= ; € 1984 by Sony Corporation

;f«a~,~a.a,.«,.,~«,._;..__,,a..ua._,ﬁ4s-~,‘,,.,,.,‘ﬁ..,,.,., { Tt Tl Rt

Introduction to

MSX-BASIC

TABLE OF CONTENTS

Starting out ... 4
About this BOOKcueeiiiceice e, 4
Fido the smart dogcccooeeeeiceiieeeeeeeeeeee e N
YOUr SONY COMPULETcouiiiiece e 6

Putting your computer to work................ccoovvveveeeeeeeeren, 7
Commands and iNPULS ...o..eeeceeeeeeeeee e ee e 7
Some tricks Fido can’t do........ccccceeeeeveeeeece e, 10
Print the anSWer.......cccoieeeiccececeee e, 14

Numbers, letters, variables..............cccooevooveooeeeeeeee 17
Numbers or letters: both the same.......cc.ccoeeveevveeenee.. 18
A letter becomes a variable........ccoooevevveeeeeeeeeeeeeen, 19

Making your first program............. ettt 27
Planning a program.......ccccouceeieeeee e e e 28
Writing a program: as easy as one, two, three.......... 31
Correcting a program: check for bugs......cccevveevenenn.. 32
RUnNing your programccceoeeeeeeeeeeeeeeeeee e eee s 34

Graphics: twinkling stars............ccccocooeeeeeeeeeeeeeeeeeeee 37
A graphic program......cccccceececeveiiseeeeeseee e see e e e 37

RANAOM NUMDETS ..o 42
Put color in your programs......c..ccceeeeeeeeeeeeeveeessensensanns 45

Saving your Programsccceeeeueueieceeeeeseeeseeeeseesenenanns 52
Connecting the tape recordercoocoouevveeeeeceeneen., 52
Making the computer talK.......ccoeeeeeeveeeeeeeeeeeeeen. 53
Did the tape really Save?.......cccocovveeeeeeeeeeeeeeeeeeeeann. b5
Loading @ programccceececciieee e e 56

Dicisions and games..................cveeeeeeeeeeeeeeeeeeeeeeeeeee 57
Hit or miss—the computer decides.....ccccccovvvveernnn..... 59
Making the program Simpleroccoooeoeveoeeeeeeeeeen 60

YOO M™

" M
- Graphics that move ..., 63
- Display, erase, display, €erase....cccccccceeeeeeeiieeiiiiicccicnns 66
- Putting it all together...........cccoori 70
- Adding color and SoUNd......cccooiciiiirieee e 70
- Guessing game+sound+Video.....cccceeecveeeevriieecnneenn. 72
- The slot machine game ..., 76
= What is an array variable?ccooeeeeiiiiieiien e, 77
- Making a slet Maching s oo 78
- String variables ..o, 83
- How to stop a loop with INKEYccccciiiiiiiiiieeceee, 86 |
- What’s the SCOre? ..., 88 |
- The finishing touches........cccciiiviimimnccccrc e 93 }
= For easier program readingccccoeecevveeeneeeernneiee e 95 l
w Putting titles in the programcccccoooiieiiiiiiieeceeie 96

. You’ve come a long wWay!....miinciiieineeneseceneeeens 99
b BASIC command practice...........ccceeeeecieeecceeeeeeee e, 100
e PRINT et 100
o OO 103 |
il FOR—NEXT oot 105 |
e IF—THEN and IF—THEN—ELSE.........ccccccovveeiieinens 107
% DIM (Array Variables)........coccmeecurereeseeseeresseessnesenes 109 |
- INGEX ..o eeeeee e seeeee e seee s seeseeeee e 113

Ocoo |

® About This Book

@ Fido the Smart Dog ‘
@ Your Sony Computer A v

e [

S N S S S Ty W U W }
L e o e e o o T
ISR T R R ey e e

e e b e b e e e e s
[l e ———— =

ABOUT THIS BOOK

This book is going to introduce you to BASIC.

What’s BASIC? BASIC is an easy Ianguagé for “talking” to computers.
The name of the language is BASIC because it is the simplest, most
basic way to talk to a computer.

But why do we want to talk to a computer? Because your Sony Computer
can help you do so many things—play games, solve problems, practice
mathematics, store information, and much more. This book shows you
how to begin having fun with your Sony Computer in only an hour or two.

First we will learn how your computer listens and talks to you (in BASIC
language). Then we will use this special language to make your com-
puter do some interesting tricks—simple ones first, and complex things
soon after. Before the book is finished, you’ll be making your Sony Com-
puter operate a slot machine game such as you might see in a game
arcade.

After you have used this book to become familiar with BASIC, you will be
able to read and use programs in computer magazines, and share your
fun with your friends who also have computers. If you want to learn even
more about BASIC, there are longer, advanced books available.

There are many special words and commands that we use to talk about
computers and computer programs. They are all listed in the Index at the
back of this book. When you want to check the meaning of a word or a
command, the Index will tell you where to find it.

And there’s one last, important bit of information you should know: com-
puters really don’t have bad tempers. They’re both simple and fun, and
they don’t care how many mistakes you make as you learn how to use
them. Nothing can “go wrong” with your Sony Computer if you happen
to hit a “wrong” key—or any key. So have no fear. Just as with any new
activity, it’s natural that you’ll have to correct things and back up to
repeat steps, to get it right. Your computer will have all the patience in
the world as you learn.

In fact, the only really important thing to remember as you begin this
book is that in your Sony computer you’ve got a friend, who's just waiting
for you to give computing a try.

FIDO THE SMART DOG

As we start learning BASIC, we will have a friend with us.

This is our family dog, Fido. Like most dogs, he’s friendly and faithful.
Fido is just an ordinary kind of dog, but he’s a rather smart one. He can
do dozens of tricks whenever he is asked.

Fido

Why is Fido in a book about BASIC and computers? He is here because
dogs are very good at following commands and doing tricks. And be-
cause Fido and your Sony Computer are both quite friendly. You will soon
see that your computer follows commands and does tricks, too, but not
quite in the same way. When we think about how Fido does things and
how your Sony Computer does them, it will be easier to understand how
the computer listens, talks and thinks in BASIC.

Friendly pair

&
S
S
YOUR SONY COMPUTER s
~
Fido; of course, is good at tricks. “Sit,” “Roll Over,” “Find,” “Bring”...these o
are pretty easy for Fido. What about your Sony Computer? Try “shake o
hands.”
' 3
s
&
s
s
s
S
&
s
s
&
Fido understood, and gave you his front paw. But the computer has no =
hands. It doesn’t even have ears! -3
Then, how do you tell a computer to do things? The computer’s “ear’—its P
way of hearing your commands—is the keyboard. -
[
s
-
-
~
Before we learn BASIC, and before you go on to the next page, please [-
read your Sony Computer’s Operating Instructions to learn about the key- -
board. It’s not necessary to memorize all the keys. But it's very important Ps
to understand the cursor—what it is, and how it moves. You should also
try typing some letters, numbers and graphics on the screen. €

PUTTING YOUR COMPUTER TO
WORK

How to... i

@ Stop Your Computer Q
®Give Commands

@ Type in Color >),
@ Use the Shift Key

1
e Make Your Computer Do Arithmetic S\

Now that you have read the Operating Instructions and know about the
keyboard, let’s see what your Sony Computer can do.

COMMANDS AND INPUTS

We said earlier that the keyboard is the “ear” that the computer uses to
hear our messages. Now, how do we know when the computer is listen-
ing to us? It tells us, with a friendly “Ok,” when it’s ready.

“Ready anytime!”

[-X-F-1~]

If you have been typing on the keyboard, the screen shows all the letters
and numbers you typed. The cursor is in the middle of the screen—and
the “Ok” message is left behind.

| Like BASIC O

® e
> |||=] Type in a few words,
a

and watch the cursor move.

aoo

If that’s so, then we need to get the computer’s attention. Press the

key with one finger, and then press the key with another.
When and are pressed at the same time, the computer
stops listening to the old commands, and gives full attention to the new
ones.

Commands are different from input. Input is the letters and numbers that
make up the information you put into the computer—like all the letters
it takes to write “I Like BASIC” on the screen. The input doesn’t directly
tell the computer to compute anything. We need commands, which are
given with certain keys or typed words, to tell the computer what to do
with the input. On a pocket calculator, for instance, in the sum 2+2=4,
think of “2”, “+” and “2” as input. The ‘=" key is a command to the calcu-
lator, telling it to add 2 and 2 and give you the result, or output: 4. That’s
just how a computer works.

One more important point: the letters “Ok” always appear above the cur-
sor when a command has been entered correctly: that means everything
you have done is OK.

)
| Lika BASIC 5
O g Press and [STOP].
Q) ©)
_) =
et e ke

~
-~
-
-
-
-~
-
-~
-~
S
-
_~
-
-
P
-
-
-
-
~
-
o
-
-
-
_
—_
_
=
_
_—
_
_
—
P
_
-
-
_
-~

)

»y

“a

Now the computer is ready for your commands. You can enter commands
in either small letters or capital letters—it makes no difference. Let’s tell
it to shake hands, by typing in “SHAKEHANDS”.

SHAKEHARNDS

There is no response yet.

That’s because we must tell the computer when to execute the com-
mand. The key for this is on the right, and is marked “RETURN”". Every
time you give the computer a command, you’ll execute it with the
key. It is a little bigger than the other keys, because it is used

so often.

The key gives

the commands.

Push [RETURN], and now we get a response. Not a handshake, however,

but a “beep!’—and a reply that looks like this:

SHAKEHARNDS
Syntax error
Ok

S w)

< BEEP!

That is an error message. It means the computer heard your command—
but doesn’t understand it. That’s natural in this case, since computers
don’t usually know how to shake hands with people. This message, “Syn-
tax error,” means there is a mistake in language—the BASIC language,
of course.

Qoo

— o o

Shake hands
Syntax G 5

error T T o
V- \‘

) = ——=

[e

[SR Ay NSy Sy U S UE W N —

iy sl Sy iy Y NS
ol o Y Sy Ny 2Ry S N U S,
P 2 A S S T R S XU W
N — Sy wht

y 4

Our good dog Fido can understand “Sit” and “Shake” and many other
words besides, but that’s because he learned them from somebody. Our
computer had a different kind of training, so the commands it under-
stands are different. These commands are in the language called BASIC.
And as you learn them you’ll find that it is very easy to talk to the com-
puter. Let’s try a few simple ones right now.

°F]

SOME TRICKS FIDO CAN’T DO

Here’s an easy one to start with—though Fido wouldn’t think so.
WIDTH 14

To type that into the computer is not hard, but be sure you tap the space
bar once to put a space between the word WIDTH and the figure 10.

wil][o][x][a] [1[+][o]

Don’t worry if you make a mistake. Just use the directions in the Operat-
ing Instructions to move the cursor and correct any errors. The Sony
Computer forgets all your mistakes as soon as you correct them. When
your screen looks like this,

WIDTH 18 H

you’re ready to give the command. Push the key—and what
happens?

The letters have disappeared, and the cursor is near the middle of the
screen. But what did the WIDTH 10 command mean? Let’s type some-
thing, and we’ll soon find out. Back to some input: let’s type in the al-

phabet, with no spaces and no [RETURN].

abcdefoghi j
Klmnopgrst
uuwxyz i

How many letters on each line? Ten. Without any more commands, our
computer has understood that we want every line to be only ten charac-
ters wide. WIDTH 10 is one of the commands it knows, and when it hears
that command, it makes each line on the screen exactly ten characters
wide.

Let’s try another one—but first, press the and buttons to-
gether, to “erase” the last inputs and prepare the computer for the next

command:

WIDTH 27
Now press the [RETURN | key.
G 0
N /
abcdefghig \\ 255
k1 =t =N
e * * = e
LIDTH =z7 B = %
T
= =7 — —

- 12

What now? Again the screen is empty, with the cursor back at the upper
left side. You told the computer to make the line 37 characters long, and
everything you type from now on, until you change that command, will
come out in 37-character lines. (By the way, whenver you turn on the
machine, 37 is automatically the length of the lines on the screen, unless
you tell it to change.) '

Now let’s try another command that Fido can’t understand. Hit
and first, and then type:

COLOR =

(Don't forget to press [RETURN].) Suddenly every letter on the screen is
red! Type a few more words or letters. All are in the same color.

How about another color? First return the cursor to the left to the screen

by pressing and [sToP]. Then type COLOR 15 and hit the

key—and you’re typing in white again.

It’s easy to see that 15 means white and 8 means red to the computer—
but wouldn’t it be easier just to type COLOR RED or COLOR WHITE? For
people, and even-for friendly Fido, words are easier than numbers. Com-
puters, through, are better with numbers than with anything else, so we
use numbers for things we want a computer to understand. BASIC is a
language that often uses numbers to replace words.

When you get used to giving commands to your computer, you’ll be using
numbers to say names, places, colors or sentences you want the com-
puter to remember. It’s not very different from using numbers for different
people’s automobiles or houses—and for the computer it's the most
natural way to talk. Soon it will be very easy for you to use numbers as
well as letters in your BASIC programs.

Now we know that 8 means red and 15 means white. How many colors
are there?

code color code| color [code color code color

0 |transparent 4 |dark blue| 8 |red 12 |dark green
1 |black 5 |light blue| 9 |light red 13 |magenta
2 |medium green| 6 |darkred | 10 |dark yellow| 14 |gray

3 |light green 7 |sky blue | 11 |[light yellow| 15 |white

There are sixteen colors in all, and they can be interesting to play with.
Just for fun, try this:

CoLor 4

COLOR 48

But the characters

* RETURN * really are here...

Dark blue characters on a dark blue
background. Hmm, the evidence seems to
have vanished.

Use the color code chart to try the different colors on the screen. Feel
free to change your computer’s colors—to suit your mood!

Now how about something a bit more tricky?
COLOR 1888

(Remember [RETURN |.) There is no number 1000 in the list of colors, and
the computer knows that. A quick beep tells you the computer has a re-
ply for you. It says “lllegal function call,” which is the computer’s way of
saying “You can’t fool me”

In fact, your Sony Computer can never be fooled on commands. Suppose
you want to type

COLDOR &
but you make a mistake and type
CILOR &

Without noticing the mistake, you press the key, and the com-
puter will have another beep for you. This time the message is “Syntax

error.”

Of course, everybody makes some typing mistakes—even the pros at

Sony! That’s why we have the (backspace), (delete), [Ins] (in-
sert) and cursor movement keys (see the Operating Instructions). You'll
learn very quickly how to correct-any mistakes.

14

How many BASIC words are there?

Now you’ve learned your first two BASIC commands, WIDTH and COLOR.
And you’ve seen how faithfully your Sony Computer reacts to commands
entered correctly. It does as it’s told when you spell them right, and it
beeps and explains if you should get them wrong or use one that isn’t
on the list. How many BASIC command words are there altogether?
There are about 100, and they tell your computer how to play music, how
to draw pictures, how to solve mathematical problems and lots more be-
sides. The MSX-BASIC Programming Reference Manual explains all of
them. But you only need to know a few to get started in computing, so
don’t worry if 100 seems at first like an awful lot.

Your Sony Computer will also be teaching you some things as it goes
along: it knows about 35 different error messages, like the “Syntax error”
and “lllegal function call” that we just saw. It will usually tell you what
is wrong if you give a command that it doesn’t understand.

PRINT THE ANSWER

Fido has his favorite tricks, and shaking hands is one of them. Your Sony
Computer likes different tricks. Mathematics is one of the things it loves
to do (and can do very well).

Let’s type in
PRINT 3+3
Did you find the plus sign (+)? It's above the “ =" mark, and it comes on

the screen when you push the [sHIFTkey and the “ = ” at the same time.

Now push to enter this command into the computer.

PRINT 3+3
&

Ok

#

You've doneit! You’ve used the computer to solve a problem and print the
answer. Let’s try another:

FRINT 188-18
The minus sign, you'll notice, does not use the key.

Now use |RETURN | to enter the command.

PRINT 3+5
&

Ok

FRINT la6-16
i

Ok

|

Of course the computer gives 90 as the answer. These are simple
problems, but if you want to add or subtract trillions and billions, your
computer will do it instantly.

How about multiplication? No problem at all. We just need to remember
that the computer has a special sign for it. Instead of 7x 9, it says 7 % 9.

