list from the

top ofthg program. When you have longer programs, you may well
tv_v;lalm to list only part of them. You do this by use of the hyphen (-), as
ollows:

LIST - 100 This lists up to,
and including
line 100

LIST S0 - 90 This lists lines
50 to 99

LIST 150 - This lists the

program from line
150 to the end

LIST 27@ This lists just
line 270

Using the printer

Full instructions on printer use come, of course, with the printer, but
if you prefer not to bother with them at the moment, and you just
want your printer to work, these are the commands you’ll need:

LLIST - to list the current program

LPRINT - to print something directly on the printer

LPRINT CHR$(27); **L848” - to set an MSX printer to print to a
width of 48 characters.

14

i

Ringing the changes

LLIST is easy to remember, as it is very similar to LIST and has a
similar function, except that it lists to the printer rather than listing
to the screen. LLIST can be used in the same way as LIST to get just
parts of a listing (so LLIST 44 - 76 is valid).

16

——

CHAPTER THREE

Descent into Chaos

It’s time now to start developing some real programs. You'll notice
that from this point on in the book there are some rather lengthy
programs. Many of them will contain words from the BASIC
programming language which have not been explained. This is
because, as programs become more complex (and far more
satisfying to run) it becomes more and more difficult to keep words
which have not been explained out of the programs. However, this is
not a major problem, and you’ll probably be able to work out what
many of them mean, just from seeing them in the context of a
program line.

We are working methodically through the commands available on
the computer, and in due course, all of the important ones will be
covered. When you come across a word in a program which seems
unfamiliar, just type it in. You'll find that you’ll soon start picking
up the meaning of words which have not been explained, just by
seeing how they are used within the program. So if you find a new
word, don’t worry. The program will work perfectly without you
knowing what the word is, and investigating the listing after you’ve
seen the program running is likely to lead you to work out what it
means.

Random events

In the world of nature, as opposed to the manufactured world of
man, randomness appears to be at the heart of many events. The
number of birds visible in the sky at any one time, the fact that it
rained yesterday and may rain again today, the number of trees
growing on one side of a particular mountain, all appear to be
somewhat random. Of course, we can predict with some degree of

17

How to program your MSX computer like a professional

certainty whether or not it will rain, but the success of our
predictions appears to be somewhat random as well.

When you toss a coin in the air, whether it lands head or tails
depends on chance. The same holds true when you throw a six-sided
die down onto a table. Whether it lands with the one, the three or the
six showing depends on random factors.

Your computer’s ability to generate random numbers is very useful
in order to get the computer to imitate the random events of the real
world. The BASIC word RND lies at the heart of using this means of
generating random numbers.

Generating random numbers

We’ll start by using RND just as it is to create some random
numbers. Enter the following program, and run it for a while:

1@ PRINT RND(1)
2@ GOTO 1@

When you do, you’ll see a list of numbers like these appear on the
screen:

«09521943994623
.10658628050158
. 76597651772823
. 37756392935958
. 73474759503023
.18426812909758
.37075377905223
.94954151651558
.63799556899423
.47041117641358

As you can see, RND generates numbers randomly between zero
and one. If you leave it running, it will go on and on apparently
forever, writing up new random numbers on the screen.

Now random numbers between zero and one are of limited interest if

18

Descent into chaos

we want to generate the numbers and get them to stand for
something else. For example, if we could generate I's and 2's
randomly, we could call the 1's heads and the 2’s tails and use the
computer as a kind of ‘electronic coin’. If we could get it to produce
whole numbers between one and six, we could use the computer as
an imitation six-sided die.

Fortunately, there is a way to do this. Enter the next program and
run it:

10 PRINT INT(RND(1)%6)+1;
20 GOTO 1@

When you run this program, you'll get a series of numbers, chosen at
random between | and 6, like these:

4.1 S.4 §- 23 '§44"3 5 32
1 3 5 1 3 4 3 5 S5 4 1 2 3 2
2 o 1

Even though we could create vast series of numbers between | and 2
with a program like this, it is not particularly interesting. And, if you
ran the program over and over again, you’d find that the sequence of
numbers was starting to look very familiar. The random numbers, as
you’d discover if you ran the program a number of times, are not
really random at all.

This is because the computer does not really generate random
numbers, but only looks as if it is doing so. Inside its electronic head,
your computer holds a long, long list of numbers, which it prints in
order when asked for random numbers. The list is so long, that it is
impossible to see a pattern in it, once it is running. However, the
series always appears to start at the same point. And in most
programs, this is not good enough.

Seeding the random number generator

Fortunately for us, there is a way to get an MSX computer to choose
a different spot within the list of numbers each time you run the
program, so that the numbers it generates are more nearly random.

19

How to program your MSX computer like a professional

Inside your computer is a little value called TIME which is changing
all the time your computer is turned on. It would be impossible to
predict its value at any point, as it is counting up in ones all the time
the machine is on. To make the numbers generated by RND more
nearly random, we ‘call on’ TIME using a line like line 5 in the next
program:

2 X=RND(-TIME)
10 PRINT INT(RND(1)%&)+1;
20 GOTO 10

This chooses a new starting point in the long list of random numbers
every time we use it. In some programs in this book you’ll see itasit
appears in 5 above, and in others the X has been replaced with the
word SEED. This is to remind you that the purpose of the line is to
‘seed’ the random number generator (an obscure computer term
which we’re stuck with, which simply means to get the random
number generator a value to work with).

Putting on the Squeeze

It’s time now for our first real program (hooray!). This program
shows random numbers in action, and allows you to practise your
skills of ESP and prediction.

As the program explains when you run it on your MSX machine, the
computer will produce two numbers between one and 13. It will ask
you to bet on the probability of the next number it thinks of being
between the first two. It’s simple to play, and a lot of fun (especially
as the money you lose does not really disappear). Don’t worry about
any commands we haven’t discussed yet. Just type the program in as
it is and run it. Later on, when you’ve worked your way right
through the book, you can come back to it and you’ll be pleased to
see you recognise all the commands and functions we’ve used.

18 REM SQUEEZE

20 GOSUB 330

30 GOSUB 8@

40 IF D<1 THEN 430@
5@ GOSUB 350

20

Descent into chaos

60 GOTO 30

70

8@ PRINT:PRINT:PRINT

90 E=0

100 PRINT "MY FIRST NUMEER IS"A

118 PRINT TAB(6) 3"MY SECOND IS"B
120 PRINT

130 PRINT "YOU HAVE %"D

140 PRINT

150 PRINT "HOW MUCH DO YOU BET MY NEX
T NUMBER"

160 PRINT "LIES BETWEEN"A"AND"BE;
170 INPUT E

180 IF E>D OR E=0 THEN 17@

190 D=D-E

200 GOSUB 520

210 PRINT:FRINT "MY NUMBER WAS"C
222 GOSUB 520

23@ IF NOT(C>A AND C<B OR C<A AND C>B
) THEN 290

242 PRINT "WELL DONE, YOU WIN #"2%E
250 D=D+3x%xE

26@ GOSUB S2@

27@ RETURN

280 :

292 FRINT:PRINT "SORRY, YOU LOSE %"E
300 GOSUB S20

312 RETURN

320 :

330 L=20

34@ X=RND(-TIME)

35@ CLS

360 A=INT(RND(1)%x13) +1

370 B=INT(RND(1)%x13)+1

380 IF ABS(A-B)<2 OR ABS(A-B) >6 THEN
370

39@ C=INT(RND(1)X%13)+1

400 IF A=C OR B=C THEN 390

410 RETURN

420

430 PRINT

21

How to program your MSX computer like a professional

442
450
460
470
480
490
=177
Sl@
S20
S32
S4@
S5@
S62
S7@
S8a
S?a
(Y]
6bla
622
632
b4
652
6602
670

FRINT "THE GAME 1S OVER"
FRINT

FRINT "YOU ARE BROKE!'"
PRINT

PRINT "THANKS FOR THE GAME"
GOSUB S2@:6G0SUB 520

END

SOUND 7,49

SOUND 6,31

SOUND' 12,40

SOUND 9,7

SOUND 1@,7

SOUND 8,1@

FOR X=31 TO @ STEP -1
SOUND 2,50-X

SOUND 4 ,6@-X

SOUND &, X

NEXT X

FOR Z=1 TO 2@@:NEXT Z
SOUND 8,0

SOUND 9,

SOUND 1@,@

RETURN

Note that some lines (like 7@ and 28@) simply include a colon(:). This
is in the program simply to act as a visual breaker, dividing the
program up into sections. Later on, when you write your own
programs, you’ll appreciate how valuable it is to be able to break up
programs in this way so you can see what each part of the program
does. It makes it very simple to work out the purpose of each section
of the program and - when you’re writing your own games - you’ll
see it also makes it relatively easy to track down errors in the listing.

22

CHAPTER FOUR
Round and Round We Go

In this chapter, we’ll be introducing a very useful part of your
programming vocabulary - FOR/NEXT loops. You’ll recall that we
mentioned FOR/NEXT loops when demonstrating the use of CLS
to clear the screen. A FOR/NEXT loop was also used in our squeeze
-program (line 630) to add a delay.

A FOR/NEXT loop is pretty simple. It takes the form of two lines in
the program, the first of which is like this:

12 FOR A=1 TO 2@

With the second like this:
20 NEXT A

The control variable, the letter after FOR and NEXT, must be the
same. (You can, in fact, leave the second A out altogether, as the
computer will know what you mean. However, leaving the control
variable out makes programs harder to read and alter, so this
practice is not recommended in your early programming days.)

As a FOR/NEXT loop runs, the computer counts from the first
number up to the second, as these two examples will show:

10 FOR A=1 TO 20
20 PRINT Aj
3@ NEXT A

When you run it, you’ll see the numbers one to 20 appear on the
screen, much as you may have expected.

23

T ———— ’ A

How to program your MSX computer like a professional
Now try this version:

1@ FOR A=76% TO 781
20 PRINT A
3@ NEXT A

This is the result of running it:

765 766 767 768 769 770 771 7
7257357045775 6. 77 785179
78a 781

Stepping out

In the two previous examples, the computer has counted up in ones,
but there is no reason why it should always count in this way. The
word STEP can be used after the FOR part of the first line as follows:

1@ FOR A=12 TO 12@ STEP 1@
20 PRINT A
3@ NEXT A

When you run this program, you’ll discover it counts (probably as
you expected) in steps of 18, producing this result:

12 20 30 42 S@a 62 70 B2 9@
100

l Stepping down

The STEP does not have to be positive. Your computer is just as
happy counting backwards, using a negative STEP size:

1@ FOR A=10@ TO 1@ STEP -1@
2@ PRINT Aj;
30 NEXT A

24

Round and round we go

This is what the program output looks like:

100 92 B2 70 40 30 42 30 20
10

Making a nest

It is possible to place one or more FOR/NEXT loops within each

other. This is called nesting loops. In the next example, the Bloop is
nested within the A loop:

12 FOR A=1 TO 3

20 FOR B=1 TO 2

3@ FPRINT A"TIMES"B"IS"AXE
40 NEXT B

5@ NEXT A

The nested program produces this result:

1 TIMES 1 IS 1
1 TIMES 2 IS 2
2 TIMES 1 IS 2
2 TIMES 2 IS 4
3 TIMES 1 IS 3
3 TIMES 2 IS 6

You need to be very careful to ensure that the first loopstarted is the
last loop which is finished. That is, if FOR A... was the first loop you
mentioned in the program, the last NEXT must be NEXT A.

Try swapping line 18 with line 20 in the program, and see what
happens when you get your FORs and NEXTs mixed up.

You may recall I said that you do not, in fact, have to mention the
control variable with the NEXT if you do not want to. I also said
that it was not good programming practice to leave it out as it made
programs somewhat difficult to unravel. Howe_(er, as | imagine
you’ve realised by now, leaving off the control variables at least gets

25

-

How to program your MSX computer like a professional

around the problem of wrongly specifying the NEXT in nested
loops.

You can replace lines 49 and 58 of the program with either of the
following (removing the old line 50 completely):

42 NEXT B:NEXT A
or

4@ NEXT:NEXT
'or
40 NEXT E,A

Multiplication tables

You can use nested loops to get the computer to print out the
multiplication tables, from one times one right up to twelve times
twelve, like this (note that you can omit the semicolon between the
parts of the PRINT statement within quote marks and those parts
outside; this makes for quicker program entry, but diminishes the
readability of the program):

1@ FOR A=1 TO 12

20 FOR B=1 TO 12

3@ PRINT A"TIMES"E"IS"AXE
40 NEXT B

S@ NEXT A

Here’s part of the output:

TIMES 7 1S 49
TIMES 8 IS 56
TIMES 9 IS &3
TIMES 10 IS 7@
TIMES 11 IS 77
TIMES 12 IS 84
TIMES 1 IS 8
TIMES 2 IS 16
TIMES 3 IS 24
TIMES 4 1S 32
TIMES 5 IS 40

OO0 NNNNNIN

26

Round and round we go

There is no reason why both loops should be travelling in the same
direction (that is, why both should be counting upwards) as this
variation on the Times Table program demonstrates:

10 FOR A=1 TO 12

20 FOR B=12 TO 1 STEP -1
3@ FPRINT A"TIMES"B"IS"AXB
4@ NEXT B

S50 NEXT A

Here’s part of the output of that program:

TIMES 4 IS 16
TIMES 3 IS 12
TIMES 2 IS 8
TIMES 1 IS 4
TIMES 12 IS 60
TIMES 11 IS 35
TIMES 1@ IS 5@
TIMES 9 IS 45

aauaadded

Cracking the code

It’s time now for our second games program. In this game which
uses several FOR/NEXT loops, CODEBREAKER, the computer
thinks of a four-digit number (like 5462) and you have eight guesses
in which to work out what the code is. In CODEBREAKER, based
on a program by Adam Bennett and Tim Summers, you not only
have to work out the four numbers the computer has chosen, but
also determine the order they are in.

After each guess, the computer will tell you how near you are to the
final solution. A ‘white’ is the right digit in the wrong position and a
‘black’ is a correct digit in the right position within the four digits of
the code. As you can see from this, you are aiming to get four blacks.
Digits may be repeated within the four-number code.

Enter the program and play a few rounds against the computer.

Then, return to the book for a discussion on it, which will highlight
the role played by the FOR/NEXT loops.

27

How to program your MSX computer like a professional

1@ REM Codebreaker

2@ COLOR 11,1

30 CLS

49 X=RND(-TIME)

5@ PRINT
6@ PRINT
7@ PRINT
8@ PRINT
90 PRINT
leI

100 PRINT "

umber"
112 PRINT
RNII

120 PRINT
130 PRINT
ted."

140 PRINT
150 PRINT
reak"

160 PRINT
e - "

170 PRINT
18@ PRINT

$15233¢8 223222 2 0y
x CODEBREAKER X"
' S338222 22222 0
When you are told to

so, enter a 4-digit n

and then press RETU
Digits can be repea

You have B8 goes to b

the difficult cod

XXKKKKRRRRRKKKR"

190 FOR W=1 TO 4:G0SUB 890:GOSUB 970

20@ NEXT W

210 CLS

220 DIM B(4) ,D(4)

230 H=0

240 FOR A=1 TO 4
250 B(A)=INT(RND(1)X9)+1

26@ NEXT A

270

28@ FOR C=1 TO 8

290 PRINT

3@ IF RND(1)<.5 THEN COLOR 3,1 ELSE

COLOR 5,1

310 BEEP:FOR Z=1 TO 90:NEXT Z:BEEF
320 PRINT TAB(7) ;"Enter guess number"

C

330 INPUT "

ll;x

28

340
35
360
370
380
390
400
410
420
430
440
450
460
470
480
490
S0
Si@
520
S3@
S40
So0
S60
S7a
o580
SS90
600
610
620
632
640
650
660
670
680
690
700
710
720
730
740

Round and round we go

IF X>9999 THEN 320
IF X<100@ THEN 320

P=INT (X/1000)
Q=INT((X-1000%xP) /120)
R=INT ((X-1000%xP-100%Q) /10)
S=INT(X-1000%FP-100xQ-10%R)
D(1)=P

D(2)=0

D(3)=R

D(4)=85

PRINT TAB(11);

FOR E=1 TO 4

IF D(E)<>B(E) THEN 53@
PRINT "Black ";

GOSUB 890

B(E)=B(E)+10

D(E)=D(E) +20

H=H+1

NEXT E

IF H=4 THEN 810

FOR F=1 TO 4

D=D(F)

FOR G=1 TO 4

IF D<>B(G) THEN 64@
PRINT "White ";
GOSuUB 97@
B(G)=B(G)+10@

GOTO 650

NEXT G

NEXT F

FOR G=1 TO 4

IF B(G)<10 THEN 700
B(G)=B(G)-10@

NEXT G

H=0

PRINT
NEXT C

29

How to program your MSX computer like a professional

7502 :

76@ PRINT:PRINT "You didn’‘t get it...
772 FRINT

78@ PRINT "The answer is: ";B(1);B(2
) sB(3) ;B(4)

792 GOTO 85w

8va :

81@ FRINT:PRINT:PRINT "Well done, cod
ebreaker!'"

822 FRINT

832 PRINT:PRINT "You got the answer 1
nll

842 FRINT TAER(S) ;"just"C"goes"

8520 PRINT

86 FRINT

8780 END

88w :

892 SOUND @,1:SOUND 8,5

@@ FOR Z=1@ 70 1 STEF -1.5

91@ SOUND 1,2

P20 FOR Q=1 TO S@:NEXT @

9383 NEXT Z

4@ SOUND 8,0

5@ RETURN

6@ :

973 SOUND @,1:S0UND 8,5

98@ FOR Z=20 TO 3@

99@ SOUND 1,2

1000 FOR Q=1 TO S@:NEXT @

1812 NEXT Z

1228 SOUND 8,@

123@ RETURN

And here is the end of one round played against the program:

Black White

Enter guess number 3 ? 9854
White White

Enter guess number 4 ? 3243

30

T -~

Round and round we go

Enter guess number 5 ? 7854
Black White

Enter guess number 6 ? 6547
White White

Enter guess number 7 ? 8976
Black Black White White

Enter guess number 8 ? 8967
Black White White White

You didn’t get it . . .
The answeris: 7 9 8 6

We’ll now go through the program, line by line, a practice we’ll be
following in some of the other programs in this book. If you don’t
want to read the detailed explanation now (and there may well be
parts of it which are a bit difficult to understand at your present
stage), by all means skip over the explanation and then come back to
it later when you know a little more.

Lines 50, 70 and 180 print a number of asterisks to rule off the title
and instructions, with blank lines printed by 80, 126, 149 and 184.
The random number generator is seeded, as we discussed earlier, in
line 44.

Line 190 creates a pause for a few seconds so that you can read the
instructions, before the screen is cleared by line 214. Arrays are
dimensioned in line 220. We discuss arrays in a later chapter. For
now, all you need to know is that by saying DIM B(4) you tell the
computer you want to create a list of objects, with the list called B, in
which the first item can be referred to as B(1), the second as B(2) and
so on. You do not really need to dimension an array when less than
11 elements will be needed, but it helps to keep your thinking clear to
always dimension arrays before using them in programs. In this
program the arrays are used for storing the numbers picked by the
computer, and for storing the digits which you pick each time you
try to break the code.

H is a numeric variable (we’ve mentioned numeric variables before,
you’ll recall) which is set equal to zero in line 23@. In line 520, one is

31

How 1o program your MSX computer like a professional

added to the value of H each time a black is found, so that if H ever
gets to equal four, the computer knows all the digits have been
guessed, and goes to the routine from line 814 to print up the
congratulations.

The lines from 248 to 268 work out the number which you will have
to try and guess. Line 250 uses the RND function we’ve discussed
before to get four random numbers between zZero and nine, and
stores one each in the elements of the B array. Note that the first
FOR/NEXT loop of our program appears here. The A in line 250
equals one the first time the loop is passed through, two the second
time, and so on.

Our next FOR/NEXT loop, which uses C, starts in the next line. It
counts from one to eight, to give you eight guesses. Line 330 accepts
your guess, after the previous line has told you which guess it is you
are entering. The numeric variable X is set equal to your guess, and
checks are made to make sure you have not entered a five-digit
number (line 346) or one which has less than four digits (line 350). If
you have, the program goes back toline 320 to ask you once again to
enter a guess.

The next section of the program, right through to line 700, works out
how well you’ve done, using a number of FOR/NEXT loops (466 to
530, 568 to 650, 580 to 640 and 670 to 780). Line 740 sends the
program back to the line after the FOR C =... to go through the loop
again. If the C loop has been run through eight times, then the
program does not go back to line 290, but ‘falls through’ line 744 to
768 to tell you that you have not guessed the code in time, and to tell
you what it is. Line 780 prints out the code.

If you do manage to guess it, so that H equals four in line 548, then

the program jumps to line 814 to print out the congratulatory
message.

32

CHAPTER FIVE
Changing in Mid-stream

We pointed out at the beginning of the book that, in most situations,
your computer follows through a program in line order, starting at
the lowest line number and following through in order until the
program reaches the final line.

This is not always true. The GOTO command sends action through
a program in any order which you determine. Enter the following
program, and before you runit, see if you can predict what the result
of running it will be:

1@
20
3@
42
b1
6@
7@
8a

GOTO 4@

FPRINT "THIS IS 20"
GOTO 6@

FRINT "THIS IS 4@"
GOTO 2@

FRINT "THIS IS é@"
FOR Z=1 TO 200:NEXT Z
GOTO 40

This rather pointless program sends the poor MSX computer
jumping all over the place, changing its position in the program
every time it comes to a GOTO command. Here’s what you should
have seen on your screen:

THIS IS 40 THIS IS 4@
THIS IS 2@ THIS IS 2@
THIS IS 4@ THIS 1S 6@
THIS IS 4@ THIS IS 4@
THIS IS 20 THIS IS 2@
THIS IS 6@ THIS IS 6@

33

How to program your MSX computer like a professional

The program starts at line 16, and finding GOTO 44 there, moves
onto line 49 to print the message “THIS 1S40”. It then continues on
to line 5@ where it finds the instruction GOTO 24. Without question,
it zips back to line 2 to print out “this is 26" then gocs to line 34
which directs it to line 6@. At line 6@ it finds the instruction to print
out “this is 60" which it obeys. The computer then follows through
to line 7@ where the Z loop inserts a short pause, before the computer
moves on to line 8 to find yet another GOTO instruction, this time
to line 48, which is just about where we began ... and the whole
thing starts over again,

Restrictive practices

Using GOTO in this way is called unconditional branching. The
command is not qualified in any way, so the computer always obeys
it. This brings us neatly to the next computer words we will consider.
These are a pair of words IF and THEN, nearly always found (or
implied) together, which impose conditions on branching by GOTO
commands. This pair of words is easy to understand. IF something is
true, THEN do something else. IF you are hungry, THEN order a
hamburger. IF you want a big car, THEN save for it. IF something
THEN something.

The next program, which ‘rolls a die’ (using the random number
generator) and then prints up the result of that die roll as a word,
uses a number of IF/THEN lines:

1@ REM DICE ROLLS
20 GOTO 140

3@ FRINT "ONE"
40 GOTO 140

5@ PRINT "TwWO"
60 GOTO 14@

7@ PRINT "THREE"
82 GOTO 14@

9@ FRINT "FOUR"
102 GOTO 140

118 PRINT "FIVE"
120 GOTO 140

13@ FRINT "SIX"
140 A=INT(RND(1) x6)+1

34

v

Changing in mid-stream

15@ FOR Z=1 TO 20@:NEXT Z
162 IF A=1 THEN GOTO 3@
172 IF A=2 THEN GOTO S0
182 IF A=3 THEN GOTO 70
192 IF A=4 THEN GOTO 9@
20@ IF A=S THEN GOTO 11@
212 IF A=6 THEN GOTO 130

This is what you’ll see when you run the program:

FOUR
ONE
FIVE
FOUR
FIVE
TWO
THREE
SIX
FOUR
THREE
FIVE

So, we’ve looked at non-conditional and conditional GOTO’s to
send action all over the place within a program.

Subroutines, another way to fly

There is another way to redirect the computer during the course of a
program. This is by the use of subroutines. A subroutine is part of a
program which is run twice or more during a program, and is more
efficiently kept outside the main program than within it.

The next program should make it clear. In this, the computer throws
a die over and over again. The first time it is thrown, the computer is
throwing it for you. The second time it throws the die for itself. After
each pair of dice has been thrown, it will announce who is the winner
(highest number wins). The program uses a subroutine to throw the
die, so we do not need two identical ‘die-throwing routines’ within
a single program. Enter and run the program, then return to the
book, and I’ll explain where the subroutine is within the program,
and how it works:

35

How 1o program your MSX computer like a professional

12 FOR Z=1 TO S@O:NEXT Z

20 PRINT:PRINT

30 FOR C=1 TO 2

42 GOSUB 130

5@ IF C=1 THEN A=D

6@ IF C=2 THEN B=D

7@ NEXT C:PRINT

8@ IF A>B THEN PRINT TAB(9) ;"1 win"
9@ IF A<B THEN PRINT TAB(9) ;"You win"

102 IF A=B THEN FRINT TAB(9);"It’s a
draw"

11@ BEEFP
120 GOTO 1@

13@ REM :: This is the subroutine ::
140 D=INT(RND(1) X&) +1

15@ IF C=1 THEN FRINT:FRINT "I rolled
a"D

160 IF C=2 THEN PRINT:FRINT "You roll

ed a"D

17@ FOR Z=1 TO 1Q@:NEXT Z:X=RNDO(-TIME
)

18@ RETURN

This is what you’ll see when you run it:
I rolled a 2
You rolled a 3

You win
I rolled a 6

You rolled a 3

I win

I rolled a S
You rolled a S

It’s a draw

36

r

The program pauses for a short while on line 16, prints two blank
lines, then enters the C FOR/NEXT loop. When it gets to line 48
which it does (of course) once each time through the C loop, the
program is sent to the subroutine starting at line 148. The ‘die is
rolled’ in line 149, and the numeric variable D is set equal to the
result of the roll. The next two lines print out the result of the roll,
using an IF/THEN to determine whether the computer should print
“I ROLLED A ...” or “YOU ROLLED A ...”. There is a slight
pause (line 17@) and then the computer comes to the word
RETURN. The word RETURN signals to the computer that it must
return to the line after the one which sent it to the subroutine. In this
program, that line (the one which is after the one which sent it to the
subroutine) is 50.

Changing in mid-stream

There, the IF/THENS in lines 50 and 6@ determine whether the value
of the roll (D) should be assigned to the variable A or to B.

Line 78 ends the FOR/NEXT loop, and then lines 80 to 100
determine whether the computer has won (which it will have done if
A is greater than B, a condition which is tested using the > sign in
line 80) or whether the human has won (which will happen if A is less
than B, a condition tested in line 99 by the ‘less than’ symbol, <).
From here the program goes back to line 10 where it starts
again. (By the way, you get the computer to stop running an
‘endless’ program of this type by holding down the CTRL key
and then pressing the STOP key until the program halts.)

Study this program, until you’re pretty sure you know how
subroutines work.

