

F

MSX ADVENTURE PROGRAMMING

MSX
ADVENTUREPR GRA ING

Steve Lucas

Argus Books Limited
1 Golden Square
London WIR 3AB

© Argus Books Ltd 1985

Series Advisory Editor: Dave Carlos

ISBN O 85242 857 X

All rights reserved. No part of this publication may be reproduced
in any form, by print, photography, microfilm or any other
means without written permission from the publisher.

Phototypesetting by Photocomp Ltd., Birmingham
Printed and bound by Whitstable Litho

Preface

After owning a computer for some time, most people reach a point
where the novelty of zap-' em-up arcade games starts to wear thin.
At this stage, many owners tum to adventure games as a source of
more lasting enjoyment. For many people, the challenge of exploring
a strange land inhabited by even stranger creatures provides them
with the escape from everyday existence that is sorely needed. For
less than the cost of the airfare to an exotic island in the Pacific, you
can be transported, in spirit at least, to places beyond your wildest
dreams. One day you may be entering the jungles of the Amazon
and the next flying in a spaceship to Mars. The challenge of
exploring a land where your every move may be your last is one that
few can resist.

Over the last few years, we have seen massive improvements in
commercial adventure games, some of which have been due to
radical changes in philosophy, while others have come as a result of
constant refinement of adventure techniques. To the new owner of
an MSX microcomputer, the prospect of writing an adventure
program of their own may seem to be beyond the bounds of
feasibility, but in fact the programming skills needed to create a
text-only adventure are not unduly difficult and even a graphical
adventure is not beyond the bounds of possibility.

Writing an adventure game is very similar to writing a novel.
Everybody can write a few unrelated sentences, but the novelist's
skill comes from stringing sentences together in such a way as to
create a tale combining imagination, flair and ingenuity. MSX
BASIC is one of the most sophisticated versions of the BASIC
language on the market and contains so many features to make life
easier for the programmer that even full high resolution adventures
are within the capabilities of the average programmer. With such a
powerful tool at our side, the technical skill of the programmer is no
longer the limiting factor in the process of designing an adventure
which can be enjoyed by all. In this book you will be shown how an
adventure game can be written by combining a number of standard
routines together and thus the skill of designing an excellent game
comes from creating a good plot rather than from the technical skill

L

Preface

of programming.
Many of the routines found within the pages of this book can be

taken and used within your own programs, although you may need
to adapt them to suit the theme of your own game. There are many
different ways of writing an adventure game and I have attempted
to introduce as many alternative techniques as possible to show how
they can be combined to produce a large adventure. I have included
three full adventures and take you step by step through all the
stages involved in their development.

Naturally, you will need to have a reasonable knowledge of
BASIC programming before you will feel really confident to tackle
your own adventure game from scratch, but even if you are an
absolute beginner, without any knowledge of BASIC, you should
find something of interest within these pages. Computer novices
eager to make a start on their own program will find that the third
program listing in this book was written just for them. The game is
called 'A Journey Through Space' and loads into your computer in
two parts. The first part of this program is a standard adventure
containing all the code necessary to control the game, while the
second part is a data file created by a separate program which is
listed at the end of this book. The data file contains details of all the
locations, objects and words recognised in the game and the
program used to create it contains facilities for altering the file.
When run, this program displays a description of each location and
every object found within 'A Journey Through Space' and asks you
to type in any changes you would like to make. If you were to
change all the descriptions in the file, you would, in effect, have
created a completely new adventure without actually programming
it. Once you are satisfied that the data typed in is O.K., the program
will save the file onto tape or disc so that it can be loaded in as the
second part of the main game. In this way you can write a game of
your own without any of the fuss.

The three complete adventure games listed in this book all
illustrate different aspects of adventure writing.

Program

The Wizard's Quest

Snow White

A Journey through Space

Chapter

1

9

13

Description

A traditional text game set
in Middle Earth

A full high resolution
graphics game for children

A science fiction game
using data files to make
it easy to change

Over the last couple of years, adventure games have improved
beyond all recognition. Not only do many adventures now contain
full high resolution graphics and full sound effects, but many now
also have the ability to analyse full English sentences. No longer

Preface

are we limited to giving the computer simple instructions such as
'GET LAMP', but can instead type commands like 'TAKE THE
GREEN LAMP FROM THE TOP SHELF AND LIGHT IT WITH THE
MATCH FOUND ON THE TABLE'. In the final stages of this book,
you will find a few clues to point you in the right direction for
writing such routines in BASIC, although in practice you will
probably find insufficient room - 64K MSX microcomputers have
just over 28K of RAM free for BASIC programs and although the
BASIC interpreter is very efficient in its memory requirements, you
will usually be forced to write your game in machine code if you
want to include plenty of puzzles, high resolution graphics, sound
and full sentence decoding in one program. Although assembly
language and machine code programming are beyond the scope of
this book, adventure games written in BASIC can be challenging to
play and despite the limitations of the language, the response time
should still be fast enough for even the most discerning player.

L

Programs

1 The Wizard's Quest Chapters 1-7

This is a traditional text-only adventure game and an ideal
introduction to adventure programming, illustrating many of the
techniques of setting puzzles for the player to solve.

2 Snow White Chapters 9-12

A game for children based on the traditional fairy tale, featuring full
high resolution pictures for each location in the game.

3 A Journey Through Space Chapters 13-14

In this game, the data is loaded from tape or disc to allow the player
to modify the game without all the effort of starting from scratch.

4 Filer Chapter 15

This program is used to save a data file containing the starting
position for 'A Journey through Space'. When it is run, you will be
asked whether you want to modify the game and if you answer
'yes', the program will allow you to change any (or all) of the
locations and objects in the game.

-

►

Preface

Why MSX? 1

Introduction 5

1 Getting started 13

2 Writing the data 29

3 The main control section 41

4 Setting the puzzles · part 1 51

5 Setting the puzzles · part 2 61

6 Setting the puzzles · part 3 72

7 Setting the puzzles · part 4 83

8 Making life difficult 88

9 Snow White · part 1 91

10 Snow White · part 2 102

11 Snow White · part 3 114

12 Snow White · part 4 122

Contents

13 Using a data file to create an adventure 131

14 A Journey Through Space 144

15 Creating the data file 155

16 Adding the final touches 167

17 Getting to grips with BASIC 177

18 MSX graphics 180

Index 189

Why MSX? 1

MSX BASIC is a very sophisticated version of the BASIC language,
capable of supporting a very wide range of functions. Although
most MSX micros sold in Britain have 64K of RAM, only about 28K
of this is free for BASIC programs. This does, of course, place a
number of limitations on the programmer determined to write a
large adventure game. Only a couple of years ago, most computers
had only 16K of RAM, or even less, free for BASIC programs. Many
very sophisticated adventures were written to run on 16K TRS80's,
Commodore Pets and even ZX81s. Since then, however, the average
computer owner has come to expect games which include full high
resolution graphics, sound effects and full sentence decoding. All of
these facilities tend to be very RAM hungry and unless the program
is written in machine code, it is unlikely that you will be able to fit
graphics, sound and full sentence decoding into an adventure game
in most home micros. Where the MSX system scores over many of
its competitors is in having a wide range of very powerful graphics
and sound commands available in BASIC which allow some splendid
pictures to be drawn to illustrate locations in adventure games
without using massive amounts of user memory. In addition to the
graphics macro language (GML), there is also a comprehensive set
of sound commands available which allow the programmer who is
prepared to experiment to produce some excellent sound effects.

Many other home computers seem, at first sight, to offer more
facilities than MSX machines. The Commodore 64 has more RAM
free for BASIC programs, although anyone who has tried to use the
graphics or sound facilities of this machine and been put off by the
seemingly endless use of the POKE command will be absolutely
delighted to find out just how easy it is to produce superb pictures
with MSX BASIC. Acorn's two home microcomputers (the BBC
micro and the Electron), on the other hand, have graphics and
sound commands which are equally powerful, but once the user
decides to use a full colour graphics mode, only 8K or so of memory
is left to fit the program in. This situation is made even worse when
disc drives are fitted. Even the ever popular Sinclair Spectrum can't
offer all the facilities available to the MSX owner. As far as graphics 1

2 WhyMSX?

and sound are concerned, the MSX system offers probably the best
combination of commands, with plenty of free memory for adventure
game writers, of any of the microcomputers yet on the market.

The best tape-based commercial adventures available in Britain
are, without doubt, those available for the Sinclair Spectrum,
although there are some equally good games appearing for the
Commodore 64. In the United States, where disc drives are far more
common than they are here, the situation is very different. Some of
the very best adventure games of all are available on disc for several
different microcomputers, including the Commodore 64 and Apple
computers. At the moment, the cost of many of these imported
games is extremely high, although Commodore owners will find
that some of the games written by INFOCOM have been reduced in
price recently.

This will, of course, be of little more than academic interest to the
average owner of an MSX micro, eager to get his or her hands on
adventure games for their own computer. The MSX system is too
new for any original games to have been written to take full
advantage of the facilities available and all the adventures I've seen
so far have been conversions from programs written for other
machines. Not that they should be rejected on these grounds alone,
for in fact the programs I've seen so far, including the excellent
adventures from Level Nine Computing and the superb version of
the Hobbit, really do give the MSX enthusiast something to get his
teeth into. What is disappointing, at the moment, is the small
number of such games and what better way of rectifying this lack of
adventure software than by writing your own? Maybe you can even
produce the next masterpiece?

Although the graphics and sound commands allow excellent
refinements to be made to games, it is in the string handling
commands that MSX BASIC really comes into its own for writing
adventure games. As you might well expect, MSX BASIC contains
all the usual string handling commands such as LEFT$, MID$ and
RIGHT$ to allow the programmer to manipulate the text part of the
game. In addition, however, there are a number of other facilities
available which are not common in home computers. The INSTR
command is an extremely useful command which makes writing
routines to analyse the player's instructions much easier.

Unlike the BASIC used in many home micros, MSX BASIC is very
efficient in its use of arrays. When READing DATA into an array in
many other computers, far more memory is used than in MSX
machines. Nevertheless, adventure game programmers will probably
still want to save every byte of RAM possible so as to pack as many
features into the game as possible. There are many ways of saving
memory space when writing adventures. Some of these are of
universal use, whereas others should be adopted only when you
don't intend to have your program published as a listing. The short
list below suggests some of the ways of saving memory:

WhyMSX?

1 Remove all spaces between key words. This method is very
effective in saving memory. Unfortunately, however, if a program is
printed in a magazine or book which doesn't leave spaces between
key words, it is far more difficult for a computer novice to type in
without making mistakes. Any magazine editor will tell you of the
many letters received from new computer owners complaining
about problems encountered with program listings. Most of these
difficulties are caused by simple typing errors and it is always good
practice to make a program listing as easy to type in as possible if it
is to be published as a listing. Just compare the two lines below to
see how much easier it is to follow a listing which leaves spaces
between key words.

10 IF(P% =3ANDSA=7)OR(P% =99ANDAR=3ANDAS=3)OR
(P%=8ANDR=9)THENGOSUB900:PRINT''O.K.'':GOSUB800:
RETURN

or

10 IF (P%=3 AND SA=7) OR (P%=99) AND AR=3 AND AS=3)
OR (P%=8 AND R=9) THEN GOSUB 900:PRINT"O.K.":
GOSUB 800: RETURN

There is little doubt that the second version is far more readable and
will lead to fewer errors on the part of the typist.

2 Remove all REM statements. These are totally unnecessary and
any program will work equally well if they are left out. In this book,
however, they are used extensively because they do help to explain
what each section of a program is doing.

3 Use integer variables wherever possible. All numeric variables
used in adventure games refer to locations or objects and, as it
would be impossible to have location 2.7 or object 3.8, you may as
well use integer variables. There are two ways of doing this on MSX
micros, both of which are very easy to implement. Firstly, you can
put a % sign after the variable name, P% instead of P, or you can
define certain variables as integers right from the start using the
DEFINT command. A little care is needed when using this command,
because once a variable name has been defined as an integer, you
can't use a string variable with the same name.

As an example of this, you may have used the command:

10 DEFINT A-P

at the start of your program. After this command has been issued,
the computer will interpret all variables beginning with the letter B
as being integers and if you then try to use a command referring to
B$, you will probably come across problems. There is also a DEFSTR
command available which allows you to define variables as being
string variables. To illustrate this, consider the following listing.

3

' 4 Why MSX?

10 DEFSTR P-Z
20 P="In a large meadow."

You will notice that it is not necessary to include the $ sign after a
variable name if the variable has been defined as a string. I have not
used this command in any program in this book as it can lead to
confusion!

4 Use the zero element of arrays. Many programmers, myself
included, tend to ignore the zero element of an array. Whenever an
array is dimensioned, the computer will leave room in memory for
it and if it isn't used, you are wasting RAM. Suppose that you
DIMensioned the array A$ at the start of the program with the
following line:

10 DIM A$(40)

There would be 41 elements available for use from A$(0) to A$(40).
Using the elements from 1 to 40 does, however, make for easier
programming.

-

Introduction

Where have adventures come from?
Although the first adventure game was written as far back as 1976, it
wasn't until the arrival of the cheap home micro that adventures
started to become really popular. The very first adventure was
written on a large mainframe computer at Stanford University in the
USA by two computer enthusiasts. Don Woods and William
Crowther's original game was written in FORTRAN and, unlike
BASIC, this language does not contain facilities for handling words.
Despite the limitations of the system, these two experts managed to
create a game which has stood the test of time and even today is a
firm favourite with computer buffs. Using Fortran as a language
meant that the data for the game had to be stored on disc and over
250K of memory was needed to play the game. It is little wonder,
therefore, that before Apple, Tandy and Commodore started to
produce microcomputers in the late 1970s, few people had even
heard of an adventure, let alone played one. Only those lucky
enough to have access to large mainframe computers in colleges,
universities and large companies were able to experience the delights
of killing snakes and catching little birds.

When production of microcomputers started in the late 1970s few
people thought that it would be possible to write an adventure game
which would run in such a machine. After all it required over 250K
of memory and large disc drives to run the original game, often
referred to as 'Colossal Caves'. Scott Adams, a young American,
was the first person to realise that it was feasible to write an
adventure game for a microcomputer and went on to produce a now
famous game called 'Adventureland' for the Tandy TRS80. It was
this game which really convinced large numbers of computer
owners that adventure games were fun and Scott Adams has since
gone on to write a whole series of adventures. His company,
Adventure International, has written and adapted these games to
run on a wide range of microcomputers and has started to add high
resolution graphics to many of them. Unfortunately, at the time of
writing, they are not available for MSX micros, although I'm sure
that if enough people demand MSX versions, we'll see them in the 5

6 Introduction

shops very soon. I, for one, look forward to the day when I can play
'Pirate's Cove, 'Strange Odyssey' and 'Preppie' on my Toshiba
HXlO.

Many software houses have attempted to convert the original
'Colossal Caves' to run on microcomputers and MSX owners are
now able to buy one of the best versions around. Level Nine
Computing, a British software house famous for their superb
adventure games, have managed to cram over 70 extra locations and
a new 'end game' into their version of the original game. In order to
compress such an enormous amount of data into an MSX micro
computer, they have written the program in a specially created
adventure language called 'A-Code'. If you are new to adventuring,
there can be no better introduction than this exceptionally well
produced game.

What is an adventure?
If you've never played an adventure game before, you're probably
wondering what I'm talking about! Just in case you are puzzled, I'll
try to give you a brief explanation. An adventure game is like a story
in which you play the leading role. As you type instructions on the
keyboard of your computer, the tale will unfold before you. A good
decision will lead you further into the game, where you will
encounter all manner of puzzles and problems to solve. The
computer transports you from the comfort of your armchair into a
new, and often hostile, land where many strange creatures are to be
found.

An adventure game is, in many ways, like a book. It should have
a good story line or plot, be well written and, most importantly, be
enjoyable. Unlike a book, however, the sequence of events will be
different every time it is played. The computer will act as your eyes
and ears, telling you of any dangers you are likely to face and even
giving you help when you need it. There is no substitute, however,
for playing a game and no matter how much I try to explain what an
adventure is, you will only really find out for yourself by playing
one.

Trying to explain what an adventure game is to someone who has
never played one is made even more difficult by the fact that
adventures have changed over the last few years. There are now so
many different types of games available that an adventure can have
many different meanings. All the early programs were text-only
games in which the locations, creatures and objects were described
to the player in great detail using words alone. There have been
many improvements in this type of adventure over the last couple of
years. Since Melbourne House released probably the most famous
adventure game of all, 'The Hobbit', most new games have tried to
include the features found within this game. Few have succeeded in
finding the formula which made the Hobbit such a popular program.
Whether it is the fact that it's based upon a famous novel, or

--

Introduction

whether it's the sheer quality of graphics, there is no denying the
fact that this game is still one of the best adventures around and,
fortunately, is now one of the few games available for the MSX
system.

There can be little doubt that good high resolution pictures can
transform a very good game into an excellent adventure, although
no amount of fancy graphics can convert a poor game with little plot
into even an average program. Adventure games now fall into many
different categories, ranging from the traditional text-only game,
based on the original Crowther and Wood's program, through the
more modern graphical adventure with full sentence decoding to
the role-playing adventure.

Many people would argue that a role-playing game is not a true
adventure at all because the player is limited by the nature of a
character given to him at the start of the game rather than by his
own cunning and ingenuity. Often these role-playing games are
based upon 'Dungeons and Dragons' and involve the player fighting
other creatures which he or she comes across in the game. A true
adventure, on the other hand, is much more of a "mind game",
involving puzzle-solving rather than chance. Personally, I have
nothing against such games, although in practice, I have yet to come
across a really good implementation of a 'D&D' game on a micro
computer and for that reason, I have avoided trying to develop such
a game myself.

Many adventure game enthusiasts are equally critical of the
modern graphics adventure, claiming that the mind is capable of
conjuring up far better pictures than any computer VDU. While I
would agree that some of the text adventure games are superb,
there is also a growing number of very good graphical adventures.
In this book, I shall show you how to develop both text and graphics
adventures.

Writing your own adventure games
Once you've decided to take the plunge and write an adventure of
your very own, there are several decisions you'll have to make
before you reach the point of sitting at the keyboard and typing the
game in. The first thing you will have to choose is whether you are
going to write a text-only or a graphics game. Despite those cynics
who seem to despise anything other than the traditional game,
graphics adventures are great fun to play and even more challenging
to write. If you are fairly new to programming, however, I would
suggest that you start off with a traditional text-only game rather
than throw yourself in at the deep end. After a few games, you will
be only too eager to write a game with full graphics to illustrate each
location.

One point worth bearing in mind before making the decision as to
whether a game should contain graphics or not is the vast amount of
memory needed to include pictures. Even on a machine with very

7

8

l

Introduction

powerful graphics commands, like the MSX micros, the space left
when you have drawn the pictures for each location will limit the
rest of the game to such an extent that you may only be able to fit a
quarter of the number of locations and puzzles into your program.
In many commercial games, like the Hobbit, the authors have
realised the limitations and have made the decision to include
graphics for only a few of the locations, the rest being treated as if it
were a normal text game.

c
s
t
(

f
r
f
a
ii

c; ...

s
y
g

l
C
d

Introduction

Whether you decide to write a graphics or a text adventure, the
most difficult part of the whole process lies in choosing a good plot,
rather than in the actual coding of the game. No amount of fancy
graphics or detail text will improve a game with a poor plot. Early
games tended to follow a very simple theme which involved moving
around a strange world inhabitated by dangerous creatures and
gathering items of treasure to take back home to safety. The original
adventure games are probably more popular today than they were a
few years ago, which just goes to show that it is still possible to take
a simple theme and transform it into a superb game. As adventurers
practise their skills by playing more and more games, they are
becoming ever more critical and if you intend to stick to such a well
worn plot, you will really have to pay great attention to the little
details which can make all the difference between a poor adventure
and an enjoyable game.

More modern adventures tend to have a much more tightly
controlled plot, where scores are given for solving specific problems,
rather than for simply finding treasures. In some games, the player
can even lose scores for falling into traps and may solve the
adventure without ever scoring 100%. Progress in these games may
well follow a much more linear thread, where once you have
entered a new location, there is no way back again. In some games,
time may well also play a part. Imagine a game based on Cinderella,
where the player must get back before the clock strikes midnight, or
a game where the player presses the fire button on the space rocket
and is unable to return to the planet to pick up the plutonium he
needs for his later mission.

It is well worth while playing as many different adventures games
as possible on your MSX computer to give you a better idea of the
sort of things which can be achieved on a micro, before attempting
to plan your own game. This should provide a much clearer
conception of what you want to achieve. The very best starting point
for any adventure is to sit down with a pad of paper, a pencil and a
rubber and write a short summary of the story for the game. In the
first chapter, I shall show you how I took the basic plot for a game
and transformed it into a map of 'Middle Earth' ready for conversion
into the program itself.

Some ideas for adventures

Stuck for an idea? Then the list of suggestions below might just set
you thinking and point you in the right direction to start your own
game.

Lost Horizons
Over the last few years, tales have started to reach you of a valley
deep in the Amazon Basin, where it is rumoured that the secret of

9

10

l

Introduction

eternal life is to be found. Within the walls of a ruined city created
by forces beyond the bounds of human knowledge, there is supposed
to be a small temple where the secret scrolls are guarded over by the
spirits. With dreams of unknown wealth and eternal life, many have
set forth to find the valley, but none have yet returned!

Will you be the first to find the city and return with the scrolls?

Journey through Time
Two days ago you received a distress call from the people of the
planet Ursa and, like all true Timelords, you could not let the people
suffer in the hands of the evil Trell. Shortly after leaving your ship,
however, two thieves entered the control room and stole the four
crystals which control time travel. On your return to the ship, you
find that the thieves have left just one small clue to the whereabouts
of your only source of escape, a small piece of paper with strange
writing on it. What does it mean? Can you recover the crystals and
escape or will you be doomed to spend eternity on Ursa?

The Vampire's Curse
For many years the villages of Lludnia in a remote area of Tran
sylvania have been terrorised by the vampires in the dark and
gloomy castle high on the hill overlooking the village. One day the
villagers, led by the local priest, decided that they had had enough
and set out at dawn, determined to rid the castle of its curse forever.
Fritz, the local dentist, was wiser than most and realised that the
traditional methods just didn't work. A stake through the heart and
the crucifix had all been tried before and he knew that a new
approach was needed. Armed only with his small bag of tools, he
set out shortly after the others.

In this game you must take on the role of the local dentist and try
to return to the village with all the fangs before the vampires rise at
dusk. Will you manage to succeed where others fail or will you too
join the vampires in the castle?

Detective Agency
You have recently set up your own private detective agency in
downtown Bognor. Early yesterday morning, an old man entered
your office telling you of a murder which had occurred in his house.
The police had been called and seemed to think that all the evidence
pointed towards one man ... your new client. Just ten minutes ago,
you received a phone call from your client to tell you that he had
been arrested and charged with the murder. You are convinced of
his innocence and must try to find some new evidence. Can you
find the clues needed to solve the murder, or will your client go to
prison for a crime he didn't commit?

Castaway
It has been six days now since your ship sank in a violent storm. You
are tired and close to death, drifting alone in a small lifeboat, when

I

t
)

r
C

~
t
'\I

t
C
I,

C

tJ
E
n
p

II

T

p

Some ideas for adventures

you see a small island in the distance. Quickly you grab the piece of
driftwood and row ashore. What does the strange drum beat mean?
Why do fish suddenly appear dead on the shore? Can you solve the
mystery of the island?

If the ideas above don't really capture your imagination, why not
take the plot from your favourite novel or short story? It's an ideal
way of starting an adventure, although you may come into copyright
problems if you try to sell a game written in this way. If you stick to
traditional stories such as Robin Hood, or to fairy tales, you will not
run into such problems and should be able to let your imagination
run riot. For those who have no intention of marketing their games
and who write for fun alone, there is absolutely no reason why the
game shouldn't be based around any story or novel.

Do remember that to make a game enjoyable, the puzzles and
problems set for the player should be relevant to the theme of the
game. Thus games written about Sherlock Holmes can contain
puzzles about violins, chemicals or murder, whereas problems set in
games based on James Bond should reflect high technology, secret
agents and exotic locations. Several adventure games have appeared
on the market recently where the puzzles are totally illogical,
making the solution more a matter of luck than skill, and most of
these programs have been doomed to commercial failure. Don't let
yours fall into the same trap.

Most commercial adventure games are written in machine code
rather than in BASIC, although a number of software houses have
created their own languages specifically for writing adventure
games. There are two main reasons why BASIC is often considered
to be unsuitable for adventure games. Firstly, the speed of a game
written in BASIC is often very slow, resulting in slow response
times. There is nothing worse than typing an instruction into your
computer and having to wait thirty seconds or so for a response! If,
however, you plan your routines very carefully, the response time
can be almost as good as in machine code games. This is especially
true of MSX machines, which have a particularly fast version of
BASIC. The second, and probably most important, advantage of
machine code over BASIC is that it is possible to cram far more
puzzles and locations into a game.

Both machine code and adventure languages are beyond the
scope of this book and although a game written in BASIC can't be as
complex as a game written in machine code, it is still possible to
write a game with over 200 locations and 50 objects in a 64K MSX
micro if you are very careful in your approach.

One final advantage of a machine code game is that it is much
more difficult for the player to cheat and solve the game by listing it.
This is a point I shall come back to later.

In many ways, adventure games are very similar to database
programs. The computer must store information about the locations

11

12 Introduction

and the objects found in the game and one of the most useful
methods is to store this information in DATA lines ready to be read
into arrays. Before beginning to write your own adventure, you
really do need to be familiar with the use of two dimensional arrays.
In the process of creating an adventure game, you will certainly
become a much more proficient and confident programmer!

Don't be put off, however, if you don't feel very confident about
the use of arrays and string handling. The third listing found in
chapter 13 should help you to write an adventure of your own
without all the effort needed to write one from scratch.

In any large program occupying nearly all of the user RAM of
your micro, you will inevitably make many simple typing mistakes
when you enter the program into your own computer. Rather than
waiting until you have typed the whole program in and then trying
to track down the errors made, it makes much more sense to type
the program into your computer in short sections and test each one
as it is entered. Each of the three programs in this book is split into
short routines which can be checked out in this way before pro
ceeding with the next one and full instructions are given to help you
debug the games.

' r
s
t

V

tl
h
a

t

I g sta ed

Writing an adventure game for your MSX computer will provide
you with a challenge which is guaranteed to keep you out of
mischief for many weeks, or even months. There are so many ideas
to sort out that it will take several hours of preparation before you
are ready even to begin programming the game. Some days you
may feel that you are making rapid progress in developing your
program, while on others you'll spend many hours trying to sort out
a minor problem. When you do come across a problem which seems
to be taking far too long to puzzle out, the best approach is to give
up. After you've had a drink and rested your brain for an hour or
two, you'll come back to the problem fully refreshed and ready to
go! The time spent in developing a large adventure may be exciting,
time-consuming or even frustrating, but never dull or boring! In the
process of writing your game, you are bound to learn a great deal
about the operation of your MSX computer and this new-found
knowledge should encourage you to attempt ever more adventurous
programs.

There are already a number of excellent adventure games around
for MSX computers, but few of these were originally written for
MSX micros and if you have already got the germ of an idea, you'll
be only too eager to get started and develop it into a truly original
program.

Although there are a few really good adventures for MSX com
puters, there are many more which don't reach the same high
standard and if you can find a really good plot, you are half way to
writing a superb game. Finding a suitable story line is, in fact, the
most difficult part of the whole process. We have already looked at
some ideas for plots in the introduction, but after you've exhausted
those ideas, what next?

Take a quick glance along the shelves of your local library and you
will find thousands of books which fall into a few similar categories:
thrillers, science fiction, historical, fantasy, westerns, detectives,
horror, romance, to name just a few. As I have already mentioned,
adventure games are very similar to novels. Just as the author of a

1

13

14 Getting started

detective story can very often take a familiar theme and give it a new
twist, so too can the adventure programmer. Very few adventures
are based on a completely original idea, yet most of the really
successful ones are written by programmers with a vivid imagination
who have managed to take an old idea and present it in a completely
new way. The quality of an adventure game is limited only by the
imagination and skill of the programmer!

Adventure into education
The quality of most educational software is so poor that many
teachers have rejected the computer in favour of more traditional
forms of education. A few rather more enlightened teachers have
realised that adventure games can offer a far more exciting education
to children than many so-called 'educational programs'. Unlike
arcade games, adventures encourage logical thought and if the
game is really well planned, it can also be used to encourage
children with map drawing, creative writing and problem solving.
There are many recorded cases where the careful use of adventure
games has helped to develop the potential of slow learning pupils,
but as yet, adventures have not really been used in the normal
classroom environment to any great extent. Most of the best
adventures have been written without any regard to their educational
content and yet these very adventures can probably be considered
to be some of the best educational software around. If only the
programmer could set out with the intention of writing a good
educational adventure, I'm sure we would see even more useful
programs. Imagine, for example, a program based on historical
facts: Guy Fawkes, Captain Cook or I.K. Brunel. You could even
devise a program which required a knowledge of chemical formulae!

Don't be put off writing your game by those cynics who claim that
there are too many adventures set in 'Middle Earth' or that
adventures set aboard a deserted spacecraft are boring. Too many
people are ready to criticise your ideas, yet few are prepared to offer
constructive suggestions. If you can think of a completely new story
line then so much the better, but even if it is based on a familiar
theme, your program should still reflect your own personal blend of
puzzles and problems and should be something to be proud of.
Once you have got the basic framework of the game sorted out and
got it running on your computer, then you can spend many happy
hours at the keyboard refining the puzzles and, eventually, putting
the finishing touches to your masterpiece so that it contains your
own unique mixture of wit, humour and sophistication. At this
stage, however, all you really need to sort out is the basic plot and a
few ideas about the nature of your game.

Programmers do tend to be an impatient breed. Eager to get their
hands on the keyboard, they will often neglect the very important
preliminary paperwork. Time spent with a pencil, paper and a Fig
rubber at the planning stage is well spent because a program typ

Getting started

developed at the keyboard will inevitably lack structure and this in
tum will make debugging a nightmare!

Many programmers still look upon flowcharts as something of a
nuisance, to be avoided at all costs, but even a simple flowchart can
help you to sort out your ideas and make program development
much easier. Without one, you are likely to end up with a program
totally lacking in structure and this in turn will make it far more
difficult to follow when you do discover a mistake. In principle,
adventure games are very simple in structure and the flowchart
below shows how the game may be broken down into simple, easy
to develop stages.

Fig. 1.1 Flowchart for
typical adventure game

START

READ DATA
INTO THE
ARRAYS

END

FLOWCHART I

LOSE GAME

15

16 Getting started

The first thing you will notice if you compare this flowchart with
any of the listings in this book is that I have not followed it to the
letter, but have instead used it as a guide. A major difference
between the flowchart and the listings is that I have not included
instructions within any of the games. There are two reasons for this.
Firstly, the programs in this book are written in BASIC and in order
to make the listings easy to understand, I have used plenty of REM
statements and also left spaces between words wherever possible.
BASIC is, unfortunately, very inefficient in its use of RAM and this
can only make matters worse.