Type in PRINT 7 % 9, and push [RETURN].

PRINT 7x9
&3

Cik

B

To divide, we use the key, Instead of PRINT 120+ 40, we type
FRINT 1z@-48

And of course the computer knows the right answer when you push

[RETURN].

FRINT 12846
i ;’

Are you ready to try large numbers (7654321 x 18)?
Complex problems (2+9)x (6 —8)?

- 16

Go ahead and try whatever you like. Sometimes the computer may give
an answer you don’t understand, but don’t let that worry you. Go step by
step, think about the results, and you’ll be doing marvelous things in just
a few minutes.

The math champ -

.NUMBERS, LETTERS
VARIABLES

How to...

®Print Words and Phrases

® Create a Variable (a symbol with
a changing value)

®Use Variable in Mathematics

® Give Different Names to Variables

We've been using the PRINT command to have the computer do math
problems, and so far it’s been acting just like a calculator. Now it’s time
to see some other kinds of calculation this machine can do. First, let’s
find out some more about PRINT, and get some typing practice at the
same time by typing in

PRIMT "J0OHN &aND MaRy ™.

The quotation mark () is up above the ' mark, and so you press the
SHIFT | key at the same time. Then, when everything is entered, push the

RETURN | key.

FRINT "JOHMN ARND MaRy "
JOHK AND MARY

Ok

E

Clearly, the computer “reads” the quotation marks, and understands the
PRINT command this way: it must print what is inside the quotation
marks, but not the quotation marks themselves. Here are some more ex-
amples:

FRIWNT "&BC TO xyz"
ABC TO Xy2E

FRIMNT "How are »ou?"
How are »ou?

Of course you have to push the key each time. That should be
easy to remember by now, so we won’t be reminding you of it from now
on: just tap the key each time you want to enter a command.

_/

NUMBERS OR LETTERS: BOTH THE SAME

Now let’s try something a little different.
FRIMNT "z+5"

This looks a little bit like what we did a few pages back. At that time, we
asked the computer to PRINT 345, and it kindly printed 8—because
there were no quotation marks.

With quotation marks, this is what we get:

PRINT "3+5"
45

ok

B

The PRINT command in this case—used together with quotation marks
—tells your computer to read what is inside the quotation marks, and put
it on the screen just as it is. Because of the quotation marks, the com-
puter reads “3+5” as three symbols to be printed—not as a math prob-
lem to be answered.

Both are done the same way

That’s what happens when a number is inside quotation marks.

A LETTER BECOMES A VARIABLE

Now, we're going to learn another interesting thing about the PRINT com-
mand. What happens when a letter with no quotation marks comes after
PRINT?

PRINT A
L0

Ok

B

What’s going on here? No beep! No “syntax error”! Instead we have only
a 0, and then the Ok, telling us the computer has carried out our com-
mand, and is waiting for the next order. But what was our command?

If there’s no error message, it must mean that PRINT A is a perfectly ac-
ceptable command. What does it tell the computer to do? To find out, do
this:

LET A=3
When we push the key there’s no error message, but also not
much action, just that friendly Ok. The computer accepted our com-
mand, so something must be happening inside.

What’s happening inside
the computer?

Now let’s put these two commands together:

LET A=3
Ok
FRINT A
Ok
- |

You probably have an idea of what’s happening, but let’s try it once more:

LET &=37%
Ol

FPRINMT A
=

0K

|

A was 3 a moment ago, but now it’s 379. If we want to, we could vary it
again, just by writing LET A= and putting in any other number. That’s
why we call it a variable.

This kind of A is not really a letter of the alphabet, then. Rather, when
it appears after PRINT but without quotations, it’'s something like a con-
tainer that can hold any number we LET it.

A magician’s hat is a good image for variables, because we can put
values in the hat and pull them out like magic when we want them.

LET A=379

If we type LET A=3, we've put a 3 in the hat, and we can pull it out just
by typing PRINT A. We can change the value that’s in the hat to 379 with
just a single simple command (LET A=379), and that value will come up
when we ask for it.

LET, then, isa command which gives a specific value to our variable. Vari-
ables have many uses in BASIC, and they will be used very often in this
book. For convenience, though, we can write this command faster, by
leaving out the word LET:

F=3

means the same thing as LET A=3.

. 22

G 5 A e 1 s i e

Now, to make sure you remember everything, let’s do a little review:

A=108 Give the value 100 to A
Ok
PRINT A Display A
166 Here it is
Ok
FRINT "&" Display the letter “A” (not the Variable A)
A Here it is
Ok
=59 Give a value to B
Kk
PRIMNT E Display B
bar] 4} Here it is
0K
]

Earlier, we gave the command PRINT A, and the computer replied with
0. This means that any variable has the value of zero, until we give it a
different value.

A variable can be represented on the screen by any letter. We have al-
ready used A and B, and given them different values.

Now let’s see what we can do with these variables.

We already told the computer that A=100 and B=50. Now give three com-
mands: A=B, PRINT A and PRINT B. You can probably guess the result,
but give it a try, for practice.

A=k

0Ok
FRINT &

-]

= ik

~ FRIMT B
6Tt ¢

0K

|

Notice the first line. When we typed in A=B, we told the computer to give
the value of B to A. Earlier, we changed the value of A from 3 to 379, and

- the old value just disappeared.

L It’s the same thing here again, changing A from 100 to B, or 50.
- Now we can do some mathematics. Type in these four commands:
- A=100

— Ok

= E=56

~ Ok

X C=A+E

Y ik

- FRINT C

E 158

- ik

= .

» 23

Here we have three containers, A, B and C, and the computer does the
mathematics to find out how much to put in container C.

Now, here’s a more interesting one:

A=mt 1 E

Ok

FRINT &
118

Ok

2

Does it seem confusing? A had an “assigned value” of 100. But, by read-
ing this new command, the computer understood our directions to “LET
A now have a value that is 10 more than it was before.” So, A is now 110.

24

You might like to try the same command again. And again. But before
each time you do it, you should be able to figure out easily what the
result is going to be. Your computer will always remember the amount as-
signed to the variable.

More About Variables

Now you know what variables are, and how they work. Next we will see
how they are used, and then we will use them in programs and games.
Variables have many, many uses. One variable might keep the score of
a game (a number which varies) each time points are added—or subtract-
ed. Others might mean the changing position of a spaceship, or the
speed of a racing car.

We have already used three letters—A, B and C—as variables. Besides
these, we can use almost any letter or group of letters.

LFO=5

1

FEINT LFGO
5

Ik

a2

As you can see, a group of three letters without spaces between them,
in this case UFQ, can stand for a single number.

Also, it’s important to remember that each different letter or group, such
as A, B, or AB, has a different meaning.

&

=
=~
~
l =
-~
=3
ik
B=5
ok <
FRINT &
=
ik
FRINT E
Ok
FRINT &E
i)
Ltk e
L) e
o
¢ o
Here, we've assigned A the value of 3, and B is 5—but no value for varia- -
ble AB has been entered, so the computer displays AB with a value of
@ (not 35!). A variable always has the value of @ until we give it a different &
value.
‘

Your name for a variable can have two, three, ten—or even 100—charac-

ters, and those characters can be numbers as well as letters. But the

computer will only read the first two characters and the first character e
should always be a letter. This means that POA, POB, PO1 and PO2 will

all be seen as the same, single value by the computer. So be a little care-

ful when choosing names for your variables.

Any word that is part of the BASIC language cannot be used as the name
of a variable. When your Sony Computer is given BASIC words, it reads
them as commands, not variables. This means, for example, that LET,
GOTO and PRINT cannot be variable names, and neither can GOTOA,
BLET, or any other of the commands we will soon be learning.

MAKING YOUR FIRST
PROGRAM

How to...

®Plan a Program

®\Write a Simple Program

® Make Your Computer Memorize Your
Program

® Correct a Program

@ Run Your Program

®Read Your Completed Programs on
the Screen

®Erase a Program from Your Sony
Computer’s Memory

Until now, we’ve practiced the basics of using a computer: putting letters
and numbers on the screen, us'ing some of the symbols that the com-
puter understands as part of its own “language,” and giving simple in-
structions (commands). In other words, we've been telling the computer
to do things on the screen, just the way you want them done. So we've
already learned how people and computers communicate.

But these things are not much more than what a good pocket calculator
can do. A calculator also adds and subtracts, and does other kinds of
math, and shows us all the steps and results along the way, on its elec-
tronic display.

What makes a computer a truly exciting thing for you (and a truly valua-
ble thing for scientists and many other people) is that it can go far be-
yond that. Your Sony Computer can:

@store a long series of your special instructions in its memory;

@ use the instructions to perform many different tasks, games and tricks
whenever you want it to;

@ understand the result of each function, and carry the result on to the
next function; and

@ combine the results of all of the earlier steps as it continues to do the
later steps.

In other words, your computer can follow a complete program of func-
tions automatically, and much more quickly than any calculator.

Programming is the process of putting instructions into the computer, to
tell it which functions to perform and what order to follow. That’s what
lets you use a computer to create your own video games, draw your own
video pictures, make your own electronic music. And that’s what we're
going to begin to learn in this chapter: we're going to make our first, sim-
ple program.

Making a computer program is not difficult. You already know how to give
your computer some commands, and a program is just a series of com-
mands. The important thing about a program is the sequencing: the num-
ber of commands and the order in which you give them.

We'll explain programs a little more clearly, by using another example of
a performing dog. Fido is resting now, but we will try a few tricks with—
Superdog!

Superdogis a different kind of friendly family pet: he’s a robot! (Why not?
Almost everything is automated nowadays, isn’t it?)

I'm Superdog,
and | follow programs!

Fido can do many tricks, as you know, but actually they are all very sim-
ple sequences. When you throw a ball, he will find it, pick it up in his
teeth, bring it back to you, and release it. He will understand your com-
mand to “shake hands,” lift a paw, and let you shake it. We love Fido for
his cleverness and many other reasons—but he can only do sequences
of three or four commands at one time. To keep him performing, you have
to go on to another trick—a new “program.”

PLANNING A PROGRAM

Superdog is different. He has a microprocessor that.remembers things
and makes decisions, so he can perform many, many more steps than
Fido can in a single trick, just as a calculator can do many more math
problems than you can in the same amount of time. For example, we can
tell Superdog to:

\
\
> |
= 1. Find the ball and bring it back!
> 2. If the ball is white, turn around three times and bark!
PrC 3. If the ball is black, lie down for 18 seconds! |
\
- The first step is easy for Fido. But the other two are much more complex:
-~ the dog must be able to identify the ball as either black or white, then |
= use that information to decide which trick to perform, and then do the ‘
= trick correctly.
> Also, each trick requires careful counting: the dog must know exactly
- how many times to turn around, or exactly how long to lie down. And to
£, do the tricks correctly, he must always know, at each moment, exactly
how many turns or seconds have been completed, and how many remain |
- before he barks or brings back the ball. So Superdog is making judge- |
ments, decisions and computations all the time he is doing his tricks.
There is one more important difference between Fido and Superdog. Our
= family dog is a living animal, with a brain somewhat like our human
) brain, so he can do things by himself, without our commands. If Fido
-~ sees a cat, he will bark; if he sees a fire, he will run away. But Superdog
A is a machine. He can do very complex tricks, but he cannot “think” about
them or remember what to do. Superdog does only what he is
~ programmed to do, and he will never do anything until a human com-
> mands him to operate his parts—motors, sensors, components and the
e microprocessor—in a particular sequence.

S0, when you write the program for Superdog’s trick, you will first have
) to think about everything you want the machine to do—every little step,
and where it must be in the sequence. Something like this:

—

. Receive and identify the command to “Find the ball and bring it
- back!”

Use image sensors to watch the moving ball and locate it.
Operate mechanical legs to move to the ball.

Use image sensors to identify the ball as “black” or “white”
Operate body parts to pick up and return the ball.

Choose whether to “turn around” or “lie down”.

Operate body parts to do the required action.

Calculate the number of turns or seconds completed while perform-
ing.

Bark/Don’t bark.

Stop moving when the trick is finished.

11. Prepare to receive the next program command.

y
PN O A~LN

)
-—h
So©

- 29

i ettt i - e i il

You must check all of these steps to be sure you haven’t forgotten some-
thing, or made a mistake, and then enter them into Superdog’s
microprocessor. If you thought of everything—and listed it all in the right
sequence—Superdog will perform perfectly, every time he does the trick.
You can “run the program” once, ten times or ten thousand times, and
he will always do the same thing.

“Yes, sir!”

“Aha, this ball is white!”

So there are two main rules for writing a program: think of everything that
the computer must do to finish exactly what you want, and put all of the
steps in the right order. The only special “skill” that you need is normal,
everyday logical thinking, because computers, just like any machines,
work the same way your brain works—Ilogically.

Now, let’s write the first program on your Sony Computer, and see how
simple it really is.

y

L

WRITING A PROGRAM: AS EASY AS ONE, TWO,
THREE

“Sequence” in a computer program means only that commands are writ-
ten down in a one-two-three order. Remember our trick for Superdog: it
had three separate parts, and we wrote a number in front of each.

1. Find the ball and bring it back!
2. If the ball is white, turn around three times and bark!
3. If the ball is black, lie down for ten seconds!

These steps are in a logical order: we want him to bring the ball back be-
fore he does the other things, so command 1 must come first. (Com-
mands 2 and 3 could be reversed without changing the trick.)

We will enter our commands into the computer in the same way: we will
write them on the screen in the same order in which they must be done,
and we will give each command a number. Our first “job” for the
computer—our program—will be to display the words ‘JOHN AND
MARY” on the screen.

@ FRIMT "JOHM"
8 PRINT "AND"
i FRINT "MART™

You already know the PRINT command, and here we use it three times—

once for each of the three words we want printed. Of course, our se-

guence is the same as the word order. The only thing different from the

way we wrote PRINT commands earlier is that each one starts with a

number: 10, 20 and 30. This is very important: these numbers tell the

computer what command to do next as it performs each step of the pro- m
gram. In other words, what sequence to follow.

e B e e R

Now, type in the first command: 10 PRINT "JOHN”. Don'’t forget: at the
end, hit once.

[JRIRIDI N FI][] [e] [v][N] [[reTurn]

What’s on the screen?

18 FRINT "JOHKN"
|

Fine. Your first command is entered, the cursor has moved to the next
line, and now you’re ready to enter the next two commands, in exactly the
same way:

18 PRIWNT "JOHM"
28 FRIMNT "Akb"
238 FEINT "HAaRY™
]

There’s your program—it’s almost ready to be used.

CORRECTING A PROGRAM: CHECK FOR BUGS —

Before we “run” our program, we should do one very important last step:
let’s make sure we've entered every part of the program correctly.
Remember that your Sony Computer is just a machine, and it can only
read commands that are in the BASIC language. If there is a mistake—
just one character or space entered wrong—then the command doesn’t
look like a BASIC word (or looks like the wrong word). This will stop the
whole program, or make the computer to do the wrong thing. For
example:

1@ PRIMT "JOHN"

L_, Mistake

Mistake like this are called bugs in the program. The PRINT command
must be spelled correctly—or the computer won’t even understand that
you are giving a command.

If you find a mistake in the program now, you should be happy: it’s better
to find it now than later, and it’s very simple to correct it.

You already know how to move the cursor, using the four keyboard but-
tons with the arrows on them. The cursor is now at the bottom of the pro-
gram, so first we move it up to the “10” with the button. Next, we move
the cursor six spaces to the right with the button, so that it is on the mis-
taken letter M.

18 PRIMT "JOHN"

;‘ Place the cursor here

To correct it, just type the right letter.

1g PRINT "JOHN"

t— Press [N].
Now press once ... and the bug is out!

16 PRINT "JOHN" ‘
28 PRINT "AND" f

/r The cursor moves here after |[RETURN | is pressed.

If there are other mistakes, correct them by moving the cursor in exactly
the same way. (If you need to, you can check the Operating Instructions
to see how to add a character or space that was forgotten, or take out
a character or space that is not needed.) When all mistakes are correct-
ed, use the arrow buttons to move the cursor back to the very bottom—so
that your screen again looks like this:

18 PRINT "JOHN"
28 PRINT "AND"

28 PRINT "MARY"
. \

Perhaps you didn’t make any mistakes in this simple program. But it’s
still very important to check every time. Soon our programs will have
more commands, and many of the commands will be longer. Any bug,
large or small, can stop a program, and everyone—even the experts at
Sony—makes spelling mistakes sometimes. 33

34

B R R

One thing is certain: if there is a mistake, your Sony Computer will tell
you, sooner or later. An error message will appear on the screen, or the
program will stop before you want it to, or the computer will do some-
thing different than what you wanted. Then you will have to look at the
entire list of commands, locate the bug, and correct it. So it’s better to
check and “de-bug” your program at the beginning, when you are typing
the commands.