Let’s roll again

You may wonder if it is possible to change the earlier program,
which changed the number rolled by the die into a word, using
subroutines. The answer is ‘yes’, although the program with
subroutines seems, at first sight, not much stronger than the GOTO
version, and certainly it is not any clearer. Here’s one way it could be
done:

37

-

How to program your MSX computer like a professional

1@ REM Dice Rolls

20 GOTO 140

30 FRINT "ONE"

49 RETURN

<@ PRINT "TwO"

6@ RETURN

7@ PRINT "THREE"

8@ RETURN

9@ PRINT "FOUR"

100 RETURN

11@ PRINT "FIVE"

120 RETURN

13@ FPRINT "SIX"

148 A=INT(RND (1) X&) +1

150 IF A=1 THEN GOSUEB 3@
160 IF THEN GOSUB S@
172 IF THEN GOSUE 7@
180 IF THEN GOSUB 9@
19@ IF THEN GOSUE 11@
200 IF THEN GOSUE 130
212 FOR Z=1 TO 20@:NEXT Z
220 GOTO 140

>PD>D>D>D
mmwmnn i

CcUHPWN

ON GOSUB

However, there is a way to do it cleanly, using ON ... GOSUB. This
means that the computer can choose from a number of subroutine
destinations, depending on the value which has been assigned to a
variable.

To try and make that clear, here is another version of the dice roll
program, using ON...GOSUB:

12 REM ON...GOSUB ROLLS

20 FOR Z=1 TO 200:NEXT Z

30 A=INT(RND(1) %6)+1

40 ON A GOSUB 60 ,80,100,120,140,160
S0 GOTO 2@

60 PRINT "ONE"

7@ RETURN

38

Changing in mid-stream

8@ PRINT "TwO"

?@ RETURN

120 FRINT "THREE"
112 RETURN

120 PRINT "FOUR"
13@ RETURN

142 PRINT "FIVE"
152 RETURN

16@ PRINT "SIX"
172 RETURN

Look first at line 3@. This assigns a value, chosen randomly between
one and six, to the variable A. You may have expected the line to
read LET A=... and so on. However, the LET is optional. It often
makes the meaning of the line clear, so you can leaveit in if you like.
But, as you'll see when you run the program, it makes no difference
to the computer.

Now the most important statement in the program, line 44. This
means that if A equals 1, GOSUB the first number to follow the
GOSUB command. If A equals 2, go to the second number; if A
equals three go to the third, and so on.

The program can be further condensed by the use of colons. Colons
allow you to place more than one program statement after a single
line number. When the RETURNS are placed on the same line as the
PRINT statements, as in the following version, the program closes

up even more:

1@ REM ON...GOSUB ROLLS
20 FOR Z=1 TO 20@:NEXT Z

3@ A=INT (RND (1) %&) +1

40 ON A GOSUE 40,70,80,90,100,110
S@ GOTO 20

6@ PRINT "ONE" :RETURN

7@ PRINT "TWO" :RETURN

80 PRINT "THREE" :RETURN

9@ PRINT "FOUR" :RETURN

10@ PRINT "FIVE" :RETURN

11@ PRINT "SIX":RETURN

39

-
How to program your MSX computer like a professional

Note also that the lines have been renumbered, so t}?ey are allin neat
1@’s. You can do this very simply, just by typing in RENUM and
then pressing RETURN.

We all know the equals sign (=) and we’ve seen it in use in several
programs before. We’ve also seen the ‘greater than’ (>), the ‘less
than’ (<) and the ‘not equals to’ (<>). At this point of the book, I
thought it would be useful to briefly recap on what each of these
signs are, and what they mean:

= equals

> greater than

< less than
>= greater than or equal to
<= less than or equal to
<> not equal to

The words AND and OR can also be used in comparison lines,
chaining tests together. These two words work as follows:

AND The computer does what follows the THEN if both of
the conditions chained by the AND are true

OR The computer carries out the instruction following the
THEN (if either of the conditions is true

40

CHAPTER SIX
Stringing Along

You’ll recall that several times in this book so far we have referred to
numeric variables (letters like A or B, words like COUNT and
GUESS, and combinations such as R2D2 and C3P#) and to string
variables (one or more letters followed by a dollar sign, such as
NAMES, A$ or AGES is a string variable). In this chapter, we’ll be
looking at strings, and at things you can do with them.

The character set

Every letter, number or symbol the MSX computer prints has a code
(the code, by the way, is an ASCII code and ASCII is explained in
the glossary). Telling the computer to print the character of that
code produces the character.

It is easy to understand this. As the code is an ASCII code, as |
pointed out above, the computer word for the code is ASC. Note
that the ASC value for the letter “A” has nothing to do with the
value assigned to A when it is a numeric variable, but refers to “*A”
when we actually want the computer to print the letter ““A”. Note
that we put the *‘A” in quote marks when we’re referring to it as a
letter.

Try it now. Enter the following into your computer, and see what
you get:

PRINT ASC("A")

Note that the letter for which you want the ASC must be within
parentheses and also within quote marks, as above. Now when you
get the computer to run the above line, it should give the answer 65.

41

-
How to program your MSX computer like a professional

(If you didn’t get that, you either missed somethingout in theline or
you're using an *‘a” instcad of an “A”.)

From this we can see that 65 is the ASC (ASCII code) of “A”". We
can turn a 65 back into an “A’ by asking the computer to print the
character which corresponds to ASC code 65. We do this with the
BASIC word CHRS, as follows:

PRINT CHR#$ (63)

Run this, and the letter “A” will appear. You can get your MSX
computer to print out every ASC code and its character with the
next short program. Enter it, and watch closely:

1@ REM Showing ASC and CHR$
2@ FOR A=32 TO 255

3@ PRINT A;CHRE(A) ;" "

42 FOR B=1 TO S@:NEXT B

S@ NEXT A

This is the printout you’ll see:

32 33! 34" 35 # 36% 37%
38 &% 39 ' 40 (41) 42 x 43 +
44 , 45 - 46 . 47/ 4B @ 49 1
g2 S13 S24 535 546 557
S68 579 S8 : 59 ; 60< 61 =
62 > 637 b4 E 65A bbB 67C
8D 69E 7T@F 716 72H 731
743 75K 7L 77M 78N 790
gaP B81@ B2R B83S 84T 85U
g6V B87W 88X B9Y 902z 91¢
92\ 931 94~ 95 _ 96 97 a
98 b 99 c 100 d

101 e 102 f 103 g 104 h 105 i
106 j 107 k 108 1 189 m 11@ n
111 @ 112 p 113 q 114r 115 s
116 t 117 u 118 v 119 w 120 x
121 y 122z 123 ¢ 124 | 125)
126 ~

127 128 ¢ 129 130 e

42

B 4

Stringing along

131 a 132 a 133 a 134 a 135 ¢
136 e 137 é 138 & 1393 142 13
141 1 142 A 143 A 144 € 145 =
146 147 o 148 o 149 o 152 Q
151 152 ¥y 1S3 0 154 U 155 #
136 £ 157 ¥ 158 R 159 f 160 a
161 i 162 6 163 « 164 A 165 W
166 a 167 2 168 & 169 172 -~
171 % 172 % 173 174 « 175
176 & 177 & 178 1 179 % 180 o
181 § 182 & 183 G 184 Iy 185 i
186 3% 187 © 188 < 189 4 19¢ T
191 § 192 . 193 % 194 m 195~
196 - 197 = 198 | 199 & 202 1
201 1| 202 1 203 7% 204 \ 205 ¥
206 a 207 » 208 d 209 X 210 H
211 212 o 2137 8 214 o 215 ¥
216 A 217 # 218 w 219 R 220 =
221 1 2221 223 = 224 « 225 B
226 1 227 1 228 L 229 o 230 »
231 7 232 % 233 o 234 Q 235 b
236 w 237 @ 238 € 239 n 240 =
241 * 242 =z 243 = 244 ¢ 245 J
246 = 247 = 248 * 249 - 200 -
251 ¢ 252 n 293 2 254 v 255

Testing your character

Our next program is a reaction tester. In this program, you have to
try and find the right key on the keyboard as quickly as possible.

Make sure that CAPS LOCK is engaged when you run the program.
A letter will appear on the screen. As quickly as you can, find that
letter on the keyboard and press it. You’ll be told how long it took
you, and this time will be compared with your best time.

Notice how the letter which is printed on the screen uses CHRS in
line 80, printing the character of the number chosen at random by
line 50 and assigned there to variable A. A§ is set equal to INKEY$
(which is explained a little later in the book) in line 99 and compared
with the letter the computer has chosen in line 100.

43

How to program your MSX computer like a professional

1@ REM CHARACTER TEST

2@ CLS:KEY OFF

3@ X=RND(-TIME)

42 BEST=10200

SQ A=6S+INT(RND(1) Xx26)

6@ B=@

7@ LOCATE 13,7

82 PRINT CHR¥(A)

2 AF=INKEY#

10@ IF A$=CHR$(A) THEN BEEF:60TO 180
11@ BEEP

120 B=B+3.7

132 LOCATE 9,4

142 FRINT E

152 IF B<42@ THEN 9@

16@ FRINT "Sorry, time is up
170 GOTO 22@

18@ CLS

190 LOCATE 4,4

200 FRINT "Well done, you scored"

21@ PRINT:FRINT TAB(6) ;B"on that one”
220 IF B<BEST THEN BEST=B

230 PRINT:PRINT :FPRINT

24@ IF BEST<>122@ THEN PRINT CHR#$(21@
) 1" The best score so far is"BEST ;CHR
$(210)

250 FOR G=1 TO 15xXEBE

26@ NEXT G

270 CLS

28@ GOTO S©

Cutting them up

One of the very useful aspects of the BASIC on your MSX computer
is the way it can be used to manipulate strings. The words used to
handle strings are:

LEFT#
MID#$
RIGHT#

44

(By the way, these are usually spoken aloud as ‘left-string’, ‘mid-

A s

Stringing along

string’ and ‘right-string’.)

The next program shows them in action. Enter it and run it on your
computer, then return to the book for a discussion to show what

can be learned from it.

1@
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

As you can see, the program first (in line 20) sets A$ equal to
“FIFTH*AVENUE”. Then it uses LEFT$, RIGHTS$ and MIDS$ to

CLS

KEY OFF

A$="FIFTHXAVENUE"

PRINT

PRINT "LEFT$(A$,3)="LEFT$(A%$,3)
PRINT

FRINT "LEFT$(A$,5)="LEFT$(A%$,5)
PRINT

FRINT "RIGHT$(A%,3)="RIGHT#$ (A%$,3)
PRINT

PRINT "RIGHT$(A$,5)="RIGHT$(A$,5)
PRINT

PRINT "MID$ (A$,3)="MIDO$ (A$,3)
PRINT

FRINT "MID$(A$,5)="MID$(A%,S)
PRINT

PRINT "MID$(A%$,5,4)="MID$(A$,5,4)
PRINT

FRINT "MID$(A$,2,7)="MID$(A$,2,7)

extract the original string, A$.

Here’s what it looks like when you run it:
LEFT$#(A%$,3)=FIF

LEFT$ (A% ,5)=FIFTH

RIGHT# (A% ,3) =NUE

RIGHT$ (A% ,T) =VENUE

MID$ (A% ,3) =FTHXAVENUE

45

How to program your MSX computer like a professional
MID$ (A% ,5) =HXAVENUE
MID% (A%,5,4) =HXAV
MID% (A% ,2,7)=IFTHXAV

Look at the first line of the output. LEFT$(A$,3) = FIF. LEFT$
takes the leftmost portion of the string as far as the number which
follows the string. That is, when we have LEFT$(AS$,3) it takes the
three leftmost characters of the string. The next printout,
LEFT$(A$,5) takes the five leftmost characters of the string,
producing in this case FIFTH (because they are five leftmost
characters of the overall string).

It can be used slightly differently. If we said:
PRINT LEFT#("FIFTHXAVENUE" ,3)

the computer would print out FIF. The string, then, can either be a
string variable (A$) or the string in full (“FIFTH*AVENUE”).

As you’ve probably worked out by now, RIGHTS$ does the same
thing as LEFTS, except it starts at the righthand end of the string.
Therefore, RIGHT$(AS$,3) selects the three rightmost characters of
the string, in this case NUE. Again, as above, this is the same as
saying:

FRINT RIGHT# ("FIFTHXAVENUE" ,3)

MID$ is a little more flexible. It selects a portion from the middle of
the string, srarting from the character number which follows the
string. Therefore, MID$(A$,4) prints all the string starting with the
fourth character.

If there is only one number (such as the 4 above), then MIDS$ selects
all of the string to the end of it. However, if there is another number,
this second number dictates the /ength of the string which will be
extracted.

You can see in the last two printouts from the program that
MID$(A$,5,4) prints the extract of the string four characters long,

46

r

starting from character five. MID$(AS,2,7) produces a string seven
characters long, starting from the second character.

Stringing along

Return the program now, putting your name in place of
FIFTH*AVENUE in line 20.

Putting them back together

Strings can be added together on an MSX computer. The process of
adding strings is called the frightening-looking word concatenation.
You can concatenate two or more complete strings together, or just
add bits of them, as our next program shows:

100 REM CONCATENATION
11@ X=RND(-TIME)

120 CLS:KEY OFF

132 A$="AMERICA"

142 B#$="COLUMBUS"

15@ C#$=A%+B%

160 PRINT "A$ = "A%

178 PRINT
180 PRINT "B$% = "B#%
19@ FRINT
200 PRINT "C% = "C#
212 PRINT

220 D=INT (RND (1) ¥6) +1
23@ E=INT (RND (1) %6) +7

24@ FRINT "MID$(C$"D","E") = "MID$(C$
,0,E)

250 PRINT

26@ D$=MID$(C$,D,E)

270 E$=A$+D$

28@ PRINT "E$ = "E$

When you run this program, which creates C$ in line 100 by
concatenating A$ and B$, you’ll see results like these two:

A% AMERICA

B$ COLUMBUS

47

How to program your MSX computer like a professional

C$ = AMERICACOLUMBUS

MID$(C$ S , 12) = ICACOLUMBUS

E$¥ = AMERICAICACOLUMBUS
A%¥ = AMERICA

B$ = COLUMBUS

C$ = AMERICACOLUMBUS

MID$(C$ 4 , 12) = RICACOLUMBUS

E¥ = AMERICARICACOLUMBUS

Playing around

You can do a number of things with string manipulation, as our next
program demonstrates. NAME PYRAMID allows you to enter
your name to produce a very interesting display. Once you’ve seen
the program running, you’ll understand why the program has been
given the name it has.

This is the listing of NAME PYRAMID:

REM Name Fyramid

CLS:KEY OFF

INPUT "What is your full name" :A%
IF LEN(A#) >15 THEN A$=LEFT#(A%,15)
A=LEN (A%)

CLS

FOR G=1 TO A

PRINT TAB(146-G) ;

FOR H=1 TO 2%G

10 PRINT MID$(A%,G,1) ;

11 NEXT H

12 PRINT

13 NEXT G

NONOCUARPWUN-

48

- F

And here are two runs of the program:

Stringing along

1T
1 i1
mmmmmm

HHHHHHHHHH
aaaaaaaaaaaa
rrrrrerrrerrrr
tttttttttttttttt
nnAnNANNNNNNNNNRNNN
ceeeeeeeceeeeeeeeeee
1111111111111111111111
111111111111111111111111

MM
5888
XXXXXX

ccccccecee
000000000000
mmmmmmmmmmmmmm
PPPPPPPPPPPPPPPP
Liuiniuuunieiieieeieeee
tttttttttttttttttttt
.eeeeeeeeeeeeceeeeeeeeee

rrrrrreerrrrrrererrrrrrr
| U O T T T T T L O T I O |

Playing it back

Our final program in this chapter shows one very effective use of
string manipulation, in which a string is progressively reduced by
one element.

When you run ECHO GULCH, you’ll see a letter appear on the
screen. It will then vanish. Once it has vanished, you will have a
limited amount of time in which to press the key yourself.

If you’ve pressed the right key, a beep will sound, and the letter will
be replaced with a new one. This will stay on the screen for a shorter
time than the previous one.

49

How to program your MSX computer like a professional

Each time a new letter appears, you will be given less time to see it,
before you have to press that particular key on the keyboard. If you
make a mistake, the “SORRY, THAT IS WRONG" message will
appear, along with your score. If you manage to get all the list of
ietters right, you'll be rewarded with a “YOU’RE THE CHAMP!!”

message.

Here’s the listing:

12 REM Echo Gulch

20 REM Maximum score is 3@

30 S=0

42 A$="ABSCHOEURZAFKJIHJHEUSCLEKLKD.JSK
FH n

Sa CLS:KEY OFF

6@ LOCATE 12,15

7@ PRINT MID#(A$,1,1)

80 FOR G=1 TO 17%XLEN(A%¥) :NEXT G

92 CLS

122 B$=INKEY#

112 IF B#=MID$(A%$,1,1) THEN BEEF :BEEF
:15=5+1

120 IF B$<{"A" OR B$>"Z" THEN 10@

132 LOCATE 12,15

142 FRINT EBE%

150 LOCATE 5,1

160 PRINT "Your score is"S

170 LOCATE 12,15

188 PRINT " ":REM single space

190 IF B#$<>MID$(A%,1,1) THEN 240

200 A$=MID#$(AF,2)

212 IF LEN(A%$)=2 THEN 270

228 FOR G=1 TO SQ@-10%S:NEXT G

230 GOTO 60

242 FRINT:PRINT "Sorry, that is wrong
25@ PRINT:PRINT "You scored"S

260 END
270 PRINT "You’re the champ!"

50

Stringing along

The variable S, which holds your score, is set to zero in line 34, and
line 44 sets the string variable A$ to a long line of letters. Line 70
prints the first letter only of the string, and line 8/ inserts a short
delay loop, which uses the LEN function.

This is another string function, and returns the length of a string,
that is, the number of characters which make it up. LEN does not
make any distinction between letters, numbers, symbols or spaces,
as you’ll discover if you enter a number of PRINT LEN A$
statements, after setting A$ to equal various words, symbols and
sentences. '

Because, in our program A$ is reduced by one character by line 200
each time the program cycles, LEN AS$ is a smaller number each
time. Therefore, the delay produced by line 84 (which dictates how
long the character will be on the screen before it vanishes) becomes
shorter.

INKEY$

Line 100 uses INKEYS$ to read the keyboard. INKEY$, as you’ve
probably worked out by this point in the book, does not demand
that you press RETURN after touching a key. INKEY$ always
returns the key you have pressed as a string. INKEY$ does not, in
contrast to INPUT, wait until you have pressed a key before the
program continues.

If you are not touching a key when the program comes to an
INKEYS$, it simply passes right through the line, reading your non-
touching of the keyboard as the null string (two quote marks with
nothing, not even a space, between them, as *“).

Line 120 looks at B$, the variable which is set equal to whichever key
is being pressed as the program goes through line 180. As you cansee
in line 120, you can use the greater than () and the less than (<)
symbols, which we discussed in chapter five, in connection with
strings. These look at all elements of a string and compare them in
terms of alphabetical order (so “ZEBRA™ is greater than
“AARDVARK?” and “BEAST” is /less than “BEAUTY").

51

p— —jﬁ
How to program your MSX computer like a professional

As well, you can compare strings using equals (=) and not equals
(<>) as is shown by the next few lines of the program. Line 110
compares the key you have pressed with the first element of A$, and
if they are the same, continues through the multistatement line to
BEEP and then adds one to your score (variable S).

Line 180 then blanks out the letter, in preparation for the next one to
appear. Line 199 compares B$ with the first element of A$ again,
and if it finds they are not equal, sends the program to lines 244 and

250 where you are told “SORRY THAT IS WRONG” and your
score is given.

Line 200 strips the string A$ of its first character, by setting A$ equal
to MID$(AS,2). Line 210 checks to see if the length of A$ equals 2
(that is, if LEN A$ = 2) and if it finds that it is, goes to line 270 to
print out the “YOU’RE THE CHAMP!!” message. If not, the
program cycles back to line 6@ to print out the next letter for you.

52

CHAPTER SEVEN
A Game and a Test

It’s time now to take a break from the serious business of learning to
program your MSX computer. As you can see in this chapter, we
have two major programs which use many commands which have
not yet been explained. I suggest you enter the programs just as they
are, play them for your own enjoyment, then come back to the
explanations which follow the listings after you’ve mastered the rest
of the book.

I do not think it’s fair to keep you waiting for major programs until
you've covered everything on the computer. Also, entering short
demonstration programs can get pretty boring if you’re longing to
see your computer really in action. Therefore, [hope you’ll enter the
programs ‘on trust’, returning to this chapter for the explanations
when you feel you are ready. Of course, you do not have to enter the
programs right now. If you’d prefer to continue with the learning,
then move straight along to the next chapter.

The first game in this chapter is MSX-thello, a version of the game
known as Reversi or Othello (note that Othello is a registered
trademark of Gabriel Industries, Inc., USA and of Mine of
Information, UK, when used in connection with computer
versions). Invented in the late 180@’s, MSX-thello is played on an
eight by eight board. You use pieces which have different colours on
each side.

The game begins with four pieces placed on the centre squares, as
you’ll see when you run the program. You move by placing one of
your pieces next to a computer piece or pieces, with another of your
pieces further on. When that happens, all the computer pieces
“reverse’’ to become your own pieces.

53

How to program your MSX computer like a professional

Here’s how it works. Suppose a line of pieces looked like this:

0XXXX

and you decided to put your piece (the §) at the end of the line like
this:

0XXXX0

The computer pieces would reverse, so the line looked like this after
your move:

000000

The game continues until every square on the board is filled, or
neither player can move. Fortunes change swiftly in this game, as
rows branching off your position (such as on the diagonals) can be
changed with a single move. If you cannot move at any time, you
signal this to your computer by entering a zero. You are the filled-in
ovals, and the MSX computer is the open ovals.

12 REM Mx-thello

28 GOTO 97@

30 LOCATE 12,0

49 FRINT "My move..."

S@ TIME=@

60 S=0X:T=X:H=@

78 FOR A=2 TO 9

8@ FOR B=2 TO 9

90 IF A(A,B)<>46 THEN 280

100 Q=0

110 FOR C=-1 TO 1

122 FOR D=-1 TO 1

132 LOCATE 3,0:PRINT TIME/SQ@
140 K=0:F=A:G=B

150 IF A(F+C,G+D)<>S THEN 180
160 E=K+1:F=F+C:6=6+D

172 GOTO 15@

18@ IF A(F+C,G+DN <>T THEN 200
190 Q=Q+K

20@ NEXT D

54

A game and a test

21@ NEXT C
220 IF A=2 OR A=9 OR B=2 OR B=9 THEN
E=0%2

232 IF A=3 OR A=8 OR B=3 OR B=8 THEN
Q=0/2

242 IF (A=2 DR A=9) AND (B=3 OR E=8)
OR (A=3 DR A=8) AND (B=2 OR B=9) THEN
=0/2

250 IF @<H OR (RND(1)<.3 AND Q=H) THE
N 280

26@ LOCATE 3,0:FRINT TIME/S@

270 H=B:M=A:N=B

28@ NEXT B

292 NEXT A

300 IF H=@ AND R=0 THEN 89@

310 IF H=0 THEN 330

320 GOSUE 740

330 GOSUB 470

340 LOCATE @,2

35@ INFPUT " Enter your move ";R

360 REM -- Enter zero to pass ——

37@ S=X:T=0X

380 IF R=0 THEN 440

390 IF R<11 OR R>88 THEN 342

402 R=R+11

412 M=R/10

420 N=R—-1@%M

432 GOSUB 740

440 GOSUB 470

458 GOTO 3@

460 :

47@ REM %% Print Board XX

480 C=0:H=0

490 BEEP

500 LOCATE 0,0

510 PRINT "

520 PRINT:PRINT

930 PRINT TAB(9) 3"MSX Machine is "CHR
£(X)

948 PRINT TAB(11) ;"Human is " ;CHR$ (OX

55

How to program your MSX computer like a professional

)

s5@ FRINT 4
=560 FRINT TAR(1D) ;"1 2 3 4 5 678

570 FOR B=2 TO 9

582 FPRINT TAB(&) ;B-1;" "3

599 FOR D=2 TO 9

602 PRINT CHR$(A(E,IN) ;" "3

610 IF A(B,IN=X THEN C=C+1

620 IF A(E,D)=0X THEN H=H+1

638 NEXT D

642 FRINT B-1

650 NEXT B

660 FRINT TAE(1D)3"1 2 3 4 5 6 7 8"

678 FRINT:FRINT

682 FRINT TAE(1@) ;"MSX Machine:"C

692 PRINT:FRINT TAB(12) ;"Human:"H

702 REEF

712 IF C+H=&64 THEN 0@

72@ RETURN

73@ :

742 FOR C=-1 TO 1

75@ FOR D=-1 TO 1

76 F=M:6=N

770 IF A(F+C,G+D)<>S THEN 81@

78&a F=F+C :6=6+D

790 GOTO 77@

sad :

812 IF A(F+C,6+D)<>T THEN 85@

8220 A(F,B)=T

832 IF M=F AND N=G THEN 8%@

B840 F=F-C:6=6-D:G0T0 820

850 NEXT D

86@ NEXT C

872 RETURN

88a :

892 GOSUB 470

0@ PRINT

?1@ IF C>H THEN PRINT TAR(?) :"I’'m the
champ!"

928 IF H*C THEN PRINT TAER(9) ;"You’'re
the champ"

56

o

A game and q tes;

930 IF H=C THEN FRINT TAB(9);v1¢ g 4
draw!'"

942 END

95Q

6@ REM XX Initialise xx

97@ CLS

280 X=RND(-TIME)

9@ KEY OFF:DEFINT A-Z

1a0@ X=248:0X=249

121@ DIM A(1@,1@)

1222 FOR E=2 TO 9

1232 FOR C=2 TO 9

1042 A(B,C) =44

105@ NEXT C

1@6@ NEXT R

1070 A(S,3)=X:A(b,6) =X

1280 A(6,3)=0X:A(S,6)=0X

1092 F=@

11e@ LOCATE 4,8

111@ FRINT "Do you want the first mov
e'? "

112@ FPRINT TAB(1@)" (Y or N)°"

1130 Y#=INEKEY#

114 IF YY" AND Y snyn AND Y$»n
n" AND Y#<>"N" THEN 113@

115@ CLS

1160 GOSUE 472

117@ IF Y$="y" OR Y$="Y" THEN 34
1180 GOTO 30

Testing your speed

The next program, Reaction Test, is much shorter than MSX-thello,
but just as much fun to play. You enter the program, type in RUN,
and the message STAND BY appears. After an agonizing wait,
STAND BY will vanish, to be replaced with the words “OK, PRESS
THE ‘Z’ KEY!”. As fast as you can, you leap for the Z key and press
it, knowing that the computer is counting all the time. This is a
simpler test than the one in chapter six.

57

How to program your MSX computer like a professional

The computer then tells you how quickly you reacted, and compares
this with your previous best time. “BEST SO FAR IS...” appears
on the screen, and the computer then waits for you to take your
hands off the keyboard to prevent cheating (as if you’d do such a
thing!) before the whole thing begins again.

Stand by

0K, press the ‘7’ key!
Your score was 449
Best so far: 1352

The game continues until you manage to get your reaction time to
below 8, which is not an easy task. ’

Here’s the listing of Reaction Test:

12 REM REACTION TEST

20 HISCRE=1202

32 X=RNIO(-TIME)

4@ IF HISCRE<8 THEN 22@

Sa CLS

6@/PRINT:PRINT=PRINT "Stand by..."