Instructions within the program use valuable memory space
which can be better utilised by adding extra locations to visit, objects 1

to pick up and puzzles to solve. In the first game, for example, I had l
to decide whether to include the facility to save a game on tape or to f
incorporate instructions within the main game and in the end I
decided that the save game routine was too important to leave out. c
Secondly, finding out what the game is all about is often an integral 1
part of the overall puzzle. In practice, you can always write a short e
program containing the instructions which then loads and runs the F
main game, or even more simply, write the instructions on paper. c

The first program listing in this book 'The Wizard's Quest' is an p
example of one of the earliest types of adventure game, where the n
player must set out to explore the land and return with items of F
treasure. Each object of value gives a score of one when it is placed a
in the right location. This program, like most others, accepts only v.
one or two word sentences and the player must type instructions y,
such as 'get lamp' or 'go in'. Text adventures of this type really do
need to be well planned if they are to be different from the rest. rr
Descriptions of locations need to be very detailed and the screen h,
display should be as neat as possible. If you can include cryptic clues st
within the descriptions of locations, it does help to make the game fl1
more interesting. m

If this is the first time you've attempted to write an adventure in
game, I wouldn't try to be too ambitious. Success at writing a game
with a fairly simple plot and just a few locations is far more u1
rewarding than failure with a massive game. di

Converting your ideas into a working program will require careful w
preparation, the first stage of which is to draw a map of the locations n
in the game. If you have decided to use a book as the basis of your n
game, this process should be fairly straightforward, although a plot ne
of your own offers far more scope for originality. The map itself an
need not be very detailed, but before starting to draw it, it's worth
while considering some of the limitations of the MSX system. Most is
MSX micros have 64K of RAM, although only 28K of this is available pr
for use in BASIC. When compared with other machines which have ha
recently appeared on the market, this may appear to be rather small. of
In practice, however, MSX BASIC is so efficient that you will be able ex1
to fit more locations into your game than you might imagine. The
first listing in this book illustrates some of the compromises which ad·

Getting started

have to be made. It contains 30 objects and 80 locations, all of which
are described in great detail. If the save game routine is left out of
the program, it runs with over 8K of memory free, but this routine
uses nearly all of this space. The program contains many spaces
between words to make it easier to follow and if these are left out,
you should be able to save a further 2K of memory, which can in
tum be used to add extra features to the game.

Unlike the first game, the second program contains a full high
resolution picture of each location, together with a few sound
effects.Both sound and graphic routines tend to have a voracious
appetite for memory and therefore a graphics game cannot incorpo
rate as many locations as a pure text adventure. In 'Snow White' I
have included just 24 rooms, which leaves about 1 lK of memory
free for you to add a save game routine or extra puzzles.

The final listing shows how it is possible to load the data for the
descriptions of locations and objects from tape or disc rather than
keeping this information within DATA lines. This is a much more
efficient method of writing adventure games but, unfortunately,
programs written in this manner are far more difficult and time
consuming to create. Not only do you need to write a second
program to create the data file in the first place, but each time you
make a slight typing error, you have to load the data file in again.
From tape, this will take several minutes, although from disc things
are much better. Pushed to the extreme, you should be able to fit
well over 200 locations into a game written in this manner, but if it's
your first attempt, I'd be a little more cautious!

The majority of adventure games are 'two-dimensional', with
most of the locations being on the same level. A few games,
however, are truly three-dimensional. In such a game, there will be
several locations where the player can move up or down on to a new
floor. Drawing a map for a three-dimensional game tends to be a far
more difficult task than for a two-dimensional game, as can be seen
in the illustration on page 18.

If your game contains fewer than ten locations where movement
up or down is possible, there is no need to write a full three
dimensional game. It is far easier to insert a short subroutine to deal
with such movement than to incorporate it within the main program.
This is an approach I have adopted in all the listings in this book.
There is one other advantage over a full 3D game, where you would
need to increase the dimension of the array used to hold the map
and that is, of course, going to use more memory.

One other point worth bearing in mind when planning your map
is the fact that allowing movement in directions other than the
prime compass points will use even more RAM. For this reason, I
have not included the ability to move northeast or southeast in any
of the games. You could, of course, try experimenting with these
extra directions of movement. It shouldn't be difficult!

The diagram below shows one approach to map drawing for
adventure writing. Each location is given a discrete number and I've

17

18 Getting started

Fig. 1.2 Map for three dimensional game

used wiggly arrows to link locations which are reached by methods
other than moving north, south, east or west. Thus to reach location
2 from location 3, you would have to swim. I've not included
detailed descriptions to the locations on the map, as this would only
make it more confusing. At this stage all that is needed is a few
words to indicate the type of place. Detailed descriptions can be left
to the programming stage. The map below shows just 10 locations,
but you can add as many rooms to your game as you would like
(within reason of course!)

2 3
At the bottom On the On the
of o cliff river bonk river bonk

4 5 6
Inside
o hut On a path In a quarry

(GO OUT

GOIN 7 8 9 10
Outside In a park
a hut

In a forest In a clearing

Fig. 1.3 Drawing a map for an adventure game

Getting started

Once you have drawn the full map for your own game, the
descriptions of the locations and the directions in which movement
is possible will need to be converted into a format suitable for
inclusion in DATA lines. Before you rush off to the keyboard to
make a start, you should give some consideration to the nature of
the objects, creatures and other puzzles you are going to include in
the game. I like to show these on the map right from the start and, in
order to distinguish the objects from the locations, I try to use a
different colour for locations, objects and puzzles.

The Wizard's Quest
Rather than continue to talk about a hypothetical game, I shall now
refer specifically to the first game, 'The Wizard's Quest', so that you
can see how I set about writing it. In so doing, I shall discuss the
solution to the game, so if you prefer to solve it on your own, you
should jump straight to the listing and type it in .

. ~
-==="::::: /: -= _-

tf
\I

r

19

20 Getting started

The Plot
Many years ago, in a land far away, there lived an evil sorcerer who
ruled over the whole kingdom. The peasants lived in fear of this
cruel and heartless being, who would send his servants late at night
to take their valued possessions and hide them in the castle high
above the village. Only this morning, you received a note from the
poor old wizard asking for your help in recovering the treasures.
Will you help him? Can you find the ten items of treasure stolen by
the sorcerer and now guarded over by evil creatures and return
them to the Wizard's cottage?

I am:-
outside a small cottage. A sign on the
door reads 'Wizard out at the moment.
Please leave treasures inside!·.

I can go
West, In

What should I do now? go in

I am.
inside the Wizard's cottage. A small
fire burns in the grate.

I can go
Out

Things I can see
a can of oi 1

What should I do now?

I am:-

get oi 1

inside the Wizard's cottage. A small
fire burns in the grate.

I can go.
Out

What should I do now? inventory
I am carrying.
a can of oi 1

I am:-
inside the Wizard's cottage. A small
fire burns in the grate.

I can go:-
Out

Fig. 1.4 Sample run of game program

I
[

[

[

Getting started

I have used the same technique to draw the map for this game,
but with 80 locations, it was necessary to split it into three sections. I
have tried to ensure that there is only one way across from one page
of the map to the next, so as to avoid undue complexity. There are
30 objects in the game, although only ten of these are treasures
which give a score when returned to the Wizard's cottage. These are
listed in the chart below.

At the bottom
SMALL KEY of o cliff

~
SILVER SWORD

Edge of
the marsh

13
Outside the
castle

4

In garden

9
By metol
gate

14

On footpoth

RUBBER GLOVES ~

26

In kitchen

VACUJ~
~NER

25 ~
Living room Ill

VASE

Outside
cottage

27
Next to
rock

2

On footpoth

5

In garden

10

By loke

SWIM SWIM

15
Landing stage

19

Ouadrongle

20
East gate

28

In courtyard

Fig. 1.5. Map for The Wizard's Quest

3

Top of hill

11
By compost

heop

16

Locked gate

OIL GATE

UNLOCK GATE

17 18

our

By grove On lawn

CRUCIFIX t
PULL LEVER ----.. r-~--21 22

Outside Inside
chapel chapel

BOOK OF
SPELLS

23
By altar

21

22 Getting started

f
30

Wide
passage

Cavern
of light

39
End of

passage

,jj~
" RUBY

0
43

Chamber

PEARL NECKLACE

47
Crater

52
Footpath

SAY PASSWORD

entrance

35
Rope

bridge

40
Narrow
passage

44
Passage

of ghosts

~
48

Volcano

53
Top of
crater

VAMPIRE
(jade)

32

Wide
passage

33

'--C-avern___.v
36

By ring

41
Passage

DOWN

45
Corridor

49

Branches of
beanstalk

37

Tunnel

42
Bottomless

pit

50
Gloomy
passage

WAVE
BAND

PLANT (SQ UP t DOWN

__ ... 55---..

Fertile
land

In nest

.. 1d~
~ FLAME_~t~,-
~ THROW/:,c--

DOG

38
Room of
faces

51
Hall of the
Bolrog

56

In lair

a
a
a
a
a
a
a

57

By tower

~-:..
::: ~,~
JEWELLED
CASKET

72
Outside
farmhouse

~-

Treasure
a vampire
a giant slug
a gold nugget
a bar of silver
a diamond
a jewelled casket
a giant
a pearl necklace
a ruby
a platinum bar

58

N\ountcin

YJ
Field of
corn

66
Field

of cows

PADDLE

69

object number
13
15
17
18
19
20
21
28
29
30

.

'

Getting started

IGOBLIN 59
Goblin's
gate

~d
USE FLAME
THROWER

61 62
Concrete

slob

T p

75 79
End of By grate
volley

78 80
Cleuring Cavern

◊◊◊/
DIAMOND

location found in
33
35
56
71
80
63
62
43
39
57

23

24 Getting started

A vampire and a giant slug as treasure? Surely not! If you turn to
the next chapter to look at the listings for the DATA lines, you will
see that these items are included and a quick glance at the scoring
routine will again show that they are to be treated as treasure!

This illustrates one of the tricks used by adventure writers to
make the maximum amount of use of memory.

The vampire
When you first reach location number 33, you will see the vampire.
Using the crucifix in this location will, obviously, get rid of him and
rather than just emptying the contents of the appropriate array
element to make it disappear, I have changed the contents of the
same element into an item of treasure ... the jade ring. In a similar
way, you can change the contents of an array to make it appear as if
there are many more objects than the original 30 which were created
in the data lines. Obviously, you have to be careful when using this
technique that you don't allow the player to carry a vampire around
with him! This can be prevented by setting the value of a variable
and checking its value whenever you try to pick the object up.

In a very similar way, the slug can be killed by pouring salt all
over it and when it disappears, it will leave something behind! See if
you can guess how to get rid of the giant!

Changed Treasures
Original object
a menacing vampire
a giant slug
a giant

location
33
35
62

Changes into
a jade ring
a silk purse
an emerald

method
use crucifix
use salt
using the sling

In addition to changing vampires and the two other dangerous
creatures into items of treasure, I have also included a few other
objects which change their nature during play. The table below lists
all the objects found in the game, together with any changes which
may occur to them. In future I shall always refer to an object by its
number. Hence object number 4 is the vacuum cleaner and object 17
the gold bar.

Objects within the game
Number Original object Location Does it What to?

change?
1 small beanstalk 11 yes giant beanstalk
2 a can of oil 12 no
3 a small key 1 no
4 vacuum cleaner 26 no
5 a glass vase 25 no
6 rubber gloves 26 no
7 a magic wand 23 no
8 a bottle of rum 25 no

s
1
1
1
1
l
1:
li
1:
lt
g
2(
21
22
23
24
25
26
27
28
29
30

(

in)
pu1
dra
wh
'on,
ano
pla)
is u

Ir
ffiOl

Hye
new
bad
mak
take
will
whe:
gam,

Ar
Ther,
desig
been
borin

Getting started

Number Original object Location Does it What to?
change?

9 a book of spells 28 no
10 a gleaming sword 9 no
1124 yes a rope & hook
12 a pile of leaves 24 no
13 an evil vampire 33 yes a jade ring
14 a wooden crucifix 22 no
15 a giant slug 35 yes a silk purse
16 a jar of salt 38 no
17 a gold nugget 56 no
18 a silver bar 71 no
19 a diamond 80 no
20 a jewelled casket 63 no
21 a giant 62 yes a large emerald
22 a flame thrower 55 no
23 a crowbar 63 no
24 a row of buttons 64 no
25 a little dog 54 yes disappears
26 an angry farmer 72 yes disappears
27 72 yes a sling
28 a pearl necklace 43 no
29 a ruby 39 no
30 a platinum bar 57 no

Once you've sorted out what objects and creatures are to appear
in your game and where they are to be found, it's back to the map to
put the finishing touches to it. Although it may seem to be tedious,
drawing out sections of the map again can often be worth your
while. There will be occasions where you want to make your map
'one way only', where the player can move from one location to
another, but not back again. This can be useful in a game where time
plays a part or where some means of transport, other than walking,
is used.

Imagine, for instance, a game in which you reach the summit of a
mountain only to find a large eagle perched in the branches of a tree.
If you were to climb onto the eagle's back, it may just fly you to a
new location and in this particular case, there would be no way
back. Many games do in fact use this sort of technique, as it can
make the game more difficult for the player. If they have forgotten to
take one of the items they need to solve the next problem, then there
will be no way back to find it again! This is one of the occasions
where I would draw a wiggly line between the two locations. In this
game, however, I have not included any 'one way only' movement.

Another common feature of many adventure games is the maze.
There are many ways of drawing the map of a maze when you are
designing one to make life more difficult for the player. I have never
been fond of mazes in adventure games, finding them dull and
boring. This is probably because I lack the patience to solve them.

25

26 Getting started

Nevertheless, a book about adventure programming without maze
drawing would be incomplete and therefore I have included a fairly
simple one in locations 73, 74, 76 and 77 to illustrate how they can be
created. These four locations are all within the dark and gloomy
forest, where movement does not obey the normal rules of logic.
Movement north from location 76, for example, takes you back
through the trees to location 76 again. There's no reason at all why
you shouldn't include many more locations within the maze and
twist the arrows all over the place to confuse the player!

It is, of course, important to make sure that the descriptions of the
locations within the maze are all exactly the same, otherwise the
player will be able to sort out where they are too easily.

Yet another common feature of an adventure game is being
unable to move around freely until a problem or puzzle is solved. In
this particular game, for example, there is a ghost in location
number 44 who will not let you progress further into the game.
Once you have sucked the ghost up into the vacuum cleaner, the
path is then cleared so that you are free to move south. The trick in
programming these sorts of puzzles lies in setting the value of a
variable and testing its value whenever the player attempts to move
from that location. There are 13 locations in this game where puzzles
must be solved before being able to progress further and these are
summarised in the table below.

Puzzles to be solved
Location Puzzle Solution
16 the gate is locked 1 oil the padlock

2 unlock it with the key
20 the wolf blocks your way kill it with the sword
27 no way into caves 1 Read the password

2 Say the password
36 the cave overhead is 1 Throw the rope which

too high to reach will catch on the ring
2 Climb the rope

42 you are at the side of you must wave the magic
the bottomless pit wand

44 the ghost blocks your use the vacuum cleaner to
way south suck it up

54 there is no way up to 1 Plant the beanstalk
the caves above 2 Fill the vase with water

3 Pour the water onto the
beanstalk to make it grow

4 Climb the beanstalk
59 the goblins block use the flame thrower on

your way them
64 the door is closed press the correct button
69 the tramp won't let give him a bottle of spirits

you into the barn

:
~

4
6
6
6
6
6
7
7
7
7'

8(

sl
tt

Location
79

22

21

Puzzle
the grate is set into
the ground
you are locked in the
small chapel
the chapel door is
closed and you can't
get in

Getting started

Solution
use the crowbar to prise it
open
pray for help

1 Wear the rubber gloves
to protect you from
electric shocks

2 Pull the lever and go in

Some of the problems in the game require two or more puzzles to
be solved. The way in to the small chapel, for instance, involves
pulling the lever. Unfortunately, however, the lever is connected to
a high voltage and unless wearing the rubber gloves, the player will
end up dead!

In a few locations the player must adopt a different approach to
moving in the normal compass directions and these are listed below.

Movement
Location Method of movement Location reached
7 go in 12
12 go out 7
10 swim across 15
15 swim across 10
36 climb the rope 37

(after it's been thrown)
37 go down the rope 36
29 go in 25
25 go out 29
54 go up the beanstalk 49

(if it has grown!)
49 go down the beanstalk 54
64 go in (after pressing the button) 63
63 go out 64
65 paddle across 68
68 paddle across 65
69 go in 70
70 go out 69
70 go up the ladder 71
71 go down the ladder 70
79 go down 80

(after using the crowbar to
open the grate)

80 go up 79

All the above information has been shown on the map and you
should be almost ready to move over to the keyboard to start with
the coding.

The only other decision which needs to be made is whether to

27

28 Getting started

include sound or graphics within the game. Even the simplest of
sound effects can transform a game beyond all recognition if the
sounds are relevant to the game, but all too often sound is tacked on
as an afterthought and does nothing to improve the game. The
sound of a person knocking on a door, a radio playing in the corner
of the room or even a ghostly scream can add the finishing touches
to a game, although the programming of such effect will probably
take you a long time.

Good graphics can perform even greater miracles, but a graphics
adventure needs to be planned as such right from the start and
inserting pictures as an afterthought is unlikely to be very successful.
In 'The Wizard's Quest', I have included neither graphics nor more
than a few simple sounds and have concentrated on the basic
essentials, although in the subsequent two games, graphics and
sound play an int~gral part of the program. Many of the sections of
coding of a pure text adventure can be used to equal effect in a !
graphics game and if you compare the sections of each game, you J
will find many similarities. a

C

t.
1\
TI

n
L
A
le
n
fc
Vi

w

hi
w
va
wi

eh
TI,
In
nu
va:
thE
thE
is 1

1
cor
rea
y01
sen

Writing the data 2

Your first task when converting your map into the data for your
game is to choose the names for the variables you will use. At this
point, you wii1 need only to choose the names of the variables
associated with the arrays. The others can be selected as the game is
developed. There are a number of considerations which need to be
taken into account when choosing the names of your variables.
Many programmers argue that long variable names help you to
remember their purpose and there is little doubt that they do help to
make a program easier to follow. Thus using MAP%(2,3) and
L0CATION$(7) will immediately remind you of their purpose.
Adventure games are, however, very hungry for RAM and using
long variable names does use rather more memory than is absolutely
necessary. For this reason, I have used single letter variable names
for all variables in the games in this book. If you decide to use long
variable names, do remember that they must NOT contain key
words. Thus place$ would be valid, whereas locate$ would not!

One point worth noting about MSX BASIC, is that only the first
two letters of a variable name are significant. Thus AIR$ and AIS$
will be treated as being exactly the same. Remember also that
variable names may be typed in lower case, but all MSX machines
will convert them into upper case.

The second and probably the most important consideration when
choosing variables is to use integer variables wherever possible.
They use only a fraction of the RAM needed to store real variables.
In adventure games, we will normally be dealing with whole
numbers and therefore can make widespread use of integer
variables. Defining variables as integers can be done at the start of
the program using the DEFINT command, but in this book I've used
the% sign at the end of the variable name in preference. The choice
is up to you!

The final consideration when choosing names is purely one of
convenience. If you intend to write just one adventure game, it
really doesn't matter what name you give to your variables, but if
you decide that you are going to write several games, then it makes
sense to stick to the same names in each of your games. In a sense, 29

30 Writing the data

therefore, the names of variables can be seen as a trademark of the
programmer and if you look through any computer magazine, you
can often recognise the author of an adventure listing by the names
of the variables used in the game.

The following list contains the names of the major variables used
in all three games:

Variable name
P%
S%(X,Y)
Q$(X)
G$(X)

B%(X)
N$(X)

N%(X)

V$(X)

A(X)

Purpose
holds the player's current position
holds the map of the game
holds the descriptions of the locations
holds the descriptions of the objects found in the
game
holds the location where the object is to be found
holds the word by which the computer recognises
the object
holds the pointer to which object has been
mentioned by the player
holds the descriptions of the objects being carried
by the player (the inventory)
holds the flag to test if you are carrying a particular
object

In a text adventure on an MSX machine, the programmer will
probably write the game in SCREEN 0. The default setting of the
width of this text screen is 37 characters and, in my experience, this
is probably the best screen width to use if the game is to be played
on a TV set, because the characters at the end of a line tend to
disappear off the edge of the screen of a TV set. Users with a
monitor will probably want to take advantage of a 40 column screen.

In line 40, I have selected white letters on a blue background and
have, in addition, turned off the messages which normally appear at
the bottom of the screen about the current function key definitions
(line 40).

10 REM** The Wizard"s Quest**
20 REM** an adventure for MSX micros•*
30 REM** Steve Lucas 1985 **
40 SCREEN O:KEY OFF:COLOR 15,4
50 LOCATE 8,2:PRINT"The Wizard's Quest"
60 LOCATE 4, 10: F'RINT"An adventure by S. ~J. Lucasu
70 WIDTH 37:CLEAR 7000
80 Y$="0. I<.": YA$=" I can'!: go that way 1 ": YE+:t="Don '':

be absurd'"
90 REM** DIMension arrays**
100 DIM 0$ (80) , S% (80, 4) , G$ (30) , B'l. (30) , N$ (30) , N'l. (3C:
) , V$ (4) , A (30)
110 REM** READ the DATA for the locations**
120 FOR X=1 TD 80:READ Q$(X)

►

Writing the data

130 FOR Y=l TO 4:READ S%CX,Y)
140 NEXT Y, X
150 DATA standing in a gulley at the bottom ofa sh
eer rock face. ,0,0,2,o
160 DATA on a narrow footpath between two highmoun
tains. ,o,o,3, 1
170 DATA at the top of a small wooded hill. A stee
p footpath leads west. ,0,6,0,2
180 DATA on a dirt track which winds its way thro
ugh a neat garden. ,0,9,5,0
190 DATA in a garden full of beautiful flowersand
small trees.,o,o,6,4
200 DATA by a garden gate. The path to the nort
h leads into open cauntryside.,3,11,7,5
210 DATA outside a small cottage. A sign on the
door reads 'Wizard out at the moment. Please le
ave treasures inside. ·.,o,o,o,6
220 DATA an the edge of a marsh. A sign here read
s 'Danger do not proceed west! ·.,o,o,9,0
230 DATA by a large wooden gate. Strange runesare
inscribed on it!,4,0,10,B
240 DATA an the shares of a small lake. An isla
nd lies in the middle.,o,o,o,9
250 DATA by the compost heap. Several small
stalks are growing out of it.,6,o,o,o

bean

260 DATA inside the Wizard's cottage. A small fire
burns in the grate.,o,o,o,o

270 DATA outside a gloomy castle. There seems tab
e no way in. ,o,o, 14,0
280 DATA on a footpath lined with dense shrubsand
tall trees. ,o,o, 15, 13
290 DATA an a landing stage. A few boats are moor
ed here. ,o,o, 16, 14
300 DATA at the entrance ta a disused grav
eyard. A rusty chain is padlackedaraund the gates.
,o,o,o, 15
310 DATA standing next ta an old gravestone whic
his engraved with the message 'Please Help me!·
,16,0, 18, 19
320 DATA standing on a small l a~ .. Jn ~:i th a. tall hedg
e on three sides. ,0,0,0,17
330 DATA in a small quadrangle full of ancienttomb
s. ,0,20, 17 ,o
340 DATA by the East Gate. A howling wolf guar
ds the way west. ,19,28,21,0
350 DATA outside a small chapel. The door is clas
ed at the moment. A lever protrudes from th
e wall. ,o,0,0,20
360 DATA inside an ornate chapel. The door hasclas
ed behind me.,0,23,o,o
370 DATA next to the altar.,22,0,0,0
380 DATA outside the graveyard. A path leads sout
hand dawn from here.,0,27,20,0
390 DATA in the living roam. The woodcutter isasle
ep in a chair.,26,o,o,o

31

32 Writing the data

400 DATA in a small kitchen. The sink is full of d
irty pots.,0,25,o,o
410 DATA next to a large rock which blocks theway
into a cavern. Strange runes are engraved on it.,2
4,0,0,29
420 DATA in a narrow courtyard which is full of o
ld bones. ,20,0,0,o
430 DATA outside a wooden cottage. A sign on the
door reads 'Woodcutter for hire·.,o,0,27,o
440 DATA in a wide passage lit by a strange gree
n glow coming from the south.,0,34,31,0
450 DATA standing in the entrance to the cave
rns of Xarda.,27,0,32,30
460 DATA in a wide east/west passage. A smal
ler passage leads south and down from here. ,0,36,3
3,31
470 DATA in an enormous cavern lined with grot
esque faces.,o,o,o,32
480 DATA in the cavern of light.An enormous crys
tal in the centre sends rays of green light acres
s the walls. ,30,0,0,0
490 DATA on a narrow rope bridge across a deepgull
ey.,0,41,36,0
500 DATA in a small cavern. There is a tunnel high

above my head leading east. A metal ring hangs
from the ceiling next to the tunnel.,32,0,0,35
510 DATA in a gloomy tunnel which looks down on a

small cavern. A rope hangs down.,0,0,38,0
520 DATA in the room of many faces. The walls are
lined with mirrors which reflect my image in all d
irections.,o,o,o,37
530 DATA at the end of a passage leading into the
mountain. The view over the valley is magnifi
cent.,o,o,4o,o
540 DATA in a narrow east/west
ight.,0,0,41,39
550 DATA n a narrow east/west
h lies a rope bridge across a
,42,40

passage lit by dayl

passage. To the nort
deep gulley.,35,0

560 DATA at the edge of a bottomless pit. Ther
e·s a drawbridge on the far side.,o,o,o,41
570 DATA in the dwarf's cavern. It is full of very

small furniture.,0,0,44,0
580 DATA at the end of a wide passage. An evilghos
t stands guard and won't let me pass south.,0,0,4
5,43
590 DATA in a wide east/west passage lit by tore
hes high above my head.,0,0,46,44
600 DATA on a wooden drawbridge.,42,0,0,45
610 DATA in the crater of an extinct volcano.,0,52
, 4,8, 0
620 DATA in a small passage. Daylight pours infrom

an opening to the west.,44,0,0,47

>

Writing the data

630 DATA in the branches of a giant beanstalk.Th~r
e's a cave entrance to the east.,0,0,50,0
640 DATA at the entrance to a gloomy passage. The
beanstalk prevents much light entering.,0,55,51
,49
650 DATA in the hall of the evil Balrog. All the
walls are scorched.,0,56,0,50
660 DATA on a footpath leading between the cent
re and the top of the crater.,47,0,53,0
670 DATA at the top of of the crater. A path lead
s east and down the mountainside.,0,0,54,52
680 DATA on a path leading down the mountain. Ther
e is an opening in the cliff high above my hea
d. The ground here is very fertile!,0,58,0,53
690 DATA in the nest of the evil Balrog. Threeenor
mous eggs lie at the centre.,50,0,0,0
700 DATA in the Balrog's Lair. A tunnel leads sout
h but the evil stench is too great for me top
roceed.,51,0,0,0
710 DATA outside the 'Tower of Darkness·. The entr
ance is blocked by a pile of rubble.,o,0,58,0
720 DATA on a bracken covered hillside.,54,0,59,57
730 DATA by the 'West Bate of Jadir'. Two evilhobg
oblins stand guard.,o,o,o,58
740 DATA in a field of golden corn.,0,66,61,0
750 DATA on a large strip of concrete in frontof t
he 'West Bate'.,59,0,62,60
760 DATA in an amphitheatre. A giant flexes his
muscles in the far corner.,o,o,o,61
770 DATA inside the bronze statue. A lizard with

two heads peers from above.,o,o,o,o
780 DATA on the banks of a river. It is too dang
erous to cross here. An enormous statue of the god
'Jolia' lies to thenorth.,0,67,65,0

790 DATA on the banks of the river. It looks safe
enough to cross here.,0,0,66,64

800 DATA in a field of grazing cows.,60,0,0,65
810 DATA in a farmyard. A dog sleeps in the shad
e of the old barn.,64,72,0,0
820 DATA on the banks of a shallow river. A sign
post h~re reads- 'Danger Quicksandto the west·. ,o,o
,69,0
830 DATA outside an old barn. A path leads west
. An old tramp blocks my way in.,o,o,o,68
840 DATA inside the old barn. A rickety ladderlead
sup into the loft.,o,o,o,o
850 DATA in the hayloft. A cat lies asleep in the
hay.,o,o,o,o
860 DATA outside the farmhouse. It is locked and
there is no way in. To the west lies the forest.,
67,0,73,0
870 DATA in a dark and gloomy forest.,73,76,74,72
880 DATA in a dark and gloomy forest.,74,77,74,73

33

I
l

34 Writing the data

890 DATA at the end of a narrow valley.,0,78,79,0
900 DATA in a dark and gloomy forest.,73,76,77,76
910 DATA in a dark and gloomy forest.,74,77,78,76
920 DATA in a small clearing. The way north lead
s into open countryside.,75,0,0,77
930 DATA at the far end of the valley. A metalgrat
e is set into the ground here.,o,o,o,75
940 DATA in a small hole under the ground. ,o,o,o,o

Line:
40

50-60
70
80
100
110-140

150-940

select the text screen, turn off function key messages
and select the colours
titles
set width of the screen and clear enough string space
define some common messages
dimension the arrays
read the data for the locations and the map into the
arrays
data for the locations and the map

MSX BASIC is very efficient in the way it uses memory to store
data, but even so, it will probably be necessary to CLEAR enough
string space at the start of the game. This is especially true if you
intend to use the routine to load a saved game back into the
computer because you will then be storing two copies of the same
variable in the memory of your machine. As a starting point, I
would suggest that you try CLEAR 1000 and if you get an 'OUT OF
STRING SPACE' error, then try increasing the clear command later.
As you can see from this game, it proved necessary to clear 7000
bytes of memory, although the game works perfectly with a CLEAR
1000 command provided you don't attempt to load a saved game.

In addition to the set of variables which are standard to all
adventures, you will probably want to define some variables to
contain common messages such as "O.K." or "I can't do that!" This
is done in line 80. In this game, I have used just three common
messages, but you can add extra messages here if you wish!

As there are 80 locations and 30 objects in this game, line 100 is
used to dimension the arrays large enough to hold this information.
Thus the array Q$(X) is set to hold the description of 80 locations,
whilst S¾(X,Y) is set to hold 80 locations and 4 directions. It is this
array which controls the movement of the player from one location
to another. The first number in this array refers to the number of the
location and the second number refers to the direction.

thus:
S%(27,l) refers to the location reached by going north

from location 27

►

I,
f,
r
t:
t4

S%(27,2)

S%(27,3)

and S%(27,4)

Writing the data

refers to the location reached by going south
from location 27
refers to the location reached by going east from
location number 27
refers to the location reached by going west from
location number 27

The array V$(X) is used to hold the descriptions of the objects
carried by the player and in this game we are going to limit the
number of objects which the player can carry to four. This can be
increased or decreased to suit yourself, although you will need to
change the number in the 'inventory', 'get' and 'drop' routines as
well.

The best course of action at this stage is to go ahead and type in
the program up to line 140. If, after typing in this section, you try to
RUN it, the computer will display an error indicating that you are
'OUT OF DATA'. Far from being a nuisance, this error message can
be one of the most useful methods of checking out the program as
you develop it.

Each of the following 80 lines contains the data for one location.
This is in the form of a description followed by four numbers. The
first thing you'll notice if you compare the description of location
number one in line 150 with the description of the same location on
the map is that I've tried to make far more detailed. One of the major
differences between a really good adventure game and a poor one is
in the quality of the description. The more detail you can include
within the description, the more vivid the picture built up in the
mind of the player. If you compare the two examples of screen
displays from text adventures, you'll see what I mean.

Example one
I am in a gully
I see a key
What shall I do now?

Example two
I am standing in a small gully at the bottom of a sheer rock face. The
leaves from a tree keep falling on my head.
I can go east
Things I can see:
a small rusty key
What shall I do now?