—Rules for programming

®Think out every step your program will need to make the com-
puter do what you want it to do

@ Make sure you list all commands—in the logical sequence that
will give the right result

@ Always use a sequence number at the start of each command
line

® After you've entered your commands, check each one carefully
for “bugs’—and correct any that you find

RUNNING YOUR PROGRAM

Now that you’ve entered the commands and made the corrections, you're
ready to RUN the program. That’s the command we enter now on the
screen:

Rt

And that’s what the computer does with your program when you’ve en-

tered it, and pressed |RETURN |. Your screen now looks like this:

18 PRINT "JOHW"
28 FRINT "“AMD"
2@ FPRINT "MaRY"
RURN

JOHMN

ARND

MAaRY

Ok

E

It took only a few seconds for your Sony Computer to “read” the com-
mands and print.

LELELELELEL]

\J

POOOMDOOOOOOMND »

(»

Type the RUN command again, just after the cursor, and press
again. The result is the same, isn’t it? The result for this program will al-
ways be the same, until you change or erase the commands. Try it several
times more, and see for yourself. JOHN AND MARY will appear every
time. That means that your Sony Computer remembers the program.

You can check the memory anytime by entering LIST (and then pressing
[RETURN)). We will use the LIST command every time we write a program.

Don’t worry! | still remember it...

After | run the program, ...Enter LIST,
and I'll show you.

[0 PRINT ‘JOHN
20 PRINT “AND"
30 PRINT ‘MARY”

The most useful thing about your Sony Computer is that it will remember
your commands. All you have to do is tell it to remember, by putting a
number before the command.

18 FPRIMT "JOHW"

If a line number is entered, it’s a program.

This command has a number, so the computer knows that it is part of a
program, and it will memorize the command. 10 is the line number, and
a line number can be any number from @ to 65529.

How long will your computer remember your program commands?
Forever!l—or until you tell it to forget. The forget commands is

FHEL
Let’s make sure the computer is remembering, by entering some num-

bered commands, and then entering LIST. Did the computer list them?
Good. Now enter NEW.

LIST

18 PRINT " JOHNM"
268 PRINT "ARD"
38 PRIMT "MaRY"
Ok

MEW

Kk

B

The screen still shows your commands, but the computer has forgetten
them. Now try LIST again. The program is gone out of the memory.

There are two other ways to make the computer forget commands. One
is pressing the button, and the other is turning off the computer.
Don’t do these two things unless you are sure you want the computer to
forget.

One push...
' ... and all is forgotten

Later we will learn how to save programs, so you can use them again
weeks or years later, by usig a tape recorder. Until then, your computer
will forget everything when you turn it off.

- 36

YO DO O P

RAPHICS: TWINKLING STARS

How to...

e Use More BASIC Words m
®Clear the Screen #
O

®Draw Dots and Lines

@ Make the Computer Repeat an Action
®Use a Variable =
®Use a Random Number
®Use New COLOR Commands

A GRAPHICS PROGRAM

Let’'s use some new BASIC words and learn what they do. Type these
commands:

18 SCREEW 2

28 PSET (l1ga,18a>

28 PSET (1S@e,1@@)

48 PSET (188,15@>

S8 FSET (1568,158)

&8 GOTO Z2A@

This is a program—a set of steps that the computer can use to get some-
thing done. Now that the program is in the memory, give the RUN com-
mand, and we will see what this program does.

All the letters are gone, and four white dots have appeared on the screen.
The cursor is gone, and if you push a key nothing appears on the screen,
right? The computer is busy running the program. Why does it take so
long?

Let’s see what this program means. First press and [sToP], to turn
off the program. The dots are gone and the cursor has returned. Now
enter LIST, and we can look at the program line by line. First look at the
line 10.

SCREEN 2

is the command which lets you start to draw graphics (pictures) on the
screen. Graphics are dots, lines, circles and other figures or designs that
are displayed on the screen. (Displays that are not graphics—numbers,
letters and symbols—are called characters.)

=

38

SCREEN commands tell the computer in what form information will be
displayed on the screen. There are two kinds of SCREEN commands.

SCREEN 0 or SCREEN 1 is
for characters

SCREEN 2 is for graphics

+ W
W N

(Symbols on the keyboard are characters)

SCREEN 2, then, makes the computer display graphics. When you gave
the RUN command, the characters on the screen disappeared, because
SCREEN 2 orders the computer to display graphics. When you pressed

[cTRL] and [sToP], you cancelled the graphics command, and the cha-
racters came back. Now that you understand the first line of the program,

we can move on.
28 PSET <i6@,186)
38 FSET (1358,1882
48 FISET ci@66,15683
5@ FSET (158,158)

The explanation: PSET is the command of putting dots on the screen,
and the numbers in brackets () tell the computer where to put the dots.

Repeat, Repeat, Repeat, Repeat
The last line of the program has a very important command:
LB GOTO 26

GOTO means “go to”, so this command tells the computer to go back to
line 20 and start over. When it gets to line 20,

28 FSET (l@6&,188)

the computer naturally repeats the program. At line 60, we go again to
line 20, repeat the program, go back to 20, repeat the program...

18 SCREEMW =

!
[—>28 PSET ¢1@8,188>
l
This part is 28 FSET (1S@,18a:
endlessly repeated ’
48 PSET (184,158
)

A repeating section in a program is a loop, and it is a common and useful
tool for computer programming. (Fortunately, not all loops repeat end-
lessly.)

Haven’t | been here before?

39

Let’s see how those PSET commands put dots on the screen.

a2 iy
PSET (100,100) PSET (150,100)
puts a dot here is here
P vl
7 ~
PSET (100,150) PSET (150,150)
— L

Do you see how the numbers work? For both dots on the left, the first
number is 100, and for both dots on the right it’s 150. Here is a magnified
picture of the screen.

5 100 255
012345 J :
|
J |
1 |
|
. 100} :
8) ! (100,150) is here
4 l/
. 150f -~ - - ---¢
This dot is (4,20 191

To tell your Sony Computer where to put a dot, you have to give it two posi-
tion number, the first for left-right position, and the second for up-down.
There are 256 different positions from left to right (@ to 255), and 192 from
top to bottom (@ to 191). So we can put a dot anywhere on the screen, be-
tween (0,0) and (255,191).

v

yOLLLLLL LI

y

)

e

U

Graphics and Variables

You remember that any number can be replaced with a variable. That’s
true for PSET numbers, too. If we make the left-right number into variable
X, and the top-bottom variable Y, our command becomes

PSET (XY)

and we can use any numbers we like for Xand Y, to make dots go wherever
we want them.

Here’s how to use the variables for a single dot. First use the NEW com-
mand to make your Sony computer forget the last program, and then
enter this new program:

SCREEM 2

X=58:¥=138

FSET (x,¥2

GOTO Z8

Put the program in the memory by pressing [RETURN], then give the
RUN command. Your computer starts with the command in line 18, which
clears the screen for graphics. In line 20 it learns two variables, and in
line 30 it uses them to put a dot on the screen.

1%

W
XA

4,

3 N o
T

oy

130F—-— -

Since X is 50 and Y is 130, there is a white dot on your screen at the
(50,130) position. Next, the computer reads line 46—which sends it back
to line 3@. That means the only way to stop this loop program is to press

and [stoe].

Why did we use variables instead of just writing PSET (50,130)? And why
did we make it repeat endlessly with line 40?7 These steps aren’t needed
if we only want to put a single dot on the screen for a very short time.
But they are a good way to display many dots with a very short program.
And that’s what we will do next, after this note on punctuation and
spelling.

[Note: Be careful with punctuation |

The program we are using now has three different kinds of punctuation
—a, [comma] and a : [colon] and (), called brackets. These punctuation
marks are characters, and they must be put in the proper places, just like
the letters in the command words. Remember, your Sony Computer can’t
understand a command if there is a spelling mistake, and punctuation is
part of the spelling.

Each punctuation mark has its own meaning in BASIC. The comma
shows that one number has ended and another will begin. The colon
means that one command is finished, and there will be another com-
mand on the same line. Brackets are necessary when two or more num-
bers, or two or more variables are used together—and brackets always
go in pairs, first the left “ (“ and later the right 7). Later, this book will
show you some of the other punctuation marks that are used in BASIC
commands.

As we said before, everybody makes spelling mistakes sometimes. When
this happens, your Sony Computer usually cannot understand the com-
mand, so it displays an error message. For example,

Svntax error in 38

1

means that there may be a spelling mistake in line 30.

RANDOM NUMBERS

Use the NEW command to clear the computer memory, then enter this
program in the memory:

18 SCREEM 2

28 X=INT(RND(1)*25&)
20 Y=INTCRNDOL) #1520
48 PSET (XY

S& GOTO 28

When you RUN it, the screen will fill up with more and more dots, until

you stop it ... that’s right, with and [sToP].

y

What are you doing
to my face?

Now let’s explain the two new lines in the program.

28 K=INTIRNDCL 2540
38 Y=IMNTORNDOL %1220

It’s easy to see that these lines give values to variables X and Y. But what
do those values mean? First, let’s look at RND (1). RND means random,
and it is one of the functions in BASIC. To understand this random num-
ber function, try this command.

XERNDOL) s PRINT X
Press after entering this command: you will see a 14-digit frac-

tion, a number that is less than 1 but more than zero, and begins with a
decimal point. For example:

H=RENDOL) cFRINT X
L DFE21 P39 744523

Ok

|

Try this command again. Did the number change? Try it again. Your com-
puter has a long list of random numbers, and it is choosing one after
another to use for X.

Going back to line 2@ in the program, we have (RND(1) # 256), which
means that the random number is multiplied by 256. But if we multiply
those fractions by 256, the results will usually also contain fractions—
while our “dot” positions must be whole numbers, such as 1 or 30 or 192,
because the location numbers on the screen are fixed in whole numbers
only. That's why the command has INT at the beginning. INT means
integer, or whole number, and it cuts off the decimal point and the num-
bers after it, to make every result a whole number. Now we can under-
stand the value of X. It changes every time the program repeats the loop.

44

Every time your computer reads X=INT(RND(1) % 256), it rounds out X to
a whole number between @ and 255—but you never know which number
it will be. And every time it reads line 40, it makes Y a whole number, be-
tween @ and 191, just the same way.

You don’t know
who we are, do you?

| know X is between @ and 255,
and Y is between @ and 191.

We already understand the next line,
48 PSET ox,v0

even if we don’t know what the values of X and Y will be. The computer
won't tell us the values, because there is no PRINT command. Instead,
it will keep displaying more dots somewhere on the screen, at the places
where left-right and up-down integers tell it to.

Still, we have only explained how one dot actually gets on the screen.
Where do the others keep coming from? This is where the loop goes to
work. The next line,

S8 GOTO 2w

returns the program to
28 H=IWT(RHD(1»#2550

New numbers are then given to X and Y each time, so
48 PSET <X ,¥Y)

puts a dot in a new place, and we see dot after dot after dot, all around
the screen.

yLOLVLL L y

y U

)

y

|Programs: two kinds of commands |

A program, as we have said, is a series of commands in a fixed, num-
bered order that has been entered in the computer’s memory. A program
can have hundreds or thousands of lines—commands—but that’s not
necessary in most cases; we just made thousands of dots with only five
lines in our program.

One of those five command lines—GOTO 20—didn’t actually make the
computer do anything, but rather told it where to go next. This was the
line that made out short program do so much—by making a loop that
repeats endlessly.

We can see now that there are two kinds of commands:
1. Commands that tell the computer what to do, such as:
PRINT PSET WIDTH COLOR etc.

and
2. Commands that change the order of the program

GOTO IF—THEN FOR—NEXT etc.
There are only a few of the second kind of commands, and we will learn
more about them later in the book. They are probably the most interest-

ing tools in computing: Like GOTO, the one we used to make a loop, they
are all used to make small programs very powerful.

PUT COLOR IN YOUR PROGRAMS

We're going to add some excitement to the dot program—with color! To
start, let’s display the program that’s in the computer’s memory, with the
LIST command. (If you turned off the power switch, you will have to enter
the program again.)

ST

189 SCREEN 2

28 X=INT(RND{1)>%25&4)
38 Y=INT(RND(1 %192}
aEls PEEY (8N

S8 GOTO 29

Now change line 40 to: 40 PSET (X)Y),2

SCREEN 2
K=INT{RNDC 1) *25&)
Y=1MTCRNDO L) #1520
PSET <X,V

GOTO 26

Cac e BV sc) B

(L L S

Move the cursor to this position, and enter ,2. (Don’t forget the comma—

it's important.) Press [RETURN] once to enter, and again to move the cur-
sor below the program. Now give the RUN command.

The dots have changed from white to medium green, because 2 is the
code number for that color. Using the Color Chart on page 12, we can
pick many different colors. Or, we can make the color a variable, and let
the computer change the dots from color to color.

Go back to line 4@ and change the color code to variable C.

1@ SCREEM Z

26 =IMT(RND11*25&)
26 y=IMT(RMNDC1)®152
48 FSET (X,¥1,C

Sg GOTO 26

Now we must give a value to C, which is our command for what color we
want. But it will be more fun if, again, we let the computer make the
value, randomly. Here is the command line that will do that—but don’t
enter it just yet.

BS C=IWTCRMDIL)#140+2

What does it mean? It is a random number command like those for X and
Y, with one more step at the end. It chooses a number at random between
@ and 13, and then adds 2 to it (+2). That means the number is between
2 and 15. But there are 16 colors, from @ to 15. Why does this command
leave out colors @ and 1? Because 0 is transparent and you can’t see
transparent dots, and 1 is black, which you can’t see if the background
becomes black, too.

Any number, 0 to 13

4 8 4 2 10

. +2 changes them to 2 to 15
- Where do we want to put this line in the program? It must be before the
- dots are displayed in line 46—so our new line becomes number 35. (And
that’s why our command lines are numbered 10, 2@, 30... to leave space
= for any new commands that we decide to put in later.) Now, let’s put it
in the program.
-
- I8 SCREEW =
, 28 M=IRMTORNDCL) #258)
4 28 Y=IWNTORNDCL) %122
48 PSET (x,v2,C
> S8 GOTO Za
- 33 C=IMTIRNDCLx =143+ 2
|
30, 40, 50, 35. Do you think the computer will understand? Of course it
= will, because it knows how to count, and it automatically arranges the
4 lines in order by number. It’s easy to check—just enter LIST command
- again.
1 =
- 18 SCREEN 2
= 28 X=INTIRNDCOL » 256D
- 38 Y=INTC(RNDC(1)>%192)
4 S5 C=INTORHNDCIY#14)+2
; 44 PSET ¢x,Y2,C
~ Se GOTO 2@

Now we'’re ready to turn our dots into stars. Stars can only be seen at
night, so we want to make the screen black. Enter this new line:

s COLOR 15,1,1

L

New commands for color and lines

That line is a new way to use the COLOR command. It has three codes:
15 sets the character color (or foreground color), the first 1 sets the back-
ground color, and the last 1 sets the border area color. (This time, the
background and the border are the same color. Any numbers will do, but
let’s try these.)

Border area

Background

Now we're ready: RUN.

i=R-X-N-1

Stars in the night sky!

But we’r'e not finished yet. We can make them look even more like natural
stars. First we want to control the number of stars we're making—before

we end up with a whole galaxy. Use |[CTRL | and |STOP |, as usual.

Black magic? No, but
if part of screen is
made black, the stars
in that part are
invisible.

o D

LELELE LY

)

AERARIRI\R LK

)

)

Drawing black lines on the screen is one way to make a part of the screen
black, of course. The PSET command is only for dots: for lines, we use
LINE. Here is a command that tells the computer where to make a line,
and what color to use.