7@ FOR A=1 TO 7@@ + RND(1) ¥x200@

82 NEXT A

90 Ai=INKEY#

122 IF A%<x"" THEN 7@

11@ FRINT:PRINT:FRINT "OK, press the
‘7' key'"

120 COUNT=@

132 COUNT=COUNT+1

140 AF=INEKEY#

15@ IF A$<>"z" AND A%<:»"Z" THEN 13@
162 PRINT:PRINT:FRINT "Your score was
"COUNT
170 IF COUNT<HISCRE THEN HISCRE=COUNT

58 , J%

A game and q test

:BEEF

18@ FRINT:FRINT "Rest S0 far is"HISCK
E

192 FOR A=1 TO 10@@:NEXT A

200 IF INKEY$<:"" THEN 200

212 GOTO 4@

220 FRINT:FRINT "You’re the champ!"
230 BEEF

24@ END

Now you’ve had a little relaxation, it’s time to return to the serious
stuff again. :

i

59

'l

60

CHAPTER EIGHT
Reading DATA

In this chapter, we’ll be looking at three very useful additions to your
programming vocabulary: READ, DATA and RESTORE. They
are used to get information stored in one part of the program to
another part where it can be used.

Enter and run this program, which should make this a little clearer:

1@ REM READ, DATA and RESTORE
20 DIM A(S)

30 FOR B=1 TO 5

42 READ A(E)

S@ FRINT A(E)

60 NEXT B

70 DATA 88,8965,23,-94,3

Using line 48, the program READs through the DATA statement in
line 70 in order, pr/inting up each item of DATA with line 50.
/(

RESTORE moves the computer back to the first item of DATA in
the program, as you’ll discover if you modify the above program by
adding line 55, so it reads as follows:

180 REM READ, DATA and RESTORE
20 DIM A(S)

30 FOR B=1 TO S

42 READ A(R)

5@ PRINT A(B)

S5 IF B=3 THEN RESTORE

60 NEXT B

72 DATA 88,89465,23,-94,3

61

How to program your MSX computer like a professional

It does not matter where in the program the DATA is stored.. The
computer will seek it out, in order from the first item of DATA in the
program to the last, as our next program (which scatters the DATA
about in an alarming way) convincingly demonstrates:

1 DATA 45

1@ REM READ, DATA and RESTORE
20 DIM A

22 DATA 888

30 FOR B=1 TO 5

42 READ A(R)

S@ PRINT A(B)

S5 DATA 432

6@ NEXT B

72 DATA 933,254

READ and DATA work just as well with string information:

12 REM READ/DATA with strings

28 FOR B=1 TO &

32 READ A%

42 FRINT A%

5@ NEXT B

62 DATA test ,one,nine,after,noon

Note that string DATA does not have to be enclosed within quote
marks, unless leading or trailing spaces, and/or punctuation and
symbols are significant and must be considered part of the DATA.

You can mix numeric and string DATA within the same program, so
long as you take care to ensure that when the program wants a
numeric item, a number comes next in the program, and when it
wants a string item, it finds it:

1@ REM READ/DATA

28 FOR B=1 TO S

38 READ A%:READ A

4@ FRINT A%,A

5@ NEXT B

64a DATA test,12,one,?98767,nine,22,aft
er,—987 ,noon, .4

62

CHAPTER NINE
Getting Listed

An array is used when you want to create a list of items, and refer to
the item by just mentioning the position within the list the item
occupies. You set up an array by using the command DIM (for
dimension). If you type in DIM A(20), the computer will set up a list
in its memory called A, and will save space for twenty-one items:
A@®), A(1),...andsoon... up to A(20). Each of these items — the
A(7) and the rest - are called elements of the array.

When you dimension, or set up, an array, the computer creates the
list in its memory and then fills every item in that list with a zero. So
if you told your computer to PRINT A(3) it would print a @. You fill
the items in an array with a statement like A(2) = 1000, or by using
READ and DATA as we saw in chapter eleven. Once you’ve given
an element a value, you can get the computer to tell you what value
the element has by saying PRINT A(n). You can also manipulate the
element as though it was the number. That is, A(4)*6is valid, as is 45
- A(6) and so on.
M

Your computer will let you use an array of up to 11 elements (that is
A(9) through to A(10) or TEST(9) through to TEST(18)) without
having to use the DIM statement first. The moment it comes across a
reference to an element of an array, where the subscript (the number
which follows in parentheses) is between @ and 19, it automatically
creates an array. However, it is good practice to always dimension
arrays, even if you are using less than 12 elements.

You may like to ‘forget’ about the element which has the subscript
zero, and pretend that the array starts at one. Many times you’ll find
it simpler to assume DIM A(80) gives you an array of 84 elements
(rather than 81 as is the case), and that the first element is A(1).

63

How to program your MSX computer like a professional

/"/

The first program in this chapter dimensions (sets up, or creates) an
array called A with room for sixteen elements. We will ignore the
element with the subscript 8. The B loop, from lines 44 to 69, fills the
array withrandom digits between #and 9, and then prints them back
for you with the loop from 70 to 100 (with a slight pause being

created by line 96).

Here is the listing:

12 REM ARRAYS

20 DIM A(13)

30 CLS:KEY OFF :X=RND(-TIME)
42 FOR B=1 TO 15

=@ A(B)=INT(RND(1)X%9)

6@ NEXT B

7@ FOR Z=1 TO 15

8@ PRINT "A("Z") IS "A(D)
9@ FOR T=1 TO 10@:NEXT T
12@ NEXT Z

And here’s one example of it in use:

A(1) IS @
AC2) I8 3
A(3) IS 5
AC 4) I8 3
A(S) I8 3
AC &) IS 2
AC 7) IS 6
AC B8) IS 4
AC9) IS 2
AC 1@) IS 4
AC 11) I8 2
A(12) I8 @
A(C 13) IS8 8
AC 14) IS 1
AC 15) IS 4

This is called a one-dimensional array, because a single digit follows
the letter or name which labels the array.

64

You can also have multi=dimensional nren
one number follows the arrny lnbel yfter DIM. In our ne

Getting lyted

Y&, In which more than
XLprogram,

for cxmnplcl. |Ilw computer sets up two-dimensional nrray ealled A
again, consisting ol five elements by fjye elements (that is, it fy
dimensioned by DIM A(4,4) s You can see in line 24);

1o0
112
12
130
14Q
15@
16
170
182
190
200
210
22
230
240
250
260

REM MULTI-DIMENS8IONAL ARKAYS
DIM A(4,4)

CLSIKEY OFF 1 XmRND (=T I ME)
FOR B=1 TO 4

FOR C=1 TO 4
ACB,CY=INT (RND (1) %9)
NEXT ©

NEXT B

PRINT * 1 2 3 4»
PRINT Wi o s i
FOR BE=1 TO 4

PRINT B"{";

FOR C=1 TO 4

PRINT A(B,C)

NEXT C

PRINT

NEXT B

When you run it, you'll see something like this:

fa—y

> W N

1 2 3 4
G Wi
@ 8 1 3
2 2 1 4
b,.8 .2 3

You specify the element of a two-dimensional array by referring to
both its numbers, so the element 1,1 of this array (the element in the
top left hand corner of the printout above) is 7 and is referred to as
A(1,1). The 1 in the printout is A(3,3), and the 2 below it is A(4,3).

Your computer also supports string arrays. Enter and run the
following short program to see string arrays in operation:

65

How to program your MSX computer like a professional

12 REM STRING ARRAYS

20 DIM A$(3)

3@ CLS:KEY OFF :X=RND(-TIME)

42 FOR B=1 TO 5

S0 A% (B) =CHR$ (INT (RND (1) X26) +65) +CHR$
(INT (RND'(1) X26) +65) +CHR$ (INT (RND (1) ¥2
b) +65) +CHRE (INT (RND (1) ¥26) +635)

6@ NEXT B

7a FOR B=1 TO S

8@ PRINT "A$("B") IS "A%(E)

@ NEXT B

Here’s one printout of the program:

AF(1) IS EREZ
A¥(2) IS DICP
A¥(3) IS PERY
A¥(4) IS DYHE
A¥(5) IS8 FEBSJ

You can, of course, fill the elements of an array - string or num;ric_—
via DATA or INPUT statements. Here is a string array which is
filled by a DATA statement:

12 REM STRING ARRAYS
20 DIM A$(S)
30 CLS:KEY OFF :X=RND(-TIME)
47 FOR B=1 TO S

' =@ READ A% (B)

6@ NEXT B

7@ FOR B=1 TO 5

8@ FRINT "AF("B") -> "AF (R)
90 NEXT B

122 DATA THINKING,IS,A,FAINFUL ,TASEK

This is the result of running it:

AE(1) -3 THINEING
AEC 2) - I8
AE(C 3) ~= A

Getting listed

As(4) —=> FAINFUL
As(5) -3 TASK

Escape from Murky Marsh

The next program demonstrates the use of a two-dimensional array
for ‘holding’ an object, and for moving it around within the array.
The object in this case is a little shape with a pointed top. The shape
is trapped in @ murky marsh, and by moving totally at random, it
hopes one day to be able to escape from the marsh, The shape s free
if it manages to stumble onto the outer rows.

(By the way, the shape in this program demonstrates Brownian
motion, the random movement shown by such things as tiny
particles in a drop of water when viewed under a microscope, or of a
single atom of gas in a closed container. Brownian motion explains
why a drop of ink gradually mixes into the water into which it has
been placed.)

Here is the program listing:

18 REM Dragon’‘s Lair

2@ X=RND(-TIME)

3¢ I'IM A(l@a,10)

42 COLOR 1,12

S0 CLS:KEY OFF

60 M=@

72 GOSWE 370

82 IF RND(1)>.35 THEN F=FP+1 ELSE P=F-
1

9@ IF RND(1)>.5 THEN @=0+1 ELSE @=0-1
1@aa IF @<1 THEN @=1

112 IF @>1@ THEN B=1@

120 IF P+<1 THEN P=1

132 IF P>12 THEN P=1@

142 M=M+1

152 LOCATE 5,4

160 FRINT "Attempt number'"M"

172 FLAY "ABCDEFG..."

188 A(F,Q)=227

67

How to program your MSX computer like a professional

192
200
210

230
240
252
260
27
28a@
29a
300
31@
320
33
34@
35
360
372
38@a
39
422
412
42
43
44@
452
460
/)!/ll
472
480

LOCATE 8,7

FOR X=1 TO 1@

FOR Y=1 TO 1@

FRINT CHR$(A(X,Y))

NEXT Y

FRINT:FRINT TAB(8) ;

T=INT(RNLD(1) ¥9)

IF T=@ THEN FLAY "B"

IF T=1 THEN FLAY "D"
IF T=2 THEN FLAY "E"
IF T=3 THEN FLAY "F"
IF T=4 THEN PLAY "GB"
IF T=5 THEN FLAY "A"
IF T»S THEN FLAY "C"
NEXT X

AF,Q) =203

IF Q<9 OR F<? THEN 8@
GOTO 45

E=INT (RND (1) ¥3) +4
F=INT (RND (1) X3) +4

FOR X=1 TO 1@

FOR Y=1 TO 1@

A(X,Y)=203

NEXT Y,X

FLAY "0&6 L&4 T255 V1IS"
RETURN

FRINT :PRINT

FRINT TAE(4) ;"Whew...free at

FOR T=1 TO 23@@:NEXT T
RUN

68

last

CHAPTER TEN
The Sound of Music

Your MSX computer contains a very flexible Programmable Sound
Generator, which is called the PSG. You trigger the PSG with either
the SOUND or the PLAY commands,

The PSG has three independent sound channels (A, B and C) which
can be used at once, allowing you to produce three-tone sounds, as
you will see (or rather hear) a little later in this chapter. You can also
send noise to any channel, rather than pure, musical tones, so you
can produce some extremely effective sound effects. You’ll be
hearing those shortly. Finally, the PSG gives you control of the -
sound output’s envelope which allows you to shape the sound’s
attack, decay and - with some of the envelope options - the ‘repeat
cycle’ of the sound. Our Envelope Dancer program demonstrates
convincingly the effects which various envelopes can create.

The PSG Registers

The chipy at the heart of the PSG is an AY-3-8910, and it has 13
registers you can control to produce sounds to your heart’s content.
Register @ looks after the fine tuning of sound channel A, and will
accept a number between @ and 255. Register 8 controls the volume
of channel A. We turn the volume of channel A up by entering the
command SOUND 8,15 in the first program in this chapter, which
runs through the pitch possibilities of sound channel A:

12 REM Sound channel A

2@ SOUND 8,15

3@ FOR J=@ TO 255

42 SOUND @,J

5@ FOR T=1 TO 12-J/20@:NEXT T

69

How to program your MSX computer like a professional

6@ NEXT J
7@ SOUND 8,0

That program shows the fine pitch tuning of sound channel A. This
is. as I said, controlled by register #. Register 1 is in charge of coarse
pitch tuning for this channel. It can take values up to 15. Hereis a
program to demonstrate it in action:

1@ REM Sound channel A (coarse)
2@ SOUND 8,15

32 FOR J=1 TO 14

42 SOUND 1,

S@ FOR T=1 TO 1Q@:NEXT T

6@ NEXT J

72 SOUND 8,@

The fine tuning for channel B is controlled by register 2, and register
9 controls channel B’s volume. If both channel A and B are turned
on, and a note is played through each of the channels, a two-tone
chord (slightly out of tune, in this case) can be produced:

12 REM A and B together
22 SOUND 8,15:50UND 2,15
32 SOUND 1,2

4@ SOUND 3,6

S@ FOR J=1 TO 9@@:NEXT J
4@ SOUND 8,@:S0UND 9,2

) -! . .
Line 50, in the program above, allows the tone to sound for a while,
before turningit off in line 64 by putting zero into each of the volume
registers.

If we modify this program a little, we can produce a series of rather
unlovely, two-note chords from channels A and B:

12 REM A and B together
20 SOUND 8,15:50UND 9,15
30 FOR J=1 TO 14

40 SOUND 1,3

5@ SOUND 3,14-J

60 FOR T=1 TO Z0Q:NEXT T

70

The sound of music

7@ NEXT J
ga SOUND 8,2:S0UND 9,0

We can now turn to the third channel, C. The volume for Cis
controlled by register 10, while fine pitch tuning is controlled by
register 4 and coarse pitch tuning by register 5. The three sound
channels, if triggered together, allow us to produce three-note
chords (which true musicians may well wish they had never heard):

1@
2@
3@
42
@
ba
7@
8@
@

REM A, B & C together

SOUND 8,15:S0UND 9,15 :S0UND 19,15
FOR J=1 TO 14

SOUND 1,J

SOUND 3,14-3

SOUND 5,2%J/3

FOR T=1 TO 20@:NEXT T

NEXT J

SOUND 8,2:50UND 9,2 :SOUND 12,2

The above program uses the coarse pitch tuning of the three
channels. Our next program generates chords at random, using the
fine pitch tuning. It prints the values on the screen so you can tell
which numbers are producing the result you hear. Press any key to
stop the program:

i@
20
3@
to
4
S
6@
7@
sa
9@

100
11@

REM Random chord creation
CLS:KEY OFF

FRINT:FRINT TAE(&) ;"Press any key
S?}Dp "

SOUND 8,15:50UND 9,15:50UND 12,15
X=RND (-TIME)

X=INT (RN (1) x233)

Y=INT (RND (1) ¥255)
Z=INT (RND (1) X253)
LOCATE 12,5

12|Z| F,-RINT nx =||xn 1]
130 PRINT:PRINT TAB(12);"Y ="Y" "
142 PRINT:FRINT TAR(12)3"Z ="Z" "
15@ IF RND(1)».5 THEN SOUND @,X

71

How to program your MSX computer like a professional

16@ IF RND(1)>.5 THEN S0UND 2,Y
172 IF RND(1)>.5 THEN SOUND 4,Z
182 FOR T=1 TO RND(1)%S@+3@:NEXT T
192 IF RND(1)>.5 THEN 135@

200 IF INKEY#<:"" THEN 230

212 GOTO 8@

e] "

232 SOUND 8,@:S0UND 9 ,@:SOUND 1@,0

Enter and run the following program, which produces the by-now
familiar sound of random ‘music’ from channel A (ignore line 3¢ for
the moment, as we haven’t discussed register 6 yet):

12 REM Noise

20 SOUND 8,15

32 SOUND &6 ,INT(RND(1) %x64)
42 SOUND @ ,INT(RNDO(1) ¥x2568)
S0 FOR T=1 TO 3@@:NEXT T
6@ IF INKEY$<>"" THEN 8@
72 GOTO 3@

8@ SOUND 8,2

Now modify that program so it reads as follows, adding line 25 and
modifying line 76:

12 REM Noise

20 SOUND 8,15

25 SOUND 7,INT(RND(1)%1%3)
3@ SOUND &,INT(RND(1)Xx&64)
4 SOUND @, INT (RND(1) X256)
S@ FOR T=1 TO 3Q@:NEXT T
62 IF INEEY#<:"" THEN 8@
70 6OTO 25

8@ SOUND 8,0

This variation of the Noise program uses register 6, which modulates
the noise channel, and will accept values from zero to 63.

You will only become expert at using the PSG by playing around
with it, and taking note of the ways various effects are produced. I

72

The sound of music

suggest you keep a sheet of paper to note particularly effective
sounds when you find them, so you can incorporate them into your
programs when you have a need for a good effect,

Although we’ll be discussing envelopes in a moment, and the ways in
which these envelopes can ‘bend’ the sound, it is worth noting that
quite extraordinary effects can be generated with the simplest
means, using the PSG. For example, our next program, Electronic
Music, uses nothing but a loop between two randomly chosen
values, sticking numbers in the fine pitch tuning register () for
_channel A. However, the results are -staggering, as your ears will
testify:

%?g REM ELECTRONIC MUSIC

122 SOUND 8,6

1328 A=RND (1) %255

140 B=RND (1) %255

15@ IF AXB OR RND(1) >.96 THEN 14@
162 :

170 FOR J=R TO A STEFP -1

182 SOUND @,J

192 NEXT J

200 FOR Z=1 TO ZQ@:NEXT 2

213 GOTO 13@

Envelopes

Therd are eight different envelopes available on your MSX
computer. The number you put into register 13 can be from zero to
15, and the effects the various numbers produce is indicated by the
diagrams below:

Value: Envelope produced:

#,1,2,3,9 A
456,715 /|
; ANNNNNNNNNN

73

How to program your MSX computer like a professional

10

11

12

13

14

\
WAV

/
VAVAVAVAVS

The next program demonstrates the PSG envelopes in action. You’ll
see that envelopes 8, 16, 11, 12, 13 and 14 are ones which continue.
They produce steady notes, from a quiet start with 13, but the
loudness of the sound rises and falls (at differing rates) withsome of
the others:

1@
20
3@
4@
S
b
70
ga
Q@

REM Envelopes

CLS:KEY OFF

SEED=RND (-TIME)

FOR X=@ TO 14

SOUND 13,X

FRINT:FRINT "This is envelope"X
SOUND @,INT(RND(1) X156)

SOUND 8,16:50UND 12,12

IF INKEY$="" THEN 9@

122 NEXT X
112 GOTO 4@

)

7

Our next program chooses an envelope at random, and puts its

shape on the screen (so you do not have to refer to our table to see the
shape of the various envelopes). Press any key to get a new envelope:

1@
20
3@
4
=@
b
7@
g

REM Envelope Dancer
CLS:KEY OFF
SEED=RND (~TIME)
E=INT(RND (1) %x1%5) :
FITCH=INT (RND(1) %164) |
FRINT :FPRINT :FRINT

FRINT TAE(S) ;"Envelope:"E
FRINT TAB(Q) s"Fitch:"FPITCH

74

\

The sound of music

9p GOSUB 16@

12@ SOUND 13,E

11@ SOUND 1 ,FPITCH

120 SOUND 8,16:50UND 12,16

132 IF INKEY#="" THEN 132

140 GOTO 4@

152 =

162 REM Envelope shape

172 IF E<>@ AND E<>1 AND E<>2 AND E<>»
3 AND E<>? THEN 2@

182 PRINT TAB(7)3"__ o

192 RETURN ‘

200 IF E<>4 AND E<>5 AND E<>6 AND E< 3
7 ANDI E<>15 THEN 23@

‘212 PRINT TAB(?) 3"/ "

220 RETURN

232 IF E<>8 THEN 262

240 FRINT TAB(7) 3"\/\/\/\"

250 RETURN

260 IF E<>1@ THEN 29@

272 FRINT TAB(?) 3"\ / \ / \ /"
280 RETURN

292 IF E<*11 THEN 330

30@ PRINT TAB(7) 3 _ _ ©®
312 FRINT TAB(7) 3"\i"

328 RETURN

332 IF E<>12 THEN 362

340 PRINT TAB(7) 3"/\/\/\/\/"
35@ 'RETURN

360 IF E<»13 THEN 40@

372 FRINT TAEBC(B) 3" "

38@ PRINT TAB(7) 3;"/"

39@ RETURN

402 FRINT TAB(7) 3"/ N /7 \ /7 \"
412 RETURN

Acting Macro

Now while it’s all very well producing music, and strange sound
effects with the aid of numbers, it is much simpler - at least for

75

How to program your MSX computer like a professional

musicians - to refer to notes by their names. The MSX computer’s
Music Macro Language allows you to do this.

Enter the following program, which repeats the scale of C major,
fairly slowly, over and over again:

12 REM SCALE
22 PLAY "0O4 CDEFGAB 05 C.."
ia2 GOTO 2@

As is pretty obvious from that short program, the command PLAY
is used (rather than SOUND) when using the Macro Language
commands. The note names or letters (A for the note A and so on)
are also pretty self-explanatory. However, what is the “g4” and 05
we see in line 207 And those dots after the final C. What are they
there for? They are just a few of the possible commands you can use
when programming in the music language.

The note names A to G produce the relevant note, while a hash
symbol (#) or a + will raise the note a semitone (to get, say, F sharp,
you enter F# or F+) and a minus sign(-) will produce a flat (so Bflat
is B-). These only work if there is a black note on a piano in that
position (so F flat does not work). The letter #, such as we saw inthe
brief C major scale program, controls the octave in which the sound
will be heard. There are eight octaves (numbers 1 to 8) and the
computer defaults to octave 4 if one is not specified.

Note, by the way, that the spaces between the “#4” and the note
names are there just to make it easier to see what is in the relevant
string following PLAY. The spaces are ignored by your MSX
computer when actually playing the music.

Instead of note names, you can use the letter N followed by a number
(from @ to 96). Zero tells your MSX machine that you want a rest,
and 1 equals the lowest C the computer can play, right up to 96
which is the highest note you can get from your computer.

As well as controlling the pitch of the note played, the Macro
language allows you to control the speed at which your music is
made, and the length of the individual notes which form it. The letter
“L’ is followed by a number (as “L64”) to determine the length. L1

76

The sound of music

is a whole note, L4 a quarter note, right up to L64 which is a sixty-
fourth note. If you do not specify an L command, and one has not
peen specified previously in the current run, the computer defaults

to 4.

Enter and run the following program, which shows L in use:

1@ REM SCALE SHOWING L CHANGE
15 SEED=RND (~TIME)

16 CLS:PRINT "LENGTH I5"4

20 FLAY "04 CDEFGAR 0S5 C.."
25 IF INKEY$="" THEN 25

30 X=INT(RND(1)X5) +1

42 ON X GOSUB 11@,120,132,140,150
s@ PRINT:PRINT "LENGTH IS"L
{00 GOTO 2@

110 PLAY "L1":L=1

115 RETURN

128 PLAY "L2":L=2

125 RETURN

130 PLAY “"L4":L=4

135 RETURN

142 FLAY "L8":L=8

145 RETURN

150 FLAY "L64":L=64

155 RETURN

The speed, or tempo, of the music, is determined by the number
which follows the letter T within a music string. It controls the
number of quarter notes which the MSX machine will play in one
minute. It defaults to 120, and can be modified by you from 32 to
255. In the next program, a variation of the previous one, we look at
the use of T to modify the tempo. Before you run the program, type
in - as a direct command - PLAY “L4” and then press the ENTER

key:

12 REM SCALE WITH L AND T

15 SEED=RND(-TIME)

16 CLS:FRINT "LENGTH IS"4:PRINT "TEMP
0 IS 12a"

77

How to program your MSX computer like a professional

2@ PLAY "04 CDEFGAB 03 C.."
25 IF INKEY#$="" THEN 25

3@ X=INT(RND(1)Xx3)+1

42 ON X GOSUB 110,120,130,140,150
S@ PRINT:PRINT "TEMFO IS"T
122 GOTO 2@

11@ FLAY "T32":T=32

115 RETURN

122 PLAY "T&64":T=64

125 RETURN

132 PLAY "T120":T=120

135 RETURN

142 FLAY "T156":T=156

145 RETURN

15@ FLAY "T255" :T=255

155 RETURN

You can modify other aspects of the string to control your music. V
looks after the volume, and runs from @ to 15, with a default value of
8. R is used to get a rest, and is followed by the same numbers as
control the L, length, command. You can bring the envelope into
PLAY commands, with the letter S, which must be followed by a
number from @ to 15. It affects all three channels at once, and
defaults to 1 (which starts a note instantly at full intensity, and
quickly fades away).

The letter M triggers the command which controls the period of the
envelope. The period is the time it takes the sound to go from zero to
full intensity, and this defaults to 255.

As 1 guess you can imagine, the string following the command
PLAY can get pretty confusing and crowded. One way to keep it
reasonably clear what is happening is to use spaces within the
strings, as you have seen me doing in this chapter. As I pointed out
earlier, the computer ignores spaces, but they can be a great aid in
helping you decipher a string when you come back to it after a break.

PLAY strings can be further simplified by substituting portions of
them with assigned variables. You need the letter X within a stringto
tell the computer that the following information is an assigned
variable, rather than letter to be interpreted directly (i.e. that “A” is

78

e

The sound of music

umeric variable with a value, and not just the note A). The enq of
a nassigned variable is signalled by a semi-colon (;) within the string.
;1};,3 following two programs should help make this clear.

First enter and run this program, which plays a fairly crummy
version of Twinkle, Twinkle Little Star:

10 REM Twinkle twinkle

2p PLAY "03 LB T2aa V135"

30 FLAY "CRBC. 04 GRBG. ARBA. G. R4"
4p FLAY "FRBF. ERBE. DR8BD. C.... R8"
45 FOR H=1 TO 2 :

s FLAY "GRBG. FRBF. ERBE. D.... R8"
ba NEXT H :
70 PLAY "CRB8C. 04 GRBG. ARBA. G. R4"
gz PLAY "FRBF. ERBE. DR8B8D. C.... R4"

If you look carefully at that listing, you’ll see there are some
segments which are repeated while the tune is played. Line 30 is
repeated exactly in line 70, and line 4 is repeated, apart from the
final rest, in line 80. (Note also that line 50 is held within a
FOR/NEXT loop, to play it twice.) We will assign the strings A$, B$
and C$ to the repeated sections of this song, and then use them
within the program as follows:

12 REM Twinkle twinkle II

20 FLAY "03 L8 T20@ Vis"

30 A$="CRBC. 04 GRBG. ARBA. G. R4"
42 B$=FRSBF. ERS8E. DRBD. C.... RB"
50 C$="GRBG. FRBF. ERBE. D.... RB"
6@ FLAY "XA$;XB$;XCH;"

70 FLAY "XC#;XE$3XA$;XBE;"

8@ FLAY "XA$;XE$3XCH;"

90 FLAY "XB$;"

You can see in lines 68 to 99 that the assigned strings are played, and
are identified as such to the computer by the preceding X and the
following semi-colon. Make sure that your assigned string is not

longer than 255 characters, or you’ll discover the final notes are not
played.