Example 2 provides the player with more information about his
location and this in turn leads to a far greater sense of involvement
for the player. With 28K of RAM available for use in BASIC, there's
no excuse for descriptions of locations and objects which are so brief
that they fail to give the player enough information, but don't be
tempted to go overboard with the text, or you'll soon run out of

35

36 Writing the data

memory. There are a number of ways of compressing extra detail
into the data, but these techniques are beyond the scope of this
book.

To convert the map for your game into the data lines for the
program, you must examine each location in turn. The four numbers
in each data line correspond with the number of the location
reached by travelling north, south, east and west from the location
in question. As an example of this, consider location number 4 in
'The Wizard's Quest'. To make life easier, I have kept the data for
each location on a separate data line. Thus the data for location
number four is found in line number 180, the fourth data line. In this
location, the player cannot travel north or west and hence the first
and fourth numbers after the description must be zero, to indicate
that movement north and west is not possible. Movement south
from this location takes you to location number 9, whilst movement
to the east takes you to location number 5. The second and third
numbers in the data line would, therefore, be 9 and 5 respectively.
When these four numbers are read into the array 5%, which holds
the map, the contents of the fourth element of 5% would be as
follows:

5%(4,1) = 0 movement north from location number 4 isn't possible
5%(4,2) = 9 movement south from location number 4 takes you to

location 9
5%(4,3) = 5 movement east from location number 4 takes you to

location 5
5%(4,4) = 0 movement west from location number 5 is not possible

In this game there are a few locations where the player can go up or
down in addition to movement in the normal compass directions.
As already indicated, this movement can be dealt with by storing
the number of the location reached by going up or down in the data
lines for reading into the array 5%. I have not done this because
there are too few locations where the player can go up or down to
justify the extra memory space used by increasing the dimension of
the array. However, you may like to experiment with this and the
example below should indicate how to set about it, and if you would
like to try your hand at a three-dimensional game, there is more
information on the subject in the final chapter.

Supposing movement up from location 1 took you to location 7
and movement down from location 1 to location 19, then the first
data line would need to be changed to:

150 standing in a small gully at the bottom of a sheer cliff face.,
0,0,2,0,7,19

you would probably need to change the description of the location
so that going up or down sounds more feasible.

150 standing in a small gully at the bottom of a sheer cliff face. A
narrow path leads up the mountainside and a small grate leads

►

I
t
(

F

L
s

Writing the data

down into a dark tunnel.,0,0,20,0,7,19

Adding the extra numbers to each data line without changing the
routine to READ them into the array would result in disaster. You
would need to change line 130 to:

130 FOR Y=l TO 6:READ S%(X,Y)

and also have to add a number of extra lines later in the game.

Testing
As soon as you have entered all the data lines for the locations in the
game (lines 150-940), you will need to check whether they have been
typed in correctly or not. Even the slightest typing error at this stage
can cause problems, especially to a beginner. Over ninety per cent
of errors occurring at this stage will be due to commas in the wrong
place and the worst thing about a mistake in the placement of
commas is that the computer will, more often than not, tell you that
an error has occurred in a place other than where the real mistake
lies.

The easiest method of checking that you have made no mistakes
may seem to involve sitting down and checking the listing on the
screen of your computer with that printed on paper. In practice,
however, you are more likely to miss the mistakes, especially when
you are getting towards the end and are tired and frustrated.

The best approach is to try to RUN the program. If all is well, and
the computer has found no errors in the order of the data, the titles
will be printed on the screen and after a few seconds the message
'O.K.' will appear on the screen. A message to this effect does not
mean that there are no mistakes in your program, but merely that
the computer has been unable to find any. A computer is unable to
check whether you have made a spelling mistake in the description
of a location or whether you have inserted the number of the correct
location when going north from location number 17. It can, of
course, tell you if the data is presented in the wrong order or if a
comma is missing.

If the computer does return with a 'SYNTAX ERROR' or an 'OUT
OF DATA' error, then this indicates that the computer has found an
error in the data lines. Even if it tells you that the error occurs in line
120 or 130, tracking down the source of the mistake requires a little
thought on your part. The easiest way is to try to find out the
number of the location where the computer thinks that the error
occurs by typing PRINT X and pressing <RETURN>. The number
printed on the screen will probably correspond with the number of
the location where the error has occurred. If you want to make sure
of this, you should ask the computer to print the description of the
previous location.

e.g., supposing the computer prints the value of X as 19, then the
last correct location would be number 18, so typing PRINT Q$(17)
should print the correct description of location number 17.

37

38 Writing the data

If the description of location 17 is correct, try typing PRINT Q$(18)
to see if the description of location 18 has been read correctly. By a
process of careful elimination, you should be able to track down the
position in the data lines where the actual error has occurred. Once
the mistake has been rectified, you should try running the program
again until, eventually, the program will run without an error being
discovered by the computer.

One point that's worth looking out for at this stage is that you
have not included commas in the descriptions of any of the locations
in the DATA lines. The listings in this book do not have inverted
commas around these descriptions because, in most cases, they are
unnecessary. If, however, you want to include a comma in the
description of any location, then you MUST enclose that description
in inverted commas, otherwise the computer will interpret the
comma as being the start of a new item of data and this will result in
a SYNTAX error at some other point in the program.

eg.
250 DATA by a compost heap. A few small, green beanstalks are
growing out of the top of the heap.,6,0,0,0

would produce an error and should be written as:

250 DATA "by a compost heap. A few small, green beanstalks are
growing out of the top of the heap.",6,0,0,0

Even if the computer doesn't find an error for you, you could still
have made a simple spelling mistake. It really does pay you to
double check all the details at this stage, rather than waiting until
later, when it will be much harder to find errors. The easiest method
of checking the data is to run the program and, when it prints the
message 'O.K.', you should type in the short line below and press
<RETURN>, fhis will print out the numbers from 1 to 80 and
alongside each will print the description of the appropriate location.
Pressing the STOP key will make the computer pause to give you
time to read the screen and check the accuracy of the descriptions.

Line to type in:

FOR X=l TO 80: PRINT X:PRINT Q$(X): NEXT X <RETURN>

Spelling mistakes in adventure games can spoil an otherwise
excellent game and you should check and double check each
description. Don't forget to use a dictionary if you, like me, tend to
be poor at spelling! Equally irritating to an adventure player is a
description where words are split over two lines. As we are using a
37 column screen width, the descriptions have been adjusted, by
inserting extra blank spaces, so that no word is started after column
34 and that there are no split words. Even professional games
sometimes contain errors of this type (I've found one example in the
MSX version of the Hobbit!) and they can be very difficult to track
down if you leave the task until later.

►

Writing the data

The final check which must be made at this stage is that the DATA
entered for the map contains no errors. There are two ways of
checking this information, either by checking the listing very care
fully, line by line or by typing PRINT S%(1,1) etc. and checking that
the value returned agrees with your map. Whichever method you
choose, it will take time, but you won't regret it later! It is all too easy
to miss a simple mistake in one data line and just one number which
is incorrect can make the whole map of the game appear stupid!

After entering so much of the program into your computer, you
will probably be feeling tired and if you press on with data entry,
you will be much more prone to errors than when you first started.
The best course of action at this stage is to take a break, but don't
forget to save a copy of the game onto tape or disc before leaving the
keyboard. There's nothing worse than leaving the keyboard for five
minutes and returning to find that the kids have loaded the latest
arcade game or that the cat has knocked the computer off the desk
and the plug has come out. In fact, I'd strongly recommend that you
make a habit of saving your program every half hour or so. You
never can tell when disaster is likely to strike and if you adopt this
course of action, you'll never lose more than half an hour's work
even if the worst does happen! If you do have a disc drive, then I
would suggest that you save a copy of your new version using a
different file name, so that you will then have two, or more, copies
to fall back on.

Reading the data for the objects

950 REM** READ DATA for objects**
960 FOR X=l TD 30:READ G$(X>,B¾(X),N$(X>:N¾(X>=X:N
EXT
970 DATA a small beanstalk,11,beanstalk,a can of o
il,12,oil,a small key,1,key
980 DATA a vacuL1m cleaner,26,vacuum,a glass vase,2
5,vase,a pair of rubber gloves,26,gloves
990 DATA a magic wand,23,wand,a bottle of rum,25,r
um,a book of spells,28,book,a gleaming sword,9,swo
rd
1000 DATA "",24,"",a pile of leaves,24,leaves,a me
nacing vampire,33,vampire
1010 DATA a wooden crucifix,22,crucifix,a giant sl
ug,35,slug,a jar of salt,38,salt
1020 DATA a** GOLD NUGGET **,56,gold,a ** BAR OF
SILVER **,71,silver,a ** DIAMOND **,BO,diamond
1030 DATA a** JEWELLED CASKET **,63,casket,a gian
t,62,giant,a flame thrower,55,flame
1040 OATA a crowbar,63,crowbar,a row of three butt
ons,64,buttons,a little dog,54,dog
1050 DATA an angry farmer,72,farmer,"",72,"",a **
PEARL NECKLACE **,43,pearl
1060 DATA a** RUBY **,39,ruby,a ** PLATINUM BAR*
*,57,platinum

39

I
'I
I

40 Writing the data

Line:
960

970-1060

read the description of the object, the location where the
object is found and the word it is recognised by for each
of the 30 objects. Also set the pointer N%(X) to equal
the number of the object.
data for the 30 objects

The section of code between lines 950 and 1060 is used to READ
the DATA for the 30 objects found in the game. If your game con
tains more than 30 items, then you will need to increase the size of
the arrays in the DIM statements at the start of the program and also
change the size of the loop in line 960. Each line of DATA contains
the information for several objects, so as to pack as much infor
mation into the game as possible. This data is in three parts: the
description of the object, its location and the word by which the
computer will recognise it. The final array (N%(X)) is set to act as a
pointer to the number of the object.

Although this section of the program is much shorter than the
previous one and won't take you as long to enter into your
computer, it is just as important that you check that the computer is
READing the DATA for the objects into the arrays correctly. This
can be done by trying, once again, to run the program and checking
that the computer doesn't find any errors. Should an error occur at
this stage, you should type PRINT X and press <RETURN>. The
value of the variable X will probably indicate the number of the
object where the error has occurred. By a process of careful elimi
nation, you should be able to track down the exact source of the
mistake and correct it. If all is well, do check through all the
variables to make sure that no spelling mistakes have crept in. The
following line should help you to do this:

FOR X=l TO 30: PRINT X: PRINT G$(X): PRINT N$(X): NEXT X

The computer will print the description of all of the objects, with
the exception of the few which are initially undefined (as explained
in chapter one), together with the words which the player will have
to type in. One very common mistake, which can happen if you try
to be too quick when typing, is that you get the line number wrong
Imagine that you are in a hurry and type line 1020 as line 102, or
even worse as line 120. In the first case, the data for the game will be
in the wrong order and will appear to spoil the section you had
previously checked. In the second case, you would actually have
typed an incorrect line to replace the original line 120. It really does
pay you to check each line before actually entering it into the
computer's memory.

When you are sure that all is well, you should save a copy of the
new version of your game onto tape or disc before switching off.
You have now completed the most important part of the program
development. Before starting the next section, you would be advised
to take a short break so that you come back to the computer
refreshed and ready to go.

l

I

Ir
cc
o1
rn
st
ar
tir
w]

wl
ga
frc
th;
co,
me
me
ea1

1
fra
str1
flo,

1
cor
trol

1
1
1
1
1
1
1
1
1
1.
h'

The ain control section

In any adventure, the most important section of all is the main
control sequence. In principle, this is a fairly straightforward piece
of programming, but unless it is carefully planned, it can become
much more complex than it really needs to be. The simpler in
structure you can keep the control section, the easier it is to detect
any errors and this in turn helps to keep program development
times to the minimum. Many different approaches may be adopted
when writing this section, although once you've found a method
which suits you, you will probably wish to stick to it in future
games. The fun and enjoyment of writing adventure games comes
from setting devious problems for the player to puzzle over rather
than from spending many hours developing routine sections of
code. There is nothing guaranteed to dampen the creative spirit
more than spending many hours debugging routines which are
more complex than they really need to be, especially when you are
eager to put your ideas for puzzles into practice.

We have already seen how the control sequence fits into the
framework of the game and we now need to sort out its internal
structure. The best way of doing this is to draw yet another
flowchart such as the one on page 45.

The listing below, from 'The Wizard's Quest', shows how I have
converted the flowchart into a working routine, capable of con
trolling the game.

1070 REM** set score & position**
1080 P¼=7:S¼=O:CLS
1090 REM** main control loop**
1100 IF S¼>9 THEN 1750
1110 PRINT:PRINT"I am :-":PRINTQS(P¼)
1120 REM** check score**
1130 GOSUB 2000
1140 REM** describe locations**
1150 A:$="":IF S¼(P¼,1))0 THEN AS="North"
1160 IF S¼(P¼,2)>0 AND LEN<AS>>O THEN AS=AS+",Sout
h" ELSE IF S¼<P¼,2>>0 THEN AS="South"

3

41

42 The main control section

1170 IF S'Y. <PX, 3 > >O AND LEN< A$ »o THEN A$=A$+" , East
11 ELSE IF S'Y.<PX,3>>0 THEN A$="East"
1180 IF S'Y.(PX,4>>0 AND LENCA$)>0 THEN A$=A$+",West
11 ELSE IF S'Y.(P'Y.,4))0 THEN A$="West"
1190 IF <P'Y.=69 AND SH=1> OR P'Y.=7 OR P'Y.=21 OR P'Y.=29

OR P'Y.=64 THEN A$=A$+",In"
1200 IF P'Y.=12 OR P'Y.=63 THEN A$="0ut" ELSE IF P'Y.=22

OR P'Y.=25 THEN A$=A$+ 11 ,0ut"
1210 IF P'Y.=70 THEN A$="Up,Out" ELSE IF P'Y.=80 THEN
A$= 11 Up"
1220 IF P'Y.=54 AND SL=1 THEN A$=A$+",Up"
1230 IF P'Y.=37 OR P'Y.=49 OR P'Y.=79 THEN A$=A$+",Down"

ELSE IF P'Y.=71 THEN A$="Down"
1240 IF A$= 11 " THENA$="nowhere obvious!"
1250 PRINT:PRINT"I can go :-":PRINTA$
1260 PRINT
1270 REM** describe objects**
1280 E=O:FOR T=1 TO 30
1290 P=O:IF B'Y.(T)=P'Y. THEN P=1
1300 IF P=1 THEN 1320
1310 NEXT T:GOTO 1340
1320 IF E=O THEN PRINT"Things I can see:-"
1330 PRINTG$(T):E=1:GOTO 1310
1340 Z$="":PRINT:INPUT"What should I do now ";2$
1350 REM** analyse input**
1360 8$=LEFT$(Z$,2):C$=LEFT$(Z$,3):D$=LEFT$(2$,4)
1370 BEEP:CLS
1380 IF C$= 11 out" OR D$= 11 go o" THEN GOSUB 1800
1390 IF C$="pra" THEN GOSUB 1870
1400 IF C$= 11 in" OR D$="go i" THEN GOSUB 1930
1410 IF (8$="n" OR D$="go n") AND S'Y.(P'Y.,1>>0 THEN
P'Y.=S'Y.(P'Y.,1) ELSE IF (8$="n" OR D$="go n"> THEN PRI
NTVA$
1420 IF (8:$="s" OR D:$="go s") AND S'Y.(P'Y.,2>>0 THEN
P'Y.=S'Y.(P'Y.,2) ELSE IF (8$="s" OR D:$="go s") THEN PRI
NTVA$
1430 IF (8$="e" OR D$="go e") AND S'Y.(P'Y.,3))0 THEN
P'Y.=S'Y.(P'Y.,3) ELSE IF (8$="e" OR D$="go e") THEN PRI
NTVA$
1440 IF (8$="w" OR D$="go w"> AND S'Y.(P'Y.,4)>0 THEN
P'Y.=S'Y.(P'Y.,4) ELSE IF (B$="w" OR D$="go w"> THEN PRI
NTVA$
1450 IF C$="sco" THEN PRINT"You have scored ";S'Y.;"
out of 10. II

1460 IF C$="get" OR C$="tak" OR C$="gra" THEN GOSU
B 2130
1470 IF C$="inv" THEN GOSUB 2300
1480 IF C$="dro" OR C$="lea" OR C$="put" THEN GOSU
B 2370
1490 IF C$="wea" THEN GOSUB 2460
1500 IF C:$="pul" THEN GOSUB 2520
1510 IF C:$="wav" THEN GOSUB 2560
1520 IF C:$="pad" THEN GOSUB 4150
1530 IF C$="rea" THEN GOSUB 2670

Li.
10

11
11
11:
n

12:
126
128

132

1331

The main control section

1540 IF C:$="say" OR C:$="tal" OR C:$="rep" THEN
B 2710
1550 IF C:$="att" OR C:$="ki l" OR C:$="sta" THEN
B 2780
1560 IF C:$="sea" THEN GOSUB 2830
1570 IF C:$="thr" THEN GOSUB 2860
1580 IF C:$="cl i" THEN GOSUB 2930
1590 IF C:$="up" OR D:$="go u" THEN GOSUB 3010
1600 IF C:$="dri" THEN GOSUB 3070
1610 IF C:$="giv" THEN GOSUB 3110
1620 IF C:$="use"OR C:$="pri" THEN GOSUB 3180
1630 IF C:$="swi" THEN GOSUB 3420
1640 IF C:$="unl" THEN GOSUB 3480
1650 IF C:$="oi l" THEN GOSUB 3540
1660 IF C:$="pl a" THEN GOSUB 3580
1670 IF C:$="f i 1" THEN GOSUB 3630
1680 IF C:$="pou" THEN GOSUB 3660
1690 IF C:$="dow" THEN GOSUB 3720
1700 IF C:$="pre" THEN GOSUB 3790
1710 IF C:$="hel" THEN PRINT"I'm sorry I don't
a clue!"

1720 IF C:$="sav" THEN GOSUB 3870
1730 IF C:$="loa" THEN GOSUB 4010
1740 F=FRE("">:IF S'Y.<10 THEN 1100
1750 CLS:LOCATE 9,5:PRINT"W e 1 1 Done"

GOSU

GOSU

have

1760 LOCATE 1,10:PRINT"You have found and recovere
d all the treasures."
1770 PLAY"l32dcdedcded"
1780 LOCATE 2,20:PRINT"Goodbye. Thank you for play
ing!":END

Line:
1080 set the player's starting position to location 7 and their

score to zero. The screen is then cleared.
1100-1740 this main loop is repeated until the score is equal to ten.
1110 describe the player's current location.
1130 call the subroutine to check the score.
1150-1180 examine the array S%(X,Y) to see if movement north

south, east or west is possible and store this information
in the variable A$.

1190-1230 check the number of the location to see if movement up,
down, in or out is possible and add this information to
A$.

1250 describe the direction in which the player can travel.
1260 print a blank line.
1280-1310 check all of the thirty objects to see if they are in the

current location.
1320 if this is the first object in that location, print the message

'Things I can see:-'.
1330 describe the objects found in the current location.

43

j

44 The main control section

1340 input the player's instructions.
1360 examine the first few letters of the input instructions.
1370 clear the screen and make short note.
1380 if the player wants to go out, call the subroutine at line

1800.
1390 if the player wants to pray, call the subroutine at line

1870.
1400 if the player wants to go in, call the subroutine at line

1930.
1410 if the player wants to go north and this is possible,

change the value of P%, otherwise print the message 'I
can't do that!'.

1420 if the player wants to go south and this is possible,
change the value of P%, otherwise print the message.

1430 if the player wants to go east and this is possible, change
the value of P%, otherwise print the message.

1440 if the player wants to go west and this is possible, change
the value of P%, otherwise print the message.

1450 if the player asks for the score, print the value of 5%.
1460 if the player wants to 'get' an object, call the subroutine at

line 2130.
1470 if the player wants to see the inventory of items they are

carrying, call the subroutine at line 2300.
1480 if the player tries to 'drop', 'leave' or 'put' an object in the

current location, call the appropriate subroutine.
1490 call the subroutine to wear an object.
1500 call the subroutine to pull an object.
1510 call the subroutine to wave the wand.
1520 call the subroutine to paddle across the river.
1530 call the subroutine to read the book.
1540 call the subroutine to 'say', 'talk' or 'repeat' the secret

password.
1550 call the subroutine to 'kill', 'attack' or 'stab' an object.
1560 call the subroutine to search the current location.
1570 call the subroutine to throw an object being carried.
1580 call the subroutine to climb up.
1590 call the subroutine to go up.
1600 call the subroutine to drink.
1610 call the subroutine to give an object away.
1620 call the subroutine to 'use' or 'prise' an object.
1630 call the subroutine to swim across the river.
1640 call the subroutine to unlock the padlock.
1650 call the subroutine to oil the lock.
1660 call the subroutine to plant the beanstalk.
1670 call the subroutine to fill the vase.
1680 call the subroutine to pour the water.
1690 call the subroutine to go down.
1700 call the subroutine to 'press' an object.
1710 call the subroutine to ask for 'help'.

p

The main control section

1720 call the subroutine to 'save' a game during play.
1730 call the subroutine to 'load' in a previously saved game.
1740 if the score is less than 10, start the loop again.
1760-1780 win the game. Print message, play a short tune and end

A

YES

the game.

NO

END GAME

YES

PERFORM ACTION
SUBROUTINE

A

Fig. 3.1. Flowchart for control sequence

WORK OUT
DIRECTIONS

POSSIBLE

NO

INPUT
-"CTION

YES

45

The main control section

In all games in this book and, for that matter, in all adventures
which I write, the variables P% and S% are used to hold the player's
current position and the score respectively. After setting the value of
these variables in line 1080, the computer repeats the main loop
until the score is greater than 9. You will notice that the game starts
with the player standing outside the Wizard's cottage and therefore
P% is set to 7 at the start of the game.

Most games have a maximum score of either 10 or 100, but by
changing the value tested for in line 1740, it is possible to write a
game so that the player wins when any chosen score is reached. In
some games, including the original 'Colossal Caves', the player is
given some score at the start of the game and you may like to follow
that example by changing line 1080.

The actual line numbers used in this game were changed many
times during development of the program. When you try to write a
program of your own, the reason for this will become quite obvious.
After writing the standard section of code, the subroutines to deal
with specific responses such as 'swim' or 'pray' were added one at a
time to the program. Each time a new subroutine was added at the
end of the program, a line was added between the line asking for
your instructions and the end of the loop to call that routine. After a
while, the space left between the lines began to run out and in order
to make the listing look neater, the program was renumbered. If you
compare the main control section of this program with the others in
this book, you'll see that they are essentially identical, although the
line numbers will be very different.

The score is set to zero and the starting position to location
number 7 in line 1080, whilst the main control loop from line 1100 to
1740 describes the location, the directions in which movement is
possible and any objects visible before asking the player to type in
his instructions.

You may be wondering what the statement F=FRE("") is doing at
the start of line 1740. This instruction is normally used to return the
number of bytes of free memory. In this context, it is used for a very
different purpose. In any adventure game, the contents of the
variables are changed many times during the course of play. In this
game, for example, each time the main loop is repeated, the player
is asked to type in his instructions. This information is then stored
in the variable Z$. Rather than clear out the old contents of Z$, from
memory, the computer stores the new variable alongside the old.
Thus the first time round the loop, the player may type 'go in',
whilst the second time he could type 'get oil'. The computer will not
immediately clear the message 'go in' from memory.

Every so often, the area of memory set aside to store variables will
become full and the computer, unable to store any new information,
will perform what is known as 'Garbage Collection'. This is where it
searches through its memory and clears out any redundant words.
When it does, the computer will appear to go dead for a few seconds
and you may be forgiven for thinking that it has crashed. By putting

I

1
r
a
t:

"' tl

"' ai
p
d

th
ac
54
pl
WJ

th,
be
us
in
loc
as

1

The main control section

the instruction F=FRE("") into line 1740, we force the computer to
clear out any old variables every time it goes round the loop and in
that way we never allow the area of memory used for variable
storage to fill up.

The variable Q$(P%) holds the description of location P% and
this is printed in line 1110. You will notice that the score is calculated
in a subroutine at line 2000 and this is called from the main loop
every time round it. This routine could have been included within
the main control loop, but using a subroutine meant that I was able
to develop the program as a series of smaller modules, which made
testing and debugging easier.

The section of code between lines 1140 and 1240 checks the
directions in which the player can travel and this information is held
in the variable A$, so that it can be printed on the screen in line 1250.
Some adventure game programmers prefer to include this infor
mation within the description of the locations by changing the
DATA lines. To illustrate how to do this, consider location number
7. The data holding its description is held in line 210 and this line
could be changed to:

210 DATA outside a small cottage. A sign on the door reads 'Wizard
out at the moment. Please leave treasures inside.'. I can go west or
into the cottage.,0,0,0,6

One major disadvantage of doing this is that you are then storing
many more extra characters in the DATA lines and this uses far
more memory than the method I have adopted, although you can
leave out lines 1150 to 1250. The routine to sort out the directions for
movement for north, south, east and west lies between lines 1150
and 1180 and this section of code is to be found in all three listings in
this book. It first of all clears the contents of A$ and then checks
whether the number held in S%(P%,1). is greater than zero. If it is,
then movement north is possible and therefore A$ is set to hold the
word 'North'. In a similar way, the contents of S%(P%,2), S%(P%,3)
and S%(P%,4) are checked to see if movement south, east or west is
possible and the contents of A$ are changed to include any possible
directions.

The code between lines 1190 and 1230 then tests the number of
the location to see if you can go up, down, in or out and again
adjusts A$ if necessary. To illustrate this, consider location number
54, where you can go up if, and only if, the beanstalk has been
planted in the fertile soil AND you have watered it by filling the vase
with water in the kitchen and then poured it over the plant. Unless
the variable SL has been set to hold the number 1 (when the
beanstalk has been watered), line 1220 will be ignored. A variable
used in this way is called a FLAG and you will find many such flags
in adventure games. Once SL has been set to one, and you reach
location 54, the variable A$ will tell you that you can now move Up
as well.

The final part of this section tests to see whether A$ is still empty,

47

48 The main control section

setting its contents to 'Nowhere obvious' if it is, before finally
printing the directions of possible movement in line 1250. There are
no locations in this game where the contents of A$ will still be empty
and line 1240 is not really necessary. It was included in this game
just to illustrate how it can be done.

On reaching line 1280, the program tests the array B%(X) for each
of the thirty objects found within the game to see whether the object
is to be found in the current location (P%). In order to do this, the
program uses the variables E and Pas flags. P is set to hold the value
1 if any object is found in the current location and unless this
happens, the program will not reach the section of code where the
object are described (lines 1320-1330). The variable Eis set to one if
more than one object is found in that position so that the message in
line 1320 is not repeated for each object.

After the location, the directions and the objects have been
described to the player, all that is left to be done is to input the
player's commands and analyse them. This is done by comparing
the first few letters of the player's instructions with the words which
the programmer has decided will be relevant to the game and if they
match each other, the appropriate subroutine is called.

Many advances have taken place in instruction decoding over
recent years. The section of code from line 1360 to line 1730 is used
to analyse the player's instructions but provides only the familiar
two word sentence decoding. It can be extended to provide more
complex sentence decoding if you are are prepared to spend some
time developing it. The subject of full sentence analysis is discussed
in greater detail in the final chapter. In this game, there is little
memory free in which to experiment and you would probably need
to forego the save game routine and/or shorten the descriptions of
the objects and locations.

The method I've adopted for decoding the player's instructions is
to store the first two letters in B$, the first three letters in C$ and the
first four letters in D$ in line 1360. The following line doesn't play
any part in the decoding and may be left out if you don't mind the
screen scrolling during play. The remaining lines in this control
section are used to compare these variables (B$, C$ and D$) with set
word patterns corresponding to the instructions which you want the
computer to recognise and, apart from the sequence to move north,
south, east or west, pass control to an appropriate subroutine. The
only difficulty with using this method is that the computer will then
match a number of words with the routine. Consider the player who
tries to thrash the vampire. This will be interpreted as 'throw',
which will result in a totally unexpected response. You may like to
change the routine so that it compares the full word, but this too can
have its disadvantages.

Rather than type in the rest of the control section in one sitting, it
is easier to debug the program if you type in one line at a time and
then develop its associated subroutine. You can then check that the
subroutine works correctly before moving on to the next line. As an

l

'T
I
I
I

E

t

1

F
t
I:
t

ii
n
C

p
d
s,
s,
d
s,
li

"' t}

fc
C(

tl
Cl

cl
rr
s

tE
b,
st
Ir

m
gi
th
e:,.

m

The main control section

example of this, suppose you want to add an extra subroutine so
that the computer recognises and understands sentences beginning
with the word 'dive'. The following line should be added to the
control section.

1731 IF C$="div" THEN GOSUB 10000

You'll notice that I've added the subroutine at a line number well
past the end of the main program. This is to allow plenty of space for
the routine. Once convinced that it works correctly, the program can
be renumbered to make it easier to follow and also allow space for
the next subroutine.

You will notice that the program recognises only lower case
instructions. This is a matter of personal choice and you may like to
modify the program so that it recognises both upper or lower case
commands.

The only part of the main control sequence which acts upon the
player's instructions without using a separate subroutine is that
dealing with movement in the prime compass directions (north,
south, east and west). The code needed to control this movement is
so simple that it isn't worth writing it in a subroutine. Line 1410
deals with movement to the north and for those who are not quite
sure how it works, I'll give a little explanation. The first part of the
line checks whether the player has typed an instruction beginning
with 'go n' or simply 'n'. If this is the case, the computer then checks
the contents of the array element S%(P%,1), which holds the map
for movement north from the current location. Should this element
contain a number greater than zero, then this number will represent
the number of the location reached by travelling north from the
current location and the value of P%, the current location, is
changed to this new number. The next three lines deal with
movement south, east and west by examining the contents of
S%(P%,2), S%(P%,3) and S%(P%,4) in a similar manner.

Once the computer reaches the end of the loop, the score (S%) is
tested and if it is still less than ten, the computer jumps back to the
beginning of this loop and starts the process all over again. Careful
study of this loop shows that the computer doesn't print any
message if it fails to recognise the player's instructions. This is an
easy, and extremely useful, feature to add to any adventure game
and can make the program have a much more 'human' quality,
especially if the responses are humorous.

To do this, we can use another flag and set its value to zero
immediately after the player's instructions are input. If the command
given by the player is then recognised by the computer, the value of
this flag should be changed to a value other than zero, so that an
extra line can be added to test its value at the end of the loop and a
message can be printed if the flag is still zero.

eg.
1370 BEEP:CLS:K=0

49

50 The main control section

1380 IF C$="out" OR D$="go o" THEN GOSUB 1800:K=l

1735 IF K=0 AND LEN(Z$)>0 THEN PRINT'Tm sorry I don't seem
to understand your instructions. Perhaps you should rephrase your
command."

In the above example, the variable K would be set to one at the
end of each line where an instruction was understood and would
remain zero only if the word pattern were not recognised. In line
1735, the message would be printed if the value of the flag were still
zero and the player had typed an instruction rather than just
pressed <RETURN>.