LINE (0,50) — (255,100),2
For the [—] (hyphen sign) in the middle, by the way, use the minus sign.
The hyphen means “from/to,” and this command draws a line from posi-
tion (@,50) to position (255,100). You know, of course that the last part of

this command is the color medium green. If you use this LINE command
in your program, it will make a green line like this:

From (0,50)—%*

¥ To (255,100)

Now that you understand the LINE command, you can use it to improve
the star program. We want to use a black line, to make some stars invisi-
ble, right? That means we will change the color code to 1. Also, we are
going to use variables again, so that a random series of lines appear,
along with the random series of dots. Enter these three new lines on your
computer:

42 A=INT(RND{1 %258 :B=INT(RND{1) %2587
44 P=INT(RNDCI)®12Z2) :Q=INTIRNDCL) #1920
45 LINE (A,8)-CB, 1712 ,1:LINE (8,P)—-(255,080,1

These three lines take more than one line each on the screen, but that
is not a problem. The computer will automatically write each command
on two lines, but it is still only one line, because there is only one line
number (42, 44 and 46).

Line number 46 contains two LINE commands, using four new variables.
Lines 42 and 44 are the random number commands that we already know,
and they give values to the new variables A, B, P and Q. This is how one
pair of random black lines would look:

LINE (A,0)—(B,191)

(A, 0)
Invisible black lines /
drawn by command

line 46 \

(0, P)

(255, Q)

™ LINE (9,P)—(255,Q)

(B, 191)

Each time you have entered the new command lines 42, 44 and 46 in the
computer, press [RETURN], and then enter LIST to see the whole program.

18

=0

30 Y=IMNTORMOCL #1220

S5 C=IMTIRMDIl %143+2

4f PSET 4%, ,C

A7 A=INTORMDC] I #2540 s B=IMTCRMDC 1) #2548
44 P=IMTORMDOL 321920 ; O=INTCRMD(L 18192
3

Se LIHE G EBi=aE s s am Bt
S5, 00,1

=8 B =

Notice that the new command lines come before the GOTO loop in line
50. This means they will be repeated endlessly, just like the stars. Each
time the computer runs from command line 20 to command line 46, it
makes new dots in different places and then new lines in different
places. And if a dot is located where a black line is drawn, the dot will
become invisible. Now, give the RUN command ... and we have stars that
twinkle!

1 1 W W W G T W N R

If you want to actually see these lines, so you can understand them bet-
ter, change the color code in command 46 from 1 to 2. Now you can see
green lines appearing on the screen.

NOTE: If you stop this program, the screen will still be black. You can
return to the original dark blue background and border with this
command:

COLOR 15,4

15 means white letters and 4 is dark blue background and border.

And, though this is not yet explained before, the screen is automatically
set in the SCREEN 0@ condition when you first start the BASIC. In this con-
dition, the border color is always set to the same color as the back-
ground color. If you want to have the background and border with
different colors, try the SCREEN 1 command then give for example,
COLOR 15, 4, 7 command.

To return to the original screen once again, give SCREEN @ command.

SAVING YOUR PROGRAMS

How to... w

@®Connect Your Computer to a Tape Recorder

® Transfer a Program to the Tape Recorder b
®Check that the Program is Saved
®Load a Program from the Tape Recorder >

into the Computer [N

Have you ever seen a photograph of a large computer—one that is used
to guide a rocket, or control a factory, or do medical research? You may
have seen parts that look like big tape recorders. Actually, that is exactly
what they are. On big machines they are called “tape drives,” and they
record and store the information the computer uses.

Some of what they store is programs—the instructions for the machines,
things like PSET, SCREEN, PRINT and other commands that you already
know about. They also store data—facts like game scores, answers to
problems, or scientific formulas.

Computers have developed very rapidly, and things which used to require
a big, “mainframe” computer can now be done on small machines, like
your Sony Computer. Your Sony Computer is so small that a child can lift
it, but it is faster and smarter than the old computers that cost many
thousands of dollars and filled up entire rooms.

So it’s no surprise that your Sony Computer can also store programs and
information on tape. As it is smaller than a mainframe computer, it uses
a smaller tape drive. Your Sony Computer can use a plain home cassette
recorder that is used for music or dictation.

CONNECTING THE TAPE RECORDER

It’s simple to connect a tape recorder to the computer, using the special

cable that came with your Sony Computer. One end is a round metal fit-

ting with pins in the middle. This end fits into the plug marked TAPE on
the back of the keyboard.

Wl

Al

1 1 N

:

The other end of the cable has three parts, colored red, white and black.
The red one connects to the MICROPHONE jack on your tape recorder
and the white one goes in the jack marked EARPHONE. If your tape
recorder has a REMOTE jack, plug in the black end of the cable. (If your
tape recorder doesn’t have a REMOTE connection, just leave the black
end unconnected.)

|
|||||| To the TAPE connector

of the computer
EARPHONE

Match these
parts and insert

Push button
Z @ to remove

MICROPHONE'

Black (small)

Now the computer and the recorder are ready to talk to each other.

MAKING THE COMPUTER TALK

The computer will tell the recorder what is in its memory when we give
it this command:

CSAVE ”file name”

The C of CSAVE stands for cassette, and SAVE means just that: save the
program that is in the computer’s memory, by recording it on the cas-
sette. The “file name” (don’t forget the double quotation marks) can be
whatever name you want to give to your program, so that you—and the
recorder, and the computer—can tell it apart from others.

A file name can have up to six characters. They can be letters, numbers
or graphic signs, but the first character must be a letter of the alphabet.

STAR is a good file name for the program we made in the last chapter.
It has four characters, starts with a letter, and it’s convenient: it reminds
us of the content of the program.

Let’s save it:
CoSaUVE "STaR"

But don’t press yet. When we press [RETURN], the computer will

start sending the information to be saved. First we have to make sure the
recorder is ready for it.

If your recorder has a REMOTE connection and the cable is plugged in,
then set the recorder in the record mode.

However, you will notice the tape does not start turning. That is because
now, your computer is in “control” of your tape recorder. Press [RETURN],
and the tape will turn itself on, record the program, and turn itself off.
When it’s finished recording the screen will show

SAVE "STAR
L

mo o

If your tape recorder doesn’t have a REMOTE connection, you press the
RECORD button and the tape will start turning at once. Wait a few
seconds for the tape speed to become stable, and then press [RETURN].
When the Ok comes on the screen, press the STOP button on the record-
er, and you’re almost finished.

(
(

CSAVE

Now you have the program in two places. It is still in the computer’s
memory, and if things went well, it is also saved on the tape.

K\

DID THE TAPE REALLY SAVE?

You should always check to make sure your tape machine really has
saved your program—before you do anything else. Your Sony Computer
will do the checking for you, by comparing its memory with the record-
ing. First you must disconnect the cable from the “REMOTE” jack. Then
rewind the tape to the place just before the program was SAVED. Set the
volume of the tape recorder at about 1/2 of full. Now reconnect the RE-
MOTE plug, and type this command:

CLOAD? "STAR"

If there is no “REMOTE,” hit before setting the recorder in the
playback mode. If there is a “REMOTE” plug, set the recorder in the play-
back mode and the tape will start automatically when you press
[RETURN]. When the computer hears the beginning of the program, the
screen will show:

Found: =TaR

As the computer plays back to itself it will compare the recorded pro-
gram point by point with its own memory, and then display Ok if every-
thing is correct. (Don’t forget to stop the tape by hand afterward, if there
is no remote control.)

This is an important process—you don’t want to lose all the work you’ve
done writing your program—and sometimes there may be a problem. If
the “Found” message does not appear on the screen, perhaps you ha-
ven't rewound the tape far enough.

If the Ok sign does not appear, increase the volume on the tape recorder
and try it again. If this fails, then there is electronic interference, or the
program was not properly recorded. Check your connections, and then
start over from CSAVE “STAR”.

If the check goes well and you see the Ok, you know the program has
been saved. You can label that tape, put it away and use it when you need
the program in the future.

When you are sure the program is safely recorded on tape, you can type
in NEW, or push the button. This erases the computer’s memory
—but not the external memory on the tape.

LOADING A PROGRAM

Using that tape in the future is called “loadig the program” into the com-
puter, and this is a good time to practice. The procedure is almost the
same as the checking you just did. Be sure the recorder is set to PLAY
into the computer, and the tape is at the right place—just before the start
of the recorded program. Then give this command:

CLOAD "STAR"

Notice that there is no question mark (?) this time. Of course, if you're
using a different file name, type that inside the quotation marks instead
of STAR.

CLOAD

coao

€Xe) R
‘/—\ o

When the computer has finished listening to the tape, the screen will
show

CLOAD "=TaR®
Found: ZTaE
i

Be sure the tape is stopped—and you’re ready to RUN your program on
the computer.

Occasionally, the computer will display

Device 170 epror

1/0 means input/output, and in this case refers to the connection with the
tape recorder. Change the volume just a little and try the loading again.

How to...

e Use Your Computer to Make Decisions
@ Program a Conditional Formula

ePlay a Game on Your Computer

@ Make Your Program Simpler

e Improve Your Program

Remember Fido, our friendly family dog? He is very good at simple tricks,
like “Sit,” “Bring” and “Shake.” Until now, your Sony Computer has been
doing the same kind of simple tricks as Fido—following our commands
to “PRINT;” “GOTO,” “PSET,” etc.

Then we met Sueprdog, and he did some rather difficult tricks, based on
“if the ball is balck..” or “if the ball is white...” Superdog could make de-
cisions. You already know that your Sony Computer is smart enough to
do these things, and now we're going to start writing “super-programs”
that make decisions.

Start by clearing off your last program with the NEW command, and then
enter:

18 A=INTCRMNDOL) %50+
28 IMPUT B

28 IF A=B THEN GOTO 5@
48 GOTO 1@

S@ PRIMNT "Hit!!®

&8 GOTO 1@

After typing it correctly, give the RUN and then [RETURN .

RUR
*

The computer has given us a question mark before, but this time the cur-
sor is on the same line, not the next one. That means it is waiting for you
to put something in—because of the INPUT command in line 20. You in-
put something—in this program, any number from 1 to 5—by simply
pressing a key, as you know. So let’s give the computer the number 3.
(What happens if we input a letter or a graphic?)

58

Press [3] and [RETURN]. Which screen display do you see now?

2 = 2 =
Hi t! |
|

Both screens have question marks at the end, so you know the computer
wants you to input another number. And another. And another. And
another. That’s the game: is your number a correct guess—a “Hit"—or a
miss? How often do you get a “Hit!”? (The law of chance says you will
get about one hit with five tries, or about two hits with ten tries, or about
20 hits out of 100.) You will become tired before the computer does (it

never gets tired), so press and [sTop].

What’s happening here? Let’s look at the program. The first line is our old
friend, the random number command. Each time the program runs back
through the loop (line 60), it chooses a number between 1 and 5, and
makes it the value of variable A.

Now we see a new friend in line 2@:
28 IMFUT B

B is a second variable, and it is waiting for you to give it a value from the
keyboard. After you type in a number, both variables have values, and the
computer goes to the next line.

A is a number B, in our first guess,
between 1 and 5 is given a value of 3

U

L L)

LELELE LU

yo U

)

HIT OR MISS—THE COMPUTER DECIDES
Line 30 reminds us of Superdog, because the first word is IF.
28 IF A=B THEN GOTO @

IF always goes with THEN. For example, “IF you are hungry THEN you
should eat” or “IF you have a Sony Computer THEN you can have fun.”

IF [condition] THEN [something]

What can be the condition of variables A and B? They can be equal
(A=B), or A can be larger (A>B), or B can be larger (A<B).

“Something” can be any command. In this case, it's GOTO 50.

This is called a conditional formula. There are six of them in BASIC, and
some of them can be written two different ways.

Symbol Meaning Example
= Equal to IF A=B If Ais equal to B
> Larger than |IF A>B If A is larger than B
< Smaller than|IF A<B If A is smaller than B
> = Equaltoor |IF A>=B .
. } larger than |IE &= SB } If A is equal to or larger than B
<= Equal to or |IF A<=B ;
= } SFRAIIOF thaTi | | As < B } If A is equal to or smaller than B
<> IF A<>B .
> < } Not equal to IFA><B} If A is not equal to B

Line 3@, then, is a conditional formula. When the IF part is true (A=B),
the computer goes on to the command (GOTO 50@). But when A and B are
not equal, it goes on to the next line of the program, line 40, without read-
ing the THEN command. Line 40, of course, sends the computer back to
the beginning, to generate a new random number—which you try to
guess.

No

Is A equal to B?

GOTO 50

Display “Hit!” Go to line 10

Now you understand that “Hit!” can only be displayed when A and B—B
is the number you supply, by guessing—are equal. “Hit!” means that the
number you entered for variable B is the same as the value that the com-
puter gave to vatiable A.

After displaying “Hit!” the computer moves to line 60, and the game

starts again. The game continues in either case, if A and B are equal or
if they are not equal.

MAKING THE PROGRAM SIMPLER

Computer programs should always be written as simplay as possible, so
they are easier to undertand and there is less chance of making a mis-
take in typing. Let’s take another look at our guessing program.

18 A=INTC(RNDC1 > %#5) +1
28 INPUT E

38 IF A=B THEN GOTO Sa
48 GOTO (@

S8 PRINT "Hit!!"

&8 GOTO 1@

Now we know that if A=B, the computer will display “Hit!” It sounds like
a single action, but in the program, there are actually two commands.
The first, which comes after THEN in line 30, is GOTO 50. The second,
in line 50, is PRINT “Hit!” A Single action should be a single command—
so we can change line 30 to

IF A=E THEM FRINT "Hit!»

And now we no longer need the commands in lines 5@ and 60, do we?

168 A=INTCRMNDCL) =55+

28 INPUT B

S8 IF A=B THEW FPRINT "Hit:'®
48 GOTO 14

Much simpler! If A and B are equal, after printing “Hit!” the computer will
go down to line 40 and then GOTO 10. If A and B are not equal, it will do
the same thing, but without printing “Hit!” Our game now works with
only four commands.

Now make the changes on your screen. First change the command in
line 30 from GOTO 50 to PRINT “Hit!”. Then erase lines 50 and 60, this
way: move the cursor to the position below line 6@, and enter 50. Press
[RETURN], and line 5@ is erased from the computer’s memory. Do the
same with 60 to erase line 60.

Did lines 50 and 60 disappear from the screen? No, they didn’t! But they
have been erased from the memory. If you give the LIST command, the
computer will display what’s now in the memory:

LIST

18 A=INTIRMNDCLI Y %53 +1

28 IWNFUT B

38 IF A=B THEM FRIMNT "Hit!'"
48 GOTO 16

That’s better, isn’t it?

Some refinements

We've made the guessing program as simple as possible, and now we
can think of ways to make it better, by adding things that are convenient
and fun. Of course, as we add them we will try to keep each improvement
as simple as we can.

When A is equal to B, the computer tells you by displaying “Hit!” But
when they are not equal, it doesn’t give you a message before it starts
again. The program will be easier for your friends to understand if we
change line 30 to look like this:

28 IF a=B THEM FRIMT "Hit!" ELSE FRIMT "Mises"
ELSE means “if not.” It’s a useful word to put after a conditional formula,
because it makes that step of the program clearer.

IF [conditional formula| THEN [command 1] ELSE

Since this new command is longer than 37 characters, it will “run over”
onto the next line—making line 4@ temporarily disappear. But don’t
worry—it’s still in the computer’s memory. Just use the LIST command
to bring it back again! There’s one more improvement that will make the
program easier for your friends to understand when they see it. We can
change line 20 to:

28 IMNPUT "Make a guessi(l-5) "B

SRR

add

ddd

O

)

You will understand the meaning of this new command if you enter it on
your screen and then give the RUN command.

R

Make 2 guess(l1-53 7 B

Very easy to understand now, isn’t it? That’s much better than the “?”
message that we were seeing a few minutes ago. Now you can share this
guessing game with your frineds, and everybody will understand your
program quickly.

GRAPHICS THAT MOVE

How to...

@ Move characters around the screen
®Make a UFO movie
e Use variables to shorten a program

Everyone knows that movies don’t really move. A movie is just a fast
series of still pictures one after another. Because the pictures are each
a little different, we see the illusion of movement.

Television is the same. The picture on our TV screen changes many times
within a second, and as a result we seem to see motion. Your Sony Com-
puter screen is almost the same as a TV screen, so naturally we can use
it to make moving pictures. Here’s how it’s done:

- W

Display Erase Display at Erase
next position

o-»l i

Display at Erase Display Erase/display
next positicn continually repeated

To move the O mark across the screen, we show it close to the left, then
erase it, then show it a little bit further over, then erase it... and so on.
To do one step in this series, we must tell the computer to erase, then to
locate the correct position, then to print something.