79

How to program your MSX computer like a professional

i we need to explain the dot (.) which has appeared in several
;I):;gglrlgr’ns, such as in tll)le lines 30, 40 and 50 qf TwinkleII. A giot after
a note causes it to be played one and a half times as long as it would
have been otherwise; two dots means the note (or rest) lasts for two
and a quarter times as long as it would have otherwise; and three
dots increases the length of the note to almost four times (actually
3.375) its original length. You can keep adding dots to increase the
length of a note or a rest.

Finally in this chapter, let’s bring together a lot of what we have
discovered by turning our computer into a sort of automatic piano,
and getting it to write a continuously changing piece of music. Tﬁe
Jazz Player program, in fact, does not produce very tuneful music,
but it is a great demonstration program, and comes complete with a
screen display which shows musical notes moving up the' screen,
with random colour changes. When your inspiration is fadmg, you
can run this program to see electronic creativity in action:

1@ REM THE Jazz Flayer
2@ SEED=RND (-TIME)
3&a CLS:KEY OFF
42 DIM A%(16)
@ PLAY "T122 L8 S11M1999"
6@ FOR G=1 TO 1@
70 READ A% (G)
8@ NEXT G
@ W=INT(RND(1)%12)+3
L 122 P=INT(RND(1) %12)+3
112 O%=A% (W+INT(RND(1) %x3))
120 R¥=A% (W)
130 T#=A% (W-INT(RND(1)x3))
149 REF=RND(1)
15@ FOR Y=1 TO RND(1) x4
160 FLAY "XQF3" ,"XR&E3" ,"XTs;"
1702 PLAY AF(F) ,A$(F+1) ,AT(P-1)
18@ IF REF».4 THEN PLAY "XT&;","X0$;"
192 NEXT Y
200 IF W>8 THEN 9@

21@ COLOR INT(RND(1)%13+2) ,INT(RND(1)
X13+2)

220 E=INT(RND (1) X25) +5

80

The sound of music

23@ PRINT TABE(K) ;CHR$ (222)

~4p FRINT TAE(K) jCHR# (222)

n5@ PRINT TAB(K) jCHR$(219)

260 GOTO 92

'27'2' [lATA IICII,ll[‘ll’IIDBII’IIFII,"GII,"D4II,IIE‘
","C.","E","DS"-,"A","A#...",,"E,","G_"
JFHY,"Cuna "

81

W\

CHAPTER ELEVEN

Functional Fun

Despite the title of this chapter, functions are not really much fun,
put as they are vital elements in your MSX programming quiver, it’s
important to know about them. Once you’ve set up a function, using
the DEF FN statement, you can trigger the function at will within a
program. Functions actually allow you to define new words which
become part of your programming language for that program.

A function acts on a number (or variable) to return a value. When
the name you’ve assigned to a function is included within a program,
the relevant number of variable must follow the name.

The function is made up of a name and a definition. This should be
clear if you enter, and run, the following program:

1@ REM DEFINE FUNCTION DEMO
20 CLS:KEY OFF

3@ DEF FNHALF (X)=X/2

42 INFUT "Enter X"3:X

5@ Z=FNHALF (X)

60 PRINT TAE(S) 3Z

7@ PRINT

80 GOTO 42

The function is defined in line 30. First you’ll see DEF FN which
tells the computer that this line is to defining the function which
follows. The name of the function here is HALF and the definition,
which follows the equals sign, is X/2. You’ll see that after the name
HALF there is an X in brackets. This is a dummy variable which tells
the computer how a variable within a program - which will be
processed by the definition - will be presented.

83

How to program your MSX computer like a professional

Here’s the above program in action:

Enter X7 43

21.5

Enter X7 45.984

22.992

Enter X7 1234355232

61727616

TheroksofthevadouspansofafuncﬁonJhedunnnyvaﬂabk,ﬂm
name and the definition, may be more clear to you after you enter
and run this program, which generates random numbers between |

and the value entered:

1@
2@
3@
4@
o
60
7@
8@

REM DEFINE FUNCTION DEMO
CLS:kEY OFF

DEF FNRAN(X)=INT(RND (1) xX)+1
INFUT "Enter X";X

Z=FNRAN (X)

FRINT TAE(S) ;Z

FRINT

GOTO 4@

This is an example of it in use:

Enter

45
.

M <

Enter X 1234

132

Enter X 99999

76597

Enter X 23

Enter

14
X 12
9

84

You may well find that a function like this i

Functional fun

s aboon in any program

in which many, many random numbers needed to be generated.

The function can be used directly in a program, as you

next program:

1@
20
3@
42
S@
b
7@
8@
7@

REM DEF FN in program
CLS:KEY OFF

DEF FNRAN(X)=INT(RND(1)*X)+1
INFUT "Enter X";X

FOR J=1 TO FNRAN(X)

FRINT J;

NEXT J

FRINT:FRINT

GOTO 4@

Here it is in action:

Enter X

) Rt

12

3 4 35 & 7

2

Enter X 1

172
X 12
3 4 S5

Enter
1 ~

2 6 7 8 9 10

~

21
3 4 5

Enter X

12
~

2 13

& 7 8 9 1@

"Il see in the

1d A

Finally in this chapter, here’s a summary of the major mathematical

symbols and functions used in MSX BASIC:

Usual Computer
symbol: symbol:

+ (plus) +

- (minus) =

X (multiply) o

+ (divide) /

m? m"n

85

- How to program your MSX computer like a professional

The mathematical functions include:

Computer
word:

ATN
SIN
COS
TAN
INT
SGN

ABS

SQR
LN

Meaning:

ARCTANGENT
SINE
COSINE

TANGENT
Reduce to next lowest whole number

Sign (returns -1 if negative, @ if zero,
1 if positive)

Returns number without its sign (so
ABS (-5) is 5)

Square root

Natural log

86

|

|
i
|

CHAPTER TWELVE
Adding Life to Programs

The MSX computers have many facilities, and you should make the
most of them. In this chapter of the book, we are going to take a
simple program, and then elaborate it by adding such things as
sound. Once you’ve worked through this chapter, you should find it
easy to apply the ideas to other programs you are writing.

The program we’re going to use as the core of our development work
is a ‘Duck Shoot’ one, in which little objects fly across the screen,
and you have to try and shoot them down.

In the first version of the program, the little objects are letters chosen
at random, and you are the letter “X’’. You fire at the ‘ducks’ by
pressing the “‘F”’ key. You move yourself left using the “Z” key and
to the right with the “M”’ key. CAPS LOCK must be engaged before
you run the program.

Although there is no time limit within the program, so you do not
have to shoot all the ducks as quickly as you can, there is a limit on
the number of shots you can fire. In some of the versions of this game
in this part of the book, you’ll see (line 50) that the program starts
with a limit of 15 shots. In the other more complex versions, you
have many more shots. The number of shots is deliberately kept low
in the first versions so you will not be able to get a high score just by
leaving your finger on the “F” key and waiting for the ducks to fly
into the line of fire.

Here, then, is the first program, Type it into the computer and then
run it:

87

How to program your MSX computer like a professional

1@ REM Duck Shoot

20 CLS:KEY OFF

37 DEFINT A-Z

4 SCRE=@

5@ SHOTS=15

b2 AF=" S856G ZAR ok SL DF G F

0 FGGe"

7@ ACROSS=19

82 NOWN=19

9@ REM XX Main game XX

122 LOCATE 1,11:FRINT A%

11@ LOCATE ACROSS-1,00WN:FPRINT " X "
120 B$=INKEY#

132 IF B#$="F" THEN SHOTS=SHOTS-1:IF M
I1D$ (A% ,ACROSS,1) <" " THEN SCRE=SCRE+

57:MI1D% (A% ,ACROSS ,1)=" "

142 LOCATE 1,5:FRINT "Score:"SCRE,"
Shots left:"SHOTS" "

15@ IF SHOTS<1 THEN LOCATE 1,11:PRINT
$eomem— That’s the end of the game ---—

-":60TO Z2@

16@ IF B#$="7Z" THEN ACR0OSS=ACROSS-1
170 IF B#="M" THEN ACROS5S=ACROSS+1
182 AE=MID$ (A% ,2)+LEFT¥(A%$,1)

190 GOTO 102

200 GOTO 204

You’ll see the letters which are held in A$ (see line 6@) moving across
near the top of the screen. You (the “X’’) will be further down the
screen, about a quarter of the way across. You can —as I mentioned a
few moments ago — move yourself back and forth using the “Z” and
“M” keys to get yourself into the position which you think gives you
the best possible chance.

When you judge a ‘duck’ is directly overhead, press the “F”’ key to
fire your patented anti-duck missile. The number after the words
“Shots left” (near the top right hand corner of the screen) will
decrease and, if you have been accurate, the number after the word
“Score’” will increase.

Not.e, by the way, that I have deliberately used explicit names for the
variables within this program. That is, the variable name for the

88

Adding life to programs

scoreis SCRE, for the shots it is SHOTS and for your position across
the screen, the variable name is ACROSS. Even though it takes a
little longer to type long variable names into a program, the
advantages of using explicit names to keep the purpose of various
parts of the listing clear outweighs the extra time it takes to type
them 1n.

If, for example, you were writing a program like this, and you
decided it would be better if the “X”* was printed further down the
screen, you would not have to search through the program to work
out which variable held your ‘down’ co-ordinate. If you had used
explicit names, as in this case, you would find it very easy to locate
the variable you were looking for.

Run the DUCK SHOOT program a few times, then return to the
book for the first part of a discussion on it.

Line 60 defines the string variable A$ as a long series of letters and

spaces. The letters can be anything you like; do not feel you have to

copy mine. The important thing, however, is that the string is 32
i characters long. You can check this by running program briefly,
| stopping it, then typing in PRINT LEN (A3). If your string is the
correct length, PRINT LEN (A3), followed by RETURN, will give
i you the answer 32.

The appearance of movement given to the ducks is created by the
_ string-handling commands which were explained a little earlier in
E the book. Refer back to this section now if you need to remind
| yourself how they work.

The vital line for movement is 180, which resets A$ equal to all of the
string without its first character - that is to MID$(A$,2) - and then
adds to the very end of it the character of the string which was at the
beginning, LEFT$(AS$,1). The string is reprinted over and over
4gain at 1, 11 (see line 100, where LOCATE 1, 11is used to move the
cursor to the position where we next wish to print) which is eleven
lines down, and at the first position across the line.

Be_Cause the string is, in effect, being ‘shifted along’ one character at
atime before it is reprinted, the elements within the string appear to
Move smoothly along. Using strings in this way is one of the simplest
Ways on the Computer to create smoothly moving graphics.

89

How to program your MSX computer like a professional

The string handling also makes it very simple to cause the shot duck
to disappear from the sky. As the string is 32 characters long, each
character ‘shot’ can be referred to as MID$(A$,ACROSS,1).

Look at line 139. When the computer comes across an IF/THEN
statement — as you know - it checks to see ifitis true. If it finds that it
is not true, then it moves along to the next line in the program,
without bothering to carry out any further instructions which may
be on the same line. Note that before the computer getstoline 138, it
sets B$ equal to the key you are pressing (INKEYS$). If the computer
finds, at the start of line 130, that B$ does not equal “F”’ (as will be
the case when you are not pressing the “F” key), then it proceeds to
line 140, missing all the information and instructions which follow
the IF B$ = “F” ...line.

If, however, you are pressing “F” when the computer reads the
keyboard, the computer continues working through the line, and
reduces the value of the variable SHOTS by one. Then it hits another
IF/THEN condition in which it looks at the element of AS$ which is
directly above the position of the “X’ at that moment.

If line 139 discovers that this element of A$ is anything but a space,
you have hit a duck, so the computer continues working through the
line. The variable SCRE is incremented by 57 and, finally in line 130,
that particular element of A$ is set to a blank, so the duck
disappears.

Now, this takes some time to explain, but you’ll find the computer
does it apparently instantaneously. You press “F”, the score
increases by 57 (if you’re a good shot), the number of shots left drops
by one, and the duck disappears. You’ll see (line 150) that the game
continues until you run out of shots, when the game terminates.
Take note of your score at this point, and see if you can beat it on
subsequent runs.

Once you have the program running to your satisfaction, and you
have a pretty good idea of how it works, modify to read like the
following program, You do not have to NEW the computer. Just
add line 15, and the BEEP at the end of line 130:

90

Adding life to programs

1@ REM Duck Shoot - 11

15 COLOR 12,15:REM Green on white

20 CLS:KEY OFF

3@ DEFINT A-Z

42 SCRE=@

s SHOTS=15

L2 AF=" G856 ZAER DK SL DF G F

o FGGG"

72 ACROSS=19

ga DOWN=19

22 REM X% Main game XXk

1@ LOCATE 1,11 :PRINT A%

11@ LOCATE ACROSS-1,D0WN:FRINT " X ©
20 BF=INKEY#$

13@ IF B#="F" THEN SHOTS=SHOTS-1:IF M

ID# (A% ,ACROSS,1)<>" " THEN SCRE=SCRE+

57:MID#% (A% ,ACROSS,1)=" " :REEFP

140 LOCATE 1,5:FPRINT "Score:"SCRE,"
Shots left:"SHOTS" "

1530 IF SHOTS<1 THEN LOCATE 1,11:PRINT
#=—=— That’s the end of the game ---

=-":60TO 200

162 IF B#$="Z" THEN ACROSS=ACROSS~-1

1782 IF B#="M" THEN ACROSS=ACROSS+1

182 A%=MID% (A% ,2)+LEFT$(A%$,1)

190 GOTO 100

200 GOTO 200

As you’ll see, even these tiny changes improve the program
considerably.

Instead of just the BEEP at the end of line 130, we can now use the
sound more effectively. Modify your program so it reads as follows
and run it. You’ll find the game begins with a slow upward sweep of
‘music’ which gets faster as the note rises. Line 135 ensures that
there’ll be a gradually rising tone throughout the game. The other

”(;)te you hear is related to the actual letter which forms the leftmost
‘duck’:

180 REM Duck Shoot
15 COLOR 12,15:REM Green on white
20 CLS:KEY OFF

.

91

How to program your MSX computer like a professional

32 DEFINT A-Z

34 SOUND @,1:SOUND 1,1:S0UND 8,15

3% FOR G=255 TO @ STEF —(RND(1) X3+1)
36 SOUND @,G:FOR T=1 TO G/3:NEXT T:NE
XT G

42 SCRE=@

52 SHOTS=15

6 A$=" G866 ZAR oK SL DOF G F

D FGGG"

7@ ACROSS=19

82 DNOWN=19

92 REM XX Main game XX

100 LOCATE 1,11:PRINT A%

121 NTE=ASC (A$) :SO0UND 8, (RNDI(1) Xx5)+1@
122 IF NTE<>32 THEN SOUND @,2.7XNTE
112 LOCATE ACROSS-1 ,00OWN:FRINT " X "
120 B$f=INKEY#

13@ IF B$="F" THEN SHOTS=SHOTS-1:IF M
1D% (A$,ACROSS,1) <>" " THEN SCRE=SCRE+

57:MI1D#$ (A% ,ACROSS ,1)=" " :50UNL @,SHOT

S+3

135 SOUND 8,1@:SOUND @,S5HOTS+3

142 LOCATE 1,5:PRINT "Score:"SCRE,"
Shots left:"SHOTS" "

15@ IF SHOTS<1 THEN LOCATE 1,11:PRINT
Weeee— That’s the end of the game ———

-":G0TO 200

160 IF EB#$="Z" THEN ACROS5=ACROSS5-1
170 IF B$="M" THEN ACROSS5=ACROSS+1
180 A$=MID% (A% ,2)+LEFT$(A$,1)

190 GOTO 1wve

20@ SOUND 8,0

210 GOTO 212

We can continue to work on the program. In our next version, the

line of letters has been replaced by a line of randomly-generated
characters, like these:

Q2w O ES0 ¥ w 8F =<
As well, the program will stop if you manage to destroy all the ducks

92

Adding life to programs

(see line 150) whether or not you have used up all your shots.
Whenever you hit a duck, it will turn into a black blob before it
vanishes. As you can see, we are creating quite a worthwhile
program from a very simple beginning,

12 REM Duck Shoot
12 X=RND(~TIME)
15 COLOR 12,15:REM Green on white
28 CLS:KEY OFF
38 DEFINT A-2
34 SOUND @,1 :SOUND 1,1:S0UND 8,15
3% FOR G=255 TO @ STEP =(RND(1) %S+1)
36 SOUND @,65:FOR T=1 TO G/3:NEXT T:NE
XT G
42 SCRE=@
S SHOTS=S@
62 GOSURB 1202
7@ ACROSS=19
8@ DOWN=19
7@ REM %X Main game XX
1o LOCATE 1,11 :PRINT A%
181 NTE=ASC (A%) :SOUND B, (RND(1)%xS)+12
182 IF NTE<>32 THEN SOUND @, .7XNTE
11@ LOCATE ACROSS-1 ,DI0OWN :FRINT " "3:CH
R$(216) ;" ":REM Little triangle
120 B$=INKEY$
130 IF B#="F" THEN SHOTS=SHOTS-1:1F M
ID$(A$,ACRDSS,1){}" " THEN SCRE=SCRE+
57:MID$(A$,ACRUSS,1)=CHR$(219):SDUND
@,5HOTS+3:LOCATE 1,11 :PRINT A$:MIDF (A
£,ACROSS,1)=" "
135 SOUND 8,10:50UND @,5HOTS+3
140 LOCATE 1,3:FPRINT "Score:"SCRE,"
Shots left:"SHOTS"
149 REM 32 SPACES IN NEXT LINE FOR A%
158 IF SHOTS<1 OR A$="
" THEN LOCATE 1,11:P
RINT "---- That’s the end of the game
Tm=="32PRINT :PRINT ,"Rating:"197XSHOT
S:60T0 200 C
160 1IF B#=r7zn THEN ACROSS=ACROSS~1

93

How to program your MSX computer like a professional

{70 IF B#="M" THEN ACROSS=ACROSS+!1
180 A$=MID$ (A% ,2) +LEFT# (A%$,1)

192 GOTO 10@

22 SOUND 8,0

21@ GOTO 210

1Q0@ REM DEFINE A$

101@ A$="":DIM C(1@)

122@ FOR B=1 TO 1@

1030 READ C(B)

1042 NEXT B

105@ FOR T=1 TO 32

126@ IF RND(1)3>.7 THEN A$=AZ+CHR$ (C((
RNLD(1) X1@+1))) ELSE A$=A%+" "

1070 NEXT T

1080 RETURN

1102 DATA 191,153,215,234,243,236,188
,199,157,21@

As you can see, the program listing is getting quite complex as the
program develops. You may well wish to follow a similar series of
steps when creating your own programs. Get a raw ‘basic’ program
up and running, and then add to it and modify it, until you have
created a masterpiece. On some computers, adding all these extras
could slow things down considerably, but your MSX computer
works so quickly the extra tasks you have given it appear to make
very little difference to the running speed.

We come now to our final version of the game. You should be able to
work out how each part works, from the information gained from
the other sections. Note that you now have four lines of ducks, two
going from left to right, and two from right to left. You must get rid
of all of them in order to get a ‘rating’. Even if you found it relatively
easy to demolish all the ducks in the earlier versions before you ran
out of ammunition, you’ll find it is not so with this version:

10 REM Duck Shoot

12 X=RND(~TIME)

15 COLOR 12,15:REM Green on white
20 CLS:KEY OFF

30 DEFINT A-Z

34 SOUND @2,1:S0UND 1,1:S0UND 8,15

94

Adding life to programs

3% FOR G=25%5 TO @ STEP —(RND(1) X5+5)

36 SOUND 2,6:FOR T=1 TO G/3:NEXT T:NE

XT G

40 SCRE=@

@ SHOTS=10@

6 GOSUER 102@

7a ACROSS=19

8@ DOWN=19

90 REM XX Main game XX

23 LOCATE 1,12:PRINT ZzZ#%

24 LOCATE 1,8:FRINT Z%

9% LOCATE 1,9:FPRINT A%

100 LOCATE 1,11:FRINT A%

121 NTE=ASC (A%) :SOUND 8, (RND (1) XS5)+1@

122 IF NTE<>32 THEN SOUND @,.7%XNTE

112 LOCATE ACROSS~-1 ,0D0WN:FRINT " "3sCH

R¥(216) ;" ":REM Little triangle

120 B#=INKEY#

132 IF B#%="F" THEN SHOTS=S5HOTS-1:IF M

ID% (A% ,ACROSS,1)<>" " THEN SCRE=SCRE+

A7:MID¥ (A% ,ACROSS , 1) =CHR$ (219) :SOUND

@,SHOTS+3:LOCATE 1,11:PRINT Af$:MID$(A

$,ACROSS,1)=" "

132 IF B#$="F" THEN SHOTS=SHOTS-1:IF M

ID$(Z#%,ACROSS,1)<>" " THEN SCRE=SCRE+

57:MID$(Z$,ACRDSS,1)="#":SDUND @,SHOT

S+3:LOCATE 1,9:FRINT Z#:MID¥(Z%,ACROS

S,l)zu " .

135 SOUND 8,12:50UND @,SHOTS+3

142 LOCATE 1,5:FRINT "Score:"SCRE,"
Shots left:"SHOTS" "

149 REM 32 SPACES IN NEXT LINE FOR A%

13@ IF SHOTS<1 OR A$="

" AND Z#="
" THEN LOCATE 1
711 :PRINT "~--- That’s the end of the
game —--—":PRINT:FRINT ,"Rating:"197

¥SHOTS :6G0TO 200

160 IF B$="7" THEN ACROSS=ACROSS~1
170 IF B$="M" THEN ACROSS=ACROSS+1
180 A$=MID$(A$,2)+LEFT$(A$,1)

L' o

How to program your MSX computer like a professional

185
15@
200
201

7$=MID$ (2% ,32)+LEFT$(Z%$,31)
GOTO 93

SOUND 8,0
LOCATE 1 ,8:PRINT "

202 LOCATE 1,9:PRINT "

203 LOCATE 1,12:PRINT "

210

1000
1010
102@
1030
104@
1050
1060

GOTO 210

REM DEFINE A%$,7%

A="":Z%="":DIM C(12)

FOR B=1 TO 1@

READ C(B)

NEXT B

FOR T=1 TO 32

IF RND(1)>.7 THEN A$=A$+CHR$ (C((

RND(1) %¥1@+1))) ELSE A$=A$+" "

1065

IF RND(1)>.7 THEN Z$=Z$+CHR%(C((

RND(1)%10+1))) ELSE Z$=Z$+" "

1066
107@

SOUNLD' @,3%T
NEXT T

128@ RETURN
1120 DATA 191,153,215,234,243,236,188

,199,157,210

96

CHAPTER THIRTEEN
Graphics Galore

One of the most outstanding aspects of MSX BASIC is its wide
range ofgraphlcs commands. You can do things easily on your MSX
machine which can only be achieved by extremely skilled (and
painstaking) programmers on many other computers. In this
chapter, we'll be going through the important graphic commands,
producing a range of dramatic demonstrations and displays, and
giving you the tools to create dazzling visuals of your own. It is vital
that, as in other chapters within this book, you enter the sample
programs as you come to them.

First, you need to know that there are three screen types on your
MSX computer. One of these is the border, the next is called the
character pattern screen and the third type (of which you can have up
to 32) is the sprite screen. The computer knows which screen type
to use, and assigns the information you give it automatically to
the correct type.

On the character pattern screen, the computer prints in both text and
graphics modes. When you list a program (or when you first turn on
the computer), you’re looking at the character pattern screen. It is
almost certain that what you see on your screen right now is material
printed on the character pattern screen.

Once we’ve looked at the marvellous possibilities of the character
pattern screen in this chapter, we’ll move onto sprites in the next
chapter, The sprite screens (and, remember, there can be 32 of them
if you wish) are designed to make moving graphics - like those you
see in arcade games - easy to create and manipulate,

The border, when it is visible, appears at the top and bottom of the

97

How to program your MSX computer like a professional

picture, and cannot be used for printing text or graphics. Itacts asa
frame to the screen which you are using at any time.

To look after all these screens, the computer has a priority system.
The higher priority screens cover up the lower ones. The border is
the lowest priority screen, followed by the character pattern screen,
and the sprites screens have the highest priority. You give each sprite
screen an identifying number (from # to 31) and the computer
assigns them priorities in terms of this number, with @ having the
highest sprite screen priority, and 31 having the lowest.

The Silver SCREEN

The SCREEN command is used to specify which version of the
character pattern screen you wish to use. The text mode is available
in two versions. The 40 X 24 text mode is indicated with the
command SCREEN #, and generally gives you 24 rows by 34
columns. You cannot use sprites on this screen. The second version
of text mode is SCREEN 1, which allows you a 32 X 24 text mode.
This screen appears, when you first invoke the mode, as 24 rows by
29 columns. You can use sprites on this screen.

High-resolution graphics are possiblein SCREEN 2 which gives you
a resolution of 256 X 192 points on the screen, and allows use of
sprites. You can use sprites as well in SCREEN 3, but the resolution
in this mode - called the multi-colour mode - only allows a resolution
of 64 X 48 points.

Pre-programmed Delights

Before we go further, take note that there are a number of special
graphics and foreign characters (some of which can be pressed into
service as graphics) available directly from the keyboard, simply by
pressing the GRAPH, CODE and SHIFT keys. Here’s what you can
get, when the GRAPH key is pressed:

98

Graphics ga alore

HBB@H'I@B@BII
NP ¥ (506)@ ©) 2
BWB@@@UEQ@@.D
HXOEEHHEEVO00

When GRAPH and SHIFT are pressed to ogether

D@lDDIGgﬂ@B@@
D

ZENGEE
O 4a"I"

DHI-D
63"y
2 Y .

-
|
)<

When the CODE key is pressed:

AE00on00nn0nano
000000 0nn0nn N
D0REO00000000N
CEOOEHAELDEE0UN

" When CODE and SHIFT are pressed together:

@O0)
L=)]
] e
OO

R
(=)]
(1) =)
nanEE.

=)
(=)(~J]
L))
(=)=

| moma
0=

99

How to program your MSX computer like a professional

Changing colours

The COLOR statement modifies the colour of both the material
printed on the screen, and the colour of the background. Run the
following demonstration program which shows the relevant colours
and their effects (note lines 180 and 199 which serve to put a delay in
the program; they reset - in line 180 - the variable TIME to # and
then wait — in line 199 — until its value has been incremented to 45):

1@ REM COLOR DEMO
112 CLS:KEY OFF

170 FOR J=1 TO 15

130 FOR K=15 TO 1 STEF -1
149 LOCATE 1@,1@

159 IF J=K THEN 20@

16@ FRINT "COLOR"J","K
170 COLOR J,K

180 TIME=@

192 IF TIME<4S THEN 19@
200 NEXT K

210 NEXT J

220 COLOR 1,15

The COLOR statement must be followed by up to three numbers.
The first number controls the foreground colour, the second looks
after the background and the third is the border colour. When you
first turn the computer on, it is set to COLOR 15,5,4 so you can use
this as a ‘default’ entry if you find the screen is becoming impossible
to read while you are experimenting with the colours. It may well be
worth assigning one of the function keys to this setting, so you can
always get it back when you need it.