Until all of the subroutines have been typed in, you will be unable
to test that the main control section works fully, but you should be
in a position to check that you can move around the adventure.
Before proceeding with the next chapter, it's worth spending a little
time checking that you can move north, south, east and west in your
game. The easiest way of doing this is to RUN the program and
when the computer prints the message asking for your response,
escape from the game by pressing the CONTROL and STOP keys
simultaneously. You can then change your location, without actually
playing the game, by typing P% = 1 and pressing RETURN. This will
move you to location number 1. You can then continue the game by
typing CONT and pressing <RETURN>. In this way, you can move
to each of the eighty locations in the game and test whether the
movement routine works as you expect. If all is well, don't forget to
save a copy of your game. Should a fault occur at this stage,
however, you will need to check the numbers in the data lines to
ensure that you have typed them in correctly and also check the
lines 1410 to 1440 for typing errors.

T
I

(

l

t
t

t

C

1
g

Ii
l<
tl

"' d
f(

V

p
\,\;

rr

Now that we have completed the routine part of the game, we can
really get to grips with the most interesting part of the whole
process. Setting puzzles and problems for the players to pit their
wits against is a very time-consuming procedure and needs to be
tackled in several stages. Some of the subroutines called by the main
control section will be common to all adventure games. Examples
which readily spring to mind are those dealing with handling
objects, such as 'get', 'drop' and 'inventory', whilst others deal with
your position in the game such as 'score', 'help' and 'look'. Some
routines, however, will be unique to the particular game and
although many adventurers argue that the fun of playing the game
comes from finding out which words the computer recognises, you
would be well advised to give the player some information about the
words which are understood by the computer. As the level of
decoding by the computer becomes more complex, it becomes ever
more important to give the player this information to point them in
the right direction and so save them a great deal of needless frus
tration. This may be achieved by providing a printed instruction
sheet to accompany the program or by including instructions within
the game.

In 'The Wizard's Quest', there are two subroutines which are not
called from the main control section, but from other subroutines.
They are, in fact, the two most important subroutines in the whole
game and, for that reason, will be discussed first.

The first of these, from line 2600-2650, deals with losing the game.
In any adventure, there will be many occasions where the player
loses his life by performing such foolhardy tricks as jumping from
the roof of a burning building or swimming in crocodile-infested
water, and writing separate routines to deal with every possible
death would be very wasteful of memory. Before calling this
routine, a message describing the death MUST be stored in the
variable E$, which is then printed at the top of the screen. The
player will then have to press the space bar for another game. Don't
worry about the two REM statements, which were put in just to help
me to locate my position in the game and which can be left out. 51

52 Setting the puzzles - part 1

Subroutine for losing the game

2600 REM** lose game**
2610 CLS:PRINTE$:LOCATE 0,20:PRINT"Press the <Spac
e Bar> to play again."
2620 A$=INKEY$:IF A$<>" "THEN 2620
2630 REM
2640 REM
2650 RUN

Line:

2610 clear the screen, print the message held in E$ and print the
message about pressing the space bar.

2.620 wait for the space bar to be pressed.

The second routine, from line 2230 to line 2280, is probably the
most important in the whole game. Its first purpose is to split the
instruction typed in by the player into two separate words, and
store the second word of the sentence in the variable L$. The first
few letters of the input sentence have already been stored in B$, C$
and 0$ and the computer will have already recognised the player's
intention in principle, although not in detail! Supposing, for example,
that the player types the instruction 'get rope', then the main control
section would call the subroutine which deals with 'get' and this, in
turn, would call the routine being discussed to find out which object
the player wants to get and hence, on returning to the 'get' routine,
the variable L$ would hold the word 'rope'. In order to do this, the
computer uses the INSTR command to search the input string (Z$)
for the first occurrence of a blank space (" ") and sets L$ to hold that
part of Z$ to the right of it. Obviously, if the player types in 'get the
rope', L$ would then hold the words 'the rope', which would not be
recognised in the following lines. Games which include full sentence
decoding would then have to search L$ for any other occurrences of
a blank space and leave the final value of L$ with just the word
'rope' in it. You may like to try experimenting with more complex
sentence analysis for yourself when you have sorted out the main
sequence.

Subroutine to split sentence

2230 REM** check items**
2240 L$="":XX=INSTR(Z$," "):R=O
2250 L'l.=O:L$=RIGHT$(2$,CLENCZ$)-XX))
2260 IF LENCL$)<2 THEN RETURN
2270 FOR X=l TD 30:IF LEFTCNCX>,LEN(L$))=L$ THEN

L'l.=1:R=X
2280 NEXT:RETURN

r

Setting the puzzles - part 1

Lines 2270-2280 then search through the contents of the 30 elements
of the array N$(X), which holds the names of the objects recognised
by the computer, to see if the contents of L$ match with any of the
known objects in the game. If a match does occur, then the variable
R is set to hold the number of that object. Should the object not be
recognised, then the value of R will remain zero when control is
returned to the subroutine which called it. In the 'Wizard's Quest',
for example, the rope is not found until the player has searched the
leaves for it and thus if the player tries to 'get rope' before searching
the leaves, the value of R returned would be zero. After searching in
the right place, however, the variables N$(11) and G$(11) are
changed and trying to 'get rope' would then return a value of R=ll.

Line:
2240 empty the contents of L$, find the position of the blank space

in the string and set the value of R to zero.
2250 set the flag to zero and change L$ so that it holds the second

word typed in by the player.
2260 check the length of the word held in L$ and if it is too short,

return to the calling subroutine.
2270 search through all 30 objects to see if the word held in L$

matches the description of any of them and set R to the
number of the object if it does.

2280 return to the calling subroutine.

All other routines, with the exception of that used to calculate the
player's score, are called as a direct result of the player's instruction.
The subroutine used to calculate the score, however, is called every
time round the main control loop, so that the computer always has
an up to date score to check at the end of the main section. There are
many different ways of giving the player a score in an adventure
game and the routine from line 1990 to 2110 illustrates one of the
most popular methods. If you can remember back that far, the ten
items of treasure to be found have to be taken and dropped inside
the Wizard's cottage, location number 12. The ten items of treasure
discussed in chapter one were object numbers 13, 15, 17, 18, 19, 20,
21, 28, 29 and 30. Each time the routine is called, the score is set to
zero in line 2000 to make sure that it doesn't build up on its previous
value without the player finding any further items of treasure. Lines
2010 to 2100 then check the location of the treasures to see whether
they are inside the cottage and increase the score by one for each of
the above objects found.

Subroutine to calculate the score

1990 REM** set score**
2000 S'Y.=0
2010 IF B'Y.(13>=12 THEN S'Y.=S'Y.+1
2020 IF B'Y.C15l=12 THEN S'Y.=S'Y.+1

53

54 Setting the puzzles - part 1

2030 IF Bi.(17)=12 THEN Si.=Si.+1
2040 IF Bi.(18)=12 THEN Si.=Si.+1
2050 IF Bi.(19)=12 THEN Si.=Si.+1
2060 IF Bi.(20)=12 THEN Si.=Si.+1
2070 IF Bi.(21)=12 THEN Si.=Si.+1
2080 IF Bi.(28>=12 THEN Si.=Si.+1
2090 IF Bi.(29)=12 THEN Si.=Si.+1
2100 IF Bi.(30)=12 THEN Si.=Si.+1
2110 RETURN

Line:
2000 set the score to 0.
2010 if object number 13 is in location 12, increase the score by

1.
2020-2100 repeat this process for the other treasures.
2110 return to the main program loop.

All adventure games need routines which allow the player to pick
up and drop objects and the next three routines I want to look at
deal with this topic. The subroutine which allows the player to 'get'
an object is called from line 1460 in the main control loop. In order to
make the game as 'user friendly' as possible, the computer also
recognises the words 'take' and 'grab'.

The 'get' routine

2120 REM** get objects**
2130 GDSUB 2240:IF Li.<1 THEN RETURN
2140 Ei.=0:F0R X=1 TD 30:IF Bi.(X)=Pi. AND Ni.(R)=X TH
EN Ei.=1
2150 NEXT:IF Ei.=O THEN RETURN
2160 IF <R=13 AND SI=O> DR <R=15 AND SJ=O> DR <R=2
1 AND SN=O> DR R=26 THEN PRINTYB$:RETURN
2170 IF R=12 THEN PRINT"! can't carry them all!":R
ETURN
2180 A<R>=l
2190 Ei.=O:FOR X=1 TO 4
2200 IF V$(X)="" THEN V$(X)=G$(Ni.(R)):Ei.=1:X=5
2210 NEXT:IF Ei.=O THEN PRINT"Sorry my hands are fu
11!":RETURN
2220 Bi.(Ni.<R>>=O:RETURN

The first thing that this section of code does is to call the subroutine
discussed previously to split the sentence into two words. When
control is returned to the 'get' routine, the program tests the flag L %
to see whether the second word typed in has been recognised. If L %
still contains zero, then the player has typed in the name of an object
which the computer doesn't recognise and the program returns to
the main loop without any comment. One suggestion which you

r

Setting the puzzles - part 1

may like to try out would be to insert a message into this line before
returning to the main loop.

eg.
2130 GOSUB 2240: IF L%<1 THEN PRINT "I can't see a ";L$;"
here!":RETURN

Most adventure game players appreciate a little humour, so try to
introduce a little wit into your comments!

Line:
2130

2140

2150

2160

2170
2180

call the subroutine to analyse the sentence and if the flag
is zero on return, return control to the main loop of the
program.
check all thirty objects to see if they match the object
mentioned by the player and if they are in the current
location, set the value of the flag E% to one.
if E% is zero when this line is reached, return to the main
loop.
check whether the object can be picked up. If it is not
possible, print the message and return to the main loop.
prevents the player from carrying object number 12.
set the value of the flag for the object so that the computer
knows that it is being carried.

2190-2200 insert the description of the object into the array V$(X)

2210

2220

which holds the inventory of object being carried.
if the value of the flag is zero, print the message and
return to the main loop.
remove the object from the current location and return to
the main loop.

If the object that the player wants to get has been recognised by
the computer then L % will equal one and the computer will then
check through all 30 elements of the array B%(X) to see whether the
object mentioned by the player is in the current location, P%. This is
done in lines 2140 to 2150, where the variable E% is used as a flag to
check that object number R is to be found in location P%. Should the
value of E% still remain zero at the end of line 2150, then the object
is not to be found in the current location and control is returned to
main loop. I have again included no message to tell the player that
the object is not there and you may like to change line 2150 to
something like:

2150 NEXT: IF E% =0 THEN PRINT "Maybe I need glasses, but I
just don't see";L$;"here!":RETURN

When developing this game, I decided to illustrate as many
different methods of setting problems in adventures as I possibly
could. Line 2160 is an example where the player is prevented from
carrying objects numbers 13, 15 or 21 unless the variables SI, SJ or
SN had been set to one respectively. If you can remember back to

55 7

56 Setting the puzzles - part 1

chapter one, these are three objects which start out as 'monsters',
but which change into treasures later.

Object Number
13
15
21

Starts as
a vampire
a giant slug
a giant

Finishes as
a jade ring
a silk purse
an emerald

The variables SI, SJ and SN are used as flags to test whether the
player has got rid of the 'monster' and found the treasure. Also in
line 2160, you will see that I have prevented you from carrying
object number 26, an angry farmer and in a similar way, you are
prevented from carrying the leaves in line 2170.

Whilst on the subject of variables used as FLAGS, I should like to
mention that I have used the variables from SA through to SP as
flags to test whether a problem has been solved. I would strongly
recommend that each time you introduce a new variable as a flag
you also make a note of it on a piece of paper. The main reason for
this is that when you come to write a routine to save your position
onto tape or disc, you must ensure that the value of all the flags used
in this way are saved alongside the other variables. To help me keep
track of the flags, I tend to write down the names of the variables on
paper before actually using them and in this game I decided on the
series SA to SZ. Each time that a new variable is introduced into the
game, I would then tick it off the list.

Later on in the game, we will come across instances where the
computer needs to know whether the player is carrying a particular
item. One example of this is where the player must kill the wolf
before being able to progress further into the game. This routine was
written in such a way that the player dies whilst attempting to do so
unless he is carrying the sword. It is very important, therefore, that
the computer knows which items are being carried at any instant
and this is achieved in line 2180. Thus if the player types 'get oil', the
value of A(2) would be set to one because object number two is the
can of oil.

In this game, the player is only allowed to carry four items at any
one time and therefore lines 2190 to 2210 check the four elements of
the array V$(X) to see if they are empty. If all four elements are full,
then the value of E% remains zero and an appropriate message is
given in line 2210 before returning to the main program loop.
Should an empty location in the array be found, then its contents
will be changed in line 2200 to hold the description of the object and
the value of X increased so that the loop is terminated. If X were not
increased to 5, then all the elements of the array following the empty
one would hold the same object. Finally, line 2200 sets the pointer
, B%(X), so that the object no longer appears in any location in the
game. On returning to the main loop, the object appears in location
zero, which doesn't exist!

T 7

V
n

"' s:
Ii
t1
0

n
fa
g
tc
p
SI

L.
2:
2:

2:

2~

Ti

Setting the puzzles - part 1

The 'inventory' routine

2290 REM** inventory**
2300 E=O:PRINT"I am carrying:-"
2310 FOR X=l TO 4:IF V$CX><>"" THEN PRINTV$(X):E=1
2320 NEXT:IF E=O THEN PRINT"Nothing at all!"
2330 IF AC6)=2 THEN PRINT"! am wearing the gloves.

2340 IF A(5)=2 THEN PRINT"The vase is full of wate
r ■ II

2350 RETURN

When a player wants to find out what he is carrying, he would
normally type in 'inventory' and in this game, the routine to deal
with it can be found from line 2290 to 2350. This routine is very
simple and needs little explanation other than to discuss the tests in
lines 2330 and 2340. These tests check whether the player is wearing
the rubber gloves and whether he has filled the vase with water. The
contents of the array A(R) will normally be zero if object number R is
not being carried, or one if it is. In the routines we will come across
later, the values of A(6) and A(5) are set to 2 if the player wears the
gloves or fills the vase. Thus if he drops the gloves, A(6) will be set
to zero again, indicating that they have been removed first and if the
player drops the vase, the water will spill out and A(5) will also be
set to zero.

Line:
2300 set the value of the flag to zero and print the message.
2310 search through all four elements of the array V$(X) and if it

contains something, print the description of the object and set
the value of the flag to one.

2320 if the value of the flag is still zero, print the message that
nothing is being carried.

2330 check the flag to see if the player is wearing the gloves and
print the message if he is.

2340 check the flag to see if the player has filled the vase with water
and print the description if he has.

2350 return to the main program control loop.

The drop routine

2360 REM** drop item**
2370 GOSUB 2240:IF L'Y.(1 THEN PRINT"! don't have a
";L$:RETURN
2380 E'Y.=O:FOR X=l TO 4
2390 IF V$ < X > =8$ <N'Y. <R» THEN V$ < X > ="": E'Y.=1
2400 NEXT:IF E'Y.=O THEN PRINT"I'm not carrying ";L$
:RETURN
2410 B'Y.(N'Y.CR>>=P'Y.
2420 ACR)=O

-
57

58 Setting the puzzles - part 1

2430 IF R=25 AND P%=72 THEN PRINT"The farmer smile
sand thanks me. 'I've searched all day for hi
m. Here is a gift which may come in useful', he sa
ys.":G$C27>="a sling":B%(26)=0:B%(25)=0:N$(27)="sl
ing"
2440 RETURN

Now that the player is able to pick up objects found in the game and
the computer is able to tell him which items he is holding, the
next stage of development is to allow the player to drop objects
being carried. Just as the main control loop recognised 'take' and
'grab' as alternatives to 'get' when calling that subroutine, the
computer has also been instructed in line 1480 to recognise 'leave' or
'put' as alternatives to 'drop' when calling the subroutine between
lines 2360 and 2440.

The first line of this subroutine again calls the subroutine at line
2440 which splits the input sentence into two words. If the object
that the player tries to drop is not recognised by the computer, then
the value of L % will remain zero and the message in line 2370 will be
printed before returning to the main loop. Lines 2380 to 2400 search
through all four elements of the array V$(X), which holds the items
being carried, to check whether the player is, in fact, carrying the
item in question. Should the array elements not contain the object,
then control is returned to the main loop after printing the approp
riate message in line 2400.

Line 2410 is used to set the pointer B%(N%(R)), which tells the
computer which location the object is to be found in, back to the
current location, P%. The next line then sets the contents of the
array A(R) back to zero so that the computer knows that the player
isn't carrying the object any longer.

Before returning to the main control loop, line 2430 checks
whether the player has dropped the dog in location number 72,
where the farmer stands looking for him. When this is done, one of
the invisible objects, number 27, is changed into the sling, which
will be needed later in the game, and the pointer B%(X) is set to zero
for objects 25 and 26. These two objects are the dog and the farmer
respectively and this has the effect of moving them to location zero,
which doesn't exist, to give the appearance of them moving away.
Many puzzles in adventure games can be set in this way and it's
worth while examining this line very carefully to make sure that you
understand how it works.

Line:
2370 call the subroutine to split the player's sentence into two

separate words. If the value of the flag L % is zero on return,
print the message that it isn't being carried and return to the
main loop.

2380 set the flag to zero and search the four elements of the array

'

l

Setting the puzzles - part 1

V$(X) which holds the inventory of items being carried.
2390 if the word asked for is the same as an object being carried,

empty that element of the array V$(X) and set the value of the
flag to one.

2400 if the value of the flag is still zero, then the object is not being
carried and therefore the message is printed before returning
to the main control loop.

2410 set the pointer for the position of the object to the current
location (P%).

2420 set the value of the flag for the object to zero so that the
computer knows that it is no longer being carried.

2430 check whether the player has dropped the dog at the farmer's
feet and solve the puzzle if they have.

2440 return to the main program control loop.

Testing
Once you have reached the point where you have typed all the
routines in this chapter into your computer, you would be well
advised to test that they work properly before proceeding with the
sections in the next chapter. The first thing to check is that the 'get',
'inventory' and 'drop' routines work correctly and the easiest way of
doing this is to RUN the program and try getting any objects you
find. Check that the inventory routine works when you are carrying
no objects and then when you are carrying four objects. Also check
that the computer will not permit you to pick up more than four
objects at any one time and that you can drop them again.

In addition to checking that the general routines work, you will
also need to check that you can't pick up the leaves, object number
12, which are found in location number 24. The easiest way to test
this is to escape from the program using <CONTROL> and
<STOP> keys simultaneously, typing P%=24, to change location
and then typing CONT before pressing <RETURN>. You should
then try to get the leaves. Any mistake at this point should be fairly
easy to track down by a process of elimination, but if you leave
debugging until the end, you will find life much more difficult.

Checking that you can't get the vampire, the slug or the giant can
be achieved in a similar way. You will need first of all to escape from
the program and change the value of P% to the location you wish to
visit before CONTinuing with the program. If you want to test that
you can get these objects after solving the problems, then you will
need to wait until you have read the next chapter.

The program should also be tested to see whether dropping the
dog in location number 72 produces the right effect. Again you
should escape from the program, move to the location 54, where the
dog is to be found and CONTinue with the program. Once you have
got the dog, you should once more escape from the program and
move to location 72, where you can, after CONTinuing, drop the
dog.

At this stage, you will only be able to test that the 'lose game'

59

60 Setting the puzzles - part 1

routine works by escaping from the program and typing GOSUB
2610 <RETURN>. This doesn't test the routine out fully because the
only sure test that it works is by attempting to kill yourself, but these
sections have not yet been written. For similar reasons, we will be
unable to check the routine which works out the score, except by
careful comparison with the listing. One final check that can be
made is that typing 'help' produces the reply 'I'm sorry I don't have
a clue!'. Once you are sure that all is well, don't forget to save a
copy.

Setting the puzzles 5
part 2

Unlike the routines described in the previous chapter, which are
essential in all adventure games, many of the routines here were
developed specifically for this game. In the process of developing
them, you should find many ideas which can be adapted and used
in other games.

Go out
This command is useful when the player finds himself inside a room
and the instruction is recognised in line 1380 when the player types
'go out' or simply 'out'. There are five locations in 'The Wizard's
Quest' where this command is useful and these are summarised
below.

Location
12

Description
inside cottage
inside chapel
living room
inside statue
inside barn

Leads to location
7 outside cottage

22
25
63
70

1790 REM** go out**

21 outside the chapel
29 outside cottage
64 outside statue
69 outside barn

1800 IF P¾=12 THEN P¾=7:PRINTY$:RETURN
1810 IF P¾=22 AND SA=0 THEN PRINT"The door's locke
d!":RETURN ELSE IF P¾=22 THEN P¾=21:PRINTY$:RETURN
1820 IF P¾=25 THEN P¾=29:PRINTY$:RETURN
1830 IF P¾=63 THEN P¾=64:PRINTY$:RETURN
1840 IF P¾=70 THEN P¾=69:PRINTY$:RETURN
1850 PRINT"Don't be silly!":RETURN

The variable Y$ was set at the beginning of the program to contain
the most useful message in the whole game, 'O.K.'. In each of the
lines between 1800 and 1840, the computer checks to see whether
the location is one of those listed above. If the current value of P%
does correspond to a location where the player can go out, then the
message 'O.K.' is printed, the value of P% is changed to the value
shown in the chart and control is returned to the main section of the
program. 61

-

62 Setting the puzzles - part 2

The only location where this is not quite true is inside the chapel.
When the player first enters the chapel, the door slams shut behind
him and unless he tries 'praying', the door will stay firmly locked!
This little puzzle is an easy one to set for the player. The variable SA
is used as a flag to test whether the player has prayed inside the
chapel. Unlike a number of machines, variables don't need to have
their value set to zero at the start of the program in MSX BASIC.
This means that SA will start at zero and in the PRAY routine this
will be set to one. In line 1810, the computer will print an appropriate
message if the door is locked, but will allow the player to move
outside if the door is open. If the program reaches line 1850, then it
will have checked all the locations where the player can go out and
will print a suitable message to indicate that the player is being
stupid.

Line:
1800 if you are in location 12, change the value of P% to 7 and

return to the main loop.
1810 if you are in location number 22 and the door is locked, print

an appropriate message and return to the main loop without
changing the value of P%, otherwise, change the value of P%
to 21, print the message and return.

1820 if you are in location 25, move to location 29 by changing the
value of P% and return to the main loop.

1830 if you are in location 63, change the value of P% to 64, print
the message and return.

1840 if you are in location 70, move to location 69, print the message
and return.

1850 print the message that it isn't possible to go out and return to
the main loop of the program.

Testing
It's always easier to test that a routine works when you've just typed
it in and the ideas are fresh in your mind. The first thing to do when
testing this routine is to RUN the program and escape from it by
pressing <CONTROL> and <STOP> keys. Provided that you
don't attempt to edit any line of the program, all the variables will
remain intact and you can change the value of the current location
by typing P%=12 and pressing <RETURN>. Try out the routine by
typing 'go out' to check that you do in fact end up in location
number 7. Test the other locations in a similar way. When you are in
the chapel, however, you will be told that the door is closed and to
test the routine fully, you will have to wait until you've typed in the
'pray' routine.

Pray
This routine is called from line 1390 in the main game when the
player types 'pray'.

1860 REM** pray**
1870 PRINTY:$
1880 PLAY"l64decdedecdede"

Setting the puzzles - part 2

1890 IF P71.<22 OR P71.>23 THEN PRINT"That made me fee
1 better!":RETURN
1900 IF SA=O THEN PRINT"The door opened!":SA=l:Gl:$(
22l=LEFT:$(Q:$(22l,24l:RETURN
1910 PRINT"The door closed!":Q:$(22)=Q:$(22)+"The do
or has closed behind me!":SA=O:RETURN

The computer first prints up the message 'O.K.' in line 1870 and
then plays a short tune in line 1880 before checking whether the
player is inside the chapel. Praying outside the chapel has no effect
and control is returned to the main loop in line 1890. Line 1900 then
checks to see that the door is closed, SA=0, and changes the value
of SA to one if it is. It also shortens the description of location 22 to
remove the message that 'the door has closed behind me'. If the
door is already open, then the flag SA is set back to zero and the
door closes again (line 1910).

Line:
1870 print the message set at the beginning of the program.
1880 sound effects to accompany prayer adjust these to suit

your own requirements.
1890 if you are not inside the chapel, locations 22 and 23, print the

message and return to the main program control loop.
1900 check the value of the flag and open the door if it is closed, by

changing the value of the flag SA, before returning to the main
loop.

1910 if this line is reached, the door must be open, so the value of
the flag SA is changed to zero to close it and control is returned
to the main loop again.

Go in

1920 REM*~ go in**
1930 IF P71.=7 THEN P71.=12:PRINTY:$:RETURN
1940 IF P71.==21 AND SB=O THEN PRINT"The door's locke
d!":RETURN ELSE IF P71.=21 THEN P71.=22:PRINTY:$:RETURN
1950 IF PX=29 THEN PX=25:PRINTY:$:RETURN
1960 IF P71.=64 AND SC=O THEN PRINT"The way in is cl
ased!":RETURN ELSE IF PX=64 THEN PRINTY:$:P71.=63:RET
URN
1970 IF PX=69 AND SH=l THEN P71.=70:PRINTY:$:RETURN E
LSE IF PX=69 THEN PRINT"He won't let me!":RETURN
1980 PRINT"Dan't be stupid!":RETURN

This is one of the more frequently used commands in this game and
is called from the main program loop by typing 'go in' or simply 'in'.
Like the routine to 'go out', there are five locations where you can
use this instruction to effect.

-
63

64 Setting the puzzles - part 2

Location
7
21
29
64
69

Description
outside cottage
outside chapel
outside cottage
outside statue
outside barn

Leads to location
12 inside cottage
22 inside chapel
25 living room
63 inside statue
70 inside barn

Line 1930 checks to see if the player is in location 7 and changes the
value of P% to 12 if he is. In a similar way, line 1950 checks whether
the player is in location 29 and changes the value of P% to 25.

Movement in the other three locations is not as easy for the player
.because he has to solve certain problems first. In location 21, he
cannot go into the chapel unless the door is opened by pulling the
lever. This, in turn, will result in death unless he is wearing the
rubber gloves to prevent him from getting an electric shock! Once
the lever has been pulled, the value of SB is changed to one and
when the player tries to enter the chapel the value of SB is tested in
line 1940 to see whether the door is open or not.

In a similar way, the player will not be able to enter the statue
until he has pressed the correct button (SC=l) and in addition, the
tramp will not permit entry into the barn until he has been given the
bottle of rum (SH=l).

Should the program reach line 1980, then the player must have
tried to go into a location other than the five listed above and a
message to tell him that he can't do this is printed. Testing of this
subroutine should be carried out in a similar way to the 'go out'
routine, although you won't be able to check the final three locations
fully until you have entered the appropriate routines where the
variables SB, SC and SH are set to one. If you do want to test that
you can go into these locations, try changing the value of these
variables by escaping from the program, changing their value and
then typing CONT.

Line:
1930 if you are in location 7, move to location 12, print the message

and return to the main loop.
1940 if you are in location 21 and the flag is zero, print the message

about the door being closed and return to the main loop,
otherwise change the value of P% to move to location 22 and
return to the main loop.

1950 if you are in location 29, move to location 25, print the message
and return to the main loop.

1960 if you are in location 64 and the flag is zero, print an appropriate
message and return to the main control loop, otherwise move
to location 63 and return to the main loop of the program.

1970 if you are in location 69 and the flag is one, move to location
70, otherwise print the message about the tramp not allowing
you to go in and return to the main loop without changing the
value of P%.

Setting the puzzles - part 2

1980 print the message about movement not being possible and
return to the main control loop.

Wear

2450 REM** wear**
2460 BOSUB 2240
2470 IF R<>6 THEN PRINT"Don't be silly":RETURN
2480 IF A(6)=0 THEN PRINT"! don't have them!":RETU
RN
2490 IF A<6>=2 THEN PRINT"I'm already wearing them
":RETURN
2500 AC6)=2:PRINTY$:RETURN

When the player tries to pull the lever outside the chapel, he will get
an electric shock and die unless he is wearing the rubber gloves. If
you check through the list of objects, you will see that object number
6 is 'a pair of rubber gloves'. The first stage in checking whether the
player intends to try wearing anything else found in the game is to
call the 'check routine', which has already been discussed. If the
player does type in 'wear gloves', the the value of R will be set to 6
and line 2470 will not then return to the main loop. Attempting to
wear anything else is not possible. Line 2480 then checks the value
of A(6) to make sure that the player is carrying the gloves and in line
2490 a check is made to ensure that the player is not already wearing
them. If the player is in a position to wear them, then the value of
A(6) is set to 2 in line 2500. The value of A(6) is later checked in the
routine to 'pull' and in the 'inventory' routine.

Line:
2460 call the subroutine to split the sentence into two separate

words.
2470 if the object is not number 6, the gloves, print the message and

return to the main control loop.
2480 if the flag is zero, print the message and return to the main

loop.
2490 if the value of the flag is two, print the message about already

wearing them and return to the main loop.
2500 set the value of the flag to two, print the message and return to

the main loop.

Pull

2510 REM** pull lever**
2520 GOSUB 2240:IF P:Y.<>21 OR LEFTCL,3)<>"lev" TH
EN PRINTYB$:RETURN
2530 IF A(6><>2 THEN E$="a violent electrical curr
ent surges through my body. I am dead!":GOSUB 261
0
2540 PRINT"The door opens!":S8=1:RETURN

-
65

66 Setting the puzzles - part 2

The only way into the chapel, location 21, is by pulling the lever.
Line 2520 checks that the player is in location 21 and that he doesn't
want to pull anything else. In this game, the only object which can
be pulled is the lever and this is not an 'object' which is included in
the list of objects recognised by the computer. It is, in fact,
mentioned only in the description of the location (Q$(21)).

The next check, in line 2530, is that the rubber gloves are worn.
Should A(6) not equal 2 then the player receives a violent electrical
shock and control is passed to the death routine (line 2610). If the
player is wearing the gloves, then the value of SB is set to one in line
2540 and this allows the player to go into the chapel (see 'go in'
routine).

Once this routine has been typed in, you are in a position to check
that all the puzzles connected with the chapel work. The easiest way
to move around is to escape from the program and change the value
of P% before CONTinuing with the program. Go to the cottage and
find the gloves. Take these back to the chapel and try pulling the
lever. Go into the chapel and try praying. If all is well save your
updated copy on tape or disc. Any faults should be checked
carefully against the listing.

Line:
2520 call the subroutine to split the player's instructions into two

words. If the second word is not the lever, print the message
and return to the main loop.

2530 if the player is not wearing the rubber gloves, the flag A(6) will
not be equal to two and the player will die.

2540 print the message, set the value of the flag for the door to open
and return to the main control loop.

Wave

2550 REM** wave**
2560 GOSUB 2240:IF R<>7 THEN PRINTYB$:RETURN
2570 IF A(7)=0 THEN PRINT"I don't have it!":RETURN
2580 IF P'Y.<>42 OR S'Y.<42,2)>0 THEN PRINT"nothing ha
ppens!":RETURN
2590 PRINT"The drawbridge comes down!":S'Y.(42,2)=46
:RETURN

One of the standard features of many traditional adventures is the
magic wand. In this game, the player must find the wand and wave
it at the side of the bottomless pit, location 42. Waving any other
object doesn't do anything and this is checked for in line 2560. Line
2570 checks that the player is carrying the wand, object number 7,
and returns control back to the main routine if A(7) remains zero.
The location and the value held in S%(42,2) is then checked in line
2580 to see if the player is in the correct place and whether he can go
south. Control is returned to the main section if the player is in any

",.....

Setting the puzzles - part 2

location other than 42 or if the bridge has already come down. Line
2590 changes the value held in S%(42,2) so that movement south
now takes you to location number 46 and the message that the
drawbridge comes down is printed on the screen.