L=

LOCATE Z4,15:PRIMNT "Z2°

There are two new commands, and then PRINT. CLS means “Clear
Screen” If it is entered by itself, everything on the screen disappears.

“What happened to my face?”

CLS+[RETURN] i | e

—_— 7 =
~
e
D e ———
P .
f -
=T s
R R i U U g g Gy X g gy
eyt eyl e st i gl g O gk
— et d e d 2 A A AL A e
— e At d A A A AN
.
—
— ——Y

To see what the LOCATE command means, enter the above three com-
mands together.

LACATE 24, 15 BRIME = 2

AN

0K
..

LOCATE 36, 15 tells cursor to go across 36 spaces, then down to line 15.
The colon (:) tells the computer another command is on the same line.
Then the PRINT command tells it to display Z at the place where the cur-
sor is.

This is very much like the PSET command we used before to make twin-
kling stars, but with a difference: the character Z is bigger than a dot, and
Z is a character while a dot is a graphic. For characters, then, we say
LOCATE 36,15: PRINT “something”; and for graphics we say PSET (36,15)
for example: the result is the same. In both cases, you can think of 36,15
as an address.

0123 35 36

0

1

2

3| | ¥V

"
L~
3,1 is here /
36,15 is here
15
24

The PRINT command which follows the LOCATE command and the colon
(:)is not limited to a single character like “Z” Any amount of letters or
words can be positioned with the LOCATE command. LOCATE just tells
the cursor where to go before starting to PRINT. You can use LOCATE to
start a paragraph in the middle of a page, to start a game at the bottom
of the screen, or to position anything just where you want it.

Let’s use a little imagination. Are you ready to see UFO? (UFOs, of
course, are “unidentified flying objects’—spaceships from another
planet—and they probably use computers.) We can make a UFO out of
just five characters:

LOCATE 13,18 :PRINT "_=0=_"

ke —=0=_

u ;13,10 is here

LOCATE 13,18:PRINT "_=0=_"

Does it look like a UFO to you? You can try drawing other shapes too,
using the many different characters and signs on the keyboard. This UFO
is made with the underline (_), the equal sign (=), and the letter O.

Now let’'s do something else:
LOCATE 13,18:PRINT :
Press[RETURN], and the UFO disappears! The five spaces replaced its

five characters. The “space” is a useful way to erase letters or words
when you don’t want to use CLS to clear the whole screen.

DISPLAY, ERASE, DISPLAY, ERASE.....

The LOCATE and CLS commands, then, are the way to make a moving
picture. Here is a program to make our UFO move. (Don’t type yet. Just
think about how it would work.)

S CLs

19 LOCATE 8,5:PRINT "_=0=_"
28 LOCATE @, ,S:FRINT :
28 LOCATE 1,5:PRINT "_=0=_"
48 LOCATE 1 ,S:iFRINT " !
98 LOCATE 2,5:PRINT "_=0=_"
&8 LOCATE 2,5:FRINT "
78 LOCATE 3,5:PRINT "_=0=_"
& LOCATE 2,S5:PREINT " !

Here’s what those commands would look like on the screen:

At line 10 At 20 At 30 At 40
0 0 01 01
_—
5 (BSOS 5 Ly _=0=_ 5

UFO at 0,5 Erase UFO at 1,5 Erase

At 50 At 60 At 70 At 80
012 012 0123 0123

L % 3

UFO at 2,5 Erase UFO at 3,5 Erase

The first line, CLS, clears the screen, and after that each pair of lines—10
and 20, 30 and 40, 5@ and 60, 70 and 80—puts the UFO at a different ad-
dress. If we continue all the way to the right edge, like this:

31 32 33 34 35 36

the last commands will be

S50 LOCATE Z2,5:FRINT "_=0=_"
sal LOCATE 32,5:PRIMT i

The whole program is 67 lines long. Whew! It might be more fun just to
watch television!

But don’t leave. There is a much easier way. You have already noticed that
the commands after line 5 all look very much alike, and that is the key.
Actually, they are in nearly identical pairs.

20 LOCATE 8,5):PRINT "
T_—This part never changes
This is always 5

Only this position changes: 0,0,1,1,2,2,.....32,32

1@ LOCATE @,S:PRINT "_=c:=_"|

Only the first address number changes, and it varies systematically. That
means (have you guessed?) it can become a variable. Now you can see
how useful variables are: we can shorten the program to just seven lines.

188 CLS

11 I=¢a

128 LOCATE I,S:PRINT "_=0=_"
128 LOCATE I,S:PRINT :
148 I=I+1

1528 IF 14322 THEW GOTO 126
t=8 ERD

Clear the computer’s memory with the NEW command, and then enter
this program. (We've started the line numbers at 100 this time, so that we
can add some more lines later.) Watch the UFO this time: it flies!

Let’s go through the program line by line and see why it flies. Line 1 00
clears the screen for us. (We don’t want our UFO to hit anything.) Line 110
names the variable and gives it a value. Since “I” means left-right posi-
tion and we want to start at the left side, “I” is given the initial value of
zero. Lines 120 and 130 are the display-erase pair that we saw before, but
now they use the variable “I.

Line 140 changes the variable: it says =1+ 1. Remember this is not arith-
metic, it’s BASIC. Therefore “=" doesn’t mean “equals”, but means “takes
the value of”. “I” takes the value of “I+1” which makes “I” one number
larger before we go to line 150.

Line 158 means if “I” is smaller than (<) 33, then the computer will go
back to line 120. Now “I”” is one bigger, and the UFO will be displayed one
space further to the right. When “I” is no longer smaller than 33, the com-
puter will not “GOTO 120", but will move on to line 160. Actually, even
without END the program would stop, because there would be no com-
mand after line 150.

But this program contains a loop where the computer goes around and
around from 120 to 150 to 120 many times. It is controlled by the condi-
tion that “1” is less than 33, so it is called a conditional loop.

A still better way to do it
Let’s look at that progam again.

igg CLS

11 I=6 The initial value is zero
128 LOCATE I,3:FRINT "_=0=_"

128 LOCATE I,S:FRINT © "

148 I=I+1

156 IF 1433 THEN GOTO 128] wih cach oam " O
148 END the loop stops at 33

The most important parts of this program are lines 110, 140, and 150.
They tell the computer where to begin (at 0), and to repeat the loop 33
times. This kind of repetition is used often in many programs, and BASIC
has a special way to do it, with two commands called FOR and NEXT.

188 CLS

tig FOR I=68 TO 22 Repeat from @ to 32
128 LOCATE I + SEPRINT " _=0=_-"

126 LOCATE I fSIPRINT "

148 WNEXT 1 Increase the value of | by 1;
158 ERD return to line 120

These two commands, FOR in line 110 and NEXT in line 140, are the Loop
Specialists. They use only two lines where we needed three before.

The important thing to remember is this form:

FOR [variable| =[initial value| TO [final value|

NEXT
For our program, it’s
tig FOR I=8 TO =

and

Fl

and
MEXT 1

FOR tells the computer how many loops to make. NEXT is a very clever
command, which counts the steps and sends the computer to the next
line after the variable reaches the final value.

FOR and NEXT always go together as a pair.

.x_%ﬂ >
AT

¥

If Prince FOR can’t find Princess NEXT, the computer will be so unhappy
that it will display an error message and stop until you correct it.

PUTTING IT ALL TOGETHER

How to...

@ Add Color and Sound to Your Programs ﬁ
® Put Two Programs Together ﬁ’s
(o

eMake a Flow Chart
@ Improve Your Program ﬁ/

ADDING COLOR AND SOUND

Now we're ready to add some functions we learned before—to get a
colorful, noisy, moving UFO. Enter this program in your computer:

1ed COLOR 15,1:C0L%

183 Y=IMNTIiRENDOL 32222

188 C=INTORMDOL»#1i42+2:COL0OR ©

118 FOR I=8 T0O 32

=R S R B T — i — i

L2 LEESTE 1R o i

L22 5=1 Mok 12

135 IF A=8 THER BEEF

148 MEST I

=R EBOED s Repeated by FOR—NEXT

You can watch it as long as you like, because the whole program is a
repeating loop, but let’s push [cTRL] and [sToP| so we can see how the
commands work.

Line 100 does two things: it sets the color (black background, white
characters), and clears the screen. 103 makes a new variable, Y, and gives
it a random value from @ to 21. 106 is similar: it gives a random value, be-
tween 2 and 15, to a new variable C, and then makes that variable the
color number. (We don’t want color 1, because black characters would be
invisible!)

Starting at line 110 we have the FOR-NEXT sequence, and this time the
variable Y is part of the “address” for each LOCATE command. The
horizontal (left-right) location is I, which changes regularly from 0 to 32,
but the vertical (up-down) location was made random (RND) in line 103:
Y can be any value from @ to 21. That’s why those different-colored UFOs
come in at different altitudes.

Now let’s look at lines 133 and 136;

F=1 00 12
IF A=8 THEN BEEP

There are two new words. BEEP, of course, means beep—the noise the
UFO makes. But it beeps only if A is zero, and A has the value of | MOD
12, so what does MOD mean? MOD is short for modulus, and it means
the number left over when one number is divided by another. | MOD 12
is the number left over when | is divided by 12. If | is 15 then | MOD 12
is 3. But if | is 24, | MOD 12 is @.

As | increases from @ to 32, | MOD 12 becomes 0 three times for each
UFO: at @, 12 and 24. That means each UFO gives three beeps on its way
across the screen.

L

)

)

GUESSING GAME+SOUND+VIDEO

)

One of the most interesting things in computer programming is putting

-

two programs together into one. Combining two or more program can be "
very useful and entertaining, as you will see here.

Here they are again: &

Guessing program P:

18 A=IHTOiRMDCL b %253 +1 .

ZA IMPUT "Make a guess";E ”

Z8 IF &#=B THER FRIMT "Hit!" ELSE FRIM &

T "rizs" =

4@ GOT0O 1@ e

UFO program &

CEubE S0 5ElE e

Y=IRTORMDOL 1220 &
C=IRMTI(RMNDOL 143 +2: COLOR
FOR I=8 TO =2

LECETE v anRlET Pt
LOCATE I,Y¥:PRIMT *® !
S=1 Mon 12

IF &=8 THEM EEEF -
MEST I -
GOTO @66

)

\
)

o BV I N O W B

i)

)

Tk a0

L I e T I el e T S S T S O
L R D il e O O

=
B

If we simply put the two programs into the computer the way they are, ~
one after another, you can see that they won't fit together. The program B
will run as far as line 4@, and then go to line 10 again, and the UFOs will
never arrive. The first change we need, then, is to connect the UFOs to
the first program, and the best place to connect it is to a correct guess. =
That’s line 30 (A=B). Let’s write a new line 30: :

=8 IF &=B THEW GOTO 188 ELSE PRINT "Miss®

Now there’s another problem: how to stop the UFOs after somebody =
guesses the number. We don’t want to watch the UFOs endlessly, and we =
don’t want to stop the computer—we want to go back to the guessing
game. So we change line 150 to:

156 GOTO 18 =

-~ Now the program will look like this:
~ 18 &=INTCRHNDCl 2252 +1
28 IMPUT "Make a guess" B
28 [IF &a=B THEW GOTO 1688] ELSE FRIMT M
- izs” L i Hitt go to UFO
48 GOTD 1@
- 188 COLOR 15,1:CLE
- 182 Y=IWTORNDOL y 2220
. 188 C=INTO(RNDCL»#143+2:C0L0OR
by 118 FOR I=8 TO 32
120 LOCATE I ,%¥:PRIMT "_=0=_"
12368 LOCATE I,.v:PRIMT " i
- 122 &=1 MO0 12
- 12& IF A=8 THEM EBEEF
- 148 HEXT I
- 158 | GOTO 1 8|<Return to guessing
= The flow chart: a way to think about programs
-~ Our programs are becoming longer and more complicated, with loops

and multiple functions. When computer professionals make complex
programs, they plan carefully before they start writing commands, and
the best way to do that is with a flow chart.

P This book doesn’t use flow charts, and you don’t need to understand
them to use your Sony Computer. You can go on to the next section if you
like.

But just to show you what a flow chart is, here’s one for our guessing
game/UFO program.

=
%

YO OO DD DO

Determine value of A (line 10) "
-
W
Input value of B (line 20)
-
Are A and B equal?

\

H

i’ Make the UFOs fly
(line 100—140)

!

Return to game (line 150)

The top box is where the program starts, and each of the other boxes
shows one operation which needs a command (or commands). The line
shows the flow of action, or the logic of the program. Notice that the
diamond-shaped box has two different lines running out of it; that shows
that a condition (IF) is checked by the computer, to see which way to go.
Notice also that the “No” line and the bottom line both make loops, to
repeat the game.

Improving the guessing game

The difference between an acceptable program (one that runs) and an ex-
cellent program is the improvements that are made after the program is
written. Here are three things that we could make better in the guessing

m program.

® After each UFO, the next number is the same color as the UFOQO. If the
numbers were all white, wouldn’t they be easier to read?

®The guessing game moves up and down on the screen—always start-
ing on the line below the last UFO. Can’t we make it stay still?
®When the first UFO flies, the background color changes from dark blue
to black, and stays black. wouldn’t it be better to have one background
color all the time?

With some simple additions and changes, we can solve these problems.

S COLOR 15,1

7 CLE:LOCATE @,8
A=IRTORMDOL 225+

IFFUT "Make a guess';E

IF /=B THEM GOTO 168 ELSE PRINT "M

«——— Add

Ul ==

(o O S T T O R o o RV | o

1

GOTOD 1a
<« Change
FEIMTORMDOL =220
C=IMTORMDOI 142 +2: COLOR
FOrR I=d TO 22
LOTETE H 7aPRIipT © == 7
I E FENT S e R i ¥
a=1 Mob 12
IF &=8/ THER EEEF
HE®T 1
— Ciiange

L

B S N P R G S SO

@ e G DS

Before you read further, see if you can understand these changes by
yourself...

Did you get it right? The new lines 5 and 7 solve all of the problems quite
nicely. Line 5 commands a black background and white letters at the
start. Line 7 keeps the game at the top of the screen.

But the most important thing to remember about changing a program is
this: a change in one place often means changes in other places. In this
case, the COLOR command in line 5 came from line 100, so line 100 must
be changed, to just CLS. And since the program now starts at line 5 in-
stead of line 10, line 15@ must be changed, to make the two new lines run.

Now we have a good, smooth program. Are you completely satisfied with
it? Or would you like to make it more interesting? Why do the UFOs
always fly in straight lines? Your Sony Computer can do many, many
tricks—whatever you tell it to do.

THE SLOT MACHINE GAME

How to...

@ Program a Slot Machine Game that...

\%
—Changes the Display until You Stop It
—Compares the Slot Displays @
—Keeps the Score According to Your Bets
®Use an Array Variable /
N,

® Use the ON-GOTO Command
®Use a String Variable

@ Stop a Program by Pressing a Key
®Set a Format for Printing

®Use More than One Condition in an IFTHEN Command
®LIST a Long Program in Sections

When you correctly guessed the number in our last program, the reward
was a flying UFO. Now your Sony Computer will become a Las Vegas-
style “slot machine.” Each time you play, you will win or lose! The com-
puter cannot handle money, like the real Las Vegas slot machines, but
it is very good at keeping score with points.

M I
P, (i T d,i}"\
VISR,
1]

Stop

il

[]

“Jackpot!!”

VR I B R

Here are the rules: first, the computer will ask you how many points you
want to bet. Next it will rapidly change the symbols displayed in its three
“slots,” until you stop it. Then it will tell you your new score: if all three
symbols are the same, you win three times the number you bet. If only
two are the same, you win the same number you bet. But if all three are
different, you lose two times your bet. You start with a stake of 100
points, and if you reach 300, you win the game. But if your score goes
down to zero, you lose and the game is over.

"\

AR RLELRLEY

Does that sound OK? Let’s program it!

The main part of this game is the three slots. In each one, four symbols
(¥, &, &, &) are continually appearing and changing—so quickly
that you can’t see which is there, you can only guess. Naturally, our pro-
gram will use variables for the changing symbols in each slot.