Here are the colours available on your MSX computer, with the
numbers which trigger them:

Number Colour
'] Transparent
1 Black
2 Medium green
3 Light green
4 Dark blue

100

S Light blue
6 Dark red
7 Cyan
8 Medium red
9 Light red
10 Dark yellow
11 Light yellow
12 Dark green
13 Magenta
14 Grey
15 White

Graphics galore

Our next program, which uses the SCREEN 2 (high resolution
graphics mode) setting, shows the border colour. Line 3¢ and the
hash 1 in line 99 is needed to be able to print on this screen:

1@
2@
3@
4
=@
6@
7@
8a
qa
122
i11@
120
13a
142
150

REM COLOR DEMO SHOWING BORDER
SCREEN 2
OFEN "GRP:" FOR OUTFUT AS #1
CLS:KEY OFF
FOR J=1 TO 15
FOR K=15 TO 1 STEP -1

IF J=K THEN 13@
CLS
PRINT #1’" CDLDR II‘JII,II}::II’IIJ
COLOR .J,K,.

TIME=@

IF TIME<2@ THEN 120

NEXT K

NEXT J

COLOR 1,15

Getting them in Line

One of the simplest graphic control words, and the easiest to use, is
the LINE statement. This allows you to draw straight lines, or
rectangles, in the colour of your choice. An optiona{ parameter
(parameter is a word which refers to the numbers which follow a
command or statement and determine how that statement or

101

w—-—-ﬁ
How to program your MSX computer like a professional

command will act) allows you to control whether or not the
rectangle is painted in.

You draw a line from the starting co-ordinates to the end ones, in a
program line such as LINE (X1,Y1) - (X2,Y2) where X1 and Y1 are
the co-ordinates of the starting position of the line, and X2 and Y2
are the end points. In the next program, the starting X and Y

co-ordinates are called A and B and the end co-ordinates are C and
D:

12 REM DRAW DEMO
2@ DEFINT A-Z

3@ SEED=RND(-TIME)
4@ SCREEN 2

S22 A=RND (1) %232

6@ B=RND(1) X18@

7@ C=A+RND(1) X5
8@ D=A+RNLD(1) X5
9@ LINE (A,B)-(C,ID
12 GOTO S@

If we modify that program, so it reads like the following one (adding
85, and changing the end of line 90) we will get randomly-created
rectangles. The ““B” stands for box, and tells the computer to draw a
rectangle, with its opposite corners located at A,B and C,D:

20 DEFINT A-Z

3@ SEED=RND(-TIME)

40 SCREEN 2

S@ A=RND (1) %232

60 B=RND(1) %180

7@ C=A+RND(1) %50

80 D=A+RND (1) *S@

85 COL=RND(1) %x14+2

9@ LINE (A,B)-(C,DN ,COL,E
100 GOTO S

If you change line 9 so it reads as follows, you’ll find the rectangles
are painted in (as “BF” stands for box fill):

9@ LINE (A,B)-(C,D),COL,EBF

102

Graphics galore

we’ll b; loo!cing at your MSX computer’s ability to paint or fill-in
shapes in a little more detail in a moment. If you’d like sound to go
with your program, modify it so it reads as follows:

2@ DEFINT A-Z

25 SOUND 8,15:S0UND 9,15:SOUND 12,15
3@ SEED=RND (~TIME)

42 SCREEN 2

@ A=RND(1) Xx23@

6@ E=RND(1) Xx18@

70 C=A+RND(1) xS

8@ D=A+RND (1) XS@

85 COL=RNLI(1)%X14+2

92 LINE (A,E)-(C,I) ,COL,BF

95 IF RND(1)>.6 THEN SOUND @,A:SOUND
2 ,E:S0UND 4,C/2

100 GOTO S@

Drawing conclusions

The DRAW command is very effective on the MSX machines, and
allows you to create complex shapes very, very easily. DRAW must
be followed either by a string, or a string variable which has
previously been assigned. The information within the string
determines what the DRAW command actually does.

You move the starting point of the DRAWing you are about to
create using the PSET command, and then the string takes over. The
letter which precedes numbers within the string determines the
direction the line will be drawn, so DRAWN “U10”" will draw a line
up ten pixels. You can draw lines up, down, right and left, as well as
at the diagonals. Here’s a diagram to show the letters you use to
create various effects:

U
1
H E
L & - R
G Al - YR
D

103

How to program your MSX computer like a professional

If you wanted to draw a specific shape, like asquare, you could do it
by DRAWing right, down, left and up the same number of pixels. A
string to form a square could, then, be somethinglike “R9D9L9U9”
which, when preceded by DRAW, would create a square with sides
nine pixels long. A diamond, by contrast, would use the E, F, Gand
H controls, to draw lines at the diagonals.

The next program defines three strings, to create squares, triangles
and diamonds (note that diamond in the program is spelt without the
“@” to avoid conflict with the MSX reserved word ON). A random

starting point is chosen, and the shape, which is also randomly
selected, is drawn on the screen:

1@ REM FAINT/DRAW

2@ SEED=RND(-TIME)

3@ COLOR 15,1,1

4@ SCREEN 2

5@ TRIANGLE$="R29H15G15"

6@ BOX$="R17D17L17U17"

70 DIAMND$="F12G12H12E12"

8@ X=INT(RND (1) X2@2+12)

9@ Y=INT(RND (1) X150+12)

12@ FSET (X,Y)

11@ CHOICE=INT (RND(1)%3)

120 IF CHOICE=@ THEN DRAW TRIANGLES$
130 IF CHOICE=1 THEN DRAW BOX$
142 IF CHOICE=2 THEN DRAW DIAMND$
150 IF RND(1)».95 THEN CLS

160 GOTO 80

To produce these shapes in randomly-chosen colours, add the
following line:

105 COLOR INT(RND(1)%14)+2,1

Circling Around

I pointed out a little earlier that the resolution on SCREEN 3 (the
multi-colour mode) was lower (at 64 X 48 points) than the resolution

104

-

Graphics galore

on SCREEN 2 (the high-resolution graphics mode which has 256 X
192 points). Our next program demonstrates this convincingly,
using the_CIRCLE command (which must be followed by the X and
Y co-ordmates_ofthe centre, and the radius measure). Run this to see
a circle (an ellipse, actually) being drawn first on SCREEN 3,and
then the same circle being drawn on SCREEN 2:

1@ REM CIRCLE DEMO

20 COLOR 11,6,6

3@ SEED=RND (~TIME)

42 XCRD=S@+INT (RND(1) %40)

S@ YCRO=S@+INT(RND(1) x60)

6@ RADIUS=12+INT (RND (1) %5@)
70 SCREEN 3

88 CIRCLE (XCRD,YCRD) ,RADIUS
92 TIME=2

122 IF TIME <S@ THEN 1Q@

112 SCREEN 2

120 CIRCLE (XCRD,YCRD) ,RADIUS
130 TIME=Q

142 IF TIME <S@ THEN 140

152 GOTO 4@

You can also use the CIRCLE command to draw arcs, by having
numbers - at the end of the line including the word CIRCLE - to
specify the beginning and end angles (which must be numeric
expressions in radians, ranging from minus two times PI to plus two
times PI).

Here’s the way the command can be used for the various

permutations:

CIRCLE (x co-ordinate, y co-ordinate), radius, (colour code). The
colour code is optional

CIRCLE (x,y), radius, (colour code), begin angle. The colour code
is optional, but you must include the relevant comma,
even if no value is used

CIRCLE (x,y), radius, (colour code), (begin angle), end angle.
Colour code and begin angle are optional, but the
commas must be included

CIRCLE (x,y), radius, (colour code), (begin angle), (end angle),
ratio of y radius to x radius. Colour code, begin angle and
end angle are optional, but the commas must be included

105

How to program your MSX computer like a professional

The values used within the expression can be variables, rather than
actual numbers. Here, for example, is a program which produces a
sequence of ellipses, with progressively smaller radii:

12 REM DESCENDING CIRCLES

20 COLOR 1,15,15

32 SCREEN 2

42 FOR RADIUS=1 TO 95 STEF S
«@ CIRCLE (12%5,122) ,RADIUS
62 NEXT RADIUS

7@ GOTO 7@

PAINTing them in

The MSX graphics include the PAINT command which, as you’ve
almost certainly guessed, paints in a shape drawn on the screen.
Here we can see it in use with variations of the CIRCLE command,
drawing circles of random size, in random positions, then painting
them in.

PAINT must have, as you can see in line 116 below, the co-ordinates
of its starting point, which must be inside the shape you want to fill in
with colour. The colour used to paint the shape must be same as the
colour of the shape’s boundary. In this case, we’ve used the variable
COL for the colour. Running this program, and looking closely at
the effect of PAINT where the figures overlap will demonstrate more
clearly than I can explain in words the effects of this command.

1@ REM PAINT POT

2@ SEED=RND (~TIME)

30 COLOR 1,15,15

4@ SCREEN 2:CLS

S@ X=INT (RND (1) X20@) +20
6@ Y=INT (RND (1) X10@) +20
7@ R=INT (RND (1) X42) +1@
8@ COL=INT (RND(1)%14)+2
9@ CIRCLE(X,Y) ,R,COL
100 CIRCLE (X+10,Y+1@) ,R+1@,COL
11@ PAINT (X,Y-9),COL
120 GOTO S@

106

Graphics galore

Arsenic and Old Lace

Now, as we’ve mentioned, SCREENS 2 and 3 have different
resolutions. The locations of any points on those screens can be
specified by two numbers. The location 9,0 is the top left hand
corner on bpth screens. The top right hand corner on SCREEN 2 is
255,80 and its corresponding position is stated as the same on
SCREEN 3, even though there are effectively far less points (or
pixels, as they are called) on this screen. The effective resolution on
SCREEN 3 is 64 X 48 (rather than the 256 X 1920on SCREEN 2). The
MSX computer gets around this apparent discrepancy between the
available number of pixels and the numbers used to address those

pixels by using 16 of the SCREEN 2 pixels to make up each pixel of
SCREEN 3.

Our next program will make this absolutely clear. You can turn on
(or ‘light up’) any pixel with the command PSET which is followed,
in brackets, by the x and y co-ordinates, separated by acomma. You
turn off pixels by the command PRESET, again followed by the x
and y co-ordinates in brackets, separated by a comma.

You can see how the MSX computer copes with the SCREENS 2 and
3 and the pixels, by running the program, which is remarkably
effective (especially if you turn the colour and brightness up on your
TV, and turn off the room lights):

1@ REM AUTUMN LACE

20 COLOR 1,15,15:SCREEN 2

3@ SEED=RND (~TIME)

42 ACROSS=INT (RND (1) %128) +1
S@ DOWN=INT (RND(1)%96) +1

6@ PSET (ACROSS ,DOWN)

70 PSET (255-ACROSS ,DOWN)

80 PSET (255-ACROSS,191-DOWN)
9@ PSET (ACROSS,191-DOWN)

108 GOTO 4@

Once you’ve run it for a while, change the 2 at the c?nd ofline 2@ into a
3, and see how the computer handles the co-ordinates on screen 3.

Adding a little sound, and giving the computer the option of turning

107

A e |

How to program your MSX computer like a professional

pixels

off as well as on, can produce an extraordinary effect, as the

final program in this chapter proves convincingly:

1@
2@
32
4
S@
62
72
ga
qu
ie@
112
1Z2@
132
142
150
160
170
18@
19@
20@
2102
220
230
IF
OR

REM STARRY, STARRY NIGHT
SOUND 8,15 :5S0UND 9,15 :S0UND 1@,15
COLOR 11,1,1:SCREEN 2
SEED=RND (-TIME)
ACROSS=INT (RND (1) ¥128) +1
DOWN=INT (RND(1) X26) +1
IF RND(1)>.5 THEN 92
SOUND 2 ,ACROSS+DOWN
IF RND(1)>.5 THEN 110
SOUND 2 ,D0WN
IF RNDO(1)>.5 THEN 13@
SOUND 4 ,AES (ACROSS-DOWN)
FSET (ACROSS ,DOWN)
FSET (255-ACROSS ,DOWN)
FSET (255—-ACROSS,191-D0OWN)
FSET (ACROSS,191-DOWN)
ACROSS=INT (RND (1) Xx128) +1
DOWN=INT (RND' (1) X9&) +1
PRESET (ACROSS ,DOWN)
PRESET (255-ACROSS ,DOWN)
PRESET (255-ACROSS,191-D0OWN)
FRESET (ACROSS,191-00WN)
IF RND(1)>.5 THEN COLOR 9,1 ELSE
RND(1)>.5 THEN COLOR 11,1 ELSE COL

5,1

242 GOTO 2

Once you feel you have mastered the graphics statements in this
chapter, move onto the next to discover the world of animation and

sprites

108

CHAPTER FOURTEEN
Animation and Sprites

Your MSX Computer is supplied with the capacity to produce
sprites, which are graphic characters whose shape you define, and
which you can easily control on the screen. They allow you to
produce arcade-like moving graphics relatively simply, as this
chapter will demonstrate.

Before we get on to sprites, however, I'd like to show you another
simple way to get moving graphics. You’ll recall in our Duck Shoot
program that we got the ‘ducks’ to move across the screen by
changing their positions within a string, and reprinting the string
over itself, time and time again. We moved ‘you’ (the ‘X’ the first few
times, and the little triangle in the final program) by reprinting you
each time the program looped through. There was a blank space in
the string either side of you, so if the symbol representing you was
moved one place to the right or left, the blank overprinted the ‘old
you’, so you appeared to have moved to the new position.

Locate is very useful for simple animation. All you have to do is
print an object in one position, overprint that position with a blank
and reprint the object in a new position, and the object will appear to
move from the first position to the second. This should be very clear
once you run the following program, which makes a ba!l bounce
around the screen. As you can see from line 9, the ball is a small
letter “0””. Enter and run the program, then return to the book for a

discussion on it:

12 REM Bouncing Ball
20 COLOR 15,1

30 X=RND(~TIME)

4 CLS

S0 A=6:B=11

109

How to program your MSX computer like a professional

6@ X=1:Y=1

7@ EA=A:EB=R

82 LOCATE A,E

9@ FRINT "o

102 B=E+Y

112 A=A+X

120 IF A<2 THEN X=-X:BEEF
130 IF A>35 THEN X=-X:BEEP
140 IF E<2 THEN Y=-Y :BEEF
152 IF B>18 THEN Y=—Y :BEEF
160 LOCATE EA,ER

179 PRINT " "

182 GOTO 7@

Line 50 determines the starting position of the ball at A and B and
line 70 sets two variables, EA (for ‘erase A’)and EB (‘erase B’) equal
to A and B. The LOCATE statement in line 84 moves the cursor to
position A, B and line 94 prints the ‘ball’ there. The position of the
ball is updated in lines 100 and 116, by adding the variables Xand Y
to A and B. X and Y are both set initially, in line 64, to equal one, but
if the ball ‘hits the sides’ (lines 120 to 15@) the relevant control
variable is changed to its minus to make the ball bounce (move back
the other way). When the program gets to line 168, the cursor is
placed at EA, EB which - because of line 70 - is where the ball was
printed earlier. Line 178 prints a blank over the ball, making it
vanish. Line 186 sends action back to line 70, where EA and EB are
set to the new positions of A and B. You’ll recall that A and B have
been changed by lines 108 and 116, so EA and EB must be updated
to these new positions, in order to be able to ‘unprint’ the old ball.

The important thing to note, when producing a program like this, is
that the ‘old’ position of the moving object must be stored before a
new position is defined, so the computer will know where to
‘unprint’ the old object.

Now, although looking at that bouncing ball, and examining the
listing, can be quite instructive in terms of seeing how simple moving

graphics can be produced with the aid of LOCATE, the program
itself is pretty boring.

The next program, a variation of the ball one, is more interesting.

110

Animation and sprites

We can use the basicidea from Bouncing Ball for this next one, which
puts you 1n control o_f a little ‘bat’ at the bottom of the screen. You
havetOkeeptheba“‘nlﬂay,by‘hhﬁngiﬂbackupthesaeen\Nhenit

comes
arrow

fear the bat. You control your bat with the right and left
eys.

Enter and run the program for a while, and we’ll then discuss it.

i@
2@
3@
4
1’4
6@
70
8a
@
122
1i@
)
12@
13@
142
15@
160
170
182
19@
200
2
210
220
230
240
250
260
270
280
290
300
31@

REM Rouncing ball with bat
DEFINT A-Z
COLOR 15,1
FLAY "01T255L464V15"
FLAY "ABRCDO&"
X=RND (~TIME)
SCRE=2
BALL=S
CLS
SOUND 13,1 :S0UNDI @,12
BAT#=CHR# (255) +CHR#% (223) +CHR$ (255

A=6:E=11:F=22

X=1:Y=1

EA=A :EB=K

LOCATE F-3,18

PRINT " ";BAT$;" "

A$=INKEY$

IF A$="" THEN 210

IF A$=CHR$(29) AND F>3 THEN F=F-2
IF A$=CHR$ (28) AND F<29 THEN F=F+

LOCATE E,A
PRINT MDII

B=B+Y

A=A+X

IF A<3 THEN X=-X:PLAY "A"

IF A»16 THEN X=-X:iPLAY "B"

IF B<3 THEN Y=-Y:PLAY "C"

IF B»33 THEN Y=-Y:FLAY "D"
LOCATE EB,EA

PRINT » *

IF A»16 THEN IF ABS(F-E)>3 THEN B

111

How to program your MSX computer like a professional

ALL=BALL-1:CLS:LOCATE @,0:PRINT "Ball
"BALL" Score:"SCRE :FLAY"oZ2cdefgo3

ADC e ncneneesana06":60TO 122

32 IF BALL=@ THEN LOCATE @,22:END

330 IF A=4 THEN SCRE=SCRE+2:LOCATE 12
,2:FRINT "Score:"SCRE

342 GOTO 142

The first line of interest in this program is 20. This sets all the
variables used to integer variables, which run more quickly than
non-integer, or floating-point, variables. If you do not specify a
variable type, you get floating point variables. It is worth using a
DEFINT A-Z line in all moving graphics games when you can, just
to get maximum speed. Lines 40 and 50 produce a little music, before
the screen is cleared in line 99. Line 114 sets a variable called BAT$
to equal three characters joined together. Note that when naming
arrays, string and numeric variables, you can use names which are
very long. However, the MSX machines only recognize the first two
letters of the name (so YESTERDAY and YETI are believed to be
the same variable). However, adding extra letters to the name, even
if they do not help the computer, can certainly help you recognize
what the various variables stand for, as is shown with BAT$ in this
example.

Line 129 sets the starting points. A and B are the position of the ball,
and F is the ‘across’ position of the bat. Line 150 moves the cursor to
F-3, 18 and line 160 prints out the bat there, with two spaces either
side of it. Line 170 reads the keyboard, looking for you to press the
right or left arrow keys. Line 180 goes back to 170 if no key is being
pressed. Line 210 moves the cursor to B, A to position the ball, and
line 220 prints it. The next two lines — 230 and 240 - update the ball
position, and lines 250 through to 280 check to see if the ball has hit
the sides, changing the values of X or Y if it has, and sounding a note.
Lines 298 and 300 erase the old ball. Line 314 checks to see if the ball
is just above the line which holds the bat, and if it is, checks to see if
the bat is reasonably close to the ball. If not, the ball count is cut by
one, the score is updated and a small piece of music is played. Line
320 checks to see if there are any balls left, and if not, stops the
program. Line 330 adds one to the score each time the ball gets near
the top of the screen.

112

Animation and sprites

Although this is a fairly simple program, it can easily be developed
to make it as elaborate as you like.

Acting Spritely

From LOCATE graphics, we can move on to the fascinating field of
sprite _creation on your MSX machine. We will start our
investigation of sprites by writing a sprite version of the first

program in this chapter, which moves a bouncing ball around the
screen.

As I indicated earlier, you use the sprite screen (as opposed to the
border and character pattern screens) to display and move
characters which you have created yourself. Let’s see, for a start,
how you can create your own characters.

Each sprite is created on an 8 X 8 grid. Have a look at the next listing,
especially lines 240 through to 310:

1@ REM SPRITE LDEMO

20 REM BALL BOUNCES AROUND SCREEN
30 :

4@ SCREEN 2,0

S@ GOSUB 14@:REM DEFINE SFRITE

6@ :

70 REM PLACE SPRITE

80 X=10:Y=10:A=12:B=9

90 FUT SPRITE @,(X,Y),15,0

120 X=X+A:IF X<4 OR X>247 THEN A=-A:B
EEP

110 Y=Y+B:IF Y<4 OR Y>183 THEN B=-B:R
EEP

120 GOTO 9@

130 :

142 REM DEFINE SFPRITE

150 S$= "nw

160 FOR J=1 TO 8

170 READ Z$%

180 S%=S%+CHR$ (VAL ("&B"+1%))

190 NEXT J

113

How to program your MSX computer like a professional

202 SPRITES (2)=5%
21@ RETURN

220 :

232 REM SFRITE DATA
240 DATA 0211110@
252 DATA 21200012
262 DATA 10022111
270 DATA 10001111
282 DATA 100@1111
292 DATA 120@1111
302 DATA 21011110
312 DATA 20111100

These lines contain the data for our first sprite, which is a ball which
we are going to bounce around the screen. Here is an 8 X 8 grid. On
n filled in for each 1 in the DATA statements.

it, a square has bee
hould be left blank:

Each # indicates that the square on the grid s

You should be able to see the shape of the ball in the filled-in
squares. Even if the ball looks pretty crude to you now, you’ll be
pleased (and probably surprised) to see how effective it looks when
you run the program. Enter the program, and then return to this
book so we can explain what is going on in it.

Firstly line 4@ sets the screen on which we’ll be displaying our sprites,
and line 58 sends the action to the subroutine from line 148 to define
the sprite. It is a good idea to define your sprites at the very end of the
program (perhaps from line 9980), so you can always add more if
you like. Then the early part of the program can look after the actual

game you're writing.

Line 8 sets the starting co-ordinates of the sprite and line 90
actually puts it in position. After the words PUT SPRITE comes the

114

[T - N— SRS T

Animation and sprites

number of the plane on which the sprite will be printed (anything
from @ to 31, with the lower numbered planes being printed on top of
the higher numbered ones if the sprites pass over each other, as we’ll
see shortly). After the identifying number, we get the /location of the
sprite, in brackets. The next number determines the colour in which
the sprite will be printed (white in this case) and then the final
number is the identifying number of the sprite. The (X,Y) refers to the
top left hand corner of the sprite, not its centre.

Lines 100 and 110 update the position of the sprite (just as similar
lines did in our LOCATE version of a bouncing ball program),
change the value of A and B if the ball hits the sides, and sound a
BEEP. Line 120 sends action back to line 9@ to reprint the spritein its
new position. You’ll see that with sprites there is no need to keep
track of the ‘old’ position of the sprite in order to erase it. The
computer does that automatically. This is one of the factors which
make animation with sprites so simple.

If you want to move the sprite at a different speed, change the values
assigned to A and B in line 84. It is worth trying the program with
them both set initially to one, just to see how smoothly sprites can
move. Very large numbers will send the ball into a frenzy of action
on your screen.

Once you’ve had enough of the bouncing ball, change lines 230
through to 310 with the following DATA statements, to get a little
headless alien thing on the screen:

232 REM SFPRITE DATA

240 DATA Q0111100

220 DATA 00111100

260 DATA 01011010

27@ DATA 11o11011

280 DATA 10011001

290 DATA 00011000

300 DATA 21100110

310 DATA 11000111
From the headless alien, we will now move onto a cute little sprite
which - although it’s probably impossible to guess this from looking
at the DATA statements - actually spells out the word “NO™.
Substitute these DATA lines to get the word “NO™:

115

How to program your MSX computer like a professional

230 REM SPRITE DATA
242 DATA Q22QV2Q
250 DATA 10010111
260 DATA 11010101
270 DATA 12110101
280 DATA 1010121
292 DATA 100102101
302 DATA 12210111
310 DATA QQORRR2Q

Now, you probably thought, when you saw that “NO” whizzing
around the screen, that it would be nice if it was a little larger, so you
could see the letters more clearly. Thanks to MSX BASIC, it is very
easy to double the size of sprites. Change line 44 so it reads as
follows, and you’ll see the word “NO” carrying on around the
screen, double the size it was before:

4@ SCREEN 2,1

Monsters, Monsters Everywhere

We can use the information we’ve acquired so far to create some
pretty effective graphics games using sprites. If you enter the next
program, Monster Chase, run it for a while, and then follow the
listing through carefully, reading the relevant REM statements,
you’ll pick up a great deal of information which you can use in the

creation of your own sprite games.

In this program, you are a yellow face. The monster is a white, evil
star! You'll see there is quite a good effect when the two of you crash.
The aim of this program is to keep out of the monster’s clutches for
as long as possible. You can use a joystick if you have one, or the
arrow keys. To move diagonally using the arrow keys, hold down
two at once, and you’ll travel in the diagonal direction which lies
between them (so holding down the upward key, and the one with
the arrow pointing to the right, will move you diagonally up and to
the right).

Enter and run the program, and then we’ll go through it in a bit more
detail:

116

Animation and sprites

12 REM Monster Chase
20 CLS:KEY OFF
3@ SCREEN 2,1,0:REM
Final @ turns off click
42 SOUND @,1:S0UND1,1 :SOUND 8,15
9@ GOSUB 630:REM define sprites
6@ REM START POSITIONS
7@ REM SPRITE ONE - HUMAN
82 XH=10:YH=10
9@ REM SFRITE TWO - MACHINE
102 XM=159:YM=231
11@ :
12@ REM TURN ON SFRITE DETECTION
132 SPRITE ON
142 REM PLACE SPRITES
150 PUT SPRITE ©,(XH,YH) ,11,@
16@ PUT SPRITE 1,(XM,YM),15,1
170 SOUND @, (ABS (XH-XM))
180 :
19@ REM SEE IF COLLIDED
200 ON SPRITE GOSUB S0@
212 REM READ JOYSTICK
220 X=STICK (@)
230 IF X=1 THEN YH=YH-S
240 IF THEN YH=YH-35:XH=XH+5
250 1IF THEN XH=XH+S
260 1IF THEN XH=XH+S:YH=YH+5
278 IF THEN YH=YH+S
280 IF THEN YH=YH+5 :XH=XH-5
290 IF THEN XH=XH-5
300 IF X=8 THEN XH=XH-5:YH=YH-5
310 IF XH<4 THEN XH=4
320 IF XH>237 THEN XH=237
330 IF YH<4 THEN YH=4
340 IF YH>183 THEN YH=183
350
360 REM MONSTER MOVES
370 IF XM<XH THEN XM=XM+4
380 IF RND(1)>.5 THEN 400
398 IF XM>XH THEN XM=XM-4
400 IF RND(1)>.5 THEN 420

W nuw i
NoMbdwnN

X X X X X X

117

How to program your MSX computer like a professional

41@

2
43@
442
450
460
47
480
49@
cea
S1@
S2@
S3@
S4@
i)

IF YM<YH THEN YM=YM+4
IF RND(1)>.5 THEN 44@
IF YM>YH THEN YM=YM-4
IF XM<4 THEN XM=4

IF XM»>237 THEN XM=237
IF YM<4 THEN YM=4

IF YM»183 THEN YM=183
GOTO 15

REM END OF GAME

FOR K=1 TO 99

FOR 0=255 TO @ STEF -45

SOUND @,0

NEXT @

PUT SPRITE @, (XH,YH), (INT(RND(1)¥

16)) ,@

S60

FUT SPRITE 1,(XH,YH) , (INT(RND(1)X

16)) ,1

S7@a
S8@
S9a
L@
bla
620
630
640
650
660
670
&8@a
&9@
700
712
72@
730
740
750
760
77@
780
790

NEXT K

SOUND 8,

FOR T=1 TO 10@@:NEXT T
END

REM Define sprites

R$=Il n =T$= un

FOR J=1 TO 8

READ A%
R$=R$+CHR$ (VAL ("&B"+A%$))
NEXT J

FOR J=1 TO 8

READ A%
T$=T$+CHR$ (VAL ("&B"+A%$))
NEXT J

SPFRITE#(Q)=R#
SPRITE$(1)=T#$

RETURN

REM SFRITE DATA

REM -~ ONE -

DATA Q0211110

118

Animation and sprites

802 DATA @@111114
812 DATA @21@1111
820 DATA @1111111
832 DATA Q2110114
842 DATA QQRQQA111
850 DATA Q2111110
8620 DATA Q0R1111@
870 REM - Two -

882 DATA 12Q10@1p
890 DATA 2121i010@
902 DATA Q211100
?1@ DATA 1111111@
922 DATA 22111002
932 DATA @101012@
942 DATA 10010010
952 DATA QRVRRDRQ

Line 130, as the REM statement in line 120 points out, turns on the
mechanism in the computer which detects if two sprites have
collided. If they have, line 200 (using ON SPRITE) goes to the
subroutine at line 5@ which ends the game. Lines 150 and 160 place
you and the monster on the screen. You are sprite zero in yellow and
the computer is the white sprite. Lines 220 through to 300 read the
joystick (or arrow keys) and use this reading to modify the position
of your sprite. Lines 310 through to 349 keep you on the screen.