Testing this routine involves going to find the wand and taking it
back to the correct location before waving it. The quickest way of
moving from one place to another is again by escaping from the
program and changing the value of P%.

Line:
2560 call the subroutine to split the sentence into two words and if

the second word is not number 7, print the message and
return.

2570 check to see if object 7 is being carried, print the message and
return.

2580 if not in position 42 or if the map has been changed, print
message and return.

2590 print the message, change the map and return.

Read

2660 REM** read**
2670 IF A(9)=0 THENPRINT"I have nothing to read!":
RETURN
2680 PRINT"Most of the book is in a strange la
nguage, but one sentence reads, 'Toenter the caves
, repeat the runes. sdfda'"
2690 A(0>=l:RETURN

The only object which can be read by the player in this game is the
book of spells, object number 9. Line 2670 checks that the book is in
fact being carried and returns control to the main control loop if it
isn't. Line 2680 then gives the player the information needed to get
into the caves. It also sets the value of A(O) to 1 which acts as another
flag telling the computer that the player has read the message. This
means that the player has to read the book each time he plays the
game and memorising the runes will not work! You may like to try
changing the code needed to enter the caves to a random sequence
of letters to make the solution harder to find!

Once again, this routine cannot be fully tested until later, when
you have entered the routine which allows you to speak.

Line:
2670 check to see if you are carrying anything to read and print the

message before returning to the main loop if you aren't.
2680 describe how to enter the caves.
2690 set the value of the flag and return to the main control loop.

67

68 Setting the puzzles - part 2

Talk

2700 REM** say**
2710 INPUT"What do you want to say ";2$
2720 IFP'Y.<>27 THEN PRINTY$;" nothing happens.":RET
URN
2730 IF Z$<>"sdfda" THEN PRINT"nothing happened!":
RETURN
2740 IF A<0>=O THEN PRINT"It didn't work!":RETURN
2750 Q$(27)="at the entrance to a large cavern."
2760 AC0>=0:S'Y.(27,2)=31:PRINT"The cavern's open!":
RETURN

The only way into the caves, location number 27, is by saying the
correct password. This routine is called from the main section by the
instructions 'say', 'talk' or 'repeat' and the first line of the routine
asks the player to INPUT the word he wants to say. If the location is
not correct or if the player types in the wrong code, control is passed
back to the main loop of the program. Line 2740 is used to check that
the player has read the password during THIS game and has not
tried to remember it from a previous game. This line is optional and
may be left out if you don't mind the player remembering the
password.

Line 2750 changes the description of location number 27 and line
2760 then changes the map to allow movement south from the
caves.

If you have already typed in the 'read' subroutine, then you are in
a postion to test out the puzzle of entering the caves. As in all
testing, you should escape from the program and change the value
of P% so that you move to the correct locations. Get the book, take it
to the cave entrance and check that reading the book and saying the
password does, in fact, open up the cave entrance.

Line:
2710 input the word that the player wants to say.
2720 if the location is incorrect, print the message and return to the

main loop.
2730 if the first few letters of the word are incorrect, print the

message and return to the main loop.
2740 check the value of the flag to see if the player has read the

password. If he hasn't, print the message and return to the
main loop.

2750 change the description of the location.
2760 set the value of the flag, change the map, print the message

and return to the main loop.

Kill

2770 REM** kill**
2780 GDSUB 2240:IF R=13 DR R=15 DR R=21 DR R=25 OR

R=26 THEN PRINT"That would be suicide!":RETURN

Setting the puzzles - part 2

2790 IF LEFT$(L$,3)<>"wol" OR P¾<>20 THEN PRINTYB$
:RETURN
2800 IF A(10)=0 THEN E$="The wolf attacks me first
!":GOSUB 2610
2810 PRINT"The wolf dies!":S¾(20,4)=24:Q$(20)=LEFT
CQC20>,1B>:RETURN

In this game, the player must kill the wolf, which is found in
location number 20, before he can move west from there. The wolf is
not one of the 'objects' found in the game and is, like the lever
described in the 'pull' routine, only mentioned in the description of
the location. Line 2780 checks which object the player wants to kill
and suggests that he is not adopting the right approach if he
attempts to kill the vampire, the slug, the giant, the dog or the
farmer. The following line checks that L$ contains the word 'wolf'.
This is necessary because the wolf is not a true 'object' with its own
value of R. There is also a check that the player is in the correct
location to kill the wolf.

If the player is not carrying the sword, then the wolf attacks and
the 'lose game' routine is called (line 2800). If the program reaches
line 2810, the the player must be in location 20 and must be carrying
a sword with which to kill the wolf. This line prints the message that
the wolf dies, changes the map so that the player can move west
from location 20 and changes the description of the location to
eliminate any mention of the wolf. Thus the player can now move
west to location number 24.

Testing this routine is quite straightforward and should be
completed before proceeding with the next routine.

Line:
2780 call the subroutine to split the sentence into two words and if

the object mentioned is too dangerous to kill, the message is
printed before control is returned to the main loop.

2790 if the second word typed in by the player is not 'wolf', the
message is printed and control returned to the main loop.

2800 if the flag is zero, the player isn't carrying the sword, so the
message is stored in E$ before the death routine is called.

2810 print the message, change the map and the description of the
location. Return control to the main loop.

Search

2B20 REM** search**
2B30 IF PX<>24 THEN PRINT"! can't see anything!":R
ETURN
2B40 IF SF=O THEN SF=l:PRINT"I see something!":6$(
ll)="a long rope with a hook attached":N$(11)="rop
e":RETURN ELSE PRINT"I see nothing!":RETURN

~

69

70 Setting the puzzles - part 2

If you can remember back to the planning stages of the game, I
decided to hide the rope under all the leaves in location 24. The rope
and hook is to be object number 11, but the variables G$(11) and
N$(11) were left blank when READing the DATA into the arrays and
these will need to be changed when the player searches through the
leaves. Line 2830 informs the player that there is nothing there if he
tries searching in any other location. The flag SF is set to one when
the player has searched through the leaves so that he finds nothing
if he tries to search through them again. The variables G$(11) and
N$(11) are redefined if the rope is found.

Testing this routine merely involves moving to location 24 and
searching the leaves. Try typing 'search' a second time to check that
the computer tells you that there is nothing there.

Line:
2830 if you are in any location other than number 24, print the

message and return.
2840 if the flag is zero, change its value, print the message and

change the description of object number 11, otherwise print
the message and return to the main loop.

Throw

2850 REM** Throw**
2860 GOSUB 2240:IF R<>11 THEN PRINT"I don't see mu
eh point in that!":RETURN
2870 IF A(11)=0 THEN PRINT"I don't have it!":RETUR
N
2880 IF P'Y.<>36 THEN PRINT"The hook doesn't catch o
n anything!":RETURN
2890 IF SG=O THEN S8=1:PRINT"The rope catches ons
omething!":Q$(36)=Q$(36)+"A rope hangs down."
2900 FOR X=1 TO 4:IF V$(X>=G$(11) THEN V$(X>="
2910 NEXT:RETURN

The only method of moving into locations 37 and 38 is to throw the
rope in room 36, so that it catches on the ring. You will then be able
to climb up the rope and enter the room of faces to get the jar of salt,
which will be needed later in the game.

Line 2860 checks whether the player intends to throw anything
else and returns control to the main loop if necessary. The value of
A(ll) is then checked to see whether the rope is being carried and
finally the location is checked to make sure that there is only one
place where the rope can hang.

The description of the location is changed, in line 2890, to include
the information that the rope is hanging down and an appropriate
message is printed on the screen. Lines 2900 to 2910 are needed to
remove the rope from the array V$(X), which contains the items
being carried, so that the rope disappears from view! When you try
to climb the rope later, the computer will check the value of the flag
SG to see whether it has been set to one (line 2890).

l
Setting the puzzles - part 2

Line:
2860 call the subroutine which splits the sentence into two separate

words and if the object mentioned is not number 11, print the
message and return to the main loop.

2870 if the flag is zero, the player isn't carrying the rope, so the
message is printed and control returned to the main loop.

2880 if you are not in the correct location, print the message and
return.

2890 if the flag is zero, change the value of the flag, print the
message and change the description for the current location.

2900 search through the array V$(X), which holds the inventory of
objects being carried, and remove the rope.

2910 return to the main control loop.

-
71

6 Se ing the puzzles
pa 3

72

Climb

2920 REM** climb**
2930 GOSUB 2240
2940 IF PY.=54 AND SL=1 THEN PRINTY$:PY.=49:RETURN
2950 IF R< >11 THEN PRINT" I can only climb a rope!"
:RETURN
2960 IF PY.<36 OR PY.>37 THEN PRINT"Not here!":RETUR
N
2970 IF SG<>1 THENPRINT"Not just yet!":RETURN
2980 IF PY.=36 THEN PY.=37:PRINTY$:RETURN
2990 PY.=36:PRINTY$:RETURN

The first line of this subroutine calls the subroutine to split the input
sentence into two parts. Line 2490 then allows the player to climb
the beanstalk in location 54 if, and only if, he has first planted it and
then watered it, so setting the value of the flag SL=l.

The only other places where the player can climb up or down are
locations 36 and 37. Line 2950 makes sure that the player actually
types 'climb rope' and not just 'climb'. This line may be left out if
you don't feel it necessary. Lines 2960 and 2970 then check the
location and test to see if the rope is hanging from above (SG=l).
Finally, the value of P% is changed in lines 2980 to 2990 depending
on whether the player is climbing up or down the rope. Don't forget
to check out the routine in the usual way before typing in the next
one!

Line:
2930 call the subroutine to split the player's instructions into two

words.
2940 if you are in location 54 and the beanstalk has grown, move to

location 49, print the message and return to the main loop.
2950 if the object is not the rope, print the message and return to the

main loop.
2960 if you are not in location 36 or 37, print the message and return

to the main loop.

~,.....

Setting the puzzles - part 3

2970 if the rope has not caught on the ring, print the message and
return.

2980 if you are in location 36, move to location 37, print the message
and return.

2990 move to location 36, print the message and return.

Go up

3000 REM** go up**
3010 IF P7.•70 THEN P7.=71:PRINTY$:RETURN
3020 IF PX=BO THEN P7.=79:PRINTY$:RETURN
3030 IF P7.=36 AND SS=O THENPRINT"not yet!":RETURN
ELSE IF P7.=36 THEN P7.=37:PRINTY$:RETURN
3040 IF P7.•~4 AND SL•1 THEN P7.•49:PRINTY$:RETURN
3050 PRINT"I can't do that here!":RETURN

This subroutine is called whenever the player types 'go up' or
simply 'up'. There are four locations where movement in this
direction is possible and these are summarised below.

Location Description Leads to location
70 inside barn 71 hayloft
80 inside cavern 79 by grate
36 by ring 37 tunnel, if rope thrown
54 fertile land 49 beanstalk, if planted

Line 3010 deals with the movement from location 70 to location 71,
while line 3020 handles movement from location 80. Line 3030
checks the flag SG to see whether the rope is hanging down, before
changing P% to 37 or printing a message to tell the player that he
can't move in that direction. Similarly, line 3040 checks the value of
SL to see whether the beanstalk has been planted and watered.
Finally, if the program reaches line 3050, then the player is trying to
'go up' from a location where this is not possible! Do check out the
routine in the usual way as soon as you have typed it in.

Line:
3010 if you are in location 70, move to location 71, print the message

and return.
3020 if you are in location 80, move to location 79, print the message

and return.
3030 if you are in location 36 and the flag has not been set, print the

message and return to the main control loop, otherwise move
to location 37, print the message and return.

3040 if you are in location 54 and the flag has been set to indicate
that the beanstalk has grown, move to location 49, print the
message and return.

3050 print a message that it is not possible and return to the main
loop.

-
73

74 Setting the puzzles - part 3

Drink

3060 REM** drink**
3070 G0SUB 2240:IF R<>B THEN PRINT"Don't be silly!
":RETURN
3080 IF A=0 THEN PRINT"! don't have any!":RETUR
N
3090 E$="I drink the rum and, in a drunken stup
or, fall and break my neck!":G0SUB 2610

This routine was written as a 'red herring'. The only object in the
game which it is possible to drink is the bottle of rum, object number
8. The first line of the routine checks whether the player has tried to
drink anything else and prints a message about his stupidity if he
has. Line 3080 then tests the value of A(8) to see if the rum is being
carried and if, finally, the player is carrying it, then he trips up in a
drunken stupor and dies! Ardent adventurers don't like games
where they lose their lives too often, so don't go overboard with
traps like this one and do try to keep the responses humorous. The
main purpose of the rum in this game is to give to the tramp.

Line:
3070 call the subroutine to split the sentence into two words and if

the player is not referring to object number 8, the bottle of
rum, print the message and return to the main loop.

3080 check to see if the player is carrying the rum and return to the
main loop, after printing a suitable message, if not.

3090 set the message about getting drunk and call the lose game
routine.

Give

3100 REM** give**
3110 GOSUB 2240:IF R<>B THEN PRINT"I'm not giving
";L$;" away!":RETURN
3120 IF A=O THEN PRINT"! don't have any!":RETUR
N
3130 IF P:Y.<>69 THEN PRINT"There's nobody here who
would like it":RETURN
3140 A=O:FOR X=1 TO 4:IF V$CX>=G$<8> THEN V$(Xl
=1111

3150 NEXT:PRINT"The tramp thanks me and walks away

'"
3160 Q$(69)=LEFT$(Q$(69l,42):SH=1:RETURN

This is a useful routine which allows you to give objects being
carried to other people, or creatures, in the game. In this game, it is
used only once: to give the bottle of rum to the tramp who will then
walk away, so letting you go into the old barn. Line 3110 checks the
number of the object you are trying to give and if this is not 8, the
rum, it prints an appropriate message. The next check, in line 3120

Setting the puzzles - part 3

makes sure you are carrying the rum and finally, line 3130 makes
sure that you are in the correct location.

Once the computer has made sure that you want to give the rum,
that you are carrying it and that you are in the right place, the bottle
of rum is removed from the array V$(X), which holds the inventory
and a suitable message is printed. The most important part of this
routine is line 3160, where the flag SH is set to one, which is tested
in the 'go in' routine previously described. Finally, the description
of location number 69 is shortened so that it no longer includes any
mention of the tramp. This is because the tramp, like the wolf
described already, is not a true object in this game. Testing this
routine involves moving to location 25, getting the rum and taking it
to location 69 to give to the tramp.

Line:
3110 call the routine to split the player's instructions into two words

and if the object being given away is not the rum, number 8,
print the message and return to the main loop.

3120 check to see if the rum is being carried and print a suitable
message before returning if not.

3130 if the player is not in location 69, print the message and return
to the main loop.

3140 set the value of the flag to zero so that the computer knows
that the rum is no longer being carried and then remove the
description of the rum from the array V$(X) so that the
inventory routine works correctly.

3150 print the message about the tramp.
3160 change the description for the current location, set the value of

the flag SH to one and return to the main control loop.

Use

3170 REM** use **
3180 130SUB 2240
3190 IF R=4 AND A<4>=0 THEN PRINT"! don't have it"
:RETURN
3200 IF R=4 AND P'Y.<>44 THEN PRINT"nothing happens!
":RETURN
3210 IF R=4 THEN PRINT"The ghost disappears into t
he bag!":S'Y.(44,2)=48:Q$(44)=LEFT$(Q$(44),29):RETUR
N
3220 IF R=14 AND A(14)=0 THEN PRINT"! don't have i
t!":RETURN
3230 IF R=14 AND P'Y.<>33 THEN PRINT"There isn't muc
h point here!":RETURN
3240 IF R=14 THEN PRINT"The vampire flees, leaving

something behind!":SI=1:13$(13)="a ** JADE RING**
":N$(13)="jade":RETURN
3250 IF R=16 AND A(16)=0 THEN PRINT"I don't have i
t!":RETURN

-
75

76 Setting the puzzles - part 3

3260 IF R•16 AND P'X<>35 THEN PRINT"There isn't muc
h point here!":RETURN
3270 IF R•16 THEN PRINT"The slug shrivels to nothi
ng and leaves something on the ground.":G$(15)
•"•**SILK PURSE **":N$(15)="silk":SJ=1:RETURN
3280 IF R==22 AND A(22)c0 THEN PRINT"I don't have i
t! 11 1RETURN
3290 IF R•22 AND (PX=35 OR P'X=72 OR P'X=62 OR PX=44

OR PX=33) THEN E$="it explode!j and covers me with
• Jet of flames!":GOSUB 2610

3300 IF R-=22 AND PX<>59 THEN PRINT"There isn't muc
h point here!":RETURN
3310 IF R•22 THEN PRINT"The flames drive them away
!":SX(59,2)•61:Q$(59>=LEFT$(Q$(59),29>:RETURN
3320 IF R•23 AND A(23)=0 THEN PRINT"I don't have i
t!":RETURN
3330 IF R•23 AND PX<>79 THEN PRINT"There isn't muc
h point here!"1RETURN
3340 IF R•23 AND SM=O THEN PRINT"The grate opens!"
:SM•1:Q$(79)=LEFT$(Q$(79>,30)+"There's a hole in t
he gr0und."1RETURN
3350 IF R•23 THEN PRINT"It's already open!":RETURN
3360 IF R•27 AND A(27)=0 THEN PRINT"I don't have i
t!":RETURN
3370 IF R•27 AND P'X<>62 THEN PRINT"The sling is of
litle use here!":RETURN

3380 IF R•27 AND SN=1 THEN PRINT"I can't use it tw
ic■ !":RETURN
3390 IF R•27 AND SN•O
the trick! The giant
som■thing!":6$(21>•"an
ald"1RETURN
3400 PRINT"I can't use

THEN SN=l: PRI.NT"That 's done
fades away and I can see

** EMERALD **":N$(21)="emer

";L$;" here.":RETURN

This is a very useful routine which allows the player to use many of
the objects which he finds along the way. It is called from the main
control section by typing either 'use' or 'prise'. In this game, there
are six objects which can be used in this way. Line 3180 calls the
routine which splits the input sentence into two words and stores
the number of the object mentioned in the variable R. Careful study
of the list will show that there are six different sections dealing with
each of the objects separately. If R does not have the value 4, 14, 16,
22, 23 or 27, then the program will pass·all the checks and reach line
3400 which tells the player that they can't use the object in question.

Object used in location purpose
4 vacuum cleaner 44 to get rid of ghost
14 crucifix 33 to get rid of vampire
16 salt 35 to get rid of slug
22 flame thrower 59 to get rid of goblins
23 crowbar 79 to open the grate
27 sling 62 to get rid of giant

Use the vacuum cleaner
Lines:

Setting the puzzles - part 3

3190 check that it is being carried and return to the main loop if not.
3200 check the location to see if the ghost is there and return to the

main loop if not.
3210 print the message, change the map for location 44 to allow

movement south and change the description of the location.

Use the crucifix
3220 check if it is being carried and return to the main loop if not.
3230 check the location to see if the vampire is there and return to

the main loop if not.
3240 print the message, change the value of the flag SI, change the

vampire into the jade ring and return to the main loop.

Use the salt
3250 check if it is being carried and return to the main loop if not.
3260 check the location to see if the slug is there and return if not.
3270 print the message, set the value of the flag SJ, change the

descriptions of the slug into the silk purse and return to the
main loop.

Use the flame thrower
3280 check that it is being carried and return to the main loop if not.
3290 call the lose game routine if you are in location 35, 72, 62 or 44.
3300 if not in location 59, return to the main loop.
3310 print the message, change the map to allow movement south

from location 59, change the description of the location and
return to the main loop.

Use the crowbar
3320 check that it is being carried and return to the main loop if not.
3330 return to the main loop if not in the right place (location 79).
3340 print the message about the grate opening, change the flag

SM, which allows the player to go down, change the description
of the location and return to the main loop.

3350 the grate must already be open, so print an appropriate
message and return to the main loop.

Use the sling
Note that the sling only appears in the game after the farmer has
been given his dog back!

3360 check that the sling is being carried and return to the main
loop if not.

3370 check the location to see if the giant is there and return to the
main loop if not.

3380 check whether you have already used the sling.

-
77

78 Setting the puzzles - part 3

3390 set the value of the flag SN, print the message, change the
giant into the emerald and return to the main loop.

3400 this line is only reached if all the above tests have proved
negative, so the player is told that they can't use the object and
control is returned to the main loop.

The best method of testing this subroutine is to try out every
possible combination catered for in the above lines and when you
are entirely satisfied that everything works correctly, you could
perhaps think about adding a few extra lines to this routine so that
the player can 'use' other objects found within the game.

Swim

3410 REM** swim**
3420 IF P'l.=10 THEN P'l.=15:PRINTY$:RETURN
3430 IF P'l.=15 THEN P'l.=10:PRINTY$:RETURN
3440 IF P'l.=65 OR P'l.=68 THEN PRINT"The water's not
deep enough~":RETURN
3450 IF P'l.=64 OR P'l.=8 THEN E$="1 drown. What a stu
pid suggestion'":GOSUB 2610
3460 PRINT"Don't be ridiculous~":RETURN

There are many occasions in adventure games where you want the
player to move around by means other than walking. In this game,
there are two locations where the player MUST swim to progress
further. Swimming from location 10 takes the adventurer to location
15 and vice versa. This movement is taken care of in lines 3420 and
3430 respectively.

In locations 65 and 68, the water is not deep enough and the
player will have to paddle across. Line 3440 deals with this. In two
locations, numbers 64 and 8, the water is too dangerous to cross and
the player drowns. This is dealt with in line 3450, where the lose
game routine is called. There must be many other ways of losing
your life when swimming (crocodiles, piranha etc etc.) and I'm sure
that you could think up some terrible deaths for your victims. If the
program reaches line 3460, then swimming is not possible in that
location and a message to that effect is printed before control is
returned to the main loop. By now, you should have got the hang of
how to test that these routines are working properly.

Line:
3420 if you are in location 10, move to location 15 by changing the

value of P%, print the message and return to the main loop.
3430 if you are in location 15, move to location 10, print the message

and return.
3440 if you are in location 65 or 68, print the message and return to

the main loop.
3450 if you are in location 64 or 8, the contents of E$ are defined and

the death routine is called.

Setting the puzzles - part 3

3460 print the message about swimming being impossible and
return to the main loop.

Paddle

4140 REM** paddle**
4150 IF PY.=65 THEN PY.=68:PRINTY$:RETURN
4160 IF PY.=68 THEN PY.=65:PRINTY$:RETURN
4170 IF PY.=10 OR PY.=64 OR PY.=15 THEN PRINT"The wat
er·s too deep!":RETURN
4180 PRINTYB$:RETURN

In this game, we have already decided to make it impossible to swim
from location 65 to 68 and vice versa because the water is too
shallow. Thus lines 4150 and 4160 allow the player to paddle across
the river between these two locations. In locations 10, 15 and 64, the
water is too deep and the player cannot paddle (line 4170). You may
like to change this line so that the player gets attacked by strange
fish and loses the game. Line 4180 is only reached if the player tries
to paddle in any other location and therefore a message to that effect
is printed!

Line:
4150 if you are in location 65, move to location 68, print the message

and return to the main loop.
4160 if you are in location 68, move to location 65, print the message

and return to the main loop.
4170 if you are in a location where the water is too deep, print the

message and return.
4180 print a message about paddling being impossible and return to

the main loop.

Unlock

3470 REM** unlock**
3480 IF A(3)=0 THEN PRINT"! have no key!":RETURN
3490 IF SK=O AND PY.=16 THEN PRINT"The lock's too r
usty!":RETURN
3500 IF PY.=16 THEN PRINTY$:PRINT"The chain comes 1
oose.":Q$(16>=LEFT$(Q$(16>,47>:SY.(16,2)=17:RETURN
3510 IF PY.=79 THEN PRINT"There•s no keyhole!":RETU
RN
3520 PRINTYB$:RETURN

There is only one lock in this game which can be unlocked and you'll
need to have oiled it first. The key, object number 3, is found in
location 1 and unless A(3)=1 then the player is not carrying it (line
3480). The lock is to be found in location 16 and a check is made on
the value of the flag SK in line 3490 to see whether the lock has been
oiled first. Unless SK has been set, it is impossible to unlock the gate

79

80 Setting the puzzles - part 3

and line 3500 is not reached. Line 3500 prints a message about the
chain, alters the description of location 16 and changes the map so
that the player can move south from that location. A metal grate is
set into the ground in location 79 and the player may try to unlock
this with the same key. This is checked for in line 3510. There are no
other locations within this game where the player could reasonably
try to unlock anything and therefore the message 'Don't be silly!' is
printed for all other attempts to unlock anything (line 3520). It isn't
possible to check that this routine works properly until you have
typed in the subroutine to 'oil' the lock.

Line:
3480 check the value of the flag to make sure that you are carrying

the key and return to the main loop if not.
3490 if you are in location 16 and the flag has not been set, the gate

has not been oiled and so the message is printed and control
returned to the main loop.

3500 if you are in location 16, print the message, change the
description of the location and return to the main loop.

3510 if you are in location 79, print the message and return.
3520 print the message about it being impossible and return to the

main loop.

Oil

3530 REM** oil**
3540 IF P'Y.<>16 THEN PRINT"I can't!":RETURN
3550 IF A(2)=0 THENPRINT"no oil!":RETURN
3560 PRINTY$:SK=1:RETURN

Before you are able to unlock the gate found in location 16, the lock
must be oiled. The first check, in line 3540, is that the player is in the
correct location. A check is then made in line 3550 on the value of
A(2) to make sure that the player is carrying the oil. Finally, the flag
SK is set to one when the lock has been oiled (line 3560). The value
of SK is checked when trying to unlock the gate and hence you will
need to have typed in both routines (oil and unlock) before you are
able to test whether they work correctly. Testing this section
involves going into the Wizard's cottage and getting the oil. On
route to location 16, you must get the key and when you reach the
gate, try to unlock it. Once you have unlocked it, going south from
location 16 should take you to location 17. The easiest way of testing
this is to try going south and then escape from the program. You can
then type PRINT P% and the value 17 should be printed on the
screen.

Line:
3540 if you are not in location 16, print the message and return to

the main loop.

~

Setting the puzzles - part 3

3550 check to make sure that you are carrying the oil and return to
the main loop if not.

3560 print the message, set the value of the flag and return to the
main loop.

Plant

3570 REM** plant**
3580 IF A(1)=0 THEN PRINT"! can't":RETURN
3590 IF PY.<>54 THEN PRINT"The ground's too hard!":
RETURN
3600 FOR X=1 TO 4:IF V:$(X)=G:$(1) THEN V$(X>="":PRI
NTY:$
3610 NEXT:G$(1)="a tiny little beanstalk murmuring
... water, water!":BY.<1>=54:N$(1l="":A<1>=2:RETURN

One of my favourite puzzles in the original adventure involved
watering the beanstalk and climbing up the branches into a new
area of caverns. I have taken this idea to show you how you can
incorporate such puzzles within your own game.

Line:
3580 check the value of A(l) to see if you are carrying the beanstalk.
3590 check the location. The only place where the beanstalk can

grow is in location 54 and so control is returned to the main
loop if you are in the wrong place.

3600 check through all the items being carried (V$(X)) and remove
the beanstalk.

3610 change the description of the beanstalk, change the value of
B%(1) to drop the beanstalk in location 54, change the value of
N$(1) so that the computer no longer recognises the word
'beanstalk', set the flag A(1)=2 so that the computer knows
that the beanstalk has been planted and return to the main
loop.

It is very important that N$(1) is emptied so that the player is unable
to pick up the beanstalk after it has been planted. This routine
cannot be tested until the routine to 'pour water' has been typed
into your computer.

Fill

3620 REM** fill **
3630 IF A<5>=0 THEN PRINT"Fill what ?":RETURN
3640 IF PY.=10 OR PY.=15 OR PY.=26 OR PY.=64 DR PY.=68
THEN PRINTY$:A(5)=2:RETURN ELSE PRINT"! can't dot
hat here!":RETURN

81

82 Setting the puzzles - part 3

When you have planted the beanstalk, it will start murmuring
'water, water' and your next task is to find the vase and fill it with
water. The vase, object number 5, is found in location 25 and can be
filled at the kitchen sink, location 26, or on the river banks, locations
64, 10, 15 or 68.

Line:
3630 check that you are carrying the vase and return if not.
3640 check the location and change the value of A(5) to 2 if the vase

can be filled.

A(5) will usually have the value one if it is being carried and
therefore once it has been filled with water, its value is set to two. Be
careful that you don't drop it once it has been filled, or the value of
A(5) will go back to zero and the water will spill!

Pour

3650 REM** pour**
3660 IF A<:5><>2 THEN PRINT"I can't!":RETURN
3670 PRINTV$1A<5>•1
3680 IF PY.<>54 DR A<1><>2 THEN RETURN
3690 IF SL=0 THEN PRINT"Tha beanstalk spursts into

rapid growth.":0$(1>="an enormous beanstalk reach
ing high into the clouds.":SL=l
3700 RETURN

The final part of this puzzle involves taking the vase, which should
be full of water, to location 54 and pouring it onto the beanstalk.

Line:
3660 check whether you are are carrying a vase full of water and

return if not.
3670 print the message 'O.K.' and empty the vase by setting A(5) to

one.
3680 if the location is not number 54, or the beanstalk has not been

planted then return to the main control loop.
3690 check the value of SL to make sure that the beanstalk has not

already grown, print the message, change the description of
the beanstalk, set the value of the flag SL

3700 return to the main program control loop.

The value of the flag SL is tested in the routine to climb the beanstalk
and therefore when you have checked that these three routines
(plant, fill and pour) are working, you would be advised to escape
from the program and type PRINT SL. This should return the
number 1 if you are to be able to climb the beanstalk later.

Go down

3710 REM** go down**
3720 IF P%=37 THEN P%=36:PRINTY$:RETURN
3730 IF P%=49 THEN P%=54:PRINTY$:RETURN
3740 IF P%=71 THEN P%=70:PRINTY$:RETURN
3750 IF P%=79 AND SM=0 THEN PRINT"! can't get past
the grate!":RETURN

3760 IF P%=79 THEN P%=80:PRINTY$:RETURN
3770 PRINT"! can't!":RETURN

This routine complements the routine to 'go up' and the two
routines should be tested together.

Line:
3720 if the player is in location 37, change location to number 36 and

return to the main loop.
3730 if the current location is number 49, change it to number 54

and return to the main loop.
3740 if the current location is number 71, move to location 70 and

return to the main loop.
3750 if the location is number 79 and the grate is closed (SM=0),

then print the message and return to the main loop.
3760 if the location is number 79, the grate must be open, so move

to location number 80 and return to the main loop.
3770 if this line is reached, the player is in a location where he can't

go down, so the message is printed and control returned to the
main loop.

Press
3780 REM** press**
3790 IF P%<>64 THEN PRINT"! can't do that here!":R
ETURN
3800 PRINT"There are three buttons."
3810 PRINT"Red, Green and Blue."
3820 INPUT"Which one do I press ";Z$
3830 Z$=LEFT$(Z$,1):IF SC=l THEN E$="A snake crawl
s from behind the buttons and sinks its fang 83

84 Setting the puzzles - part 4

s into me.":GOSUB 2610
3840 SC=1:IF Z$()"b" THEN PRINT"nothing seems to h
appen!":SC=O:RETURN
3850 PRINT"A door opens!":RETURN

When you reach location 64, you will come across a row of three
buttons. Pressing the correct one will open the door into the statue,
but the wrong one can be dangerous! This is the only occasion in the
whole game where you need to press anything.