WHAT IS AN ARRAY VARIABLE?

We have programmed variables several times, so we understand how a
letter or name can have a changing value. We used names like A, B and
Q, and we gave them values which varied with the number of times a loop
was repeated, or the position of a.UFO, or at random.

This time, we need a variable that can become any of four symbols. The
three slots each show the same set of symbols, which means we can use
the same variable for all of them. But each slot functions alone: some-
times they will match, often they won’t. For this situation, we will use our
variable in three different places—three of the same variable. Each is
called A, but also has a number (in brackets), so that we know which vari-
able is for each slot.

A (0), A (1) and A(2) are array variables. Does it seem confusing? Do you
think it would be easier to use three different names? Soon you will see
that array variables make programming much simpler, because they are
very flexible.

Our array of variables is three variables wide, and is as long as the num-
ber of different values we give it. You can think of them as multi-
dimensional variables, and this will help you remember the BASIC com-
mand for making an array variable: DIM. In this program we will use the
command line.

18 DIM &ED

to make three array variables A (@), A (1) and A(2). (Other examples of array
variable commands are: DIM A (108), which makes 11 variables from A (@)
to A (10); and DIM A (2), B (2), which makes six variables—A (@) to A(2) and
B (@) to B(2).)

There is one more thing to understand about array variables: the number
in brackets can also become a variable, such as A (I), which makes them
even easier to program.

MAKING A SLOT MACHINE

We want our array variable to represent different symbols—hearts (@),
spades (&), diamonds (¢) and clubs (&). The first thing we need is
number codes for the symbols. You remember that we use number codes
to represent colors, and your Sony Computer already knows the codes
for the different colors. This time, we must decide our own code for the
symbols.

Now we know that when variable A (1) takes the value of 3, for example,
then a diamond is in that slot.

First decide the code

VAaods

If this happens...

...then a diamond (@)
is in slot A (1)

Next we must decide where the slots will be on the screen. Let’s put them
in the middle.

LELVELELELEL)

VR

»

ELELELEL] \

U

N |

y

y W L LY

y

y

y U W

y

We have placed the A (@) slot at 12,9. The A (1) slot is at 15,9. And the
A (2) slot is at 18,9.

Our planning for the program to make a “slot machine” is now finished.
Let’s review the system that we have designed.

2 is the code for &, So & appears at 12,9.

12.15

== 60 _

If A (1) takes the value 1, 1 is the code for ¢, So @ appears at 15,9.
12 1518
’ 9 AN RS
If A (2) takes the value 4, 4 is the code for &, So & appears at 18,9.

This system makes the symbols appear in the slots. And since each vari-
able will change very quickly—as fast as the UFO positions changed in
our earlier program—the symbols in the slots will change so quickly that
you won’t be able to see them clearly.

We have planned our program, we understand the plan, and we're ready
for the commands.

18 DIM /o2

28 CLE

Z@ FOR I=8 TO Z

48 ACI=INTIRNDCL x40+

S8 LOCATE I#x3+12,7

&8 OR &4l GOTO 78,86,98,188
FA PEIMT "®":G0T0O 118

28 PRIWNT "#":G0T7T0 118

FH OPRINWNT “#":G0T0 118
AEE FER R el

Tie MEXT 1
1z8 GOTO 328

Line 10 creates our three array variables, as we explained in the last sec-
tion. Whenever array variables will be used, we must tell the computer
at the beginning of the program.

19 OIM Al2)

Line 20, of course, clears the screen. Line 30 begins with FOR, and we
know that when we see a FOR command, we must also have a NEXT
command somewhere in the program. The FOR-NEXT section goes from
line 3@ to line 110, and the commands in this section will be repeated in
a loop.

After FOR, line 30 makes a new variable |, which we will use between the
brackets in our array variables.

Does line 40 look familiar to you? It is the same kind of random number
command that we used in the guessing game. When | takes the initial
value of 0, line 40 will become

A (8)=INT (RND (1) * 4)+1

This means that A (@) can be any number between 1 and 4, right? A (0)
is the left slot, and the numbers 1-2-3-4 are codes for the symbols @,
&, &, & . Inother words, when | takes the value of 0, line 40 tells the
computer to choose one of the symbols for the left slot.

Next we must tell the computer where to display the three slots on the
screen.

50 LOCATE | % 3+12,9

When | has the value @, for the left slot, the cursor is at 12,9. When | has
the value of 1, for the center slot, the location will become 15,9. For the
right slot, | will be 2 and the location will be 2x3+12,9—or 18,9.

Now the computer has chosen a symbol, and the cursor has moved to
the slot. But the computer will not display the symbol, until we tell it to.
For this, line 60 is very important.

A8 OM ACIY GOTO 78,308,781

=
Do)

Here we see the GOTO command for four different lines at the same
time—70, 80, 90, 100. How will the computer know which line to go to?
the ON A (I) part of this command makes the decision. This is the form
that is always used for an ON-GOTO command:

ON GOTO [line 1], [line 2], [line 3] ...

This means, for example: if something is 1, go to line 1; if something is
2 go to line 2; if something is 3 go to line 3 ... In other words, the value
of “something” decides automatically which line the computer will go to.

ON—GOTO is a
traffic directo

As an example, let’s say that A (@) has the value 3 (the code for ¢). Line
60 tells the computer to go to line 98 when the variable has this value.

P8 PRIMNT "#":GOTO 1148

What happens if 2 is the value for variable A (8)? Then line 60 sends the
computer to

88 PRINT "#":G0TO 11@

Now you understand how the computer chooses one of the four symbols
and displays it in a slot.

After each of the PRINT commands, the computer goes on to line 11@.
(There is no GOTO 110 command in line 100, because the computer auto-
matically goes to the next line.)

Line 110 tells the computer to change the value of | from 0 to 1. Next it
goes back to line 40. Now, do you know what will happen next? Think
about the program, and try to understand it by yourself before we explain
it.

OK. When | is 1, line 58 becomes
LOCATE 1% 3+12, 9

which means LOCATE 15,9. In other words, the position where the sym-
bols will be displayed has moved from 12,9 to 15,9—from the left slot to
the center slot. One of the symbols will appear on the screen at 15,9.
Then the computer will change | to 2, and come back to line 40. And this
time the position becomes 18,9—the right slot. The computer has gone
through the program three times (in much less than one second!).

N

.

\J

N

L)

)

)

)

Jdd

A

)

Jdd

0

y

> ;

2 That is what you might see on the screen, but we can never know which
a, symbols the computer will choose at random.

a

s Lines 30 to 120 are & loop. Your computer will go around and around,
e using the array variables to choose and display symbols in the left slot,
= center slot, right slot, left, center, right... Since the program is an endless
> loop, the symbols will appear to be constantly “revolving” on the screen,
- just as they would in a real slot machine.

> If you haven't tried the program yet, enter it now on your computer. Check
— to be sure that there are no mistakes. When you give the RUN command,
you can see that we have succeeded in creating a slot machine by using
array variables. (In the SCREEN @ condition, however, the right edge of
each symbol is not displayed.)

y

'\

a

> But how can we make this endless loop stop, to tell us the score? And

2 how will the computer know the score? To turn our slot machine into a

= game, we have to put some more commands in the program. When we
do that, we will use some variables that take letters instead of numerical

= values—called String Variables. And that requires a special explanation.

Y

> STRING VARIABLES

a

- We have learned that a variable can take the value of any number—such
as 1, 2, 3, 191 or 252. Variables can also be given the ‘“value” of any

=y letter—or of a set of letters that makes up a string.

-

= Let’s do some simple exercises to see how a variable is used to mean a
letter or string. First, type PRINT A$ and push [RETURN]. ($ is on the 4
key, and requires the)

> FRINT &A%

~ Ok

- B

e Nothing happened. There was no beep or error message to indicate a

mistake, and the computer didn’t print anything. Now enter this com-
mand: m

As="ABC"
PRINT &%

Press [RETURN], and your screen should look like this:

Ag="ABC"
Ok

FRINT A
AELC

ik

B

You can see that A$ is being used as a variable, and its value is “ABC.”
Compare this with another command:

145

i)

=

ik

FEIMNT &
245

5

|

This looks familiar, doesn’t it? Variable A takes the value of the number
345, and there is no $ sign (dollar sign) at the end of the variable name A.

Have you guessed the rule? When the variable name ends with a $ sign,
the variable has the value of a letter or a set of letters (called a “string.”)
Without the $ sign at the end, the variable takes the value of a number.

Y

)

y

y U UV

»

There is one more thing to remember: the value must be in quotation
marks, like this:

A$="ABC”

Try these examples, and you will clearly understand the difference be-
tween numerical and string variables.

=123 A takes the value of 123
Ok
E=2324 B takes the value of 234
Dk
FRINT a+E Display A+B
357 The sum is 357
Ok
AE="123" A$ takes the value of 123"
(K
Bg="234" B$ takes the value of ”234”
]
FRIMNT Aat+B% Display A$+B$
123224 The sum is "123234"
0k
AE=FET A$ takes the value of 987
Trpe mismatch Beep! Not possible
Ok
||

When we enter A$="123", the value of variable A$ becomes 123—not the
number one-hundred-twenty-three, but the characters one-two-three. And
in the next line, B$ takes the value of 234 (characters two-three-four).
Why? Because we used quotation marks and the $ sign. That told the
computer that we are using a string variable, so it reads 123 not as a num-
ber, but as characters, as if they were letters.

When the computer adds A$+ B$, then, it connects them together into a
single set of characters. A similar example would be "ABC”+”BCD”=
"ABCBCD”.

Finally we entered A$=987. The computer responded with an error
message:

Type mismatch (you typed two things that do not match)

Without quotation marks, 987 is a number (nine-hundred-eighty-seven)
which does not match the string variable with the $ sign.

Now we know that when the variable name ends in a $ sign, it is a string
variable, that shoud be assigned a letter or a set of letters, and the value
must be in "quotation marks”. Now, let’s go back to our program for the
slot machine game.

HOW TO STOP A LOOP WITH INKEY

The FOR-NEXT loop that we used in the guessing game stopped itself
when its variable reached the last value. But command line 120—the
GOTO 30 command—means that our loop in this slot machine game will
never stop.

It won’t stop!!

Of course, you can always stop your computer by pushing and
. But that stops the whole program, and if you give the RUN com-
mand to start again, we still have an endless loop. We want to stop the
slot machine and look at the symbols, to see if they match and learn how
many points we win or lose. And then we want the program to start again,
so that the game continues.

A good way to stop the slot machine is by adding these two lines to the
program:

U

R

4

1832 Ke=INKEY¢
184 IF K#="A" THEN END

K$ is a string variable, of course. And we can see in line 106 that when
the value of K$ is A, the slot machine will END its revolving display.

What does INKEY$ mean? It is a function in the BASIC language. INKEY
means input from the keyboard—any key that you press. Line 103, then,
means that K$ takes the value of any letter key that you press. If you
don’t press a key, the computer will advance without giving a value to K$.
If you press [B] or [c]or [x], the computer will continue to revolve the
slot machine. But if you press E (in capital letter), line 106 will com-
mand the computer to END.

If no key is pressed, | will do nothing

If you press [A], | will give A

-Ijé;._/ CA

Now our FOR-NEXT and GOTO 30 loop, which goes from line 30 to line
120, has an END command in the middle. But the computer will not hear
the command (will not stop the slet machine) unless we tell it to, by
pressing the key. In other words, the slot machine keeps changing the
symbols until we stop it.

3@ FOR I=8 TO Z]

[
|
: 3 symbols in the slots
|
|
|
|

183 K$=INKEY%$. .
184 IF K$="a" THEN END:}——Program will END if

118 NEXT I | [A] key is pressed
126 GOTO =@

FOR—NEXT loop that displays

=

WHAT’S THE SCORE?

When the slot machine stops chaning the symbols, we want to know how
many points we won (or lost!). This means we must put the rules in the
program. Do you remember the rules? We begin with a stake of 100
points. Then we bet some of our points—any number between 1 and 100.
Let’s add this information to the program.

23 P=188:LOCATE 2,18:PRINT USING "STA
KE: ####8"
24 LOCATE 4,28:INPUT "BET" ;B

Let’s look first at line 23. Our stake will change each time we bet, so we
use a variable, P. The stake P has an initial value of 100. To display the
score, we give a LOCATE command, and then a PRINT command.

PRINT USING "STAKE: # # # #”;P

This new PRINT command tells the computer how to format the informa-
tion it is displaying. The # sign means “digits” This command tells the
computer: display P by using the four empty spaces on the screen next
to “STAKE:”. The game starts with a stake of 100, so the first display at
2,18 will be:

STAKE:_.100

N—

4 digits

Line 26 tells the computer to input your bet on the screen, just below the
stake. Your bet will change every time, so this line uses variable B for
your bet. The INPUT command tells the computer to wait for the value
of B—the bet—to be entered from the keyboard. If you bet 10 points, it
will be displayed like this:

STAKE: 18a
BETF 18

LUEUELVE

1)

LEUEL

L

» O O

LELELELEU

After lines 23 and 26, the computer advances to the FOR-NEXT section.
Now let’s enter the new command lines 23, 26, 103 and 106 in our
program.

16 DIM Acz)
200 tls

22 P=1868:L0CATE 2,18:FRINT USIHG "5TA
KE:##&4" ;

== LEEsTE 9, z0:INFLT “EET:E

38 FOR I=8 TO 2 1
48 ACLI=INTCRNDC 1) %4y +1 Ada
S@ LOCATE [#3+12,%

&8 ON ACI) GOTO 76,80,96,160

78 PRINT "®".GoTo 183
6 PRINT "#":50T0
20 PRINT "#":GOTO
188 PRINT "4

162 K$=INKET$

18é 1F K$="8A" THEN END
118 NEXT 1

126 GOTO 2@

<« Change

< Add

Notice that we must change the GOTO 110 command in lines 78, 80 and
90 to GOTO 103. Do you know what would happen if we forgot that?

Now the slot machine is ready to take your bet, but we have not yet told
the computer how to change your stake, that is, how to keep the score.
We will add some new commands to the end of the program beginning
with line 130. But first, go back to line 106.

16& IF K#="A" THEW END

When we make the slot machine stop changing the symbols, by pressing
the II] key, we don’t actually want the program to END. Instead, we wanf
the computer to tell us the score. So change line 186 to this command:

1848 IF K#="&" THEW GOTO 136

We will know whether we have won or lost when we see the symbols on
the screen. If all three are the same, then we will win three times our bet.
(If our stake is 100, and we bet 10, and we see three of the same symbol,
then our new score is 130.) If two of the symbols are the same, we win
the same amount that we bet (the new score is 110). If we see three differ-
ent symbols, we lose two times our bet (the new score is 80). For exam-
ple, when we see

o

v &+ @
we know that we have lost some points.

But your computer is not looking at the symbols on the screen. It uses
the variables that are in its memory. The computer will know very quickly
if A (@), A (1) and A (2) are equal to each other, by checking the values of
those array variables.

We see this

The computer’s memory has this

VRN

If the screen shows:
¢ 9 @
do you know what will be in the computer’s memory?

As you can see, it is not very difficult for the computer to decide whether
two, three or none of the symbols are the same. And that means that our
program commands for scoring are also not very difficult.

IHOIF ACRI=A0l AND ACEI=A(ZY THEM P
F+E#3:G0OTO 158

48 IF AL =Aclr OF &1 =480 2D
fan]

5021 THEM P=F+B ELSE P=P-Bx2
SE LOCATE &,18:FRINT USING "HHHE" ;P
S\ LOTO Z&

The first line of these new scoring commands is 130. This means that the
scoring part of the program will be used only after the @key is pressed
and the slot machine stops.

XA

128 IF @i8r=a01l) aMD S0B)=402y THEM P
=P+B=32:G0T0 154

Notice that the IF—THEN command has two conditions, connected with
AND. If they are both true—A (@)=A (1) and A (0)=A (2)—then all three ar-
ray variables are equal, and the three symbols on the screen are the
same. If this is true

THEN P=P+B % 3:GOTO 150

»

Y

LELVELELELELELELE L

LELELELELELELELE L

y UV UV ULV U

y

y U WU W

y

That means your bet will be multiplied by 3, and added to the stake, P;
and the computer will go to line 15@. If you bet 10 with a stake of 100, the
new score is 130.