The ‘intelligence’ of the MSX Monster is determined by lines 370
through to 47@. The RND(1) bits, which get it to jump over some
moves, ensure that the monster does not just head straight for you,
and end the game in a matter of seconds. You can see, by looking at
the ends of lines 370, 390, 419 and 430, that the monster moves only
four pixels at a time (compared to your five) in order to allow you
some hope of reasonable survival.

Line 480 sends action back to 158 which continues to cycle through
until the ON SPRITE line (200) detects a collision between the two
of you, and sends you to the end of gameroutine. At this routine, the
K and Q loops print the two sprites on top of each other in
randomly-chosen colours, complete with a violent flurry of sound.
Line 596 holds the program for a while, before it ends on line 609,
and drops out of SCREEN 2.

119

How to program your MSX computer like a professional

A final point. Look at the @ at the end of line 3@. This turns off the
‘key click’ sound which otherwise, using the joystick-reading
routine, would drive you crazy with constant clicking.

Once you've mastered the first version of this game, and you
understand more or less what all the bits in it do, you can enter our
next sprite program. This is a modification of the previous one, so
you need only add new lines to the program you already have inyour
computer (just enter all the lines which have numbers not ending in
zero plus those at the end) to produce the second game. This version
of the program adds a second monster, a red bomb-shaped thing.
You have to avoid both of them. Note that you can be very clever,
and try and make the two monsters run into each other. If you can
do this, before one of them gets to you, you’ll be the winner.

12 REM Monster Chase
22 CLS:KEY OFF
3@ SCREEN 2,1 ,2:REM
Final @ turns off click
4@ SOUND @,1:SOUND1,1 :SOUND 8,15
5@ GOSUR 63@:REM define sprites
60 REM START POSITIONS
782 REM SFRITE ONE - HUMAN
82 XH=10:YH=10
92 REM SFRITE TWO - MACHINE
1200 XM=159:YM=231
121 REM SFRITE THREE - MACHINE
102 X2=110+INT (RND (1) x42) :Y2=33+INT (R
ND (1) %x3@)
110 :
120 REM TURN ON SFRITE DETECTION
130 SPRITE ON
140 REM PLACE SPRITES
150 PUT SPRITE @, (XH,YH) ,11,@
160 PUT SPRITE 1,(XM,YM) ,15,1
165 PUT SPRITE 2,(X2,Y2),9,2
170 SOUND @, (ABS (XH-XM))
180 :
190 REM SEE IF COLLIDED
200 ON SPRITE GOSUB S0
210 REM READ JOYSTICK

120

220
23@
240
252
260
27
280
29@
300
310
320
33@
340
35@
360
370
380
390
400
410
420
430
440
450
460
470
472
474
476
478
480
482
484
490
499
500
510
520
530
540
550

X=STICK (@)

IF
IF
IF
IF
IF
IF
iF
IF
IF
IF
IF
IF

THEN YH=YH-5

THEN XH=XH+5
THEN YH=YH+5S

THEN XH=XH-5

3 >< XX ¢ XX XX X X
DN NDPLWN -~

XH<4 THEN XH=4
XH>237 THEN XH=237
YH<4 THEN YH=4
YH>183 THEN YH=183

REM MONSTER MOVES

Ir
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

XM<XH THEN XM=XM+7
RND(1)>.5 THEN 402
XM>XH THEN XM=XM-7
RND (1) >.5 THEN 420
YM<YH THEN YM=YM+4
RNLDI(1) >.5 THEN 44@
YM>YH THEN YM=YM-4
XM<4 THEN XM=4

XM>237 THEN XM=237
YM<4 THEN YM=4

YM>183 THEN YM=183
X2<{XH THEN X2=X2+3
RND (1) >.5 THEN 478
X2>XH THEN X2=X2-S
RND(1) >.5 THEN 482
Y2<YH THEN Y2=Y2+4
RND(1) >.5 THEN 499
Y2>YH THEN Y2=Y2-5

GOTO 150
REM END OF GAME
FOR K=1 TO 99

FOR @=255 TO @ STEP —-45

SOUND ©,Q
NEXT @
PUT SPRITE @, (XH,YH) , (INT(RND(1) X

121

Animation and sprites

THEN YH=YH-5:XH=XH+5
THEN XH=XH+S:YH=YH+5S
THEN YH=YH+5:XH=XH-5

THEN XH=XH-5:YH=YH-5

How to program your MSX computer like a professional

14)) ,@

s6@2 FPUT SPRITE 1,(XH,YH),(INT(RND(1)X
16)) ,1

s65 FUT SFRITE 2,(XH,YH),(INT(RND(1)X
16)) ,2

S7@ NEXT K

=82 SOUND 8,@

9@ FOR T=1 TO 12@@:NEXT T
6@ END

éla :

&2

6430 REM Define sprites

64@ R$= nwn =T$=II n

45 FOR J=1 TO 8

bL62 READ A%

670 R$=R$+CHR$ (VAL ("&B"+A%))
6482 NEXT J

492 FOR J=1 TO 8

70@ READ A#

71@ T$=T$+CHR$ (VAL ("&B"+A%$))
72@ NEXT J

721 SEED=RND (-TIME) :F$="":FOR J=1 TO
8

722 READ A%

723 F$=F$+CHR$(VAL("&B"+A$))
724 NEXT J

730 SPRITE$ (@)=R%

74@ SFRITE$(1)=T*%

745 SPRITE$(2)=F%

75@ RETURN

762 =

77@ REM SFRITE DATA

780 REM - ONE -

79@ DATA Q2011110

800 DATA Q2111111

810 DATA Q2101111

820 DATA 01111111

830 DATA 02110111

840 DATA 00000111

850 DATA 0211111@

860 DATA 00211110

122

Animation and sprites

87¢ REM - TWO -~
gea DATA 12@1221@
8920 DATA @leiaieaa
aa DATA 22111202
?i@a DATA 1111111@
222 DATA 2@11lio2a
232 DATA alaialoa
242 DATA 12212210
252 DATA Q2A2Q2QQ
262 REM - THREE -
?72 DATA 21121102
780 DATA Q121200
772 DATA Q0210022
1200 DATA Q2111000
1212 DATA @111110@
1220 DATA 20111007
1232 DATA Q2212202
1042 DATA 20000002

You may well wish to continue to experiment with this game, adding
new monsters, or simply redefining the ones you already have.

Doing it in Multiples

From the relative quiet of Monster Chase we turn to Multi-Sprite Zap
Out which, if nothing else, probably wins an award for the worst
computer game title of the decade. In this program, there are six
sprites. One is under your control, and the rest zap around the
screen, apparently at random. Whereas in the Monster Chase games
you had to avoid the computer sprites for as long as possible, in this
game you try to hit as many of them as you can. Each collision (and
collisions between monsters are worth as much as a head-on smash
between you and a monster) adds to your score. The program
continues until the variable TIME, which is set to zero at the
beginning of the run, equals 100@. At this point, you’ll be told your
Score. This is then compared to the high score, which ‘s updated if
fecessary. You'll find you spend a lot of time on this program, trying
to clock up ever-higher scores.

Here’s the listing of Multi-Sprite Zap Out:

123

¥*,

How to program your MSX computer like a professional

12 REM MULTI-SFRITE ZAF OUT
20 DEFINT A-Z

3a OLD=4

4@ HISC=@

s@ SEED=RND(-TIME)

60 RESTORE

72 TIME=@

82 COUNT=@

92 SCREEN 2,1,2

1@ GOSUB 11820:REM DEFINE SFRITES
112 :

12@ REM FLACE SPRITES

132 SOUND 8,15

140 HX=12:HY=11

150 X1=42:Y1=11

160 X2=92:Y2=95

178 X3=156:Y3=112

180 X4=12:Y4=100

190 X5=99:Y5=155

200 SPRITE ON

21@a :

220 PUT SFRITE @, (HX,HY),1,0
23@ PUT SPRITE 1,(X1,X1),%,1
24@ PUT SPRITE 2,(X2,Y2),11,2
o5@a PUT SPRITE 3,(X3,Y3),3,3
260 PUT SPRITE 4,(X4,Y4) ,6,4
278 PUT SFRITE 5,(XS5,Y3) 47,5
280 :

292 IF TIME>100@ THEN 910
300 K=TIME/4

310 FLAG=@

320 IF RND(1)>.95 THEN A=A+1:B=B+1:C=
C+1:D=D+1

330 ON SPRITE GOSUB 861

340 IF FLAG THEN SOUND 8,15:S0UND @,K
:SOUND @,K+3:S0UND @,K-3
358 SOUND 8,0

360 :

370 REM MOVE FLAYER

380 X=STICK(@)

392 IF X=@ THEN X=0LD

124

4@
41Q
420
43@
44Q
45@
462
47
48@
49@
Sea
Sl
S20
S3@
S4@
SSe
6@
270
<80
290
600
610
620
630
640
650
660
67
680
690
700
710
720
730
740
750
760
770
780
790
800

IF
IF
IF
IF
IF
IF
IF
IF
OLD=X

IF HX<4 THEN HX=227
IF HX>227 THEN HX=4
IF HY<4 THEN HY=183
IF HY>183 THEN HY=4

THEN HY=HY-9

> >

I
GIF) e

THEN HX=HX+9

0o

THEN HY=HY+9

THEN HX=HX-9

X X X x

s IEN s S 4 IS

REM MOVE MSX THINGS
X1=X1+A:Y1=Y1-2

IF X1>227 THEN X1=4
IF Y1>183 THEN Y1=4
IF X1<4 THEN X1=227
IF Y1<4 THEN Y1=183

X2=X2+B:Y2=Y2-2

IF X2>227 THEN X2=4
IF Y2>183 THEN Y2=4
IF X2<4 THEN X2=227
IF Y2<4 THEN Y2=183

X3=X3-C:Y3=Y3-7

IF X3>227 THEN X3=4
IF Y3>183 THEN Y3=4
IF X3<4 THEN X3=227
IF Y3<4 THEN Y3=183

X4=X4+D:Y4=Y4-3

IF X435227 THEN X4=4
IF Y4>183 THEN Y4=4
IF X4<4 THEN X4=227
IF Y444 THEN Y4=183
:

X3=XS+A:YS=YS5-D

IF XS$>227 THEN XS=4

125

Animation and sprites

THEN HY=HY-9 :HX=HX+9
THEN HX=HX+9 :HY=HY+9
THEN HY=HY+9 tHX=HX~-9

THEN HX=HX-9:HY=HY-9

How to program your MSX computer like a professional

8ia IF YS>183 THEN Y&O=

82@ IF X5<4 THEN X5=2227

832 IF YS<4 THEN YS5=183

84n GOTO 221

gt :

860 REM COLLISION COUNT

87a COUNT=COUNT+1

88a FLAG=1

892 RETURN

Ra :

212 REM END OF GAME

920 SCREEN @

932 FOR T=@ TO 15

94 COLOR T,15-T:FOR J=1 TO 4Q:NEXT J
Q5@ NEXT T

96 COLDOR 6,11

7@ SOUND 8,2

980 LOCATE 14,6

9@ SOUND 8,2

1202 PRINT "TIME IS UP"

121@ PRINT

1220 FRINT TAER(11) ;"YOU SCORED"COUNT
123@ IF COUNT>HISC THEN HISC=COUNT
1242 PRINT

125@ PRINT TAB(9) :"THE HI-SCORE IS"HI
sC

1060 K=RND(1) *%12+4:S0UND 8,15

1370 FOR T=@ TO 15

128@ COLOR T,15-T:SOUND 1,T

1090 FOR J=1 TO 270:NEXT J

1100 NEXT T

1110 FOR J=0 TO 255 STEF K

112@ SOUND @,J:FOR M=1 TO 1@:NEXT M
1130 NEXT J

1140 COLOR 1,15

1150 GOTO 60

1160 END

1170 :

1180 REM INITIALISE

1190 A=RND (1) ¥7+1~RND (1) X7+1

1200 B=RND(1)%7+1-RND(1) Xx7+1

126

121@
1222
123@
124@
1252
1260
127@
128a
1290
132
1312
1322
13302
134@
1350
136@
137@
1380
139@
1400
1410
1420
1430
1440
1450
1460
147@
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

Animation and sprites

C=RND (1) X7+1~-RND (1) x7+1
D=RND (1) X7+2~-RNLO (1) x7+1

REM DEFINE SFRITES

Q;‘:: nn =T$= nn =R$=ll " =U$= "nn
FOR J=1 TO 8

READ 7%
QF=0%+CHR$ (VAL ("&B"+7%))
NEXT J

SFRITE$(2)=0%

FOR J=1 TO 8

READ Z%
T#=T$+CHR¥ (VAL ("&B"+Z%))
NEXT J

SPRITE$(1)=T#%
SPRITE$(4)=T%

FOR J=1 TO 8

READ Z%
R$=R$+CHR$ (VAL ("&EB"+Z$%))
NEXT J

SPRITE#(2)=R$

FOR J=1 TO 8
READ Z%
U$=U$+CHR$ (VAL ("&B"+Z$))
NEXT J
SPRITES$ (3) =U$
SPRITES (5) =U$
RETURN

:

REM SPRITE DATA
DATA 10111101
DATA 10011001
DATA 10100101
DATA 11000011
DATA 11000011
DATA 10100101
DATA 10011001
DATA @1111110

127

g_,

How to program your MSX computer like a professional

1620 :

1630 DATA Q111120
1640 DATA Q1211010
1652 DATA 112110211
1660 DATA 12111101
1670 DATA @i112011@
1682 DATA Q2120102
169@ DATA QBiAQ104
1702 DATA 01100110
171@a :

1722 DATA 1120011
173@ DATA 110011@
1740 DATA 001001020
175@ DATA @@111122
17602 DATA 21120113
1770 DATA @ili2d11@
1780 DATA 00111100
179@ DATA Q201120Q
1800 :

1810 DATA 12011i0@1
1820 DATA 119011011
1830 DATA 01211010
1840 DATA 10011001
185@ DATA 11111111
1860 DATA 00100120
1870 DATA Q1000010
1880 DATA 11000011

As an exercise, you can now modify all the sprite shapes used in the
last program. Then, you can work at changing the direction and
speed at which they move. Finally, when you think you’ve got the
whole thing licked, you can try your hand at producing sprites which
occupy a 16 X 16 grid, rather than the 8 X 8 one we’ve been using. If
you select SCREEN 2,2,0, and use 32 DATA statements (the first 16
look after the left hand side of your sprite, and the second 16 control
the appearance of the right hand side), you’ll be able to create very
dramatic 16 X 16 sprites. Change the SCREEN line to SCREEN
2,34 and the sprites will appear on the screen in double their former
size. Then you’ll really be creating something exciting.

As a final note, we should mention interrupts which you can use to
control sprites and other elements of moving graphics programs. In

128

Animation and sprites

the programs in this chapter, we’ve put the control of the spritesin a
loop. Each time a particular line is reached, the position of the sprite
is changed.

If you would rather have the sprites moving regularly, regardless of
what is happening elsewhere in the program, or you want something
else to happen on a regular basis (such as BEEP sounding) you can
use interrupts.

Enter this simple program:

12 REM INTERRUFPTS

20 STRIG(@) ON

32 ON STRIG GOSUB S@

42 GOTO 3@

2@ FRINT "THIS IS SUEBROUTINE"
60 EBEEF :BEEF

7@ RETURN

The STRIG(#) ON line (20) tells the computer to turn on the
interrupt detector routine which, in line 38, will go tothe subroutine
in line 50 whenever the space bar is pressed. If you want to check if
the fire button on your joystick has been pressed, change the zero in
brackets in line 2@ into a 1. This checks the fire button on the joystick
insocket one. A 2in line 20 will check the fire button on joystick two.
If your joysticks have a second fire button each, these can be checked
wtih a 3 line 20 (second button on joystick in socket one) or a 4
(second button on the joystick in the second socket).

Interrupts are extremely useful parts of the MSX vocabulary. The
command ON INTERVAL can be used to do something at specific
times, regardless of what else is happening. The following program,
for example, will beep every time the TIME counter gets to 158:

12 REM On Interval Demo

20 CLS:KEY OFF

30 ON INTERVAL=150 GOSUB 110@
40 TIME=0

S0 INTERVAL ON

60 J=0

70 J=J+1

129

How to program your MSX computer like a professional

ga LOCATE 5,5

9@ FRINT J

1p@ GOTO 7@

112 FLAY "A"

17@ LOCATE 5,5

130 PRINT "THIS IS IT"J
142 FOR K=1 TO S@@:NEXT K
15@ LOCATE 5,5

16@ FRINT " "
17@ LOCATE 5,5

182 TIME=0

192 RETURN

The ON KEY GOSUB line reads the function keys, and does specific
things when they are pressed, as you’ll see by first running the
following program, and then examining the listing:

122 REM On Key Demo

112 CLS:KEY OFF

120 FLAY "T&4 L64M

132 KEY (1) ON

142 KEY (Z) ON

15@ KEY (3) ON

162 KEY (4) ON

170 KEY (5) ON

180 ON KEY GOSUR 202 ,230,260,292,320
192 GOTO 19@

200 FLAY "C"

21@ LOCATE 5,5:PRINT "KEY ONE "
220 RETURN

232 FLAY "D"

24@ LOCATE 5,S:PRINT "KEY TWO "
250 RETURN

260 PLAY "E"

27@ LOCATE 5,5:PRINT "KEY THREE"
280 RETURN

290 PLAY "F"

300 LOCATE 5,5:PRINT "KEY FOUR "
310 RETURN

320 FPLAY "G"

330 LOCATE S,5:PRINT "KEY FIVE "
340 RETURN

130

Animation and sprites

On the simple ‘piano’ created by the function keys, you can play a
surprising variety of tunes.

Finally, you can use ON STOP GOSUB to automatically send the
program to, for example, a subroutine at the end of the listing which
clears the screen and lists the program. Then, when you’re
developing a program, you can get a listing automatically up on the
screen in the middle of a run, just by pressing the CTRL and STOP
keys.

131

132

CHAPTER FIFTEEN-
MSX Checkers

Time for another break in our learning. In this chapter, you come
face to face with the intelligent might of the MS X electronic brain, as
it challenges you to a round of Checkers, or Draughts as the game is
generally known in the UK.

The game of Checkers has along and honourable history. R. C. Bell,
in his book Discovering Old Board Games (Shire Publications,
Aylesbury, UK, 1980) says it was invented around 1100 “probably in
the south of France, using Backgammon tablemen on a chequered
chessboard with the Alquerque method of bapture” (pp- 35-36). The
Encyclopedia of Sports, Games and Pastimes (Fleetway House,
London, c. 1935) puts it much further back in time: “Forms of it
were known in ancient Egypt, Greece and Rome, while the game was
played in the mid-seventeenth century much as it is today™ (p. 237).

Regardless of its age, it is a very popular game around the world,
with many European countries having regional variations on the
game of their own. Continental draughts, for example, is played on a
board ‘of 100 squares with each player starting the game with 20
pieces. It was developed in the early 1700s.

This MSX Checkers plays the game you are probably most familiar
with. It plays swiftly, and reasonably well, although its lack of
endgame strategy often leads to a dramatic collapse in the final
moments of a game.

When the program begins, you’re at the bottom of the: screen,
playing up and the computer is at the top playing down. The
program - as it stands - gives the computer the first move. If you
want the first move, delete line 3@. Your kings are shown as K’s, with

133

How to program your MSX computer like a professional

the MSX machine’s kings as dollars signs. You'll find the program
will lead you through the entry of your moves, and will respond
swiftly to your game, rarely making a mistake as its silicon brain
sifts through the many thousands of options open to it at any ope
time.

12 REM MSX Checkers

20 GOSUR 117@

30 GOTO 7@

49

S0 GOSUB &40

60 GOSUR Q2a

70 GOSUR &40

82 GOSUR 11

oa GOTO @

102 :

112 FOR X=1 TO 12:5(X)=@Q:NEXT X

120 SC=@:A=89

130 A=A-1

140 IF Q(A)<H>C AND Q(A) <XCK THEN 252
152 B=0:IF A<29 THEN B=2

160 B=B+1

170 M=A+N(B)

1820 IF M>88 OR M<11l THEN 2%@

190 IF (@(M)=H OR Q(M)=HK) AND & (M+N(

B))=E THEN 31@

200 IF QM) <>E THEN 240

210 IF NOT (@(M—=11)<xH AND GQ(M—-11) <3H

K) THEN 24@

220 IF NOT (Q(M=9)<*H AND Q(M=9) < >¥HK)
AND Q (M+9) < >*HK THEN 24

230 1IF ((Q(M+223(>HK OR Q@(M+18) <>HK)
AND (@ (M+9) <>C OR G (M+9) <xOK OR Q(M+1
1)=C OR @(M+11)=CK)) AND Q(M+11) < MK
THEN GOSUB 430

240 IF B<2 OR (@(A)=CK AND E<4) THEN
160

290 IF A*11 THEN 13@

260

270 Fl.=@

280 IF Q(22)=0 OR Q(24)=C OR ((26)=C

134

MSX Checkery

OR Q{2B)=C THEN GOSUEB 1400

WA IF FL=1 THEN &10

320 GOTO 4%5@

31 QIMEN(R)) =Q(A) 1 (M) =E 1 () (A) =E

2@ CM=CM+1 :608UR &4

332 A=M+N(R)

34 B=@

, 35 R=R+1

382 IF (A+2XM(R) <11 OR A+2*N(B)/88) A

ND B4 THEN 35@

372 M=A+N(R)

38 IF @(M)=C AND B>2 THEN RETURN

39@ IF M+N(E) >1@ AND M+N(B) <89 THEN I

F (@M)=H OR @(M)=HE) AND Q(M+N(BE))=E

THEN 31@

42@ IF B<2 OR (B(A)=CK AND B<4) THEN

352

412 RETURN

420 :

43@ IF SC<1@ THEN SC=8C+1

449 S(SC)=100%xA+B+2@:RETURN

45@ IF SC=0 THEN S1@

460 XC=RND (1) %xSC+1

47@ A=S(XC) /11

480 M=A+N(S(XC)-100xA-22)

492 GOTO 611

See ,

510 SC=SC+1 :A=RND(1) x88+1

520: IF Q(A)<*C AND R(A)<>CK THEN S59@

530 B=0

540 B=B+1 L

550 M=A+N(B)

560 IF M>88 OR M<11 THEN S8@

570 IF @(M)=E THEN &10 '

380 IF B«<2 OR Q(A)=CK AND B<4 THEN 5S4

[}

D90 IF SC<300 THEN S10

230 PRINT :PRINT "I concede the game":
D ,

610 (M) =Q(A) :Q(A) =E

620 RETURN

135

How to program your MSX computer like a profe;.;'sional

630 :

442 LOCATE 2,3
4S@ FLAY "CEDF"
660 FRINT TAB(12) ;"MSX Computer:"CM
672 FRINT TAB(1%5) ;"Human:"HU

&80 PRINT

690 FRINT TAB(12)3;"1 2 3 4 5 6 7 8"
700 PRINT TAB(12) §" == = >
712 FOR F=82 TO 1@ STEF -1@

720 PRINT TAB(8) ;F/10;3"1";

732 FOR G=1 TO 8

740 PRINT CHR#%(Q(F+G)) ;

75@ IF G<8 THEN PRINT " "3
76@ NEXT G

772 PRINT "i1";F/1@

782 NEXT F

798 PRINT TAB(12) j"——————————————— "
BO2 FRINT TAB(12);"1 2 3 4 5 6 7 8"
81@ IF CM=12 OR HU=12 THEN 830

820 RETURN

832 FRINT

842 IF HU=12 THEN PRINT TAB(8) ;"You h
ave won"

85@ IF CM=12 THEN PRINT TAB(1@) ;"I ha
ve won"

860 FRINT TAB(B)'"Thanks for the game
87@ END

. B8O :
892 REM Enter 99 to concede
Q02 LOCATE 8,22
912 PRINT "Enter your move: From";
920 INPUT A
930 IF A=99 THEN 840
240 IF Q(A)<>*H AND R(A)<>HK THEN 220
9S@a LOCATE 8,22
?6@ PRINT syt
97@ LOCATE 8,22
980 PRINT " From"A"to";
992 INFUT B

136

- MSX Checkers

ig@e LOCATE 8,22 é

121@ FPRINT ™

ia2a IF Q(B)<:*E THEN 95@2

12328 Q(B)=R(A) :0(A) =E

Q42 :

1252 FOR T=11 TO 17:IF @(T)=C THEN B¢
T)=CkK

106@ NEXT T

1272 FOR T=82 TO 88:1IF @(T)=H THEN Q(
T) =HK

108@ NEXT T

1290 :

1120 IF ABS(A-E) <12 THEN RETURN

1118 HU=HU+1:Q((A+B) /2)=E :GOSUB &4@2
1120 LOCATE @,22:INPUT "Can you Jjump
again (Y or N)"3Z%

113@ LOCATE @,22:FRINT "

1140 IF Z%<>"y" AND Z#$<>"Y" THEN RETU
RN]

1152 A=R:G0TO 94@a

1160 :

1170 REM %% Initialise XX

1180 X=RND(-TIME)

119@ DEFINT A-Z

1200 COLOR 15,1

121@ PLAY "T255 L64 02"

1220 CLS:LOCATE 9,1@

123@ FRINT "Please stand by..."