Line:
3790 check the location and return to the main loop if it isn't

number 64.
3800-3810 describe the colours of the three buttons to the player.
3820 input the player's choice.
3830 if you have already pressed the correct button, the snake

3840

3850

will attack you and the lose game routine is called.
if you don't press the blue button, nothing happens and
control is returned to the main loop.
open the door and return to the main loop.

You will notice that the flag SC is set to one if the door opens, and
you may like to change this section so that a random colour must be
chosen, or perhaps giving the player just two attempts to get it
right. This section should be tested by moving to location 64 and
pressing the buttons. Do make sure that pressing the blue button
twice does kill you.

We have now finished the main part of the program and it should
be possible for you to solve the game as it stands. There is still
plenty of memory left for you to add extra puzzles and problems of
your own, although the final two subroutines will take up much of
this spare RAM. A routine which allows you to save your position
onto tape and load it back in again later is an extremely useful
feature of any adventure and can transform your program into a
very professional piece of programming.

Save game

3860 REM** save game**
3870 PRINT"Press <Space Bar> when you have set th
e tape recorder ready to record."
3880 AA$=INKEY$:IF AA$<>"" THEN 38800K
3890 OPEN "cas:data" FOR OUTPUT AS tU
3900 FOR X=1 TO 80:PRINT#1,Q$(X):NEXT
3910 FOR X=1 TO 80:FOR Y=1 TO 4:PRINT#1,SY.<X,Y>:NE
XT Y,X
3920 FOR X=1 TO 30:PRINT#1,G$(X):NEXT
3930 FOR X=1 TO 30:PRINT#l,BX<X>:NEXT
3940 FOR X=1 TO 30:PRINT#1,N$(X>:NEXT
3950 FOR X=1 TO 30:PRINT#l,NY.(X>:NEXT

Setting the puzzles - part 4

3960 FOR X=O TO 30:PRINT#l,A<X>:NEXT
3970 FOR X=1 TO 4:PRINT#1,V$CX>:NEXT
3980 PRINT#1,SA,SB,SC,SD,SE,SF,SG,SH,SI,SJ,SK,SL,S
M,SN,SO,SP,P7.
3990 CLOSE:RETURN

When writing any save game routine, we must open a cassette or
disc file and save to it the values of any variables whose value might
have changed during the course of the game. In this program, there
are a few locations where the descriptions remain constant, but
most variables can change their value. For this reason, I decided that
the easiest way of writing the routine was to save the value of all
variables used onto the tape (or disc) using the PRINT #1 command.

Line:
3870 print the message asking the player to insert the tape into the

recorder.
3880 wait for the space bar to be pressed.
3890 open a cassette file as channel 1.
3900 write the descriptions of the 80 locations onto the tape.
3910 write the details of the map onto the tape.
3920 write the descriptions of the objects onto tape.
3930 write the locations where the objects can be found onto tape.
3940 write the words recognised by the computer onto tape.
3950 write the pointers to the words onto tape.
3960 write the flags for the objects being carried onto tape.
3970 write the descriptions of the objects being carried onto tape.
3980 write the flags SA- SP and the current position (P%) onto tape.
3990 close the file and return to the main loop of the program.

It is extremely important when writing this routine that you don't
forget to include any of the variables you have introduced as flags.
It's all too easy to forget to include one and you would be well
advised to write them all down on paper as you introduce them into
the game.

Load game
Having saved a game onto tape, the next routine required will be the
one to load it back into memory. The purpose of this subroutine is to
restore the value of all of the variables back to that when the game
was saved. In many ways, this routine is a mirror image of the save
game routine. After opening the file, the variables must be read back
in from tape in exactly the same order as they were saved. Any
errors, however slight, in the ordering of the variables will cause
disaster.

4000 REM** lead game**
4010 PRINT"Press <Space Bar> when you have set th
e tape recorder ready to play."
4020 AA$=INKEY$:IF AA$<>"" THEN 40200K

85

86 Setting the puzzles - part 4

4030 OPEN "cas:data" FOR INPUT AS 4U
4040 FOR X=1 TO BO:INPUT#1,Q$(X):NEXT
4050 FOR X=1 TO 80:FOR Y=1 TO 4:INPUT#1,S7.<X,Y):NE
XT Y,X
4060 FOR X=1 TO 30:INPUT#1,G$(X):NEXT
4070 FOR X=1 TO 30:INPUT#1,B7.<X>:NEXT
4080 FOR X=1 TO 30:INPUT#1,N$(X):NEXT
4090 FOR X=1 TO 30:INPUT#1,N7.(X>:NEXT
4100 FOR X=O TO 30:INPUT#1,A(X):NEXT
4110 FOR X=1 TO 4:INPUT#1,V$(X):NEXT
4120 INPUT#1,SA,SB,SC,SD,SE,SF,SG,SH,SI,SJ,SK,SL,S
M,SN,SO,SP,P7.
4130 CLOSE:RETURN

Line:
4010 print the message asking the player to insert the tape.
4020 wait for the space bar to be pressed.
4030 open channel one to input the cassette file.
4040 input the descriptions of the 80 locations.
4050 input the data for the map.
4060 input the descriptions of the 30 objects.
4070 input the positions where the objects are to be found.
4080 input the words understood.
4090 input the pointers to the words recognised.
4100 input the flags to tell the computer which items are being

carried.
4110 input the descriptions of the items being carried.
4120 input the flags SA - SP and the current location (P%).
4130 close the file and return to the main program.

Once you have typed in the two routines to save a game and load
it back in again, you should check that it does in fact work. If any
errors occur when trying to load the tape back into the computer,
there are a number of possible causes. I have summarised these
below.

1 Trying to load back when the OPEN command uses a different
file name. Check that both routines open the file with the name
'data'.

2 The tape is faulty. Try saving a new version of your game on a
different tape.

3 The order in which the data is read in from tape is different from
the order in which it was saved. Check the listings of the two
routines very carefully.

4 You have saved a description of a location which contains a
comma. This may cause the computer to think that it is loading in
the next item of data. Make sure that you don't allow the contents of

T

Setting the puzzles - part 4

any array to contain a comma. If you must have a description in
your game containing a comma, then you should change the comma
to another symbol such as a percentage sign and then change it back
to a comma again after the tape or disc has been loaded or saved.

One of the problems with using this technique to save the data on
an MSX micro is that the variables are given two different values.
Thus the array Q$(X) holding the descriptions of the locations has its
values held in DATA lines and in addition, extra memory space
must be set aside to hold the alternative description which is loaded
from tape. This means that we have to CLEAR plenty of space to
hold the string variables (7K in this game) at the start of the game
(line 70).

In effect, therefore, we are wasting a vast amount of memory
space and would be better advised loading our data in from tape or
disc every time. This leaves far more room in the game to hold more
locations and/or puzzles. The main disadvantage of not including
the data within data lines is that every time you make a mistake
when developing the game, you will have to load the data tape in
again. This in turn means that the program will take far longer to
develop, especially as you will also need to write another program
to create the very first data file.

Later on in the book, I shall introduce a game which was written
in this way and in which the program to create the first data file
allows you to change the program by answering a few questions.

Now that we have completed 'The Wizard's Quest', you might
like to try extending the game by including a few extra puzzles and
problems for the player to pit his wits against. There isn't much
spare RAM available after the save game routine has been intro
duced, even in a 64K MSX machine, but there should be enough
room to add a few extra puzzles using some of the objects which, so
far, I haven't made much use of. You should, by now, be feeling
fairly confident about how the program works and might like to try
adding a few extra subroutines. Here are a few suggestions which
you might like to try out:

1 The flame thrower refuses to work until you find some fuel. This
could be done by waving the wand over the top of the pile of leaves.

2 The vacuum cleaner is broken and you need to repair it before it
will work. You might need to use the rubber gloves as a new rubber
belt (after you have got into the chapel of course).

3 The lid to the jar of salt is stuck and you need to get help to open
it. Perhaps the farmer might oblige.

I'm sure you can think of plenty of other puzzles, especially if you
can introduce more objects of your own into the game. Do remember
that you will need to change the numbers in the get, drop, check,
load and save routines if you do add extra objects.

87

8

88

n life difficult

Writing adventures for yourself is great fun, but you'll get a far
greater sense of achievement if you can write an adventure which
can be shared with others. One of the unfortunate features of BASIC
as a language for adventure games is that you can escape from the
program and list it. It is always far easier to solve a game by
examining the listing than actually playing the game, and whenever
the player comes across a tricky problem, there is always the
temptation to cheat. What can you as the writer of the game, do
about it? How can you make life harder for the player?

There are several approaches which can be adopted and your
choice of technique will depend on whether you are writing a game
for your friends in the local computer club, for sale to a software
house or for publication in a magazine. One of the most useful
techniques is to code all the data lines so as to make the program
more difficult to solve. There are many different ways of doing this
and the listing below illustrates just one of them. Try typing it in and
running it.

10 DATA "In a dark and gloomy forest."
20 READ A$
30 FOR x=l TO LEN(A$)
40 B$=B$+CHR$(ASC<MID$(A$,X,1))+1)
50 NEXT X
60 PRINT"Original string:-"
70 PRINT A$
80 PRINT:PRINT
90 PRINT"Final string:-"
100 PRINT B$

This short program illustrates how we can change a line of DATA to
make it much more difficult for the player to decipher. What we
have done is to shift all the letters along the ASCII code by one. This
is done by looking at each of the letters of A$ in turn, finding the
ASCII code of it, adding one to the ASCII code and then printing the
appropriate character string using CHR$. Thus letter 'a', becomes

T

Making life difficult 89

'b', 'b' becomes 'c' etc. The ASCII code for a space is 32, so that
adding one to it and finding the corresponding character, produces
'!' There is no reason why you should be limited to shifting the
characters along the ASCII scale by just one. If you want to try
shifting them by 3, then you should change line 40 to:

40 B$=B$+CHR$(ASC(MID$(A$,X,1))+3).

Using this technique in practice requires a little care. The first
thing you will have to do is to change all the descriptions in the
DATA lines to their coded format. You will need to be exceptionally
careful of errors at this stage because it's extremely difficult to spot
spelling mistakes when the DATA has been coded. I would suggest
that you let the computer work out the coding for you, using the
routine printed above, rather than try to code it manually. You can
then change the DATA in your program by using the editing
facilities of your micro. This is a very laborious process and you may
well think that the effort is not worth while.

Once you have coded all the data lines containing the descriptions
of the locations, you will need to insert a few extra lines into your
program to decode them. The coding to do this is, in principle,
exactly the opposite of the listing we used to produce the coding and
therefore you may like to try working out how it works.

1101 H$="":l$=QSIP%)
1102 FOR X=l TD LEN(!$)
1103 H$=H$+CHRSIASC(MID$CIS,X,1l)-1)
1104 NEXT X
1105 Q$ CP'Y.) =H:t

If you have gone this far to make life more difficult for the cheat,
then you will probably want to use a similar technique to code the
descriptions of the objects, the words understood and the messages.
There is no reason why you shouldn't use a different code for each
section of data to make it even more difficult for the player to crack.
You can use the same coding and decoding lines as before, although
you will have to make changes to the names of the strings being
decoded.

If you intend to sell your program to other enthusiasts, or to a
software house, then coding your program in this way is well worth
the effort. Programs listed in magazines, on the other hand, are
often typed in by complete beginners and editors of all computer
magazines will be able to tell you of the many letters received
complaining about programs which don't work. In practice, most
magazines print listings directly from working copies of programs
and therefore the vast majority of these errors are caused by typing
mistakes on the part of the readers. Most editors prefer programs
which are not going to cause too many problems for their readers!

If your program is well structured, it should be very easy to solve
the adventure by merely examining the listing and although a game

90 Making life difficult

written using spaghetti programming would be much more difficult
to solve from the listing, you will find it far more satisfying to write a
structured program and code the data lines to prevent cheating.

Many commercial adventure programs are written in specially
created adventure languages. The most famous of these is called
'A-CODE' and was written by Mike Austin to help in the production
of the excellent series of adventures from 'Level 9 Computing'. This
code combines all the advantages of machine code speed with data
compression techniques to produce adventures which are truly
amazing. In 'Snowball', for example, they have managed to cram
over 7000 locations, 700 different messages and 60 objects into only
32K of memory. This has been achieved by using a coding system
which replaces many common words such as 'the' with single
characters. The result of this is that text messages can be compressed
into less than half of their original size, which means that the games
can be far more detailed. Such techniques are beyond the scope of
this book, but should provide avenues for exploration for the more
advanced programmer. Using data compression does also have the
advantage of making a game almost impossible to solve by
examining the listing.

T

Snow White 9
part 1

A graphic adventure is a very different type of program from a text
only adventure and must be planned in a totally different way.
Snow White is a adventure game aimed at young children and
contains a full high resolution picture of each location visited. I have
also included a number of sound effects within this game and these
too were decided upon before beginning programming rather than
adding them as an afterthought.

The starting point for this game, as with most adventures, is the
map. In a game designed for younger children, it is important to
keep the sentences in the descriptions fairly short and to make the
pictures look as sophisticated as possible. Despite the very advanced
commands available in MSX BASIC to help with graphic design, the
pictures used in this program do take up a vast amount of user
memory. For this reason, I decided to design a game with only 24
locations. In many graphic adventures, including 'The Hobbit', the
programmers have chosen not to include a picture of every location.
This does allow them to fit in more locations, but even in 'The
Hobbit', there are only just over double the number of locations
found in this game. You must decide which path to follow right
from the start. My own feeling is that a game designed for younger
children needs as many pictures as possible, whilst programs aimed
at older enthusiasts should place greater emphasis on text.

Once you have designed the map for your game and put a brief
description of each location alongside the corresponding box, you
have a choice of directions to follow. You can either convert the map
into the data lines, as you did in the last program, and then develop
the graphics, or you can go straight to the graphics. My own
preference is to design the graphics first. There is no real advantage
to be gained from developing the graphics first, except that you will
have a better idea of the amount of memory left for the rest of the
game once the pictures have all been completed.

In this game, I decided to write the text in SCREEN 0, whilst the
graphics MUST be written in SCREEN 2. The main advantage of
changing SCREENs on an MSX micro is that the number of characters
which can be fitted across SCREEN O is greater than on SCREEN 2. 91

92 Snow White - part 1

In addition, text cannot be printed directly onto the high resolution
SCREEN unless channel 1 is first opened. This will be discussed
later.

In location 22, where there is some animation, I have defined the
ghost as a large (16 x 16) sprite and therefore, the graphics must be
drawn in SCREEN 2,2,0. The second number following the SCREEN

4
• In

mountains

16
Outside a

hause
---- KNOCKER

~

14
In the
interrogation
room

21
By a cove
entrance

22
In the cave

with the ghast ____ ..

1'1.,,..,,

tth endo •·

he nbow POT OF
GOLD

20
By the

pyramids

23
CASKET

By the white ~
pyromid ~

KILL GHOST

Fig. 9.1 The map for Snow White

By the white
building

JtARP

<

Snow White - part 1

command selects the option of using large sprites. When I introduce
the flowchart for this game, you will notice that the program is
constantly changing from SCREEN Oto SCREEN 2,2,0. In order to
make life easier, I have directed the entry to the graphics section
through a subroutine which controls the display.

Graphics control subroutine

2160 SCREEN 2,2,0:0PEN"grp:" FOR OUTPUT AS #1
2170 ON PX BOSUB 2260,2330,2380,2440,2500 7 2540,260
0,2670,2710,2750,2810,2860,2910,2960,3000,3050,310
o,3140,3200,3260,3310,3350,3430,3470
2180 CLOSE
2190 RETURN
2200 END

Line:
2160 selects the high resolution screen and opens channel 1 so as to

allow text to be printed on the graphics screen.
2170 examines the value of P%, the current location, and calls the

correct graphics subroutine.
2180 closes channel 1
2190 returns to the main program.

Whenever this subroutine is called, the program examines the
value of P% and calls the subroutine for that particular location.
Thus if P%=5 when the routine is called, line 2170 will call the fifth
subroutine (at line 2500) to draw the graphics for location 5. Each
time you type in the graphics for a new location, you should check it
to make sure that it works properly. If, for example, you have just
typed in the graphics for location 7, you should follow the following
procedure.

1 Type P%=7 press <RETURN>
2 Type GOSUB 2160 press <RETURN>

Line 2170 will then call the subroutine at line 2600, which deals
with the graphics for location 7 and you should see the picture
connected with it.

Before you reach this stage, however, it is very important that you
type in the short listing below. Whenever an MSX micro reaches the
end of graphics instructions, it will automatically return to SCREEN
0 and therefore we must include a routine which halts the program
until we have viewed the picture.

Preventing return to SCREEN 0

2210 LINE<0,171>-<2SS,191>,1,BF:PRESET(10,181),1:P
RINT=ltl,"Press <Space Bar> to continue."
2220 F$=INKEV$:IF F$<)" "THEN 2220
2230 RETURN

93

94 Snow White - part 1

Line:
2210 draws a black box at the bottom of the screen and prints the

message in it.
2220 waits for space bar to be pressed.
2230 returns to graphics control subroutine.

Note that you must use PRINT #1 to print text onto the high
resolution screen and that this only works if channel one has been
opened as a graphics channel (see line 2160).

Now that you have typed in the two sections of code needed to
control the graphics sections, you can press ahead with the actual
graphics. I have split the graphics up so that each location has its
own separate listing. If you type in the graphics for each location
separtely and test it out, it should make it easier to debug than if you
type in the whole lot in one go.

Rather than spend a long time here describing how the graphics
commands work, I will leave you to type them in and try them out
for yourself. If you would prefer to design your own graphics, then
you should refer to chapter 18 where the subject is dealt with in
greater depth.

Graphics commands used
LINE (Xl,Yl)-(X2,Y2),C

LINE (Xl,Yl)-(X2,Y2),C,B

LINE (Xl,Yl)-(X2,Y2),C,BF
CIRCLE (X, Y),R,C

PAINT (X,Y),C

Draws a line from location Xl, Yl to
location X2, Y2 in colour C.
Draws a box between location Xl, Yl
and X2, Y2 in colour C.
Draws a box and fills it in.
Draws a circle centre X, Y of radius
R and colour C.
fills in a colour up to a predefined
border.

Location 1. Outside the small house

2250 REM** location 1 **
2260 CLS:LINE<0,0>-<255,191>,5,BF:LINEC0,90>-<255,
191),14,BF:LINE(150,170)-<240,100>,11,BF
2270 LINE(140,100)-(250,100),6:LINEC195,75)-C250,1
00>,6:LINE(195,75)-(140,100),6:PAINT<190,B0>,6
22B0 LINE<200,170>-<210,150>,1,BF:LINEC220,155>-<2
32,145>,1,BF:LINE<220,110)-C232,120>,1,BF
2290 LINE<160,155)-(190,145),1,BF
2300 CIRCLEC20,50),15,10:PAINT(20,50),10:LINE(220,
B0>-<230,95>,12,BF
2310 BOSUB 2210:RETURN

Location 2. On the wide road

2320 REM** location 2 **
2330 CLS:LINEC0,0>-<255,191>,5,BF:LINE<0,70)-C255,
191),14,BF:LINECB0,191>-<120,70),7:LINE(135,70)-(1

Snow White - part 1

75,255>,7:LINEC120,70>-C135,70>,7:PAINTC100,170),7
2340 CIRCLEC20,50),15,10:PAINTC20,50),10:LINEC129,
70)-(140,255),1
2350 LINEC200,70)-C250,50),13,BF:LINEC195,50>-C255
,50>,6:LINEC225,35)-(255,50),6:LINEC195,50)-(225,3
5>,6:PAINTC220,49>,6
2360 GOSUB 2210:RETURN

Location 3. In the small room

2370 REM** location 3 **
2380 CLS:LINEC0,0)-(255,191l,14,BF:LINE<0,0>-<50,5
0>,11:LINE(50,50)-(50,149),11:LINE(50,149)-(0,191)
,11:PAINT(20,90l,11
2390 LINE<50,50l-(205,145),13,BF:LINE(205,50)-(205
,145) ,11:LINE(205,50J-C255,0) ,11:LINEC205,145)-(25
5, 1 91 > , 11 : PA I NT (220, 70 l , 11
2400 LINE!190,165)-(220,165l,6:LINE(190,165)-(193,
160),6:LINE(217,1601-(193,160),6:LINEl217,160)-(22
0 , 165 l , 6: PA I NT < 1 93, 162 > , 6
2410 LINE(195,165)-(195,170l,1:LINE(215,165)-(215,
1 70 > , 1 : CIRCLE (125 , 100 > , 25 , 1 : PA I NT (125, 100 l , 1
2420 GOSUB2210:RETURN

Location 4. In the misty mountains

2430 REM** location 4 **
2440 LINE(O,Ol-(255,1201,7,BF:LINEI0,1201-<255,191
l , 14, BF
2450 LINE<0,120)-(200,120),12:LINE(105,50)-(200,12
0 > , 12: LI NE I 105, 50 > - < 0, 120 > , 12: PA I NT< 70, 119 > , 12
2460 LINE(180,130)-(255,130) ,3:LINE<180,130)-(255,
15),3:PAINT(254,30),3
2470 CIRCLE<200,20),8,6:PAINT(200,20) ,6
2480 GOSUB2210:RETURN

Location 5. Outside the cavern of light

2490 REM** location 5 **
2300 LINE(0,0)-(255,120>,1,BF:CIRCLEC128,70),65,15
1PAINTC12B,70),15:LINEC0,101)-C255,191>,2,BF
2310 LINEC120,102>-<136,102),14:LINE<100,191)-C120
,102),14:LINEC136,102)-C155,191),14:PAINTC120,190)
,14
2320 GOSUB 2210:RETURN

95

96 Snow White - part 1

Location 6. In a narrow corridor

2530 REM** location 6 **
2540 LINE<0,101)-(255,191),3,BF
2550 LINE(0,0>-<255,101>,4,BF:LINE<0,0)-<120,80),1
4:LINE(120,80)-(120,111),14:LINE(120,111)-<0,191>,
14:PAINT(20,100>,14
2560 LINE(255,0)-(155,80),14:LINE<155,80)-C155,111
> , 14: LI NE (155, 111) - (255, 191> , 14: PA I NT C 1 90 , 100 > , 14
2570 LINE(155,80)-(120,111>,6,BF
2580 GOSUB 2210:RETURN

Location 7. On the sea shore

2590 REM** location 7 **
2600 LINE<0,0)-(2~~,191>,4,BF:LINE(l00,100)-(200,1
00>,9:LINE(80,70>-C220,70>,9
2610 LINE(100,100>-CB0,70),9:LINEC200,100)-(220,70
>,9:PAINT<110,90),9
2620 LINEC150,70)-(152,5>,1,BF:LINEC153,62>-(153,6
>,13:LINE(153,6)-(200,62>,13
2630 LINEC200,62)-(153,62),13:PAINT(155,50>,13:LIN
E<0,100)-(255,191),7,BF
2640 LINE<210,70>-<255,80),1
2650 GOSUB2210:RETURN

Location 8. In the yacht

2660 REM** location 8 **
2670 LINE<0,0)-(255,191),15,BF:CIRCLE(125,100),70,
4:LINE(55,80)-(192,80>,4:PAINT(125,100>,4:CIRCLE(1
25,100),73,14:PAINT(l0,10),14
2680 LINE(98,78)-(120,83),3,BF
2690 GOSUB2210:RETURN

Location 9. On a small island

2700 REM** location 9 **
2710 LINE<0,0)-(255,150),5,BF:CIRCLEC125,151),150,
12:LINE<0,151)-(255,191>,2,BF
2720 PAINT(10,10),12:LINE<120,150)-(130,150),14:LI
NE<120,150)-(115,191),14:LINE(130,150)-(135,191),1
4:PAINTC130,190),14
2730 GOSUB2210:RETURN

Snow White - part 1

Location 10. On a mountain pass

2740 REM** location 10 **
27S0 LINE<0,0>-<2SS,1S0>,7,BF:LINE<0,1S1>-<2SS,191
>,14,BF
2760 LINE<20,170>-<200,170>,12:LINE<20,170)-(110,2
0),12:LINE(110,20)-(200,170),12:PAINT<110,160),12
2770 LINE(40,170)-(2SS,170),2:LINE(40,170)-(200,80
>,2:LINE(200,80)-(2SS,170),2:PAINT<200,169),2
2780 LINE<S,170)-(120,170>,3:LINE<S,170)-(60,70>,3
:LINE(60,70)-(120,170),3:PAINT(70,16S),3
2790 GOSUB2210:RETURN

Location 11. In a strange room

2800 REM** location 11 **
2810 LINE<0,0>-<2SS,191),9,BF:LINE(120,30)-(140,14
0>,1,BF
2820 LINE(140,140>-<2SS,191),3:LINE(120,140>-<0,19
1),3:LINE(120,30)-(0,0>,2:LINE(140,30)-(2SS,0>,2
2830 LINE(120,140)-(140,140),3:PAINT(130,1S0>,3
2840 GOSUB2210:RETURN

Location 12. In a field of corn

2850 REM** location 12 **
2860 LINE(0,0>-(2SS,30>,7,BF:LINE<0,31)-(2SS,191),
3,BF
2870 LINE(20,30)-(60,20),6,BF:LINE(20,30)-(24,S),6
,BF
2880 CIRCLE<200,1S>,S,11:PAINT(200,1S>,11
2890 GOSUB2210:RETURN

Location 13. Outside the church

2900 REM** location 13 **
2910 LINE<0,0)-(2SS,70>,7,BF:LINE(0,71)-(2SS,191>,
2,BF
2920 LINE<S0,160>-<200,90),9,BF:CIRCLE<12S,130>,20
,11PAINT<12S,130),1
2930 LINE(10S,160)-(14S,140>,1,BF:LINE(S0,160>-<70
,S0>,6,BF
2940 GOSUB2210:RETURN

Location 14. In the interrogation room

2950 REM** location 14 **
2960 LINE<0,0>-<2SS,191>,1,BF:CIRCLE(12S,40),1S,11
:PAINT(12S,40),11

97

98 Snow White - part 1

2970 LINE(124,0>-<125,20>,2,BF:LINE(100,140>-<150,
142>,15,BF:LINE<110,140>-<112,180),15,BF:LINE<140,
140)-(142,180),15,BF
2980 60SUB2210:RETURN

Location 15. On a grassy hillside

2990 REM** location 15 **
3000 LINE<0,0)-(255,191),15,BF:CIRCLE(125,-10),180
,3:CIRCLE(125,215),80,3:PAINT(125,160),3:PAINT<0,1
91),3:PAINT(255,191),3:PAINT(125,190),3
3010 CIRCLE<215,10),20,11:PAINT(215,10),11
3020 LINE(115,140)-(130,125),4,BF:LINE(113,124)-(1
32,124>,6:LINE<113,124)-(122,115),6:LINE(123,115>
(132,124>,6:PAINT(129,123),6
3030 60SUB2210:RETURN

Location 16. Outside the house

3040 REM** location 16 **
3050 LINE<0,0>-(255,191),7,BF:LINE(150,152>-<255,1
91>,3,BF:LINE(150,20)-<255,152>,4,BF:LINE(0,190>-<
150,152>,3:PAINT<0,191>,3
3060 LINE<170,80)-(200,60>,15,BF:LINE<220,80>-<250
,60),15,BF:LINE(135,20)-(255,20),6:LINE(135,20>-<1
B5,0),6:PAINT(255,1),6
3070 CIRCLE(200,130>,10,14:PAINT(200,130>,14:LINE<
190,130)-<210,152>,14,BF:CIRCLE(20,30),20,11:PAINT
(20, 30) , 11
3080 60SUB2210:RETURN

Location 17. At the end of the rainbow

3090 REM** location 17 **
3100 LINE(0,0)-(255,120),5,BF:LINE(0,121)-(255,191
>,6,BF:LINE<1,191)-(110,120>,14:LINE<110,120>-<140
,120),14:LINE<140,120>-<255,191>,14:PAINT(125,191)
,14
3110 FOR X=1 TO 15:CIRCLE(125,190),100+X*2,X:NEXT:
CIRCLE(220,20>,30,10:PAINT<220,20),10
3120 BOSUB 2210:RETURN

Location 18. Next to a strange wall

3130 REM** location 18 **
3140 LINE<0,0)-(255,78>,14,BF:LINE<0,79)-(255,191>
,12,BF
3150 FOR X=10 TO 250 STEP 30:CIRCLE<X,70) ,10,X/20:

Snow White - part 1

PAINT<X,70),X/20
3160 IF X<240 THEN CIRCLE<X+15,S0),10,X/20-1:PAINT
<X+15,50),X/20-1
3170 LINE<0,10+X/4)-(255,10+X/4),1:CIRCLE<X,30),10
,X/20+1:PAINT<X,30),X/20+1
3180 NEXT:GOSUB 2210:RETURN

Location 19. Outside the yellow building

3190 REM** location 19 **
3200 LINEC0 1 0)-C255 1 191) 1 7 1 BF1LINE<101 1 170)-C255,1
91>,2,BF1LINEC0,S0)-(100,191),10,BF
3210 LINEC0 1 50)-C120,50) 1 6:LINE(120 1 S0>-<0,0>,6:PA
INTC1,1>,6:LINEC70,50)-C74,20>,4,BF
3220 CIRCLE<S0,130),20,15:PAINT<S0,130),15:LINE(30
1 130)-(70 1 191) 1 15,BF
3230 LINE(37 1 135)-(48,1B9>,1,BF:LINE<S3,13S)-<63,1
89>,1,BF
3240 BOSUB2210:RETURN

Location 20. On a grassy plain

3250 REM** location 20 **
3260 LINE<0,0>-<255,90>,S,BF:LINE<0,91>-<255,191>,
14,BF
3270 LINE(l0,0)-(100,191),3:PAINT<l0,10>,3 :LINE<1
00,100>-<170,100),12:LINE(13S,10>-<100,100),12:LIN
E<135 1 10)-(170,100),12:PAINT(120,90),12
3280 LINE<2S3,0)-<1S5 1 191),9:PAINT(2SS,70>,9
3290 G0SUB 2210:RETURN

Location 21. At the entrance of a gloomy cavern

3300 REM** location 21 **
3310 LINE<0,0)-(255,130>,7,BF: CIRCLE(330,100),140
,6:PAINT(25S,100),6:CIRCLE(290,100),60,1:PAINT<2SS
,l00>,1:LINE(0,0)-(90,191),3:PAINT(0,191>,3
3320 CIRCLE(40,20),20,12:~AINT<40,20>,12
3330 GOSUB2210:RETURN

Location 22. In the ghost's cavern

3340 REM** location 22 **
3350 SCREEN 2,2,0
3360 LINE(0,0)-(255,150),1,BF:LINE<0,151)-(255,191
>,15,BF:LINE<0,191)-(50,151),12:LINE<0,151)-(50,15
1),12:PAINT<0,152),12
3370 LINE(200,151)-(255,151),12:LINE(200,151)-(255
,191),12:PAINT(255,161) ,12:RESTORE 3390

99

100 Snow White - part 1

3380 FOR X=1 TO 32:READ D:S$=S$+CHR$CD):NEXT X:SPR
ITE$ C 1 >=S$
3390 DATA 1,1,3,63,115,227,227,255,254,252,247,226
,224,224,126,31,128,128,192,252,206,199,199,255,12
7,63;247,163,3,23,190,248
3400 FOR Y=10 TO 100 STEP 10:FOR X=1 TO 255 STEP 2
:PUT SPRITE 1,CX,Y),6,1:NEXT X,Y
3410 PUT SPRITE 1,Cl00,100) ,6,1:GOSUB 2210:RETURN

Location 23. In the cavern of pyramids

3420 REM** location 23 **
3430 LINE<0,0)-C255,191>,1,BF:CIRCLEC125,-20),200,
11:PAINT(255,191>,11:PAINTC0,191>,11
3440 LINEC125,50)-C70,161),15:LINEC125,50)-(190,16
1>,15:LINE(190,161>-<70,161>:PAINTC125,160>,15
3450 GOSUB 2210:RETURN

Location 24. Outside a large office block

3460 REM** location 24 **
3470 LINEC0,50)-(255,120),14,BF:LINEC0,50)-(50,0),
7:PAINTC0,0>,7:LINEC205,0)-(255,50),7:PAINT(255,0)
,7
3480 LINEC0,50)-C50,0),13:LINEC205,0)-(255,50),13:
LINEC255,50>-<0,50),13
3490 CIRCLE<125,120>,20,9:PAINT<125,120),9:LINECBO
,70)-C110,90),1,BF:LINEC175,70)-(145,90),1,BF
3500 PAINTC100,0),13:LINEC0,120)-(255,191>,3,BF:LI
NEC20,70)-(50,90),6,BF:LINEC220,70)-(250,90),6,BF
3510 LINEC120,120)-(130,120),1:LINEC120,120)-(70,1
91),1:LINEC130,120)-(185,191),1:PAINTC125,191),1
3520 GOSUB2210:RETURN

The only place where any animation is included in the graphics is in
location number 22. This is in the entrance to the dark cavern, where
the evil ghost prevents you moving further into the cave system.