But if the three array variables are not the same, the computer will not
follow the THEN command. Instead it will go to the next line in the
program.

148 IF Ad@r=4010 OR ACL =020
=5(2) THEW F=F+B ELSE F=F-E=Z

Here we have an IF command with three conditions, and they are con-
nected by OR. This means that if any one pair of variables are equal, {or,
two symbols are the same),

THEN P=P+B

adds your bet to your stake, for a new score of 110. But if none of the
three conditions is true (all the symbols are different), the computer will
go on to

ELSE P=P-B %2

You lose! Your bet is multiplied by two and subtracted from your stake—
the new score is only 80.

Now the computer knows the score, and the next step is to display it.
158 LOCATE 2,12:PRINT USIHNG “"HH#H#";F

This is easy to understand, because it is almost the same as the PRINT-
foramt command in line 23: first LOCATE, then PRINT USING the format
of four digits, then the name of the variable that is taking a new value.
Each time you stop the slot machine, the computer will calculate the new
score and display it at position 8,18.

What happens next? The game continues, which means you must make
another bet. So line 16@ sends the computer back to line 26, where it
waits for you to enter your bet on the keyboard.

Now enter the new scoring commands in the program. It should look like
this:

16 DIM ACZ2

28 CLS

22 P=188:LOCATE 2Z2,18:FRINT LUSIMHG "ST4
FE : 888" ;P

Z& LOCSATE 4,28 : IMPUT "BET":E

38 FOR I=8 TO 2

48 ACII)=INT(RNDC1)Y =43+ 1

08 LOCATE I*#3+12,%

48 0N ACly GOTO 7@ ,88,%78,1648

78 PRINT "®":G0T0O 1@2

&0 FPRINT "#":GOTO (a2

28 FRINT "4":G0T0 163

166 PRINT "#v

182 K$=INKEY$

18 IF K$="A" THEN |GOTQ {326/« Change
118 NEXT 1

1z6 GOTO 26 g
138 IF AcBr=a0]) gD acdi=Aac s THEM F
=F+E*32:50T0 15a

148 IF AiBi=a0ly OF &dli=&dZ: OR Si@:
=% (22 THER F=F+E ELSE FP=F-E*Z

158 LOCATE S,18:FRINT USING "HHEH#A"F
128 GOTO Z&

Add

Wait a minute! This program is too long to fit on the screen. The first part
disappears as you enter the LIST command. To solve this simple
problem, we must tell the computer what to list, like this:

LIST la-1@a

With this command, lines 1@ to 100 are displayed. To see the last part,
enter

LIST 118-
Now use the LIST commands to check carefully for mistakes. When you

are sure the program is correct, give the RUN command—and enjoy your
new slot machine game!

\

» O (O

]

THE FINISHING TOUCHES

Your Sony Computer has become a slot machine that works very smooth-
ly. It is doing some very complex tricks: asking for a bet, chaning the
symbols in three slots, and calculating the score when you stop the sym-
bols. Our program for all these things has only 20 command lines—not
very many when you remember that a computer must be told each time
to display, calculate, stop, wait for a bet, etc.

But one thing is missing. In the beginning, we planned that you would
win the game when your score reaches 300, or lose the game when your
score becomes @. By now, you have probably run your slot machine score
over 300, or below @, or perhaps both.

Let’s make our good program into a better program, by adding com-
mands for winning and losing. At the same time, there are some other
improvements we can make, for a perfect program.

®\We can expand our game a bit, by making it possible to enter another,
different bet—only after pressing the space bar on the keyboard.

® The space bar would also be more convenient than the [a] key when
we stop the game, because the space bar is easier to press.

®When we make a new bet, the previous bet is still on the screen. This
is a little confusing.

Here are the changes that we should enter in our program.

~
=
[3
_=
18 DIM A2 -
78 CLS
Z2 P=16G6:LOCATE Z.18:FRINT USING "STe -
KE : BH88" ; F
24 LOCATE 7,28:FRINT °© Ot i e
2& LOCATE 4,268:IMNFUT "BET":E
=@ FOR I=8 TO = =
48 ACII=INTC(RNDC(L)Y %4y +1
50 LOCATE I%3+12,% <
48 ON A1) GOTO 78,86,%6,100 =

78 FRINT "@":GOTO 1&3

88 PRINT "4":G0T0 163

8 PRINT "#":GOTO 163

188 PRINT "&"

182 KE=INKEY$

186 IF [K$=" "] THEN GOTQ {38
116 NEXT I 1
126 GOTO 38
136 IF AdB:=401) aMD @0@8)=a(21 THEM F
=F+B#23:GOTO 154

146 IF ACBI=A01) OR AC10=A0Z) OR ACE)
= 121 THEM P=P+E ELSE F=F-E%Z

1568 LOCATE 2,18:FRINT USING "HHHH":F
152 GOTO 178

154 K$=INKEY$

154 IF K#=" " THEN GOTO 24
146 GOTO 154] Change

Change

Add

178 IF P<388 AND P>@ THEN GOTQ 1S4
180 IF P>=388 THEN LOCATE 3,5 :PRINT "
O LJIR T

198 IF P{(=@8 THEN LOCATE 3,5:PRINT "*¥C
L LEEEl

288 END

T—Add

Do you understand? Before you read the explanation, take a few minutes
to see if you understand it by yourself.

Line 170 begins a new set of winning and losing commands. If the score
is less than 300 AND more than @, the game continues, and the computer
goes back to the program. If the score is 300 or more, the game is over,
and YOU WIN! is displayed near the top of the screen. If the score is less
than @0—YOU LOSE! And if you win or lose, the computer goes to line 200
and the game reaches the END.

Line 24 erases the previous bet at the beginning of each round of the
game. It moves the cursor to the bet display, and types six empty spaces
there instead.

Line 106 has a very simple change. Now we stop the slot machine with
the space bar, not with the key. Remember that your computer reads
a space (” ”) as a character.

Lines 160, 154 and 156 mean that the game will start again when we press
the space bar.

Those are the four changes we wanted to make: winning/losing, and the
three small improvements.

Line 152 does not actually change the game, but it is required because
of the other changes in the program. This line comes just after the new
score is displayed, and it sends the computer ahead to the new win-
ning/losing section in line 170. If you have not won or lost, line 170
returns the program to line 154, and the game continues when you press
the space bar.

FOR EASIER PROGRAM READING

When we began writing the Slot Machine program, we used line numbers
in tens: 10, 20, 30, 40... Then, as we made the program more complete,
we used some of the “empty” lines to add new commands. As a result,
our line numbers came in unusual groups, like 9@, 100, 103, 106, 110, 120.
To make the program easier to read, we can renumber the lines.

Enter this command:

FERLIM

The lines stay in the same order, but the line numbers change to tens,
as we can see when we give the LIST command.

Now the line numbers are much easier to read. But what has happened
to our GOTO commands, which contained line numbers? No problem! For
example, look at line 100 in the new program:

180 PRINT "®":30T0 148

This GOTO command—GOTO 140—was GOTO 103 before you gave the
RENUM command. Now line 103 has become line 140, and GOTO 103 is
GOTO 140. That means your Sony Computer is quite smart, and when you
run the Slot Machine program again, the game will not be changed at all.

PUTTING TITLES IN THE PROGRAM

Suppose you want to show your program to a friend. Or suppose you
want to read a program again several months after you wrote it. When 20
or 30 lines of BASIC come on the screen, it may be difficult to understand
their functions, because the reader is not familiar with the program. To
solve this problem, BASIC lets you put “remarks” in the middle of your
program, like this:

S REM s=% SLOT MaCHINE GRME ===
7 REM
1@ DIM
28 CLS
28 P=1@6:LO0CATE 2,18:PRINT USING "=TA
HE: HHHH8" F

AC2)

48 LOCATE 7,Z8:FRINT " :
5@ LOCATE 4,z8:INPUT "“BET":E

;;1 ##x SLOT M&CHIME START ®==
&2 7

45 FOR I=8 TO 2 —— Previous line 60
78 ACII)=INTC(RNDC1)*4)+1
89 LOCATE 1%3+12,9

A OM Acl) GOTO 186,116,126,130
186 FRINT "®":GOTO 14@

116 PRINT "#":GOTO 14@

120 PRINT "#":G0TO 148

136 PRINT "#"

148 KE=INKEY$

1586

IR S =

THEN GOTO 1&@

148 NEXT 1

178 GUTO &4

ea #

182

125 IF acai=adls aND Adar=a02y THEN F
=F +E*2:G0T7T0 288 — Previous line 180

128 IF @ad@r=Adl) OR &dli=/iz2) OR AL
=g (2 THEN P=P+BR ELSE F=F-E=Z

288 LOCATE 2,12:PRINT USING "HHHH"F
218 GOTO 2548
228 HKEF=INKEY#

230 IF K=" " THEN GOTO 44
zZ49 GOTO Z2Z@

245 7

2568 7 === LIIM OR LOSE ===

= - Previous line 250
252 -

23
Z55 IF P<2@@8 AND F>@ THEN GOT O 22@<—|
2 5 IF P>=32@6@ THEN LOCATE 2,5:PRINT "
O LI

2 IF F<=@ THEWN LOCATE 2 ,S:FRINT "vO

Our “remarks” here are the title of the program and subtitles for its differ-
ent parts. They make the program longer, but much easier to read and
think about. And they don’t change the game at all, because your com-
puter doesn’t read the new lines—they are only for the convenience of
people who use the program.

Let’s look at some of the new remark lines:

REM #%% SLOT M&ACHIME GAME ==
REM

=3

The REM command tells the computer to ignore the characters after the
command itself. You can type in whatever you want, and it will not
change the program. On line 5, we see the title of this program. Line 7,
though, is empty after the REM command. This way there is empty space

around the title—just like on the title page of a book. The empty space,
and the stars before and after the title, make it easy to find the title
among all those lines of BASIC commands.

Now look at lines 55, 6@ and 62. You can see that there is a shorter way
to give the REM command: with the ’ (single quotation mark). Of course,
these lines are not actually part of the program.

The computer will not read them as commands, because they begin
with ’. The subtitle, the stars and the empty space are for people, not the
computer.

The computer does see the line numbers, because they come before the
’ (or REM). For example, in line 150, we see:

158 IF HK#=" " THEN GOTO 1268
But 180 is a remark line:

1ga 7 ==% CALCULARTE STAKE ==

The computer finds no command in line 180, so it goes on to the next
one. Line 182 has no command, either, so the computer goes on to 185.
But the reader—you or your friend—goes from line 150 to line 180, and
knows immediately that this is the section where the stake is calculated.

Y
L
B
Y

y

YOU’VE COME A LONG WAY!

Congratulations! After doing the exercises and games in this book, you
have a working knowledge of a new language—BASIC. Perhaps it was
just a few hours, or one or two days ago that you began with very simple
commands, like PRINT 3+5. And now you can understand and use com-
plex lines like A()=INT(RND (1) % 4)+1, and PRINT USING “# # # #";P.
Your Sony Computer will give you years of service, entertainment and
education, now that you know how to “speak its language.”

As you practice writing and using programs, you will become more and
more skillful with numbers, graphics, commands, functions and games.
It’s just a matter of time until you are an expert, and the time will go
quickly as you share the fun of your Sony Computer with your family and
friends.

You can continue practicing commands, and learn some new ones, in the
next section of this book. After that, you can use the MSX-BASIC
Programming Reference Munual to try out many new BASIC commands,
and discover what they do. And then you can experiment with your com-
puter, to make new colors, graphics, sounds and games.

When you want to create your own program, first spend a few minutes
planning. Perhaps you will want to make a flow chart. When you know
what functions and what types of commands you will need, use the In-
dex at the back of the book to find them and review the explanations.
Plan carefully, and then write some commands and run them. Your Sony
Computer will help you in two ways: it always does exactly what you tell
it to do; and it always forgets your mistakes when you enter the NEW
command.

Talk about your programs with your friends. Show them what you can do
on your computer. They will probably have some different ideas, and
together you can have more fun. If your friends have their own com-
puters, you can trade programs with them, by using a tape recorder or by
writing your program on paper.

Remenber, the best way to have fun with your Sony Computer is to try
new things, and see what happens. There is no limit to what you can tell
the computer with the BASIC language. Are you ready to begin the won-
derful voyage into your imagination? Good luck!

BASIC COMMAND PRACTICE

PRINT

18 PRINT "JOHM"
28 PRINT “AND"
30 PRINT "Ma&RY"
RLIM

JOHM

AND

MR

Do you remember this simple program? Let’s change it a little.

(A}

FRINT "JOHN"[]
FRIMNT ”ﬁNDnm,:::>AM
FRIMT "Mary ™

D3 0 =
RN

=
2a !

L
JOHMAH DA R

With the ; (semi-colon) after “JOHN” and after “AND”, the computer dis-
plays the three words together, on one line. Actually, the commands can
all be put in just one program line:

18 FRIWT *JOHMN "E[" AL g MaRy
RLIM
JOHMNSMDMS R

Important

But it’s difficult to read three words without spaces between them, so
let’s try something else.

18 FRINT "JOHH"

28 PRINT " AND",>— Important
2@ FRINT "MARY"

RUMN

;J DIHRN IfizN D

MaRY 14 characters

When we use a , (comma) instead of a ; the first letters of each word are
printed 14 spaces apart. The same thing will happen if you enter the com-
mand on one line.

18 PRIMNT "JOHN"
RUMN
JOHN AND

MARY 14 characters

" ASND uE‘ "R

Important

Now try this command, with a single space between each word and the
second quotation mark.

18 FRINT "JOHN "3 "a&ND ° g MARY"
RUN
JOHMN AND MERY

Remember: the space is an important character.

Now let’s review the different ways that number characters can be
printed.

18 PRINT "3+5="; < Display characters

28 FRINT 3+5 — Make calculation, display answer
RUIM
3+5= 3

Line 10 is a command to display characters, and line 20 is a command
to calculate. But these two different functions are connected by the ; at
the end of line 10. That told the computer to print them together on one
line, just as we would normally write the problem on paper. (In this
answer there is one empty space before 8. That space is used to display
the minus sign (—) if the answer is a negative number below zero—for
example, 3—5= -2))

Let’s use the INPUT command and the PRINT command in the same sim-
ple program.

101

102

1a INPUT A

28 INPUT B
28 FRINT A,B.R+E
RUN
A= <~ What value? Type in 3
? 5 «— What value? Type in 5
7ok)
Value of A Value of A+B Value of B

The INPUT command tells the computer to ask you what value to give to
the variable, and wait until you put a value in with the keyboard. After you
press [RETURN], the computer goes on to the next command. Line 30
puts the three values on the screen.

Here’s a different, clearer way to do the same functions.

18 INFUT "&=":A&
28 INPUT "B=";B
=8 C=At+R

48 FPRINT "A+B=";C

b §

A+B= R —Result of line 40

Line 10 and 20 tell the computer what question to display, instead of
using only the ? (question mark). Line 30 makes a new variable C, and
gives it the value of A+B. Line 40 tells the computer to print the answer
and the problem, beginning with A+B=. The three lines after RUN are
much easier to understand than the three lone numbers at the end of the
last example.

Yy O

)

YPODODDEODPPPOPOOOPDDPPOPPOOPPPOOPOPP

L

)
Sometimes it is easier to read displays when there are empty lines be-
Sk tween words, or between sets of words.
18 FRINT " JOHM"
3 284 FPRINT
28 FPRINT "a&HD"
48 FRIMNT
@ FRIMT "MaRyY!®
R
JOHkMN———
One empty line between
AND
One empty line between
ey ==

When only the PRINT command is entered on the line (as in command
lines 20 and 40), an empty line is displayed.

INPUT

18 IMFUT "A is "

28 IWNPUT "B i=s "B

28 PRIMT "s+B=";4+EB
b 48 PRIMT "A-B=";A-B

Rl
s s
- B ig 72 2
- A+BE= 18
- H-B= 12
- Here is another program that combines the INPUT and PRINT com-
9 mands. It’s easy to see that it tells the computer to ask for values for A
\ and B and then to display two calculations. Now let’s put the two INPUT
commands together, and add some more calculations.