1240 DIM G(99) ,N(4) ,5(10)

1250 H=ASC("H") :HK=ASC ("K")

1260 C=ASC("C") CK-ASC("$")

1270 E=32:0F=-99

1280 FOR M=1 TO 99: Q(M)-DF NEXT M
1290 FOR M=1 TO 64

1300 READ D,BG £
1310 @(D)=6 :
1320 NEXT M

1330 FOR M=1 TO 4

1340 READ X :N(M)=X

137

How to program your MSX computer like a professional

135@ NEXT M

136@ CM=0:HU=@

137@ CLS

138&@ RETURN

1392 :

1402 IF Q(22)=C AND @(11)=E THEN A=22
:tM=11:FL=1:RETURN

1412 IF Q(22)=C AND Q(13)=E THEN A=22
:M=13:FL=1:RETURN

1422 IF Q(24)=C AND R(13)=E THEN A=24
tM=13:FL=1:RETURN ~

1432 IF Q(24)=C AND Q@(15)=E THEN A=24
:M=15:FL=1:RETURN

14402 IF Q(26)=C AND B(15)=E THEN A=26
tM=15:FL=1:RETURN

145@ IF Q(26)=C AND @(17)=E THEN A=26
tM=17:FL=1:RETURN

1460 RETURN

1470 :

1480 DATA 81 ,255,82,67,83,25%,84,67,8

5,255,86,67,87,255

149@ DATA 88 67 71,67,72,255,73,67,74
$255,75,67, 76’de

15@0 DATA 77,67,78,255,61 255,62,567,6

3,255,64,67

151@ DATA 65,255,66,67,67,255,68,67,5
1,32,52,255

1420 DATA 53,32,54,25 5,44,3-,46,255,5
7,32,58,255

1530 DATA 41,255,42,32,43,255,44,32,4
5,255,46,32

154@ DATA 47, 55,48,32,31,72,32,255,3
3,72,34,255,35,72

155@ DATA 36,25%5,37,72,38, 24¢,21,255,
22,72,23 254,24 72

1460 DATA 25,255,26,72,27,255, 28 72,1
1,72,12 2qq,13 72

147@ UATA 14 ,255,13,72, 16,255 ,17 72,1
8,255

1580 DATA —-11,-9,11,9

138

~

CHAPTER SIXTEEN

Creating and Playing
Adventures

Let’s face it. Life can be pretty tame, sometimes. There don’t seem to
be many dragons waiting to be slain in my city, and chests heaped
‘high with abandoned gold are in scarce supply. I can’t remember the
last time I met an Evil Magician down at the local supermarket, and
it’s been ages since I discussed battle tactics with sentient androids at
the local tavern.

The hunger for excitement lies in all of us. The desire to take on the
personalities of other, more vibrant, people - even for just an hour
or so — is a common one. Although you can’t conjure up devils and
werebears, invoke the power of a Shield of Protection or employ
trolls to carry sacks of emeralds from the ruins of an abandoned
castle, role-playing games allow you to do just that.

Adventure gaming has hit the big time. You’ve probably seen the
claims that it is the ‘fastest growing game in the world’. Whether
that’s truelor not, it indicates that adventure gaming is a leisure
pursuit which satisfies the inner needs of many people.

You may well have taken part in adventure role-playing games
yourself.

But these real-life campaigns have one enormous disadvantage. You
need people to play with and against. You need a referee (often
called the Game Master, or Dungeon Master) to contro} the world
and its artifacts and encounters. It is not always particularly easy to
get all these other human beings together just when you decide you’d
like to indulge in a little bit of adventuring. That’s where the
Computer can come in. :

139

How to program your MSX computer like a professional

Although MSX computer adventure games lack a little of the
spontaneity of such games when played with live company, they can
be remarkably unpredictable and exciting to play. The fact that the
dreaded MSX Monster exists only within the computer’s RAM seems
in no way to diminish the relief you feel when it dies. The gems you
find lying all over the place are no less ‘real’ than those discovered in
live-action adventures.

The word adventure, then, is used to describe the class of computer
games in which the player moves through an alternative reality. In
this “otherworld” there are monsters to be fought, treasures to be
discovered, maps to be made, and puzzles to be solved.

One feature of true adventure games is that the reality they model is
consistent. That is, the world created within the adventure program
is solid, and - apart from any events specific to that game, such asan
earthquake, or a magic spell - the parts of the world do not shift ina
random fashion. In a properly-constructed adventure the rivers stay
in place, dungeon walls do not mysteriously shift and move every
time you turn your back, and ;objects you put down in one cave
within an underground labyrinth do not suddenly appear of their
own volition a hundred leagues away.

Map-making is one of the true adventure-player’s skills and delights.
Working your way through an imaginary, but self-consistent
environment, tackling monsters and collecting treasures, solving
puzzles as you go up and down staircases and chutes, exploring side
tunnels, getting lost in self-circling mazes and so on, is only
fascinating if the world you are exploring is mappable. The
“worlds” created in this chapter of the book can, of course, be
mapped.

Mapping the environment

An adventure environment must be coherent. That is, the explorer
making his way through the environment must be’able to draw upa
complete map as he works his way through it. If he draws a door
connecting the study with the library on an environment floor plan,
because he has discovered that going through the study door leads
into the library, he is entitled to expect that turning around and

140

r

Creating and playing adventures

going back will bring him back into the study, The game-player
should be able to build up an entire plan in this way, checking his
slan from time to time by ‘walking around® the house, castle, forest,
underground labyrinth or whatever where the adventure is taking

place.
The first step, then, in building an adventure program is to construct

an environment which can be both mapped, and represented in some
way which the computer can store.

You'll be pleased to know it is relatively easy to satisfy both these
conditions.

Look at the following five-room environment, a very simple one,
which we shall treat as though it was a computer adventure

environment.

ROOM 3
ROOM 1 ‘
ROOM 4
ROOM 2 .
ROOM 5
y \
N
W——E
S

’

The key to holding an environment like this in a way the computer

can understand and manipulate is to set up an array, each element

gf which represents a room. The solid markers between rooms are
00rs,

141

How 1o program vour MSN computer like a professional

It vou were in room one, you could move cast into room three, or
south into room two, In room four you can move north into room
three and south into room five, and so on, Imagine we have set up an
array, which we have dimensioned as DIM A(5,4). The first
dimension is the room, and the second one is the four possible
directions from that room (that is, north, south, east and west).

Armed with the map of the five-room environment, we can now
build up a travel table, which can then be fed into the array, to allow
us to move from point to point within the environment. Here’s the
travel table for the simple, five-roomed environment we’ve mapped:

ROOM N S E W
1 g 2 3 8
2 1 6 5 8
3 g 4 8 1
4 35 8 0
5 4 8 8 2

Take some time to study this table, and the way it relates to the map,
because it is the single most important key to building adventure
programs you can learn.

Look at the table for room one. Under the ‘N’ (for north) column,
we see a zero;, meaning you cannot move north from room one (a
fact which is easily verified by looking at our map). However, under
the “S”’ we see the number two, meaning that if we travelled south
from room one we would end up in room two (again you can verify

. this from the map). Move east (the ‘E’ column) from room one, and
you’ll end up in room three. The # in the ‘W’ column means there is
no travel possible west from room one.

You can work right through the table, if you like, checking that the
numbers on it correspond to the ‘reality’ of the map.

Now, to allow the player to move around the environment, we only
need to (a) fill each element of the array with the relevant
information from the travel table; (b) tell the player where he or she
is; and (c) allow the decisions entered by the player regarding the
direction he or she wants to move to be checked against the array,
and then - if possible - updated to reflect the player’s new location.

142

_Creating and playing adventures

It is easier to do_this than you might think. .

Moving about

Firstly, we need to write a small program to feed the relevant
information into the array. Two simple READ/DATA loops like
the following will do it:

12@a DIM A(S,4)
112 FOR B=1 TO S
122 FOR C=1 7O 4
138 READ A(B,C)
142 NEXT
15@ NEXT
i6@ :
17@ DATA
182 DATA
192 DATA
200 DATA
21@ DATA

SO N
sS8AW
RS~ 9

-

PS8 O

L]
3
9
9
9

- a -

As you can see, the DATA statements correspond exactly with the
items in our Travel Table.

The player’s location

If we decided that the room the player is currently occupying could
be designated by the variable RO we could tell the player where he or
she was as follows, as well as indicating which exits existed:

100 FRINT "YOU ARE NOW IN ROOM NUMBRER
" RO

11@ IF A(RO,1)<>@ THEN FRINT "A DOOR
LEADS NORTH"

120 IF A(RD,2)<>@ THEN FRINT "THERE, I
S AN EXIT TO THE SOUTH" ~
136 IF A(RO,3)<»d THEN PRINT "YOU CAN
LEAVE VIA THE EAST" :

140 IF A(RD,4)<>@ THEN PRINT "A DOORW
AY OPENS TO THE WEST"

143

|

How to program your MSX computer like a professional

The player’s input could be a single lettes (““N” for north, and so on)
and the program could look at the input, and check to see if an exit to
that direction existed: ‘

650 INFUT "WHICH WAY DO YOU WANT TO 6
0" :MO#*

b6 :

&7Q

682 @

692 IF MO#%="N" AND A(RO,1)=22 THEN FRI
NT "NO EXIT THAT WAY":G0TO &S

702 IF MO¥="S" AND A(RO,2)=0 THEN FRI
NT "THERE IS NO EXIT SOUTH" :GOTO 650

712 IF MO#%="E" AND A(RO,3)=0 THEN FRI
NT "YOU CANNOT GO IN THAT DIRECTION":
GOTO &S@

722 IF MO¥="W" ANLD A(RO,4)=0 THEN PRI
NT "YOU CANNOT MOVE THROUGH STONE" :G0
TO 652

73@
74@
750

f

Consistency and reality

Although the rooms only exist on.paper and in elements in an array,
the fact that they behave like ‘real rooms’ soon allows them to be
. perceived as though they were solid and real in a way which is
uneanny. Add descriptions of eachroom - YOU AREIN A SMALL
WORKMAN’S HUT ATTACHED TO THE BACK OF THE
MANOR HOUSE, WITH A PILE OF STRAW OVER IN THE
FAR CORNER, AND A SHOVEL AND AN AXE LYING
UNDERNEATH THE WINDOW. A LARGE LOAF OF BREAD
IS ON THE TABLE, AND BESIDE IT IS A NOTE. DOORS
LEAVE TO THE NORTH AND TO THE WEST - and you’ll find
the environment takes on quite solid dimensions$ in your mind.

ane the map becomes more complex, and the descriptions help
clarify thg mental images of the rooms, you’ll find you have a
counterfeit reality with immense power in your hands.

144

Croating and playing adyentyres

You mpht ke to ey and write asimple program, before proceeding
farther, which allows you to move around the five-room environ-
aent we've been looking at,

The adventure program we'll develop in this chapter is 4 simple one,

dut it will test your powers of deduction and map-making. Entering
and running the program - followed by a careful examination of the
listing -should teach you enough about creating adventure games to
go ahead and create some brilliant masterpieces of your own.

In this program, Magician’s Maze, a mean old magician has trapped
vou in an abandoned house which is littered with magical and
valuable items. To secure your freedom, you must transport six
different objects into the store room.

Easy, you say, until the magician points out the true nature of his
test. The house is built like a maze, and you do not have a map. You
have to try and work out the ground plan as you go along. To
complicate matters further, you can only carry one thing at a time.
Although you can drop any of the objects if you choose, you cannot
drop them in a room (except for the store room) which already

contains an object.

Sounds complicated? It is, but the satisfaction you'll experience
when you solve the maze and complete the task set by the magician
will make it more than worthwhile.

W

The program understands the words you type in (after a limited
fashiop) and can carry out your wishes. Here's how the program
begins:

THIS 18 MOVE 1
YOU ARE IN THE LIBRARY

THERE ARE EXIT8 TO THE °
EABT

THE ROOM HOLDS A WILLOW WAND
YOUR ARM8 ARE EMPTY

143

How to program your MSX computer like a professional
WHAT DO YOU WANT TO D07 GO. EAST

As you can see, in common with many computer adventures, you
type in your instructions in the form of two words, such as those

used here: GO EAST
Moving east, as instructed, you enter the Audience Chamber:
THIS IS MOVE 2

YOU ARE IN THE AUDIENCE CHAMBER -

THERE ARE EXITS TO THE
SOUTH EAST WEST

THE ROOM HOLLDS A BLACKE ACONITE
YOUR ARMS ARE EMFTY

WHAT DO YOU WANT TO DO? GET BLACK

Here you see ‘black aconite’, and decide to pick it up, which you do
with the command GET BLACK. In fact, only the first three letters
are needed, so GET BLA would have worked as well (and you could
have typed in GET BLACK ACONITE if you’d really wanted to do

S0).
. If you are sensible when you play this adventure, you’ll be makinga
_map as you work out the relationship of the rooms to each other, so

“you can move through the maze with growing confidence.

You have picked up the black aconite:

THIS IS MOQVE 3
YOU ARE IN THE AUDIENCE CHAMEER .

THERE ARE EXITS TO THE
SOUTH EAST WEST

YOU ARE CARRYING A BLACK ACONITE

146

Creating and playing adventures
WHAT DO YOU WANT TO DO? GO EAST

You soon discover your physical limitations as you try to carry two
objects at once:

THIS IS MOVE S
YOU ARE IN THE GLDDMY TURRET

THERE ARE EXITS TO THE
SOUTH WEST

THE ROOM HOLDS A GOLD FIECE
YOU ARE CARRYING A BLACK ACONITE
WHAT DO YOU WANT TO DO? GET GOLD
YOU CAN ONLY CARRY ONE THING AT ONCE
So you decide to drop the aconite:
THIS IS MOVE 6
YOU ARE IN THE GLOOMY TURRET

THERE ARE EXITS TO THE
: SOUTH WEST

THE. ROOM HOLDS A GOLD FIECE
YOU ARE CARRYING A BLACK ACONITE
WHAT DO YOU WANT TO DO? DROP BLACK

THIS ROOM ALREADY v
HOLDS A GOLD PIECE

Even that is not allowed! Soon, however, you come to the store
room;

147

How to program your MSX computer like a professional
THIS IS MOVE 8
YOU ARE IN THE STORE ROOM
WHICH HOLDS:
NOTHING

THERE ARE EXITS TO THE
EAST

YOU ARE CARRYING A BLACK ACONITE

WHAT DO YOU WANT TO DO? DROP BLACK

THIS IS MOVE 9

YOU ARE IN THE STORE ROOM
WHICH HOLDS:
BLACK ACONITE

THERE ARE EXITS TO THE
EAST

YOUR ARMS ARE EMPTY

WHAT DO YOU WANT TO DO? GO EAST

~ After much wandering about and carrying, you'll find the store
. room is becoming gratifyingly full:

THIS IS MOVE 33)

YOU ARE IN THE STORE ROOM
WHICH HOLDS:

BLACK ACONITE

GOLD PIECE

SHINING EMERALD

GLOWING ARTHAME

THERE ARE EXITS TO THE
EAST

148

‘Creating and playing adventures
N

YOUR ARMS ARE EMPTY)
WHAT DO YOU WANT TO DO? GO WEST
ONLY GHOSTS CAN MOVE THROUGH WALLS

And so the game continues until you have six objects in the store
room. Note that the MSX machine will reject any input from you
that it does not understand.' To acquire an object, you tell the
computer to GET or TAKE it, and to get rid of anything you either
DROP it or PUT it. To give up (as if you would!), enter QUIT. GO,
followed by NORTH, SOUTH, EAST or WEST will move you in
the direction of your choice.

Here’s the listing so you can take on the challenge posed by the
magician:

182 REM MAGICIAN’S MAZE

20 GOSUBR 1@S@:REM INITIALISE

3@ FOR Y=1 TO 12@@:NEXT Y

48 CLS:PRINT:PRINT

9@ MVE=MVE+1

60 GOSUB 1520

70 PRINT TAB (2+RND (1) ¥6) 3 "THIS IS MDV

E"MVE

8@ FPRINT:PRINT "YOU ARE IN THE " ;N$(R
0))

9@ IF RO<>1 THEN 17@

100 FLAG=0

11@ PRINT "WHICH HDLDS:"

120 FOR Z=1 TO 8%

13@ IF P#$(Z)<{>"" THEN PRINT F$(Z) :FLA
G=1

1402 NEXT Z . '

150 IF FLAG=@0 THEN PRINT TAB(&) ;"NOTH
ING"

16@ PRINT

é?@ PRINT:PRINT "THERE ARE EXITS TO T
E"

180 FPRINT TAB(7);

192 IF A(RO, 1)<}® THEN FRINT "NORTH "

149

. -

How 1o program your MSX computer like a professional

3 .
200 1IF A(RDO,2)4>@ THEN PRINT "“SOUTH "

51@ IF A(RD,3)<>@ THEN PRINT "EAST "j;

220 IF A(RO,4)<>0 THEN PRINT "WEST";

230 PRINT:PRINT

24 IF RO<>1 AND O0%(RO)<>"" THEN PRIN

T "THE ROOM HOLDS A " ;0% (RO) :PRINT

250 IF M%<>"" THEN PRINT "YOU ARE CAR

RYING A "M%

260 1IF M$"‘" " THEN F'RINT "YOUR ARMS AR

E EMPTY"

270 GOSUB 310

280 GOTO 3@

290 :

3200 REM INPUT

312 FPRINT:PRINT "WHAT 0O YOU WANT TO

po" ;

320 INFPUT E#

33@ GOSUB 1520

34@ IF ASC(E#) »ASC("Z") THEN PRINT "E

NGAGE CAPS LOCK" :60TO 320

35@ IF LEN(E#$)<7 THEN E#$=E#+" " :60TO

350 .

360 F$=LEFT#(E#,3)

370 IF F#="QUI" THEN 1@10

38@ IF F$="GO " THEN F$=MID$(E%#,4,3):

REM NOTE SPACE WITHIN RUOTE MARKS
AFTER THE WORD GO

390 IF F$="NOR" OR F$="S0U" OR F$="EA

8" OR F$="WES" THEN GOSUR 49@:RETURN

400 Z1=1 ~ N

410 IF MID$(E$,Z,1)=" " THEN G$=MID%(

E$,2+1,3) :60TO 45@

42@0 1IF Z<LEN(E#) THEN Z=Z+1:60T0 41i@

430 PRINT:PRINT "I DON’T UNDRDERSTAND °

] ;E:t;nlu

440 RETURN

450 IF F$="GET" OR F#$="TAK" THEN GOSU

B 630:RETURN:REM GET OR TAKE

460 IF F#$="PUT" OR F#%$="DR0O" THEN GOSU

150

Creating and playing adventures

B 7@Q:RETURN:REM FUT OR DROFP . —

472 GOTO 432

48Q

492 REM MOVE

S0Q F#=LEFT#(F$,1)

512 IF F#="N" THEN S&@

520 IF F#$="8" THEN 580

S3@ IF F#="E" THEN 6@

542 IF A(RO,4)=@0 THEN PRINT "ONLY GHO
STS CAN MOVE THROUGH WALLS" :RETURN
25@ RO=A(R0O,4) :RETURN

36@ IF A(RO,1)=@ THEN PRINT "THERE IS
NO EXIT THAT WAY" :RETURN

278 RO=A(RO,1) :RETURN

282 IF A(RD,2)=2 THEN PRINT "THAT’S A
SOLID WALL" :RETURN

292 RO=A(R0O,2) :RETURN

602 IF A(RO,3)=@ THEN PRINT THAT IS I

MPOSSIBLE'" :RETURN

612 RO=A(R0O,3) :RETURN

620

630 REM GET ORJECTS

640 IF RO=1 THEN RETURN

630 IF LEFT$(G#$,3) <>LEFT$(0$(RDY ,3) T

HEN PRINT "IT IS NOT HERE" :RETURN

660 IF M$<>"" THEN PRINT "YOU CAN ONL
Y CARRY ONE THING AT ONCE' :RETURN

670 M$=0% (RO)

680 0% (RO)=""

692 RETURN

70@ REM PUT THINGS DOWN

710 IF M$="" THEN PRINT "YOU‘RE NOT C
ARRYING IT" :RETURN

720 IF RO=1 THEN 78@

730 IF O$(RO)<>"" THEN PRINT "THIS RO
OM ALREADY" :PRINT "HOLDS A ";0$(RO) :R
ETURN

740 0% (RO) =M$

750 "‘= nn

760 RETURN

770

151

How to program your MSX computer like a professional

78@ PLACE=Q:FLAG=®

79@ FOR Z=1 TO 6

go@ IF FLACE=1 THEN 820

810 IF P$(Z)="" THEN P%(Z)=M$:PLACE=1

0 M$= nu

82@ IF P$(Z)<>"" THEN FLAG=FLAG+1

832 NEXT Z

842 IF FLAG=@ THEN FRINT TAB(8) ;"NOTH

ING" |

gs@ PRINT &6-FLAG"OBJECTS TO GO"

86@ FOR KI=1 TO 7@@:NEXT KI

870 IF FLAG=6 THEN 9@@:REM END OF

GAME, ALL OBJECTS PLACED

882 RETURN

890 :

922 REM END' OF GAME

91@ PRINT:PRINT "YOU’VE DONE IT"

920 GOSUE 152@:GOSUB 1520

930 PRINT:PRINT "YOU GOT & OBJECTS IN

TO THE STORE ROOM"

942 FOR Z=1 TO 8

95@ IF P$(Z)<>"" THEN PRINT TAB(2) ;F$

(2)

960 NEXT Z

970 PRINT "IT TOOK YOU";

980 FRINT MVE"MOVES"

990 END "

1000 :

1019 PRINT:PRINT "I DID NOT THINK YOU

WERE A QUITTER!"

1020 PRINT :PRINT "YOU SURVIVED FOR"j;

1030 GOTO 980 :

1040 :

1050 REM INITIALISATION

1060 SEED=RND (~TIME)

1070 COLOR 15,5:CLS:KEY OFF

éoaw DIM A(F,4) ,N$ () ,0$(18) \P$(F) ,M(

)

1090 RO=INT (RND (1) ¥8) +2 :REM STARTING
ROOM

1100 REM NAMES OF ROOMS

152

1112
1120
113@
1140
1150
1160
11702
118@
1190
1200
1212
1220
1230
1242

250
1260
1272

128@
129
1302
1310
1320
1330
1340
1350
1360
1370

Creating and playing adventures

FOR J=1. TO 9 s

GOSUE 1520

READ N# (J)

NEXT J

REM NAMES OF OBJECTS

FOR J=1 TO 18

READ 0% (J)

NEXT J L

REM DISTRIBUTE OBJECTS

REM MOSES/0AKFORD ROUTINE

FOR J=18 TO 11 STEF -1

Z=INT (RND (1) %J) +1

M$=0% (Z)

0$(Z)=0%(J)

0% (J) =M$

NEXT J

M$="":REM THIS IS ORJECT
EEING CARRIED

MVE=0

FOR J=1 TO 9

FOR K=1 TO 4

READ A(J,K)

NEXT K

NEXT J .

GOSUB 1520

RETURN

DATA "STORE ROOM","GLOOMY TURRET

" ,"MARBLE HALL","LIBRARY" ,"AUDIENCE C
HAMBER" ,"MASTER BEDROM","STUDY","ARTI
8§T’S STUDIOD" ,"MUSICIAN’S.QUARTERS"

1380

DATA "BROKEN CANDLESTICK","GOLD

PIECE" ,"SHINING EMERALD","BRONZE STAT

UE"

1390 DATA "SILVER CHALICE" ,"MIGHTY SW

QRD "

y"DIAMOND RING" ,"CRYSTAL GDBLET",

"SHADOW BOWL"

1400 DATA "MYSTIC SCROLL","WILLOW WAN
D" ,"NEWT’S TAIL","HEMLOCK POTION"
1410 DATA "PAPYRUS PARCHMENT","BLACK
ACONITE" ,"GLOWING ARTHAME","GLASS FRA

153

How to program your MSX computer like a professional

GILUS" v, "FOWERFUL FENTACLE"

1470 DATA @,@,2,0:REM ROOM 1~
1430 DATA @,6,0,1:REM ROOM 2
1447 DATA @0,9,7,8:REM ROOM 3
1452 DATA @,0,5,0:REM ROOM 4
1462 DATA 2,7,6,4:REM ROOM S
1472 DATA 2,0,0,5:REM ROOM &
1480 DATA 5,0,8,3:REM ROOM 7
1492 DATA @,2,9,7:REM ROOM 8
15@@ DATA 3,2,0,8:REM ROOM 9
1512 :

1528 REM MUSIC ROUTINE

153@ SOUND 8,15:S0UND 9,15

1542 NE=INT(RND(1)%15@)+1@

155@ TWO=INT (RND (1) x9@) +NE

1562 FOR NOISE=TWO TO NE STEP-1
157@ SOUND @,NOISE:SOUND 2,NOISE/Z
158@ NEXT NOISE

1592 SOUND 8,2:S0UND 9,0

1602 RETURN

Once you’ve solved the maze as given in the listing, you can tackle
two new problems. These new puzzles use the same program, but
with different DATA statements for the rooms. Just substitute the
following DATA lines for those in the original listing, and you’ll
have two brand new problems to solve.

o

Here’s the DATA for maze number two:

1420 DATA 5,0,6,0:REM ROOM
1430 DATA 7.,0,2,0:REM ROOM

1440 DATA-@,6,4,5:REM ROOM
145@ DATA @,8,0,3:REM ROOM
1460 DATA @,1,3,0:REM ROOM
147@ DATA 3,7,0,1:REM ROOM
1480 DATA &,2,@,9:REM ROOM
149¢ DATA 4,2,0,2:REM ROOM
1500 DATA @,2,7,0:REM ROOM

SOo~NoUADWMN-

And for number three:

1420 DATA 5,0,0,8:REM ROOM 1

154

Creating and playing adventures

143@ DATA @,4,3,2:REM ROOM 2 .
1442 DATA @,7,6,2:REM ROOM 3
145@ DATA 2,8,9,2:REM ROOM 4
146@ DATA 1,2,2,9:REM ROOM S
147@ DATA @,2,2,3:REM ROOM &
1482 DATA 3,0,2,2:REM ROOM 7
1492 DATA 4,2,1,2:REM ROOM 8
153e@ DATA @.@.5.4:REM ROOM 9

By all means, change the names of the objects, and of the rooms if
vou like, and gradually convert this mini-adventure into one of your
OWn.

Once you’re fairly confident you know how this adventure was
constructed, you can use the program you now have on tape to
create other adventures of your own, using the program as a master
‘command handler’ into which you can pour your own map, room
descriptions and monster and treasure names.

Support and Ideas

There is an impressive body of support literature for adventure
gaming, as a visit to your local games shop will demonstrate. The
selection which follows is very much a product of my own interest in
the field, and it should not be seen as even an attempt at selecting the
‘best’ publications. However, the list is made up from those works
which I’'ve found of interest and value. There are probably over a
hundred of equal worth, but at least this list should give you a
starting point: £ .
THROUGH DUNGEONS DEEP: A Fantasy Gamers’ Handbook
- Robert Plamondon (Reston Publishing Company, Inc., Reston,
Virginia, 1982). '

What is Dungeons and Dragons® - John Butterfield, Philip Parker
and Dayid Honigmann (Penguin Books Ltd., Harmondsworth,
Middlesex, England, 1982). * Dungeons and Dragons is the
adventyre game which was originated by TSR Hobbies Inc.™ The
term is a registered trademark.

155

k

How 1o program your MSX computer like a professional

Dicing with Dragons, an Introduction te Role-Playng Games —lu
Livingstone (Routledge & Kegan Paul, London, Mzlbourns ang
Henley, 1982).