The background graphics for the cave are created in lines 3360-
3370. Line 3380 is used to define the sprite for the ghost, whilst the
data for the sprite definition is held in line 3390.

The sprite for the ghost is made to move across the screen in line
3400 until it reaches the bottom of the screen. It is then placed
roughly at the centre of the screen in line 3410, before the routine to
wait for a key being pressed is called.

You will notice that the subroutine at line 2210 is called at the end
of each graphics subroutine. If this is left out, control will return to
the main program section as soon as pictures has been drawn. This
would return the program into SCREEN 0 and would, in effect, clear
the graphics from view. By including the subroutine at line 2210, the
player must press the space bar before control is returned to the
main section of the program.

Snow White - part 1 101

The most time-consuming part of the whole process of creating a
graphical adventure is, without doubt, the graphic design stage.
Further details of how to design graphics for adventure games can
be found in Chapter 18, although there are one or two other
approaches which can be adopted when writing a graphical
adventure. In this program I have stored the coding for each
location within a different subroutine. This is a method which has
the advantage of drawing the pictures very quickly, but suffers the
clear disadvantage of using vast quantities of memory. Other
programmers prefer to store the data for their graphics within
DATA lines. Doing this does tend to use less memory, although it
does take far longer to develop and, in addition, it can also slow
down the speed with which the pictures are drawn.

A totally different approach can be utilised if you have a disc drive
for your MSX micro. The pictures for each location can be created
using one of the excellent graphics packages and the whole screen
can be stored on the disc. Thus a single disc can store pictures for all
the different locations in the game and each time that a player enters
a new location, the corresponding picture can be loaded back off the
disc. Using this approach is very efficient in memory usage. No
longer do you have to store all the information for the pictures
within the program and therefore more space is left for extra
locations and more puzzles.

Unfortunately, this approach is not really feasible for tape-based
programs. With a disc drive, it is possible to search for and load a file
within seconds, while the same process would take several minutes
using tape. In addition, the user would have to be ready to rewind
or fast forward the tape to the point where the particular picture is
stored and the whole process would ruin the enjoyment to be found
in playing the game.

Yet another approach is to use a light pen to aid the design of
pictures for your adventure. At the time of writing, only Sanyo have
actually released a light pen for MSX micros and its cost may seem
rather high. The nicest thing about this light pen is that it allows the
user to create superb pictures on screen and the software supplied
with it creates BASIC code which can be loaded into other MSX
micros not fitted with the light pen. It may seem to be an expensive
approach to program development, but the results which can be
achieved have to be seen to be believed. The light pen cartridge
must be plugged into the cartridge port and will work on any make
of MSX micro. If you've got the money to spare, you may like to try
out using this accessory to help you to design the screens for your
adventure. A short (52 line) program is supplied with the light pen
which allows the SA VEd screens to be loaded back into an MSX
micro without a light pen fitted and this routine would need to be
incorporated within your own program. If you intend to sell a
program designed using this system, you may need to seek
permission to use this routine from Sanyo.

10 Snow White
part 2

Once upon a time there was a young princess whose skin was white
as snow, whose cheeks were as red as roses and whose hair was
black as ebony. She was called Snow White and she lived with her
stepmother who was beautiful and very vain. Each morning, she
would look into her magic mirror and ask: 'Mirror, mirror, on the
wall, who is the fairest of us all?'. One day, instead of the usual
reply, the mirror replied: 'Queen thou art fairest in this hall, but
Snow White is the fairest of us all'. The Queen was so angry that she
called a servant and ordered him to take Snow White to the forest
and kill her. The servant could not bring himself to do this dreadful
deed and instead left her to fend for herself in the forest. After many
hours in the forest, Snow White stumbled across a small cottage,
where she found seven dwarfs. They took her in and looked after
her. Imagine the Queen's surprise when she asked the usual
question of her magic mirror and got the reply that Snow White was
still alive. She knew that her servant had deceived her and this
made her very angry. Next morning, she set off for the cottage in the
woods disguised as a poor beggar woman. When she arrived at the
cottage, she knocked on the door and gave Snow White a poisoned
apple.

That evening when the dwarfs arrived home and found Snow
White on the floor, they took her and laid her in a crystal case in a
forest glade, where she lies until this very day. You are the
handsome prince who has set out on a perilous journey to revive the
beautiful princess.

Before incorporating the graphics within the main game, we must
first type in the data lines containing the descriptions of the
locations, the objects and the words understood. You would be well
advised to write the graphics section using very large line numbers
so as to leave plenty of space for the main program. The program
can always be renumbered at a later stage to make it easier for others

102 to type in.

-~11

:ii '
~- ~D

Initialising the program

: l ~~
~ =-- __,_ - ·-,~ -J ~~~ -= __ 1<e.__

- ~ ,,, =

Initialising the program

10 KEY OFF
20 SCREEN O:COLOR 15,4:LOCATE 13,2:PRINT"Snow Whit
e"
30 LOCATE 1,10:PRINT"An adventure for MSX microcom
puters."
40 LOCATE B,20:PRINT"by Steve W. Lucas"
50 DIM S'l.(24,4),Q$(24),G$(24>,B'l.(24),N$(24),N'l.<24)
, V$ (4 > , A< 24)
60 RESTORE:FOR X=1 TO 24:READ Q$(X):FOR Y=1 TO 4:R
EA~ S'l.(X,Y>:NEXT Y,X
70 REM** data for locations**
80 DATA outside a small house. The door is

There is a footpath to the west,0,0,0,2
90 DATA on a wide road. A narrow footpath
east to a small house.,4,12,1,0

open.

leads

--

103

104 Snow White - part 2

100 DATA in a small room. There's not much furn
iture in here' ,O,O,O,O
110 DATA in the misty mountains. There is a wide
road to the south and a narrow footpath leads ea

st. ,0,2,5,0
120 DATA outside the cavern of light. The pathlead
s into the cave.,o,o,o,4
130 DATA in a narrow corridor. To the south lie
the mountains and I can see lightfrom the north.,7
,s,o,o
140 DATA on the sea shore. A yacht is moored here
. The cavern of light lies to thesouth.,0,6,0,0
150 DATA in the cabin of the yacht. I can see a sm
all island in the distance. ,o,o,o,o
160 DATA on a small island. The yacht is moor
ed here. There is a large viaducthere.,0,10,0,0
170 DATA on a high mountain pass. The path is bloc
ked by a fall of rubble.,9,o,o,o
180 DATA in a strange room inside the old chur
eh. The walls are painted red.,0,14,0,0
190 DATA in a field of ripening corn. There isa br
ightly coloured building in the distance.,2,15,0,
13
200 DATA outside the ruins of an old church. Ano
pen doorway leads into the ruins.,0,0,12,0
210 DATA in an interrogation room. A small tabl
e stands underneath a bright light and a chair
stands at one side. ,11,0,0,0

220 DAlA on a grassy hillside. There is a smal
1 building in the distance.,12,17,16,0
230 DATA outside a small house. The door is lock
ed at the moment.,0,0,0,15
240 DATA at the end of the rainbow. A wide road

leads through the rays of light.,15,18,0,0
250 DATA next to a strange wall. It is paintedwith
brightly coloured circles.,17,20,19,0

260 DATA outside a large yellow building. A larg
e dog stands guard by the door.,0,0,24,18
270 DATA on a grassy plain. A green pyramid stan
ds in the distance.,1a,o,o,21
280 DATA at the entrance to a large gloomy cave
rn.,0,22,20,0
290 DATA in a dark cavern. An evil ghost prev
ents me moving further into the cavern.,21,0,0,0
300 DATA in a large cavern. An enormous pyra
mid of solid ice lies in the centre.,0,0,0,22
310 DATA outside a large office block. ,0,0,0,19

Line:
10
20
30-40

turns off the messages about the function keys
select text screen/colours and print title
titles

Initialising the program

50 DIMension arrays
60 READ DATA for the locations
70-310 DATA for the locations

The first thing you'll notice about this listing is that I've used
exactly the same variables as in the previous game. Just to remind
you what they are, I've summarised the major ones below.

S%(X,Y)
Q$(X)
G$(X)
B%(X)

N$(X)
N%(X)
V$(X)
A(X)
P%
S%

holds the map
holds the description of the locations
holds the descriptions of the objects
holds the number of the location where the objects are
found
holds the names of the words recognised
holds the pointer to the words recognised
holds the descriptions of objects being carried
flag to test if object is being carried
current location
score

As in the previous game, each line of DATA contains a description
of the location followed by four numbers. These numbers correspond
to the number of the location you reach by going North, South, East
or West. You'll also need to ensure that no words are split on the
screen in the descriptions of the locations. I have again used the
default screen width of 37 characters, although users with monitors
may prefer to use 40 character width.

Locations in 'Snow White'
1. outside a small house. The door is open. A footpath lead to the

west.
2. on a wide road. A narrow footpath leads east into a small house.
3. in a small room with very little furniture.
4. in the misty mountains. A wide road leads south and a narrow

footpath leads east.
5. outside the cavern of light. A path leads into the cave.
6. in a narrow corridor. A light can be seen to the north.
7. on the sea shore. A yacht is moored here.
8. in the cabin of the yacht. Through the window you can see a

small island.
9. on a small island. The yacht is moored here and a viaduct can be

seen.
10. on a high mountain path. Rubble blocks your way.
11. in a strange room inside the old church.
12. in a field of ripening corn. A brightly coloured building is to be

seen.
13. outside the ruins of the church.
14. in the interrogation room. A table and chair stand underneath a

bright light.

105

106 Snow White - part 2

15. on a grassy hillside. A small building can be seen in the
distance.

16. outside a small house. The door is locked.
17. at the end of the rainbow. A wide road leads straight through

the centre.
18. next to a strange wall covered in coloured circles.
19. outside the yellow building. A large dog stands guard.
20. on a grassy plain. A green pyramid stands at the centre.
21. at the end of a large gloomy cavern.
22. in the dark cavern. The ghost blocks your way.
23. in the cavern. An enormous pyramid of ice stands in the centre.
24. outside the large office block.

320 FOR X=1 TD 24:READ G$CX) ,B%CXl,N$CXl:N%CXl=X:N
EXT X
330 DATA a sail,5,sail,a rope,6,rope,a rudder,7,ru
dder
340 DATA a bowl of soup,3,soup,a wild cat,4,cat
350 DATA a golden casket,23,casket,"",23,"",a gold
en harp, 10,harp
360 DATA a screwdriver,9,screwdriver,a giant lizar
d,B,lizard,a brass knocker,16,knocker,"",16,""
370 DATA a large red button,24,button,an old lady,
19,lady,a pot of gold,17,gold
380 DATA an enormous man with a gun in his hand
,14,man,"",14,""
390 DATA a pile of straw,2,straw,a wooden plank,1,
plank,a large pot hole,15,pothole
400 DATA a ballpoint pen,20,ballpoint,a piece of p
aper,11,paper,a python,12,python,a magpie,21,magpi
e

In the next section of the program, the DATA for the 24 objects
found within the game is READ into the arrays. Three of these
objects are, like the previous game, invisible at first and only
become visible after solving some problems. These are listed in the
chart below.

Object number
7
12
17

Line:

Location found in
23
16
14

320 read data into the arrays.

Changes to
Snow White
a silver sword
a key

330-400 DATA for the objects, location of objects and word
recognised.

Objects found in 'Snow White'
number object
1. a sail

invisible at start?
no

location
5

Initialising the program

number object invisible at start? location
2. a rope no 6
3. a rudder no 7
4. a bowl of soup no 3
5. a wild cat no 4
6. a golden casket no 23
7. SNOW WHITE yes 23
8. a harp no 10
9. a screwdriver no 9
10. a lizard no 8
11. a door knocker no 16
12. a silver sword yes 16
13. a button no 24
14. an old lady no 19
15. a pot of gold no 17
16. a man and gun no 14
17. a key yes 14
18. straw no 2
19. a wooden plank no 1
20. a pot hole no 15
21. a pen no 20
22. paper no 11
23. a python no 12
24. a magpie no 21

The main control loop
In a graphical adventure, it is even more important that the main
control section is well structured and, once again, the best way of
doing this is to use a flowchart. (See page 108.)

The major difference between this flowchart and the one used in
the previous game is that the value of the flag K is checked at the
start. This flag is changed every time that you move into a new
location. If its value remains zero, then the program is sent to the
subroutine which controls the graphics and the appropriate picture
is displayed on the screen.

410 REM** set variables**
420 P%=3:S%=0
430 REM** main control loop**
440 IF K=O THEN GOSUB 2160
450 SCREEN O:K=O:PRINT J$
460 IF P%=4 THEN SH=SH+l:IF SH>3 THEN PRINT"The ea
t looks agitated!"
470 IF P%=4 AND SH>5 THEN E$="The cat attacks me!"
:GOSUB 1140
480 PRINT:PRINT"I am :-":PRINTQ$CP'Y.)
490 REM** describe directions**
500 A$="":IF Sr■ CP'Y.,1>>0 THEN A$="North"
510 IF S%CP%,2)>0 AND LENCA$))0 THEN A$=A$+",South
"ELSE IF Sr■ CPr■ ,2))0 THEN A$="South"

107

108 Snow White - part 2

Fig. 10.1 The flowchart
for Snow White

PRINT
MESSAGES

(JS)

WIN GAME
AND STOP

FLOWCHART FOR SNOW WHITE

GRAPHICS
SUBROUTINE

w
''

I

l

f
r
(

t
t
1
l

I

t
1

1

Initialising the program

520 IF S7.CP7.,3)>0 AND LENCA$>>O THEN A$=A$+",East"
ELSE IF S7.CP7.,3)>0 THEN A$="East"

530 IF S7.(P7.,4)>0 AND LENCA$)}0 THEN A$=A$+",West"
ELSE IF S7.CP7.,4)>0 THEN A$="West"

540 IF P'Y.=3 THEN A$="0ut" ELSE IF P'Y.=11 THEN A$=A$
+",Out"
550 IF P'Y.=13 OR P'Y.=5 OR P'Y.=16 DR P%=1 OR P'Y.=19 OR
P'Y.=24 THEN A$=A$+",In"
560 IF A$="" THEN A$="nowhere obvious"
570 PRINT:PRINT"I can go :-":PRINTA$:PRINT
580 REM** describe objects**
590 E=O:FOR T=l TO 24
600 P=O:IF B7.<T>=P'Y. THEN P=l
610 IF P=l THEN 630
620 NEXT T:SOTO 650
630 IF E=O THEN PRINT"I can see:-"
640 PRINT 6$(T>:E=1:60TO 620
650 PRINT:Z$="":INPUT"What should I do ";2$
660 REM** analyse input**
670 B$=LEFT$CZ$,2):C$=LEFT$(Z$,3):D$=LEFT$(2$,4):J
$=""
680 BEEP:CLS:K=l
690 IF (B$="n" OR D$="go n") AND S7.CP7.,1> >O THEN P
7.=S7.(P7.,1):K=O ELSE IF (B$="n" OR D$="go n") THEN
J$="I can't go that way!"
700 IF P'X.=15 AND (B$="s" OR D$= 11 90 s"l AND SC=O TH
EN E$="I fall down the hole and die":SOSUB 1140
710 IF (B$="s" OR D$="go s") AND S¾CP¾,2)>0 THEN P
'Y.=S'Y.<PX,2> :K=O ELSE IF (B$="s" OR D$="go s") THEN
J$="I can't go that way!"
720 IF (B$="e" OR D$="go e"> AND S'Y.(P'Y.,3))0 THEN P
'Y.=S'Y.(P'Y.,3) :K=O ELSE IF CB$="e" OR D$="go e") THEN
J$="I can't go that way!"
730 IF P'Y.=19 AND SE=O AND CB$="w" OR D$="w") THEN
J$="The old lady won't let me pass":SOTO 440
740 IF (B$="w" OR D$="go w"> AND S7.(P7.,4>>0 THEN P
7.=S'Y. <PY., 4): K=O ELSE IF <B$="w" OR D$="go w") THEN
J$="I can't go that way!"
750 IF C$="out" THEN SOSUB 3540
760 IF C$="in" OR D$="go i" THEN SOSUB 1050
770 IF C:$="100 11 THEN K=O
780 IF C$="swi" THEN SOSUB 1110
790 IF C$="get" OR C$= 11 tak 11 OR C$="gra" THEN GOSUB

1200
800 IF C$="inv" THEN GOSUB 1410
810 IF C$= 11 dro 11 OR C$="lea" THEN

THEN GOSUB 1570
THEN SOSUB 1630
THEN GOSUB 1680
THEN SOSUB 1730

SOSUB 1470
820 IF
830 IF
840 IF
850 IF
860 IF
870 IF
880 IF

C$= 11 unl 11

C$= 11 pla 11

C$="pra"
C$="kno"
C$="pre" OR C$="rin" THEN GOSUB 1830
C$="rea" THEN SOSUB 1880
C$="giv" THEN SOSUB 1910

109

110 Snow White - part 2

890 IF C$="sta" OR C$="kil" OR C$="use" THEN GOSUB
1990

900 IF C$="dri" THEN GOSUB 2040
910 IF C$="sco" THEN J$="This isn't a game you kno
... , II

920 IF C$="hel" THEN J$="I'm sorry I haven't a clu
e!"
930 IF C$="sea" THEN J$="I didn't find anything!"
940 IF C$="row" OR C$="sai" OR D$="go b" THEN GOSU
B 2070
950 IF C$="lan" OR C$="dis" OR D$="go l" THEN GOSU
B 2120
960 IF C$="kis" THEN GOSUB 3580
970 REM** if score <10 then jump back again**
980 IF SX<10 THEN GOTO 440

Before examining the workings of this control section, we must
look more carefully at how the graphics are introduced. The variable
K is used as a flag to determine whether the graphics of the current
location (P%) are to be drawn or not and its value is checked right at
the start of the loop. If K is equal to zero, then control is passed to
the graphics routine and the picture corresponding to the current
location is drawn (line 440 calls subroutine at line 2160). The
next line makes sure that the computer is in the text mode (SCREEN
0) and sets the value of K to zero to ensure that its value is always
the same after drawing the graphics.

Immediately after the player types in his instructions, the value of
K is changed to one (line 680), to suppress any graphics. Its value is
changed back to zero if the player moves to a new location (lines
690-720), moves in or out of a building or types 'look' (line 770). Thus
when the score is checked at line 980 and the program is sent back to
the beginning of the loop, graphics will only be drawn if the player
has moved location or has asked to see the picture by typing 'look'.

In the previous adventure, SCREEN mode was not changed
during the program and we were able to PRINT any messages
directly onto the screen. In this game, however, the mode is
changed to SCREEN 0 at the start of the loop, which would
effectively clear away any messages. The easiest way to solve this
problem proved to be by using the variable J$ to hold any messges.
To illustrate this, consider what happens if the player types in 'help'
when asked 'What should I do?' in line 650. The program will
compare the input with the contents of C$ in lines 690 to 960 and
will find a match in line 920. It then sets the contents of the variable
J$ to hold the message 'I'm sorry I haven't a clue!' so that this can be
printed immediately AFTER the screen has been cleared by the
SCREEN 0 command in line 450.

Line:
420 set the starting position to location 3 and the score to zero.

•
Initialising the program 111

440 check the value of K and call graphics if it has been set to
zero.

450 change to text mode (SCREENO), set the value of K and
print any message held in J$.

460 test to see if the location is number 4 and increase the value
of the flag SH. If SH is greater than 3 then print the message.

470 test to see if the location is number 4 and if the value of the
flag SH is greater than 5, lose the game.

480 print the description for the current location.
500-530 decide if you can move north, south, east or west and

include this information in A$.
540 check to see if you can move 'out' and include this informa

tion in A$.
550 check to see if you can move 'in' and include this information

in A$.
560 if A$ is still empty, change the message it contains.
570 describe the directions you can move in (A$).
580-620 examine all 24 objects to see if they are in the current

location.
630 if it is the first object in the location, print the message 'I can

see:-'.
640 print the description of the object found and jump back to

line 620.
650 empty the contents of Z$ and input the player's instructions

into Z$.
670 set B$, C$ and D$ so that they contain the first few letters of

the player's instructions and empty J$ of any messages.
680 BEEP to make sure that the player knows that they have

pressed <RETURN>, clear the screen and set the value of
the flag K to one so as to suppress any graphics.

690 deals with movement north.
700 does the player try to move south from location 15 without

having dropped the plank? If so he falls down the pothole
and dies.

710 deals with movement south.
720 deals with movement east.
730 does the player try to move west from location 19 without

helping the old lady? If so, she won't let him pass.
740 deals with movement west.
750 does the player want to 'go out'?
760 does the player want to 'go in'?
770 if the player wants to 'look', the value of the flag K is set to

zero to allow the graphics to be drawn.
780 swim?
790 call the routine to 'get' an object if the player types 'get',

'take' or 'grab'.
800 call the 'inventory' routine to see which items are being

carried.

112 Snow White - part 2

810 call the routine to 'drop' an item being carried if the player
types 'drop' or 'leave'.

820 unlock?
830 play?
840 pray?
850 knock on door?
860 press or ring the bell?
870 read?
880 give?
890 stab, kill or use a weapon?
900 drink?
910 score ? . Note that the message indicates that this is not a

game, even though the score is checked at the end of the
loop!

920 no help is available!
930 nothing is to be found by 'searching'.
940 row, sail or 'go boat'?
950 land, disembark or leave the boat
960 kiss 'Snow White' to awaken her.
980 test the score to see if it is less than 10 and jump back to the

start of the loop.

In the previous game, all of the puzzles were written inside
subroutines and in order to show you that this is not the only way to
set problems in an adventure, I have included three puzzles within
the main control loop of this game. Every move spent by the player
in location number 4 increases the value of the flag SH (line 460).
The fifth object found in the game is a wild cat and this is found in
location number 4. After 3 moves in location 4, a message appears
on the screen that 'The cat looks agitated!' (line 460) and after 5
moves, the cat decides to attack. When this happens, the variable E$
is set to hold the message about losing the game and the appropriate
subroutine is called. This is identical to the way in which the death
routine worked in the previous game.

The second puzzle is set in line 700, which tests to see if the player
tries to move south from location 15 without putting the plank
across the pothole first. When the plank is dropped in the correct
place, the flag SC is set to one and movement south is possible. In
order to solve this puzzle, the player would have had to read the
description of the location very carefully. The final puzzle included
in the main program control loop control occurs in line 730. A test is
made of the value of the flag SE whenever you try to go west from
location 19. If the player has not solved the puzzle of what the old
lady wants, he will be stuck!

Win game

990 REM** Nin game**
1000 CLS:L0CATE 10,2:PRINT"W ell Done"

Initialising the program 113

1010 LOCATE 1,10:PRINT"You have found Snow White a
nd have kissed her. She awakes and you both liv
e happily ever after."
1020 PLAY"l16decdecdededcd"
1030 END

Line 980 in the main control loop tests the value of the score (S%)
and once its value reaches 10, the loop is terminated and the
program reaches the win game routine at line 990. This is a very
simple routine.

Line:
1000 clear the screen and print message.
1010 print message about what happens to 'Snow White'.
1020 play a short tune (?)
1030 end of the game.

The tune played in line 1020 is not the most amazing piece of
music and you may like to experiment with this line. I have already
mentioned that this game does not really have a true score. In many
adventures in which the quest has a specific goal, the player can
either win or lose the game and therefore the variable S% is used as
yet another flag rather than a measure of the true score.

11

114

Sno
pa

hite

Many of the subroutines used in this game are very similar to those
we have already used, with only minor changes to deal with the
different circumstances. It is well worth while comparing these
routines with their equivalent in 'The Wizard's Quest' so as to gain
some insight into how to adapt them to your own purposes. A few
of the subroutines, however, have had to be written specifically for
this game because of its totally different plot.

One major difference between routines in this program and those
already introduced is that any messages which are to be printed on
the screen must be stored in the variable J$ for reasons already
discussed.

Go in

1040 REM** go in**
1050 IF PX=1 THEN J$="0.K.":PX=3:K=O:RETURN
1060 IF PX=5 THEN J$="0.K.":PX=6:K=O:RETURN
1070 IF PX=13 THEN J$="0.K.":PX=11:K=O:RETURN
1080 IF PX=16 OR PX=19 OR PX=24 THEN J$="The door
s locked!":RETURN
1090 J$="Don't be absurd!":RETURN

This subroutine is very similar to its equivalent routine in 'The
Wizard's Quest'. There are three locations where the player can
actually move to a different place by typing the command 'go in' and
three further locations where they can reasonably be expected to try
to go in, but without success. These are summarised in the chart
below.

Location
1. outside house
5. outside the cavern
13. outside the church

go in possible?
yes
yes
yes

new location
3. inside a room
6. in a corridor
11. in a church

I Snow White - part 3

16. outside a house no
19. outside a building no
24. outside some offices no

Line:
1050 if you are in location 1, move to location 3, set the flag to zero

and return to the main loop.
1060 if you are in location 5, move to location 6, set the flag to zero

and return.
1070 if you are in location 13, move to location 11, set the flag and

return.
1080 if you are in location 16, 19 or 24 change the content of the

variable J$ and return.
1090 set the contents of J$ to indicate that it is not possible and

return.

In lines 1050-1070, you will notice that the variable J$, which
prints any messages, is set to hold the message 'O.K.' and the
variable K is set to zero before returning to the main control loop.
Setting K=O has the effect of forcing the computer to print the
graphics for the new location. If the player is not in the three
locations tested for in line 1080, then the program will reach line
1090 and a message will be printed to indicate that the player is
trying to do something which is not sensible.

Swim

1100 REM** swim**
1110 IF P¼=7 OR P¼=B THEN E$=" I drown": GOSUB 1140
1120 J$="Don't be silly!":RETURN

In this game there are two locations (7 and 8) where the player
may be tempted to go for a swim. When writing the program, I
decided not to use the swim routine as part of the solution to the
game and therefore anyone foolish enough to try swimming in these
two locations will drown. Thus the variable E$ is set to hold the
message 'I drown' and control is passed to the 'death' routine if
attempting to swim in either of these locations. All the other
locations are too far away from the sea and therefore when line 1120
is reached, J$ is set to hold the message 'Don't be silly!' before
returning to the main loop.

Line:
1110 if you are in location 7 or location 8, set the variable E$ to hold

the message about drowning and call the lose game routine at
line 1140.

1120 set the variable J$ to contain the message 'Don't be silly' and
return to the main loop.

115

116 Snow White - part 3

Lose game routine

1130 REM** death routine**
1140 CLS:LOCATE 1,2:PRINT E$
1150 LOCATE 1,10:PRINT"I am dead!"
1160 LOCATE 1,20:PRINT"Press the <Sppce Bar> to pl
ay again."
1170 A$•INKEV$: IF A$<>" " THEN 1170
1180 RUN

Line:
1140 clears the screen and prints the contents of the variable E$.
1150 print the message about death.
1160 print the message about pressing the space bar.
1170 wait for the space bar to be pressed.
1180 RUN the program again.

This routine is used whenever the player loses the game. Before it
is called, a description of the reason for losing the game must be
stored in the variable E$. Note that in this game, death is the only
method of losing! You may like to experiment with sound effects to
accompany this routine ... perhaps the death march!

Get

1190 REM** ;■t obJ ■ct■ **
1200 GOSUB 1350:IF L¾<1 THEN RETURN
1210 EX•O:FOR X•1 TO 24:IF B¾<X>=P¾ AND N¾<R>=X TH
EN EX=1
1220 NEXT:IF E¾=O THEN RETURN
1230 IF R=S OR R=10 OR R=23 THEN E$="It bites me.
Aaa.-ggghhhh!":GOSUB 1140
1240 IF R=16 THEN E$="The man shoots me as I try t
o touch him!":GOSUB 1140
1250 II= R=11 OR R=13 OR R=14 THEN J:S="Don't be abs
urd!"1RETURN
1260 IF R=24 THEN J$="The magpie keeps pecking me!

1270 IF R=6 THEN J$="It's too heavy!":RETURN
1280 IF R=7 THEN J$="I can't lift her!":RETURN
1290 A<R>=1
1300 E¾•O:FOR X=1 TO 4
1310 IF V$(X)="" THEN V$(X)=6$(N¾(R>>:E¾=1:X=5
1320 NEXT:IF E¾=O THEN J$="I can't carry any more!
":RETURN
1330 BX(N¾(R>>=O:RETURN

This routine allows the player to pick up objects and the basic
framework is exactly the same as the routine in the previous game.

Line:
1200 calls the subroutine to split the input sentence into two

I
I

Snow White - part 3 117

parts and return the number of the object in the variable
R.

1210-1220 search through the positions of all 24 objects to see if the

1230
1240

1250

1260

object is in the current location and return to the main
control loop if it isn't.
death if you try to pick up object numbers 5, 10 or 23.
if you try to pick up object number 16, the man shoots
you.
prevents you from picking up objects numbered 11, 13 or
14.
if you try to get the magpie, a message is printed on the
screen to give you a clue!

1270 prevents you getting object number 6.
1280 prevents you getting object number 7.
1290 set the pointer A(R) to 1 for the item being carried.
1300-1310 include object's description in the array V$(X) which is

1320
1330

used as the 'inventory'.
hands full?
change pointer for the object's location to zero, which
makes the object seem to disappear.

Apart from the changed line numbers, the only differences
between this routine and the 'get' routine from 'The Wizard's Quest'
occur in lines 1230-1280. These are all checks for items which can't
be carried.

Any attempt to get the wild cat (5), the lizard (10) or the python
(23), results in death in line 1230, while anyone silly enough to try
carrying the man with the gun will get shot in the following line. In
a similar way, you are not allowed to get the door knocker, the
button or the old lady, although you won't die in the attempt. Line
1260 was inserted as a clue! When the player attempts to get the
magpie, the message is printed that it keeps pecking you. If you
examine the 'inventory', once you have typed the routine in, you
will see that you are carrying it. If the magpie is dropped at the feet
of the man with the gun, it will peck him and force him to run away!
Lines 1270 and 1280 prevent you from carrying the casket or Snow
White!

The rest of this routine is identical to the previous one and can be
considered as a 'standard routine' for use in all adventures.