104

16 INFUT "A and B are ";A,E
28 PRINT "A=";A,"B=";B

26 FRINT

4@ PRINT "A*B=";A%B

S8 PRINT "A/B=";A/B

RUN

& and B are ¥ 15,3
A= 15 B= 3
AX¥B= 45

A/B= &

In line 10, you can enter two values for two different variables,—but the
, (comma) between the two values (in this case, 15 and 3) is very impor-
tant. If the computer displayed 153 instead of 15,3 it would be difficult
to understand. (The PRINT command in line 2@ also has important punc-
tuation. Do you know what the , and ; mean?)

Now we will add a string variable to our INPUT command.

18 IMNPUT "HName" jN$
28 PRIMNT MN#;" is great!"

Rl
Name?® John
John is great!

When the variable name ends with the $ sign, the variable “takes the
value of” a letter or a word. Here is a program that uses both a letter vari-
able and a number variable.

18 INPUT "Rame" :MN#E
28 IMPUT “Age’ iy
S8 PRIMNT HNE;" is "3v;" rears olid.!

R
Mame s John
fAge? 18

John is 18 wears old.

o

LR LELELELE L U

YO OO0 OO

)

)

YO O D

)

LOLLLLLOL D]

)

AN

JOOVLOLLDY

)

FOR—NEXT
oNEiEs
28 FOR I=& TO 2&
20 LOCATE 1,18
48 PRINT "#"
S@ MEXT 1

4

$333FFEIEIEFEFIITEIFISIII IS TTEEETLE

In this program the repeat function (loop) of the FOR-NEXT command
makes the computer display $ signs on the screen from position @,10 to
position 28,10.

Here is the same program with a new direction added.

1 CLE

2 BEE =5 TH Be ETER 3
8 LOCSHTE I,16

48 FRIMT "$°

S8 MEET I

4

¥ % * £ = £ % & % % % % %

What is the meaning of STEP 3 in line 20? As you can seg, it has moved
the cursor over three steps after each $ sign. In other words, the value
of | now changes in steps of 3, so the $ sign appears at positions 0,10
and 3,10 and 6,10...—not at position 0,10 and 1,10 and 2,1@... The $ signs
cover almost the same area of the screen as in the above program, from
0,10 to 36,10.

By adding STEP and a number to the FOR command, then, you can make
the variable change in steps. In the last example, the variable was the po-
sition, so the position changed in steps. The next program uses the STEP
direction to change the way the computer counts.

105

i@ FOR I=S8 TO 8 STER -5 e
8 FRIMT 1, =
20 MEXT 1
=B o
=h = -
as :
ok =5
20 5
1 = &
H

1=56 TO ® makes the computer count as it does each FOR—NEXT loop.
There are 51 values for | between 50 and @. But the STEP -5 command
makes the values decrease in steps of —5, so there are only 11 values
for I.

LELE LK \

FOR—FOR—NEXT—NEXT: A Loop Inside a Loop

18 FOR I=& TO 2

28 PRINMT "I=";l

3@ FOR J=86 TO 4 = | fFor FOR i
48 PRIMT "J=";J0; § S

S MEXT J NEXT NEXT

S8 PRIMT

FE OMNESRT I

R o
j= & J= 1 J= 2 4= 3 = 2

I= 1

e

= 2

Je= B GJ= § J= 2 Je F Jd= 4

This program shows how we can put one FOR-NEXT loop in the middle
of another, wider FOR-NEXT loop. Variable | is controlled by the first and
last lines of the program, and variable J is controlled by lines 30 and 50.
The result is that for each | value, the computer makes four small loops
to find all the J values. | changes from 0 to 2, and with each |, J changes
form @ to 4.

Here is another way to use a loop.

g INPUT HWN,=

28 CLs

Z@ FOR I=@8 TO N STEP =

48 LOCATE S,18:PRINT "I=";
S8 FPRIMT USIMNG “"HHH##" ;1

48 FOR J=@ TO 588

78 NEXT J

88 MNEXT I

This program uses the INPUT, FOR-NEXT and STEP commands to make
variable | change in loops from @ up to N, in steps of S. Of course, we will
give values to N and S from the keyboard.

But what is the function of variable J and its short FOR-NEXT loop in
lines 60 and 70? J is never printed. This variable is never used at all, but
the computer will find 501 values for J each time, before it continues cal-
culating and printing I. This is a dummy loop. It takes up some time—
long enough for the computer to do 501 FOR-NEXT loops—but it does
nothing else.

The function of the J loop, then, is to put a time interval into the bigger
I loop. When you run this program, you will see that the computer pauses
after each display.

Now you know how quickly your Sony Computer can do 501 simple
things (rather fast!), and how to use a dummy loop to put some extra time
in your program. Can you write a dummy loop that keeps the computer
busy for a longer time?

IF—THEN and IF—THEN—ELSE

Here is another guessing game, where you will try to match the number
that the computer chooses. But this game is a little different from the
guessing game and slot machine game that we programmed earlier in
this book. Those were games of pure luck, and this time you can use
some skill to guess the correct number more quickly. If you guess clever-
ly, you should be able to find the number in six or seven tries. But if you
guess at random, it might take you many more guesses than that.

18 X=IMTIRNDCI) =188+

28 INFUT "Make a guess" i/

38 IF A=X THEW GOTO 7@

48 IF A« THEW PRINT "sSHaLLER®
58 IF A<¥ THEW PRIMT "LARGER"
S8 GOTO 2 '

78 PRINT "Hit!'®

Lines 30, 40 and 50 tell the computer to compare your guess to the value
of X, and give you a hint to help you make your next guess.

Can you find the change in this next program?

18 X=INTC(RNDClY*1@885+1

28 IMPUT “"Make a gues=':i#&

28 IF &=X THEW 7@

46 > THEMW PRIMT "EM&LLER®
Sa 5 <ix THEM PRIMT "LARGER®
48 50TO 28

S8 PRIMT *"Hit!®

This program is actually the same as the previous one, even though line
30 has been changed. IFTHEN has the same meaning as IF—THEN—
GOTO. Also, the program would still be the same with: 30 IF A=X GOTO 70.
In other words, IF—GOTO has the same meaning as IF—THEN—GOTO.
Either THEN or GOTO can be eliminated (but not both!)

Now we will combine two lines of this program into a single line:

18 X=INTCRHDCI 108 +1
28 IMFUT "Make a guess" ;A
28 IF =X THEN 7@ ELSE

IF &xx THEW FPREINT "SHalLLER"
S8 IF &dxX THEW FRIMWT "LARGER™
&@ GOTO Z@
T8 PRINT "Hitt!®

The two IF—THEN commands in lines 30 and 40 have become one
IF—THEN—ELSE command. There is no line 40 now, but the meaning is
the same. If that is possible, then it should also be possible to make lines
30 and 50 in this program into just one line.

(1)

2R\

N

YO OO

{

18 H=INTIRRND{LI=1E82+1
2@ INFUT "Make a guess' s
ZE IF g=x THEM 78 ELZE

IF fAs¥ THEM PRIWNT "SMalLLER®
ELSE PRINT "LARGER"

&8 GOTO 26

78 PRINT "Hit!"®

-
=
-
-
~
-
=
=)
=
-
-
<
=
=
-
-~
-
-
>
-
-
-
=
-
L 4
v

You can check to see if each of these four programs is actually the same,
by running each one on your computer.

DIM (Array Variables)

When we used array variables in the Slot Machine Game program, we
used the command

DIM A (2)

to make three variables:

Then we changed the numbers in the brackets to a variable, (1), and told
the computer that 1=@ TO 2. We still had the same three array variables,
and the computer changed them in a FOR-NEXT loop.

Array variables can have more than one character in the brackets. For ex-
ample, if we enter

DIM A (3,4)

then we will have 20 variables:

A (0, 0) A1, 0) A (2, 0) A (3, 0)
A (@, 1) A, 1) A2, 1) A@G 1)
A @, 2 A, 2 A2 2 A, 2
A (0, 3) A1, 3 A (2, 3) A S, 3)
A (0, 4) A1, 4) A (2, 4) A3, 4)

109

110

Do you understand the 2@ different vriables? The first number in brackets
can have four values, and the second number can have five values—4
times 5 is 20. (How many variables would we have if we write DIM A 9,9)?)

We showed you the 20 variables not in a simple list, but in the form of
a chart. (You might think of it as a two-dimensional array, with the first
value changing from left to right, and the second from top to bottom). As
you can see, array variables are very useful for programs that make
charts and tables. To use these two-dimensional array variables in a pro-
gram, we would replace the numbers in brackets with variables, such as
A (1,J). Here is an example of a real chart:

Reading Writing Math Total
1st term 68 88 70 226
2nd term 73 53 91 217
3rd term 92 98 82 272
Total 233 239 243 715
Average 77 79 81 238

This chart shows somebody’s grades in three classes for three school
terms. With the totals and averages, there are exactly 2@ different num-
bers in the chart. That means we can use the same DIM (3,4) command
to make enough variables for this chart. Now, let’s think of ways that we
can use programs to assign actual values to our array variables, A (1,J).
Here’s one:

188 FOR J=8 TO =z
1ig INPUT Ace ., J2
28 MEXT J
These three lines are for the Reading grades, which become variables
A (0,0), A (0, 1) and A (@, 2). Each time the computer comes to line 110 in
the FOR—NEXT loop, it will ask us to input the values (68, 73, 92).

Next, to calculate the total of the three Reading grades, we enter:

e T=8 e T is the variable for Reading Total
218 FOR J=8 TO 2

226 T=T+AacE,J2

23238 MNEXT J

298 /o8, 3r=T
In the same way, we can enter the 1st Term Writing grade into variable

A (1, @), and the 1st Term Math grade into A (2, 0). To enter the 1st Term
total for the three classes into A (3,0), the following program will do.

)

YO O O 6 ©

S8 Ti=8 e T1 is the variable for 1st Term Total
318 FOR I=8 TO 2
» 226 Ti=Ti+&01,80
; 338 NEXT 1
7 I48 AC2,8:=T1
- To program the other grades and totals, and the averages, we can use
. similar FOR—NEXT loops with array variables in the form of A (I,J). This
is how the entire program will look:
» 1a *#xx GRADES CHART PROGRAM ==
L I
368 DIM AL, 40
= 48 CLS
2 a8 -
- S8 =% FRTER GRAHDES ===
= s8 FOR I=8 TO 2
4 38 FOR J=8 TO 2
~ 8 ON I+1 GOTO 1é@,126,146
> 186 LOCATE 8,J:FRINT "Feading, term ";J+41;
-] 118 INPUT Ad8,J2 :G0TO 1&6)
= L 2E LOCENRS @ G SR RRIURRE e © e we i e g
- 128 IWFUT éll T*:bDTD 1&8
7 148 LOCATE &, J+4:FRINT "Math, term ":J+1;
= 158 INFUT ﬁ(E,J?
= 188 MNEXT J
- 178 MEXT I
> 138 -
- 156 #=xCeyl CULATE TOTaLS AND AVERAGES**
- 288 FOR J=8 TO 2
i Z2la T=a
- 228 FOR I=8 TO 2
- 238 T=T+A(I ,J2
248 MEXT 1
> 258 A2, =T
- 258 WNEXT J
. 278 FOR I=8 TO =
g 238 T=a
v 298 FOR J=@ TO 2
< 308 T=T+&C(I , T
- 218 HNEXT J

12

328 ACI,32=T

338 ALl ,4)=INTCACL 32730
248 NEXT 1

258 -

Zaf *»%x MIKE CHART ===
278 CLS

388 LOCATE 5,8

2968 PRIMT "READ WRITE MATH TOTALY
4@ FDOR S5=1 TO 3

18 EGEATE 2 S+l sRRTNF S
429 NEXT S

4268 LOCATE 1 ,5:FRINT “"TTL"
448 LOCATE 1,8:PRIMT "AUVRE"
458 FOR I=@8 TO =2

4468 FOR J=8 TO 4

478 LOCATE I%&6+4,J+2

438 PRINT ACI,J>

428 NEXT J

588 NEXT I

To make our planning easier, we divide the program into three sections—
Enter Grades, Calculate Totals and Averages, and Make Chart. Also, if
you write on paper the places where each variable is entered, it will be
easier to remember how the program works.

Naturally, array variables can be used for other purposes than “slot
machines” and charts. And, as you may have guessed, the number of
variables inside the brackets can be more than two: A (PQ,R) or
B (XY, Z,XY,XZYZ) ... or any other combination, up to 255 different varia-
bles! Computer professional often use array variables to design video
games, or to calculate the finances of large businesses, or for other com-
plex jobs. Your Sony Computer can use array variables for many kinds of
things, as you will learn when you keep practicing programming with
your friends, or with other books. You already have a good start, because
you have used array variables in two different programs.

So good luck to you, and keep practicing!

Y D Q)

Yo [| d=E1c T 64
Array variables........... 77-78, 109
Brackets ().eeovoeeeeeiieeeeeee 42
BUGS..cconvmmmmnsenepsmmmsmmssssmssmss 32
Characters.....cccceeeeeeeeeeeenns 26, 38
Charts ..o 110
L 64
(6o] (o] 3 T (i N 42
COLOR ..ot 12-13, 48
Color Chartcccoeeceeeiiceeecee. 12
Commands.......ccccceeeneennn. 5, 8, 45
(16] 0] o1 F= O G TN ——————— 42
Conditional formula.......... 59, 62
Conditional 100pPccoeeeeverennee. 68
O = 53
KEY ovoeereeieeeceeeeeeeeeeeeee 8
(0]
Decimal point.....ccccccivviinnneennn. 43
DIM s 77-78, 109
Dollar sign ($)..cccecvereiernienene. 84
Dummy 100pP .cooceviiirciininiins 107
ELSE (IF—THEN—ELSE)........ 62,
107
Error message........ 10, 14, 34, 42
[E]
File name...eieiiiiieccinn, 53
Format ..cccoccovveieiceeeeeee, 88
FOR—NEXT......... 68-69, 87, 105
[
€@ [38
GIAD] ST——— E—— 37
[H]

]

IF—THEN ..coovieiiieiieeee 59, 107
IFTHEN—GOTO 108
Initial valuec........ 68, 69, 81
INKEYS .o 87
INDUL somousminssisssnmmmmnsonmmnenssssommnnns 8
INPUT .o, 57, 103
INT (integen..ccoceeeeeeieiieee. 43
[K]

Keyboard......ccccooevieniiviiniiiieennns 6
LINE ..o 49
Line numbercccccoevivieeiieinens 35
LIST ssissinmsniciesssnmmnsensnnsnnessmnss 35, 92
LOCATE .ooeiiiieee e, 65
[WoTo] o RO 39, 68, 106
m]

MOD (modulus) ...cccueeeeeeennee. 71
[N]

Negative number.................... 101
NEW. .. 35
ON-GOTO....iieeectvereeieeeeeeee 81
[P]

Programming......cccccoouennen. 28, 34
PSET...ccevieeeeee. e r———— 38
PRINT cccocoiiie 14, 17-18, 100
PRINT USINGcoovneereeeee, 88
Punctuation.....cccccceeeeeeeivinnnnnnn. 42
[

Quotation marks (”)......... 18, 85
[R]

Random numbers.............. 43, 81
REM .o 97
Remarks cocooccoeeeiiicieeee s 97
RENUM...ccooiiiiieeee e 95

Renumber......ccccoviiiieiinicnn. 95
KEY wervreeereeerererieeeseneas 9
RND (1)urieereeiirieenencnnenn 43-44, 81
BUN s 34
[s]

SCREEN ..o 37
SIc1e 1F L] 1[o]] e R————————— 28
KEY rvveeeeeeeeeeeenaieennennananns 14
Single quotation mark............ 98
S]] (o] - RN 10, 66, 101
STEP e 105
STOP KeY..oeivieriieierciensie e 8
String Variable 83, 104
SY1] o) 7 {11 mu———————————————— 97
Title8 siwvsvsmsmmrromsmsss 96-97
TO e 69
[u]

USING (PRINT USING)............ 88
Variables......cccoeenrn.... 19, 25, 67

>LVLOL YD

Tris Booxr Whas
5(1*”54“&;«3}5"1‘:: On Wepnespay
77" H Of Novemeer 20/
Fox Trne Bemieim OF A e,
By PauL Kewweny Or
THUR SO ScoTrtAND,

HP PSC 1510 U

Duraren OF Two DAys

ACTUWL T;‘ME;? OF G} Hc:zuy;? s

Avrrox | MATELY,

=

3-795-898-11 (1)

Sony Corporation Printed in Japan