Fantasy Role Playing Games - J. Eric Holmes (Hippocrenz Soois.
Inc., New York, 1981).

As well as books, there are a number of game-playing zids winch will
help you in building the framework environment within winch vom
adventure can unfold. These include:

DUNGEONS & DRAGONS® boxed game sets are 2 g00d way 1
learn some of the possibilities of adventure gaming. You can star
(and stay, if you like) with the BASIC SET WITH INTRODUC-
TORY MODULE. This set typically contains two books, and 2 1
of six dice, with various numbers of sides. The books are BASIC
RULES which sets out the concepts of role-playing, and explams
how characters are ‘rolled up’, how their personalities are derivad,
how fights are sorted out, and many aspects of the Dungeon or
Game Master’s role.

As well as dice and BASIC RULES, the set contains & campaign
background, THE KEEP ON THE BORDERLANDS. This comes
with a great deal of information, including a series of maps, roow
and playér information, and further details on fight resolution. I teel
that the BASIC RULES boxed set is probably the best source of
ideas you can get your hands on!Itis also a very good way to achieve
greater understanding of how role-playing games are developed and
controlled.

WARNING: These sources of ideas are suggested, of course, only
for your own, use, to produce games for your own entertainment.
Y?u cannot incorporate copyright material into programs tor public
sale,

The following people make and distribute adventure artifacts and
games which may give you further ideas:

Avalon Hill Games, 650 High Street, North Finchley, London
N12 #NL.

Citadel Miniatures, 1§ Victoria Street, Newark, Nottinghamshire.

156

Creating and playing adventures
Games of Liverpool, 58-54 Manchester Street,'Liverpool, L1 6ER.
Flying Buffalo, PO Box 104, Bath Street, Walsall, West Midlands.

Games Workshop Ltd., 1 Dalling Road, London, W6; 2'%-29
Sunbeam Road, London NW14g.

Simpubs Ltd., Oakfield House, 68 Oakfield Road, Altrincham,
Cheshire WA15 8EW.,

TSR Hobbies (UK) Ltd., The Mill, Rathmore Road, Cambridge,
CB1 4AD.

S

157

158

CHAPTER SEVENTEEN

Structured Programming :
Techniques

There will come a point in your development as a programmer when
you'll have mastered the use of much of the MSXlanguage;and can
NOW concentrate on writing better programs; programs which work
after relatively little debugging, which are easy for others to
understand and operate, and which are written logically and
elegantly.

Your programs will be more likely to run first time if they are
planned out carefully before you start entering code (i.e. program)
into your computer.

/ ' J
/

A good way to start is to use a diagram which is often a ‘flow chart’,
A flow chart is a series of boxes and 8ther shapes, joined by lines,
which show the flow of action and decision-making within the
computer while the program is running.

Theshapes are not too important, and I suggest you stick to justtwo:
a rectangle for most actions the computer must carry out, with a
diamond shape each time the.computer has to make a decision. The
corners of the diamond can be used -as youcan see in the diagram -
to cater for the alternatives facing the computer.

The diagram shows the flow chart of a program which sets the
variable X equal to zero, then adds one to it. The value of X is
checked. If X is found to be less than 20, the program goes back to
add one to X again. This continues until the value of X equals 20.

159

How to program your MSX computer like a professional

END € NO

One advantage of using a flow chart is that you do not get locked, at
an early stage of your work, into the peculiarities of the language, its
weaknesses and strengths, which you are using. Instead, you
concentrate on what you want to do.

A flow chart is ‘universal’. The same flow chart can be used as the
basis of a program written on a computer furnished with a
completely different language from the one in which you originally
intended to write the program.

A flow chart models the flow of action and logic within a program,
and is therefore very useful for picking up potential bugs at the
earliest stages. You may, for example, find that one condition the
program will test will never be fulfilled, possibly leading to the
program being trapped in an infinite loop. Other parts of the code
may be bypassed completely, because the condition which triggers
entry into that part of the code will never be met. '

Once you've devised a flow chart for your program, and you’ve run
through it mentally a few times, so that the most obvious bugs are
removed, you should reduce the flow chart to a series of subroutine
calls. Although it seems pretty silly to do this for a simple program
like our “SET X EQUAL TO ZERO, ADD ONE, CHECK IF LESS
THAN 20" program, this method comes into its own with more
complex programs.

160

Structured pr Qramming techniques
Programming in Modules .

As you've seen In many programs in this book, I'm in favour ofyou
starting your program with a series of subroutine calls, with each
action of the program being looked after by a separate subreutine.
Then, if the steps within a program have to be performed several
times in a particular sequence, the series of subroutine calls can be
cycled through - over and over again -until a particular condition is
met which signals the end of the run.

You'll recognize how useful this approach to programming can be
when you get to the debugging stage of your program. If there is a
bug, it is likely to be within a single subroutine, so it will be relatively
easy to pin down the subroutine which contains the bug, rather than
having to work right through the program trying to track it down.

Working with subroutine ‘modules’ in this way allows you to test
sections of the program in isolation, even before the entire program
is finished. I’ll try to make this statement clear by showing you the
first part of a typical program to play Checkers:

1@ REM CHECKERS
20 GOSUB 90@@:REM INITIALISE
30 GOSUB 8@@@:REM PRINT BOARD
42 GOSUB '7@@@ :REM ACCEPT PLAYER MOVE
S@ GOSUE 80@@:REM PRINT BOARD
6@ GOSUB S@0@:REM MSX MACHINE MOVES
70 IF (HUMAN NOT WON) AND (COMPUTER
i NOT WON) THEN 3@
80 IF (COMPUTER HAS WON) THEN

PRINT "I WIN"
90 IF (HUMAN HAS WON) THEN

PRINT "YOU WIN®
100 END '

You could have quite a bit of this program running, and tested (such
as the initialisation routine, printing the board and accepting the
Player’s move), before you even turned your attention to how on
¢arth you were going to get the computer to make its move.

You would then know - for example - that you would not need to

161

How to program your MSX computer like a professional

waste any extra thought on whether or not an error in the board-
printing routine was the cause of odd output. Having tested the
board subroutine and the player move routine, you'd know that the
error must be in the subroutine between lines 5000 and 6999, the
subroutine in which the computer makes its move. y
All you need to do is put a single PRINT statement, such as “THIS
IS COMPUTER MAKING A MOVE” followed by a RETURN for
incomplete subroutines, knowing that the program will accept that,
and demonstrate the direction the program flow is following, even if
whole sections of code have not yet been written.

In general, I'd advise you to use this system of using a ‘master loop’
of subroutine calls within which you will ‘hold’ the entire program.

I suggest you try and do as much writing of the program as possible
before you turn the computer on, even though there is a great
temptation to dive straight into the computer and start punching in
code. You’ll find that the discipline of writing it out by hand in
advance will serve you in good stead and should, in the long run,
produce a better program than might otherwise have been the case.

Overall, you’ll probably end up spending less time on the program
working in this way than you would if you began the process sitting
at the computer keyboard. ¥

It took me a while to learn this lesson. Although I had read
- suggestions along the lines of ‘work out exactly what you’re going to
, enter before you start at the computer’ in several books, I tended to
just jump right in without much prior thought.

Although I worked out rough flow charts, and had an idea what sort
of display organisation I wanted, I certainly did not write much
program out on paper before starting at the computer. Then, I once
found myself stuck for a swo-week period without a computer and

ideas for several program's just itching to be written. I had to write
them out in an exercise book.

The relative ease with which the programs were debugged when they
were eventually entered into the computer, and the complexity of the
programs I wrote in this way (including my first chess program)

162

SNtructured programming techniques

convinced me that this was the way I would work from then on, It 18
amazing how much cleaner a program can be if all the rough
working out is done on paper, rather than on the computer screen.,

When working on programs, 1 tend to write the major ‘call sub-
routines loop’ first of all, but without line numbers, so the program
contains lines like GOSUB PRINT BOARD and GOSUB
INITIALISE. Next, 1 write cach module (or subroutine) on a
separate sheet of paper. Then, when the major subroutines have
been written 1 shuffle them into an order which seems most logical.

All this, of course, occurs before any line numbers are written in.
The subroutine modules are put in an order which ensures that the
program structure is as logical as possible. I use arrows to indicate
the destination of GOTO’s within a module, and names for sub-
routines, as suggested in the major loop. Later on, when the
program has started to assume a firm shape, the lines are numbered

(I always work in tens, starting at line 10) and the relevant GOTO
and GOSUB destinations are added.

All programs have an ‘end condition’ at which point computation
stops. It is worth putting a test for this end condition as part of the
GOTO which sends the program back to start cycling through the
major subroutine loop. This ensures that the cycle will continue until
a particular condition is met, at which”point the program ‘falls
through’ that GOTO and continues on to the lines which signal the
end of the program. o

Explicit input prompts and print statements

Itis very useful, when writing a program, to keep in mind how the
Program will appear to a stranger when it is run by him or her for the
first time. If there is an input prompt required, it is far more useful if
the program prints up something like “HOW MANY HOURS HAS
THE EMPLOYEE WORKE THIS WEEK?” instead of just
“INSERT HOURS?” or the almost useless lone question mark.

The same suggestion applies to print output, Itis far better that your

Program is written so that it prints out THE NUMBER OF HOURS
WORKED ON FULL PAY THIS WEEK IS 27, rather than

163

B - . o

How 1o program your MSX computer like a professional

HOURS, FULL: 27 or an unsupported 27. Of course, providing
explicit input prompts and output PRINT statements consumeg
memory as well as typing time when entering the program, but the
contribution they make to the final program means the trouble
involved ts well worth it.

REM Statements

While exact PRINT statements and input prompts will help a person
running a program make sense of it, REM statements can help make
the program clear to those who are examining the listing for the first
time. REM statements (which are, as you know, ignored by the
computer when a program is run) should be used to help illuminate
the flow of logic within the program, and what is happening in
certain places within it. This is especially important in parts of the
program where decisions are made, or calculations are carried out.

Not only can REM statements be used to explain different parts of
the code, but they can also be used to provide visual ‘breaks’, so that
the various blocks of code which carry out certain tasks are visually
separated from the rest of the program. A blank REM statement (the
word REM standing alone in a program line) can be used for this. A
row of asterisks is an effective alternative.

v
/

v

Variables .

It is worth considering the use of explicit names for variables, using
either the word in full (such as HOURS as a variable name in a
payroll program for hours worked) or an abbreviated version of this
(such as HR) which has a fairly obvious meaning. You’ll discover
that this makes it easy, when working on a program, to keep track of
your variables. This will help you with the initial debugging and later
on as well if you need to improve or extend the original program.
Explicit variable names also help make your code more ‘trans-
parent’ so other programmers can work out what the various parts
of the program are intended to do. You’ll also find it a great help to
yourself when you return to the program at a later date. It is
surprising how code which seemed incredibly clear in terms of its

164

Structured programming techniques

purpose when you entered it, becomes exceedingly dense when you
return to it after a long break.

Checking Input

Any input entered by the user should be checked by the program
before it is accepted to ensure that incorrect data does not cause the
program to crash at some future point. Whether you want string, or
numeric input, it is often wise to allow for string input, which is first
checked to see whether the entered material is acceptable and then, if
necessary, the string can be changed into a number.

For example, if the user needs to enter a number between one and
nine, a string can be accepted and then checked to ensure that it is
not less than “I” and more than “9” before being changed into a
number with a command like VAL.

As well as ensuring that the program will reject invalid input, you
should check the program to see all the inputs which it does accept
produce sensible answers when processed later on in the program.
For example, make sure that your program does not acceptzeroasa
possible number if the computer must later divide by this number.

Similarly, if numbers are to be processed by a function, and then the
result of this processing used for division, you must check that an
apparently valid input does not turn into zero as a result of
evaluation by the function. ‘

If the information entered by the user is rejected, and a new input is
requested, the program should ideally point out why the original
input was not suitable, or spell out again exactly what is required
(such as “ENTER A NUMBER BETWEEN | AND 4). You risk
making users angry if input which appears valid is continually
rejected without apparent reason.

-1

Documentation
The written material which accompanies a program is often called

documentation, It is useful for a program to be supported by some
documentation, however sketchy.

165

[

How to program your MSX computer like a professional

The written information should explain, of course, what the
program does, then go on to outline the flow of action within the
program. The documentation should alert the user as to the kind of
actions which will be required from him or her when running the
program, and give an indication of the kinds of user input and
reaction which will be accepted.

The format of the final output should also be discussed. A list of
variable names can be included.

If there are ways in which the program can be developed, extended
or improved, suggestions along these lines can be added to the
documentation. Written references to any material which will help
in understanding the algorithms used, or for giving suggested areas
for program development, should also be included.

In many ways, it is reasonable to assume that the job of program-
ming is not finished once the program is done. Without docu-
mentation, the job is only three-quarters complete. Documentation
finishes the task, adding a professional stamp to your work which
allows the program you’ve written to be used most effectively.

Possibly the only time extensive documentation is not really
required is when the program is ‘menu-driven’. A program which
uses REM statements extensively may not need very much in the way
of documentation, especially if you can include a variable list, as a
series of REM statements, at the end of the program.

Generally, however, you’ll find it better to document a program
externally, rather than rely on REM statements, or the various menu
choices, to do the job for you. It is worth trying to write your
program documentation so that it would make sense to someone
who has not seen the program running.

This person should be able to get a very good idea, just from reading
the documentation, of, what the program does and how it does it;
how it interacts with the user both in terms of accepting information
and in presenting the results of its computations to the users; and
how the program is organised as a whole.

Documentation for a major program should start with an

166

Structured programming techniques

introduction which quickly explains what is going on, and tells how
to use the program. The later parts of the documentation can then
discuss the program in greater detail. It is not good practice to force
the user to wade through a vast amount of information in order to
dig out the vital facts he or she needs to get the program running.

W
7

167

N\

1\

168

APPENDIX

Computer Terms

Accumulator - part of the computer’s logic unit which stores the
intermediate results of computations.

Address - a number which refers to a location, generally in the
computer’s memory, where information is stored.

Algorithm - the sequence of steps used to solve a problem.

Alphanumeric - generally used to describe a keyboard, and
signifying that the keyboard has alphabetical and numerical keys. A
numeric keypad, by contrast, only has keys for the digits one to nine,
with some additional keys for arithmetic operations, much like a
calculator. ‘

APL - this stands for Automatic Programming Language, a
language developed by Iverson in the early 1960s, which supports a

large set of operators and data structures. It uses a non-standard set
of characters. _ :

Application software - these are programs which are tailored for a
specific task, such as word processing, or to handle mailing lists.

Artificial Intelligence - the section of computer science which
concentrates on eliciting machine behaviour which, if it came from a
human being, would be called intelligent. One of the aims of Al (as
Artificial Intelligence is oftep written) is to make computers more
useful. AT research may also turn out to help us understand our own
thinking processes.

ASCII - this stands for American Standard Code for Information
Exchange. This is an almost universal code for letters, numbers and

169

How to program your MSX computer like a professional

symbols, which has a number between @ an¢ 255 assigned to each of
these, such as 65 for the letter A.

Assembler — this is a program which converts another program
written in an assembly language (which is a computer program in
which a single instruction, such as ADD, converts into a single
instruction for the computer) into the language the computer uses
directly. =

BASIC - stands for Beginner’s All-purpose Symbolic Instruction
Code, the most common language used on microcomputers. It is
easy to learn, with many of its statements being very close to English.
MSX BASIC is a version of BASIC.

Batch - a group of transactions which are to be processed by a
computer in one lot, without interruption by an operator.

Baud - a measure of the speed of transfer of data. It generally stands
for the number of bits (discrete units of information) per second.

Benchmark - a test which is used to measure some aspect of the
performance of a computer, which can be compared to the result of
running a similar test on a different computer.

Binary - a system of counting in which there are only two symbols,
‘9” and ‘I’ (as opposed to the ordinary decimal system, in which there
are ten symbols, ‘@, ‘I’, 2°, ‘3’, ‘4, *5°, ‘6”, ‘7’, ‘8’ and ‘9’). Your
‘computer ‘thinks’ in binary.

Boolean Algebra - the algebra of decision-making and logic,
developed by English mathematician George Boole, and at the heart
of your computer’s ability to make decisions.

Bootstrap - a program, run into the computer when it is first turned

on, which puts the computer into the state where it can accept and
understand other programs.

Buffer - a storage mechanism which holds input from a device such
as keyboard, then releases it at a rate which the computer dictates.

Bug - an error in a program,

170

Computer terms

Bus - a group of electrical connections used to lipk a computer with
an ancillary device, or another computer.

Byte - the smallest group of bits which makes up a computer word.
Generally a computer is described as being ‘eight bit’ or ‘16 bit’,
meaning the word consists of a combination of eight or sixteen zeros
or ones. :

Central Processing Unit (CPU) - the heart of the computer, where
arithmetic, logic and control functions are carried out.

Character code - the number in ASCII (see ASCII) which referstoa
particular symbol, such as 32 for a space and 65 for the letter ‘A’.

COBOL - stands for Common Business Orientated Language, a

standard programming language, close to English, which is used
primarily for business.

Compiler - a program which translates a program written in a high
level (human-like) language into a machine language which the
computer is able to understand directly.

Concatenate - to add (adding two strings together is known as
‘concatenation’).

CP/M - these initials stand for Control Program/Microcomputer,
an almost universal disk operating system developed and marketed
by Digital Research, Pacific Grove, California.

Data - a general term for information processed by a computer.

Database - a collection of data, organised to permit rapid access by
computer. A relational data base is one in which the interconnec-
tions between various elements within the database are stored
explicitly to aid manipulation of, and access to, the elements within
the data base, /)

Py

Debug - 1o remove bugs (errors) from a program.

D_iSk - @ magnetic storage medium (further described as a ‘*hard
disk’, ‘floppy disk’ or even ‘floppy’) used to store computer

171

How 10 program your MSX computer like a professional

information and programs. The disks resewnble, to a limited extent,
45 rpm sound records, and are generally eight, five and a quarter, or
three and a half inches in diameter. Smaller ‘microdisks’ are also
available for some systems.

Documentation — the written instructions and explanations which
accompany a program. -

DOS - stands for Disk Operating System (and generally pro-
nounced ‘doss’), the versatile program which allows a computer to
control a disk system.

Dot-matrix printer — a printer which forms the letters and symbols by
a collection of dots, usually on an eight by eight, or seven by five,
grid.

Double-density - adjective used to describe disks when recorded
using a special technique which, as the name suggests, doubles the
amount of storage the disk can provide.

Dynamic memory - computer memory which requires constant
recharging to retain its contents.

EPROM - stands for Erasable Programmable Read Only Memory,
a device which contains computer information in a semi-permanent
form, demanding sustained exposure to ultra-violet light to erasgits
contents. o

. Error messages - information from the computer to the user,
sometimes consisting only of numbers or a few letters, but generally
of a phrase (such as ‘Out of memory’) which points out a
programming or operational error which has caused the computer
to halt program execution.

Expert system — a computer program which, drawing on the encoded
expertise of human experts, performs a specialised task as well as
(or, in some cases, better than) the human expert in that field would.
They often call on extensive databases of knowledge, and are
sometimes called knowledge-based systems.

Field - a collection of characters which form a distinct group, such as

172

Computer terms

an idenuifying code, a name or a date; a field is generally part of a
record.

File - a group of related records which are processed together, such
as an inventory file or a student file.

Firmware - the solid components of a computer system are often
called the ‘hardware’, the programs, in machine-readable form on
disk or cassette, are called the ‘software’, and programs which are
hard-wired into a circuit, are called ‘firmware’. Firmware can be
altered, to a limited extent, by software in some circumstances.

Flag - this is an indicator within a program, with the ‘state of the

flag’ (i.e. the value it holds) giving information regarding a particular
condition.

Floppy disk - see disk.

Flowchart - this is a written layout of program structure and flow,
using various shapes, such as a rectangle with sloping sides for a
computer action, and a diamond for a computer decision. A
flowchart is generally written before any lines of program are
entered into the computer. -

FORTRAN - a high level computer language, generally used for
scientific work (from FORmula TRANslation).

Gate —a computer ‘component’ which makes decisions, allowing the
circut to flow in one direction or another, depending on the
conditions to be satisfied.

GIGO - acronym for ‘Garbage In Garbage Out’, suggesting that_ if
rubbish or wrong data is fed into a computer, the result of its
processing-of such data (the output) must also be rubbish.

2 . :
Global - a set of conditions which affects the entire program is called
‘global’, as opposed to ‘local’.

Graphics - a term for any output of computer which is not
alphanumeric, or symbolic.

173

How 1o program your MSX computer like a professional

Hardware - the solid parts of the coruputer (see ‘software’ and
‘firmware’).

Heuristic — a path towards a goal which has been worked out by
experience, rather than by calculation; a path of this type is not
guaranteed to produce a certain result (in contrast to an algorithm
which is a technique or procedure which, when applied, produces a
desired result); chess programs play, in large measure, heuristically.

Hexadecimal - a counting system often used by machine code
programmers because it is closely related to the number storage
methods used by computers, based on the number 16 (as opposed to
our ‘ordinary’ number system which is based on 16).

Hex pad - a keyboard, somewhat like a calculator, which is used for
direct entry of hexadecimal numbers.

High-level languages - programming languages which are close to
English. Low-level languages are closer to those which the computer
understands. Because high-level languages have to be compiled into
a form which the computer can understand before they are
processed, high-level languages run more slowly than do their low-
level counterparts.

Human interface - the ‘outward and visible sign’ of an expert system,
with which the human user of the system interacts; these often work
with natural language. o

Inference system - the mechanism by which a computer program
reaches conclusions; some systems make hard and fast YES/NO
decisions, others operate in the world of ‘fuzzy logic’, where shades
of grey (degrees of uncertainty) are permitted.

Input - any information which is fed into a program during
execution,

1/0 - stands for Input/Qutput port, a device the computer uses to
communicate with the outside world.

Instruction - an element of programming code, which tells the
computer to carry out a specific task. An instruction in assembler

174

Computer terms

language, for example, could be ADD which (as you've guessed)
tells the computer to carry out an addition.

Interpreter - converts the high-level (‘human-understandable’)
program nto a form which the computer can understand.

Joystick - an analogue device which feeds signal into a computer
which is related to the position which the joystick-is occupying;
generally used in games programs.

Kilobyte - the unit of memory measurement; one kilobyte (generally
abbreviated as K) equals 1,024 bits (a bit is the smallest
discrete unit).

Knowledge base - the accumulated knowledge upon which an expert
system makes its judgements.

Knowledge engineering - the process by which human expertise is
transferred to an expert system.

Knowledge Information Processing Systems - these are the Fifth
Generation computer systems which are under development in
Japan. :

Low-level language - a lan gﬁage which is close to that used within the
computer (see high-level language).
Machine language - the step below a lovy-level language; the
language which the computer understands directly.

Memory - the device or devices used by a computer to hold
information and programs being currently processed, and for the
instruction set fixed within a computer which tells it how to carry out
the demands of the program. There are basically two types of
memory (RAM and ROM).

Microprocessor - the ‘chip’ which lies at the heart of your computer.
This does the ‘thinking’.

Modem - this stands for MOdulator/DEModulator, and is a device

175

How to program your MSX computer like a professional

which allows one computer to communicate with another via the
telephone.

Monitor - (a) a dedicated television-screen for use as a computer
display unit, contains no tuning apparatus; (b) the information
within a computer which enables it to understand and execute
program instructions.

Motherboard - a unit, generally external, which has slots to allow
additional ‘boards’ (circuits) to be plugged into the computer to
provide facilities (such as high-resolution graphics, or ‘robot
control’) which are not provided with the standard machine.

Mouse — a control unit, slightly smaller than a box of cigarettes,
which is rolled over the desk, moving an on-screen cursor in parallel
to select options and make decisions within a program. ‘Mouses’
work either by sensing the action of their wheels, or by reading a grid
pattern on the surface upon which they are moved.

Network — a group of computers working in tandem.

Numeric pad - a device primarily for entering numeric information
into a computer, similar to a calculator.

Octal - a numbering system based on eight (using the digits @, 1,2, 3,
4,5, 6 and 7).

o

On-line - device which is under the direct control of the computer.

Operating system - this is the ‘big boss’ program or series of
programs within the computer which controls the computer’s
operation, doing such things as calling up routines when they are
needed and assigning priorities.

Output - any data Qroduced by the computer while it is processing,
whether this data is displayed on the screen or dumped to the
printer, or is used internally.

Pascal - a high level language, developed in the late 1960s by Niklaus
Wirth, which encourages disciplined, structured programming.

176

Computer terms

Port — an output or input ‘hole’ in the computes, through which data
is transferred.

Program - the series of instructions which the computer follows to
carry out a predetermined task.

PILOT - a high level language, generally used to develop computer
programs for education.

RAM - stands for Random Access Memory, and is the memory on
board the computer which holds the current program. The contents
of RAM can be changed, while the contents of ROM (Read Only
Memory) cannot be changed under software control.

Real-time — when a computer event is progressing in line with time in
the ‘real world’, the event is said to be occurring in real time. An
example would be a program which showed the development of a
colony of bacteria which developed at the same rate that such a real
colony would develop. Many games, which require reactions in real

time, have been developed. Most ‘arcade action’ programs occur in
real time.

Refresh - the contents of dynamic memories (see memory) must
receive periodic bursts of power in order for them to maintain their
contents. The signal which ‘reminds’ the memory of its contents is
called the refresh signal.

o

Register - a location in computer memory which holds data.

Representation - the organisation of information within a computer
so that it can be managed by the knowledge base control system.

Reset - a signal which returns the computer to the point it was in
when first turned on.

ROM - see RAM.

RS-232 - a standard serial interface (defined by the Electronic
Industries Association) which connects a modem and associated
terminal equipment to a computer.

177

- Ty

How to program your MSX computer like a professional

S-168 bus —this is also a standard interface (see RS- -232) made up of
100 parallel common communication lines which are used to
connect circuit boar ds within micro-computers.

SNOBOL - a high level language, developed by Bell Laboratories,
which uses pattern recognition and string manipulation.

Software - the program which the computer follows (see firmware).

Stack - the end point of a series of events which are accessed on a last
in, first out basis.

Subroutine - a block of code, or program, which is called up a
number of times within another program.

Symbolic inference - see inference system.

Syntax - as in human languages, the syntax is the structure rules
which govern the use of a computer language.

Systems software - sections of code which carry out administrative
tasks, or assist with the writing of other programs, but which are not
actually used to carry out the computer’s final task.

Thermal -printer - a device which prints the output from the
computer on heat-sensitive paper.

o

Time-sharing - this term is used to referto a large number of users,
on independent terminals, making use of a single computer, which
divides its time between the users in such a way that each of them
appears to have the ‘full attention’ of the computer.

-

Turnkey system - a computer system (generally for business use)
which is ready to run when delivered, needing only the ‘turn of a key’
to get it working. .'

VLSI - Very Large Scale Integration of components on a ‘chip’, with
present development in Japan and the US aiming for the equivalent
of 14 million transistors per chip (current chips contain the
equivalent of around half a million transistors at most).

178

S

Computer terms

Veolatike memary -a memory device which loses its contents when the
powr supply s cut off,

Word processor - a dedicated computer (or a computer operating a

word-processing program) which gives access to an ‘intelligent
apewtiter with a large range of correction and adjustment features.

179

P

e

180

N\

NOTES

W\

-

NOTES

NOTES

NOTES

ISBN 0-947k95-28-1