Split input sentence

1340 REM** check item and split words**
1350 L$•"":XX=INSTR(Z$," ">:R=0
1360 LY.=0:L$=RIGHT$(Z$,(LEN(Z$)-XX>>
1370 IF LEN(L$)<2 THEN RETURN
1380 FOR X=1 TO 24:IF LEFT$(N$(X>,LEN(L$))=L$ THEN
LY.=1:R=X

1390 NEXT:RETURN

118 Snow White - part 3

Apart from the line numbers used, this routine is exactly the same as
the one used in the previous program, except that the number of
objects is changed to 24 in line 1380. Just to remind you: it takes the
input sentence (Z$) and splits it into two words. The second word is
held in the variable L$ and this is then compared with the description
of all 24 objects to see if the second word refers to one of them. If a
match is found, then the variable R is set to hold the number of the
object. If no match is found, R will remain zero.

Inventory

1400 REM** inventory**
1410 E=O:PRINT"I am carrying :-":FOR X=l TO 4:IF V
$(X><>"" THEN PRINTV$(X):E=1
1420 NEXT:IF E=O THEN PRINT"not a sausage!"
1430 LOCATE 3,20:PRINT"Press <Space Bar> to contin
ue. 11

1440 A$=INKEY$:IF A$<>"" THEN 1440
1450 RETURN

The major difference between this routine and the one used in 'The
Wizard's Quest' is that an extra two lines are added (lines 1430 and
1440) which require the player to press the space bar before
returning to the main control loop. The reason for adding these lines
is that when control returns to the main loop, fhe SCREEN is
changed to SCREEN O again, which clears any message off the
screen. Thus it was necessary to prevent return to the main loop
until the player has had chance to read the descriptions of the
objects carried. Other than this slight change, the routine is identical
to the previous one and you would be advised to turn back for an
explanation if you are not sure how it works.

Drop

1460 REM** drop**
1470 GOSUB 1350:IF L'Y.<1 THEN J$="I don't have a"+
L$:RETURN
1480 E'Y.=O:FOR X=l TO 4
1490 IF V$(X>=l3$(N'Y.<R>> THEN V$(X)="":E'Y.=1
1500 NEXT:IF E'Y.=O THEN J$="I'm not carrying a "+L$
:RETURN
1510 B'Y.(N'Y.<R>>=P'Y.
1520 A<R>=O
1530 IF R=24 AND P'Y.=14 THEN B'Y.C24>=0:B'Y.C16)=0:J$="
Th■ ma;pi ■ p@~k• th@ man and h@ runs away leaving
§l;lffl@thin; en the ground.":N$(17)="key":G$(17>="a 1
arge brass key"
1540 IF R=19 AND P'Y.=15 THEN SC=1:Q$(15)=Q$(15)+"

There's a plank across the hole.":B'Y.(19)=0
1550 RETURN

•
Snow White - part 3 119

This routine is called from the main loop whenever the player tries
to 'drop' or 'leave' an object being carried. It is, again, very similar to
the routine in the previous listing.

Line:
1470 calls the subroutine which splits the sentence into two

words and returns the number of the object which you
want to drop.

1480-1490 search through all four elements of the array V$(X) to see
if the object mentioned is being. carried and remove it
from the array if it is. The flag is also set if the object can

1500
1510
1520

1530

1540

be dropped.
check the value of the flag to see if it is not being carried.
set the pointer for the object to the current location.
set the contents of the array A(R) to zero so that the
computer knows that the object is no longer being carried.
check if object number 24 is dropped in location number
14 and solve the puzzle.
check if object number 19 is dropped in location 15 and
solve the puzzle.

1550 return to the main program control loop.

There are two puzzles in this game which are solved by dropping
objects in specific locations. In line 1530, a check is made to see if
object number 24, the magpie, is dropped in location 24. A clue was
given to the player when he tried to get the magpie that it liked
pecking things! When the magpie is dropped, the pointer B%(X) for
objects numbered 24 (magpie) and 16 (man) are set to zero, so that
they 'disappear' from the description of the objects found in location
14. At the same time, the description for object number 17 (G$(17)=
the large brass key) and the word it is recognised by (N$(17)) are
changed to make it appear as if the key is left behind when the man
runs away. In addition, the message about the man is stored in the
variable J$.

In line 1540, a check is made to see if the plank, object number 19
is dropped in location 15. If it is, then it covers the pothole so that
the player can move further into the game without dying. This is
achieved by setting the flag SC = 1 and then making the plank
disappear from the normal objects by changing the pointer for its
location to zero (B%(19)=0). The description for location 19 is then
changed so that it incorporates the message that the plank lies
across the hole.

Unlock

1560 REM** unlock**
1570 IF AC17>=0 THEN J$="what with?":RETURN
1580 IF PY.=16 OR PY.=19 OR PY.=24 THEN J$="The key d
o■sn't fit!":RETURN

120 Snow White - part 3

1590 IF P'Y.<>23 THEN J$="What a ridiculous idea'":R
ETURN
1600 J$="The key turns and the casket opens'"
1610 G$(7)="Snow White":N$(7)="snow white":S'Y.=9:RE
TURN

In this game there is only one object which can be unlocked; the
casket holding 'Snow White'. Once the key has been found, how
ever, the player may well try to unlock the doors found in locations
16, 19 or 24. As you well know, but the player doesn't, there is no
way into these buildings and therefore the program must tell the
player that the key doesn't fit!

Lines:
1570 check to see if the key is being carried. If A(17) = 0 then it isn't

and a message is stored in J$ to be printed after returning to
the main loop.

1580 check to see if the player is in location 16, 19 or 24 and if he is,
set the message into J$ and return to the main loop.

1590 check that the player is in location 23. If not, set J$ to hold the
message and return to the main loop.

1600 set the message held in J$ to tell the player that the casket
opens.

1610 set the description of object number 7 (Snow White) and the
word recognised (N$(7)), set the score to 9 and return to the
main control loop.

Although the player is told 'This isn't a game you know!' when he
types 'score' during play (line 910), the computer does keep track of
the score and should the player unlock the casket, the score is set to
9/10. You may prefer the program actually to give this score to the
player and might like to try changing line 910 to:

910 IF C$="sco" THEN PRINT "You have scored ";S%;" out of
10."

Play

1620 REM** play**
1630 IF A(B)=0 THEN J$="I can't do that yet!":RETU
RN
1640 PRINT"0.K.":PLAY"1Bfdefdedecdefdedec":J$="Was
n't that good eh?"
1650 IF P'Y.=19 THEN J$="The old lady thanks me for
playing for her and says 'to get rid of the gho
st you must pray in the old church":SA=1
1660 RETURN

Snow White - part 3 121

Part of the solution to this game is to be found by playing the golden
harp for the old lady, who will then tell you the secret of getting rid
of the ghost so that you can enter the caves. In this game I have tried
to show you how to add sound effects to the game which are an
integral part of the game. It is pointless adding sounds to your
program unless they form a useful purpose. Here the player has to
play a tune on the harp BEFORE the old lady will give some
assistance. I have written a very simple tune using the music macro
language. You may like to try elaborating on the sound to make it
sound more like a harp.

Once you have played the harp in location 19, the flag SA is set to
1. The value of this flag is tested at a later point in the game to make
sure that you have solved the problem.

Line:
1630 check to make sure that you are carrying the harp. If A(8) is

zero, then the variable J$ is set to hold the message 'I can't do
that yet!'

1640 print the message, play the tune using the music macro
language facility, set the contents of J$.

1650 test to see if the player is in location 19 and change the
message if he is. The value of the flag SA is also changed if in
the correct location.

1660 return to the main program control loop.

Before moving on to the next chapter, don't forget to check out
the routines you have just typed in. This can be done in a similar
way to that adopted in the last game and when you are convinced
that all is well, you should save an updated copy of the game just in
case!

12 Snow White
part4

122

Pray

1670 REM** pray**
1680 J$•"0.K.":PLAY"cde"
1690 IF PX<>11 THEN RETURN
1700 IF SA=O THEN J:t;="nothing happens":RETURN
1710 J$•"A voice booms out 'To kill the ghost you
must use a silver sword":S8=1:RETURN

Line:
1680 set the contents of J$ to hold the message 'O.K.' and play a few

notes.
1690 if praying in any location other than the church (location 11),

return to main program control loop.
1700 if flag SA is zero, nothing happens and control is returned to

main loop.
1710 the contents of J$ are changed to new message to tell you how

to kill the ghost. The flag SB is set to one and the program
returns to the main loop.

In this game, the player must first play the harp for the old lady,
who will tell them to pray in the church. At the same time, the flag
SA is set to one. The value of this flag is checked when trying to pray
in the church and unless the first problem has been solved, nothing
happens!

Knock

1720 REM** knock**
1730 IF PY.<>16 THEN J$="There isn't much point in
doing that here!":RETURN
1740 PRINT"O.K.":BEEP:FOR X=1 TO 300:NEXT X
1750 IF SA=O THEN J$="Nobody answers.":RETURN
1760 BEEP:PRINT"I hear someone walking towards the

door":FOR X=1 TO 300:NEXT X

'+"

Snow White - part 4 123

1770 IF SD=O THEN PRINT"A man answers the door and
throws a silver sword onto the floor. 'Take th

at·, he says."
1780 IF SD=O THEN G$(12)="a silver sword":N$.(12)="
sword":LOCATE 1,20:PRINT"Press the <Space Bar> to
continue."
1790 IF SD>O THEN E$="The man answers the door and
says 'What you again.' as he hits me with a ba

ton.":GOSUB1140
1800 SD=1:A$=INKEY$:IF A$<>" "THEN 1800
1810 RETURN

Line:
1730 check the location to see if the player is trying to knock

anywhere other than location 16 and if he is, set the contents
of J$ to contain the message that there isn't much point before
returning to the main control loop.

1740 print the message and play the sound effect.
1750 check the value of the flag SA and if it is zero, set the message

that nobody answers before returning control to the main loop.
1760 play the second sound effect and print the second message.
1770 if it is the first time you have knocked on the door, a man

answers and drops the sword.
1780 if it is the first time you have knocked on the door, the

contents of G$(12) and N$(12) are changed.
1790 if it is the second time you have knocked on the door, the man

answers and hits you. The lose game routine is called.
1800 set the flag SD to one and wait for the space bar to be pressed.
1810 return to the main program.

After visiting the church to find the clue about killing the ghost,
the player must then return to location 16 and knock on the door.
Although there are many doors in this game, this is the only one
with a door knocker and therefore an appropriate message is
defined in line 1820 if you try to knock anywhere else. The sound
effects for a door knocker can be achieved in many different ways
and the routine adopted illustrates the important technique of
introducing a time delay between events, which gives the game a
'real time' element. In line 1830, the sound is made and a short delay
is created using a simple FOR NEXT loop before the second knock is
sounded. Should the player not have previously played the harp for
the old lady, then the value of the flag SA will remain zero and
nobody will answer the door (in line 1750). If it is the first time you
attempt to knock on the door, the flag SD will be zero and the
description of object number 12 will be changed to make the sword
appear (line 1780). At the same time, a message is printed (line 1770)
which gives the impression that the man has thrown the sword out
of the door, whereas in fact it has always been there!

124 Snow White - part 4

When the player has knocked on the door and the sword has been
thrown out, the flag SD is set to one in line 1800. If you then try to
knock on the door again, the value of SD will be greater than zero
and this will be trapped in line 1790, where the message about the
man hitting you will be stored in E$, before calling the death
routine.

Line 1800 then waits for the space bar to be pressed before
returning to the main loop. The reason for this is that messages have
been printed on the screen which will be erased on return to the
main control loop.

Ring

1820 REM** ring**
1830 IF P'r.<>24 THEN J$="I can't do that here!":RET
URN
1840 PRINT"O.K.":PLAY"f":FOR X=l TO 300:NEXT X :PL
AY"c"
1850 PRINT"I hear somebody coming.":FOR X=l TO 300
:NEXT X
1860 E$="What do you want·, says a voice from behi
nd the door. A bucket of boilingoil is thrown onto

me from above.":GOSUB 1140

There is a large red button on the door in location 24 of this game,
which controls the door bell, and the player will probably try to
press it. The line in the main loop which calls this subroutine (line
860) responds to 'press' or 'ring'.

Line:
1830 if the location is not number 24, set J$ to hold an appropriate

message and return to the main program.
1840 print message and play sound effect.
1850 print message about somebody coming.
1860 lose game.

This routine is used as a 'red herring' and is meant to put the
player off the correct scent. It was written to illustrate a particular
technique often used in adventure games, namely introducing a
time delay. This adds realism to the game. The bell is rung in line
1840 and a message, 'I hear somebody coming' is printed in the next
line. This is followed by a short time delay, again in line 1850, before
the bucket of boiling oil is flung over you. You may like to try
changing the sound effect in line 1840, or even try changing the
result of pressing the bell.

Read

1870 REM** read**
1880 IF A(22)=0 THEN J$="I have nothing to read!":
RETURN

Snow White - part 4 125

1890 J$="There is a simple message written on the
paper. 'You must find the key' ": RETURN

The routine to read an object is not as important in this game as in
'The Wizard's Quest', and serves only to give a clue to the player.

Line:
1880 if the piece of paper is not being carried, set the variable]$ to

hold an appropriate message and return to the main loop of
the program.

1890 set]$ to hold the message and return to main program.

If the player is not carrying the paper, A(22) will be zero and the
message variable]$ will contain the message that he has nothing to
read. If the program does reach line 1890, the player must be
carrying the paper and so the player is told that he must find the
key.

Give

1900 REM** give**
1910 GOSUB 1350:IF R<>15 THEN J$="There isn't much
point!":RETURN

1920 IF PX<>19 THEN J$="There's no point in doing
that here!":RETURN
1930 IF SA=O THEN J$="'You haven't played the harp
for me yet! ' , she says.": RETURN

1940 IF A(15)=0 THEN J$="I don't have it!":RETURN
1950 J$="The old lady takes it from me and runs

away singing 'Somewhere over the rainbow!'"
1960 BX<14)=0:BX(15)=0:FOR X=1 TO 4:IF V$(X>=G$(15
> THEN V$(X)=""
1970 NEXT:SE=1:RETURN

If you attempt to move west from location number 19 without
having first given the pot of gold to the old lady, she will refuse to
let you (see line 730). The flag used to check whether the pot of gold
has been given is SE and its value must be greater than zero if you
are to escape.

Line:
1910 call the subroutine which splits the sentence into two words

and if the item mentioned is not number 15, set J$ to contain
the message before returning to the main program control loop.

1920 test to see if the player is in location 19 and return to the main
loop if not.

1930 test the value of SA and if it is still zero, set J$ to hold a
message about playing the harp first.

1940 test to see if you are carrying the pot of gold.
1950 set the message about the old lady going.

126 Snow White - part 4

1960 remove the old lady and the pot of gold by setting the pointers
B%(14) and B%(15) to zero and remove the pot of gold from
the array V$(X).

1970 set the value of the flag SE and return to the main program.

When playing this game, you will have to be very careful that you
don't enter location 19 without carrying both the harp AND the pot
of gold. The harp can be found in location 10, while the pot of gold is
found at the end of the rainbow (where else?). If the poor
unfortunate player does venture into location 19 without these
items, he will be stuck and I haven't included a routine which allows
him to quit the game. This could make a short project for you to add
to the game.

Stab

1980 REM** stab**
1990 IF A<12)•0 THEN J$•"I have no weapon suitable
!":RETURN
2000 IF P'X<>22 THEN J$="Dcn't be so violent here!"
1RETURN
2010 J$="I kill the ghost with the silver swcr
d. II

2020 Q$(22>=LEFT$(Q$(22),18):S'X(22,3>=23:RETURN

This subroutine is called from the main program whenever an
attempt is made to 'stab', 'kill' or 'use' an object being carried. I have
written the routine in this game in such a way that the computer
doesn't expect two words to be input. A slight change which could
be made would be to add the extra line below:

1995 GOSUB 1440:IF LEFT$(L$,4)<>"ghos" THEN J$="1 can't kill
the ";L$:RETURN

The effect of this would be to give the player a little more
information about which objects can be killed. If, for example, you
were to type 'kill cat', the computer would print 'I can't kill the cat'.

Line:
1990 check to see if you are carrying the sword and print the

message if you aren't.
2000 check to see if you are in location 22, where the ghost is to be

found. Print the message and return if you are in the wrong
room.

2010 set the contents of the message string.
2020 change the description of the location, change the map to

allow progress east and return to the main program.

The most important line in this section is line 2020, where the
description of the location is shortened to exclude any mention of
the ghost. This is done by setting the contents of the array element
Q$(22) so that it holds only the first 18 letters of the previous

Snow White - part 4 127

description. The final part of the line then changes the map so that
movement east from room 22 takes you to location 23, where the
casket containing 'Snow White' is to be found. One change you may
like to consider making to this routine is to set another flag so that
when the picture is drawn for this location after the ghost has been
killed, the ghost is no longer displayed. This could be done by
making the following changes:

2015 SK=l

3550 IF SK=l THEN RETURN ELSE SCREEN 2,2,0

Drink

2030 REM** drink**
2040 IF A<4)•0 THEN J$•"I have nothing to drink.":
RETURN
20l50 E$•"I drink the soup and fall into a deep
stupor. It mu■t b■ p0i ■0n■d!"1GDSUS 1140

As in the previous game, the 'drink' routine is used to lead the
player to his death. The only object which can be drunk is the bowl
of soup, object number 4.

Line:
2040 check to see if the soup is being carried and return to the main

loop if it isn't.
2050 set the contents of E$ to hold a message about the cause of

death and call the death routine.

You may like to try changing this routine so that you MUST drink
the bowl of soup to give you the strength to lift the harp or plank.
This could be achieved in the following way:

1. Change line 2050 to:
2050 J$="I feel much stronger now!": SL=l:RETURN

2. Add line 1225 to the 'get routine'
1225 if (R=8 OR R=19) AND SL=0 THEN J$="I feel too weak to lift
it!" :RETURN

The flag SL is then used to test whether the player has drunk the
soup and if he tries getting object 8, the harp, or object 19, the plank
of wood, without SL being equal to one, then the message 'I feel too
weak to lift it!' will be printed and control returned to the main
program.

Sail

2060 REM** sail**
2070 IF P¾<7 OR P¾>9 THEN J$="Just how am I suppos
ed to do that here?":RETURN

128 Snow White - part 4

2080 IF PX=B THEN JS="I'm already sailing in the b
oat'":RETURN
2090 PX=B:SG=S8+1:K=O:IF S8>1 THEN SG=O
2100 RETURN

In this game, there are two locations where the player must sail the
boat and these are numbered 7 and 9.

Line:
2070 test to see if location is numbered less than 7 or greater than 9

and print the message if it is.
2080 test to see if the location is number 8, where the player is

already aboard the boat, and return to the main program if itis.
2090 change location to number 8 and change the value of the flag

SG before returning to the main program control loop.

Line 2090 is particularly important in this routine because the flag
SG is used to determine where the player's boat lands. Each time the
routine is called, the value of SG will change. In the landing routine,
discussed later, the player will land in location 9 if SG has the value
1 and in location 7 if SG is equal to zero.

Whenever the player types 'sail', 'row' or 'go boat', line 940 calls
this routine dealing with sailing the boat.

Land boat

2110 REM** land boat**
2120 IF PX<>B THEN J$="not here!":RETURN
2130 K=O:IF SG=l THEN PX=9 ELSE PX•7
2140 RETURN
2150 END

This routine is called from line 950 in the main control loop by the
player typing 'land', 'disembark' or 'go land'.

Line:
2120 if the location is not number 8, print message and return to the

main program.
2130 set the flag K to zero and change position.
2140 return to the main loop.

Line 2130 is the most important line in this routine. The value of
the flag K is set to zero, so as to allow the graphics for the new
location to be drawn. The flag SG is then checked to see which
location the boat lands in. Thus if the player boards the boat in
location 7, it will land in location 9 and vice versa.

Snow White - page 4 129

Go out

3530 REM** go out**
3540 IF p;,. ... 3 THEN P'Y.=1:K=0:J$="0.K.":RETURN
3550 IF P'Y.=11 THEN P'Y.=13:K=0:J$="0.K.":RETURN
3560 J$="Don 't be a silly bi 11 y ! ":RETURN

This is a complementary routine to the 'go in' routine already
described and can only work in locations 3 or 11.

Lines:
3540 if location is number 3, then move to location 1, set the flag K

to zero to allow graphics to be drawn and return to the main
program loop.

3550 if the location is number 11, move to location 13, set the flag K
to zero and return to main loop.

3560 set the contents of the message string and return to the main
program.

If the player is not inside locations 3 or 11, the program will reach
line 3560 and the message 'Don't be a silly billy!' will be stored in J$
for printing on return to the main program loop.

Kiss

3570 REM** kiss**
35B0 IF PX<>23 THEN J$="not here!":RETURN
3590 IF SY.<9 THEN J$="The casket's locked!":RETURN
3600 J:$="1 kiss Snow white and she awakes!":S'Y.=10:
RETURN

This routine is needed as the final stage of the solution to the game.
When you have opened the casket and found 'Snow White', you
must kiss her to awaken her from her slumber.

Line:
3580 if the location is wrong, print the message and return to the

main program.
3590 if the score is less than 9, the casket must be locked so the

message is printed and control is returned.
3600 print message, set score and return to main loop.

The score is used as a flag in this routine to check whether the
casket has been opened. It is often convenient to check the score in a
game in which scores are given for solving particular problems,
rather than using a separate flag.

You should now have typed all the subroutines for 'Snow White'
into your computer and be ready to play the game. Do remember to
save a copy before running it, so that if disaster strikes, you won't
lose all your hard work. Like the previous game, you would be well

130 Snow White - part 4

advised to check each routine out as you type it in, rather than
saving your checking until the end of the game.

Suggested improvements
There is over 1 lK of memory free in a 64K MSX micro after typing
this program in and this is more than adequate to add a few extra
routines. There is no facility at this stage to 'quit' the game when
stuck in the location with the old lady. This can be achieved by
typing in the following line:

905 IF C$="qui" THEN PRINT"Goodbye. Thank you for playing.":
END

Note that in this case, you don't need to store the message in J$
for printing because the program will stop at this point. The other
major facility missing is a save game routine. Adding this facility
should make an interesting exercise. In principle, the routine is very
similar to that used in the previous program and you will need to
check the number of locations and objects and sort out the flags
used. When you have finally finished developing the game, you
may as well renumber it to make life easier for anyone having to
type it in.

Using a data file to create
an adventure

A Journey Through Space
This adventure game loads into your computer in two parts. The
first part is the main program which controls the action of the game,
while the second part is a data file. This data file contains the
descriptions of all the objects and locations found in the game,
together with a list of all the words understood. Using this technique
makes it very easy to create a completely new game. The program
listed later on in the book which creates the first data file makes it
possible to write an adventure of your own with absolutely no
knowledge of BASIC programming. All you need to do to create
your masterpiece is to type in the main game and save it onto tape.
You should then type in the second program and, before saving it
on a different tape, you should run it. The program will ask you a
series of questions and when you have answered them all, you will
be asked to insert a tape into the tape recorder. This will then save
the data file onto the tape and you would be well advised to save it
immediately after the main program, so that you don't have to
change tapes when loading the game.

The very first question you will be asked when running the file
creating program is whether you want to make any changes. If you
answer 'no' to this question, the file created will allow you to play 'A
Journey Through Space' and it is this adventure which will be
explained over the next few chapters. Answering 'yes' will, of
course, allow you to either make minor modifications to this game
or to create a new adventure of your own.

For many years, your spaceship travelled silently through galaxies
far from earth, controlled only by a large computer. You, along with
your fellow crew members, have remained in a state of suspended
animation, your vital life functions being constantly monitored by
the computer. Two hours ago, the computer started to awaken you
from your slumber to help assess the damage caused by a meteor
striking the ship. Your only course of action was to land on the
nearest planet to arrange for repairs.

Unaware of the atmospheric storms of 'Lucia', you attempted to
land the ship on a small platform high above the planet's surface.

13

131

132 Using a data file to create an adventure

Unfortunately, the violent winds drove the ship off the edge of the
platform. When you came round after the crash, you found that the
computer had been damaged beyond repair and the life support
functions had failed. You are alone and need to repair the ship so
that you can return to earth. Your task will not be easy!

Note:
The map for this game is to be found in chapter 15.

Before considering the effects produced when you have created
your own data file, we need to examine carefully how the main
program works with the standard data file 'A Journey Through
Space'.

"------

Initialising the program 133

Initialising the program

10 CLEAR 7000
20 DIM Q$(50),S7.(50,4),V$(4),G$(25l,B7.(25>,N7.(25>,
N$(25>,A<25>
30 REM** main program**
40 KEY OFF
50 SCREEN 0
60 COLOR 4,11
70 GOSUB 1880
80 LOCATE 10,2:PRINTJ$
90 LOCATE 2,7:PRINT"An adventure game for MSX micr
os"
100 CLS:SY.=O:PY.=2

Line:
10 clears enough string space for the data.
20 dimension the arrays.
40 turn off the messages for the function keys.
50 select text screen with default screen width.
60 select blue letters on a yellow background.
70 calls subroutine to load the data file.
80 print the title.
90 print message.
100 clear screen, set score and starting position.

The most important line in this section is line 70, which calls the
subroutine to load the data file. Before this can be loaded, we must
have CLEARed enough memory for the data to fit into the computer
and have DIMensioned the arrays. You will notice that I have used
the same variable names for these arrays as before.

Immediately after the data file has been loaded from tape or disc,
the title will be printed. This title will have been read off the tape, so
as to allow us to change the game without having to change any of
the main program. The game always starts at location 2, although
the position is loaded in off the tape so that the data file can be used
to save the player's current position. This means that you could
delete P%=2 from line 100 if you so wish.

The following list shows the objects which are found in the game
produced by the standard data file, together with the location in the
game where they may be found.

Objects found in the game

Object
1 a strong knife
2 a phaser
3 a shovel
4 a space suit
5 a button
6 a lever
7 a large can

Location
1
1
1
1
3
4
22

134 Using a data file to create an adventure

8 a crystal warp control 46
9 a packet of wolf nuts 32
10 a hyper viper 17
11 a pair of leather gloves 2
12 a crystal control socket 2
13 a fuel injection cap 2
14 a damaged panel 2
15 a panel repair manual 45
16 a remote control for androids 32
17 a large hook 6
18 a boulder 6
19 a glowing statue 37
20 a lodoria plant 18
21 an alien mask 24
22 a metal bar 16
23 a fuel spout 50
24 a slot 50
25 an intergalactic credit card 33

It is worth bearing in mind that many of these objects have a
specific purpose in the game and if you try to change their nature by
altering the data file, you should try to keep them fairly similar in
nature. As an example of this, consider the large can, object number
7. In the control program, this must be taken to location number 50
to be filled with rocket fuel. This is achieved when the player inserts
an intergalactic credit card into the slot in the same location. If you
were to change the description of object number 7 to a leopard, this
would result in a completely illogical game. Imagine taking the
leopard to be filled up! You could of course change it to an oil lamp,
a fountain pen, an empty bottle or any other empty container which
can be filled with a liquid. I shall be coming back to this point in
greater detail when I introduce the program used to create the first
data file.

Another point to be borne in mind when typing this program in is
that you will not be able to test out each routine as it is developed in
the manner adopted with the previous programs. This is because
you will need to load the data file in again each time the computer
comes across a mistake.

You may be wondering how I actually developed this program, as
it does require the data file to be created before it will work. I did, in
fact, write a shortened version of the data file creator program first
and only when the main program had been fully developed did I
convert it into its final form as listed here.

The main control loop
The flowchart for the control section of this program is very similar
to previous flowcharts. The loop is, again, repeated until the score
(S %) reaches 10.

The main control loop 135

START

END

Fig. 13.1 Flowchart for control section

136 Using a data file to create an adventure

110 PRINT"You are ":PRINTQ$(P'l.l:PRINT
120 GOSUB 1510:REM ** check score**
130 A:$="":IF S%(P%,1)>0 THEN A$="North"
140 IF S%(P%,2)>0 AND LEN(A:$))0 THEN A$=A$+",South
"ELSE IF S%(P%,2l>O THEN A$="South"
150 IF S%(P%,3)>0 AND LEN(A:$))0 THEN A$=A$+",East"

ELSE IF S'l.(P%,3>>0 THEN A$="East"
160 IF S%(P'l.,4>>0 AND LENCA$))0 THEN A$=A$+",West"

ELSE IF S'Y.(P'Y.,4))0 THEN A$="West"
170 IF P'Y.=6 OR P'Y.=12 THEN A$=A$+",In"
180 IF P'Y.=9 OR P'Y.=11 THEN A$=A$+",Out"
190 IF P'Y.=35 THEN A$=A$+",Up"
200 IF P'Y.=34 THEN A$=A$+",Down"
210 IF A$="" THEN A$="nowhere obvious!"
220 PRINT"You can travel ":PRINTA$
230 REM** describe objects
240 E=O:FOR T=1 TO 25
250 P=O:IF B%<T>=P'Y. THEN P=1
260 IF P=1 THEN 280
270 N£XT:GOTO 300
280 IF E=O THEN PRINT:PRINT"You can see"
290 PRINTG$(T)!E=l:GOTO 270
300 Z$="":PRINT:PRINT"What do you want to do now"
:INPUT Z$
310 CLS:PLAY"l32c"
320 B$=LEFT$(Z$,2}:C$=LEFT$(Z$,3):D$=LEFT$(Z$,4)
330 IF (B$="n" DR D$="go n") AND S%(P'Y.,U>O THEN P
'1/.=S'l. (P'l., 1 > ELSE IF <B$="n" OR D$="go n" > THEN PRIN
T"You can't go that way'"
340 IF (B$="s" OR D$="go s") AND S'1/.(P'l.,2> >O THEN P
'%.=Si'.: <P'l.. 2} ELSE IF <B$="s" DR D$="go s") THEN PRIN
T"You can't go that way'"
350 IF <B$="e" DR 0$="go e") AND S'l. (P'l., 3) >O THEN P
·t.=Si'.:(P'l.,3) ELSE IF (B$="e" DR 0$="go e") THEN PRIN
T"You can't go that way'"
360 IF <B$="w" OR D$="go w") AND S'1/. (P%, 4) >O THEN P
'.t.=S% CP'l., 4) ELSE IF CB:t:="w" DR D$="go w" > THEN PRIN
T"You can't go that way'"
370 IF C$=="get" OR C$="tak" DR C$="gra" THEN GOSUB

610
380 IF C$="1nv" :HEN GOSUB 790
390 IF C$="sco" THEN PRINT"You have scored ",S'l.*10

400 IF Ct:="hel" THEN PRINT"Use your eyes and keep
your ,-ii ts about you'"
410 If'" C$="dro" OR C$="lea" DR C$="put" THEN GOSUB

870
420 IF C$="wea" THEN GOSUB 970
430 IF C$="in" OR D$="go i" THEN GOSUB 1020
44Cl IF C$="out" OR D:!=="go o" THEN GOSUB 1070
450 IF ~$="fir" DR C$="bla" OR C$="use" THEN GOSUB

1110
46(> IF C:t:=" rloi,i" OR [)$=" go d" THEN GOSUB 1160

f
The main control lop

470 IF C$="up" OR D$="go Ll" THEN GDSUB 1200
480 IF C$="jum" THEN GOSUB 1240
490 IF C$="pus" DR C$="pre" THEN GOSUB 1280
500 IF C$="pul" THEN GOSUB 1380
510 IF C$="cl i" THEN GOSUB 1420
520 IF C$="cut" THEN GOSUB 1470
530 IF C$="ins" THEN GOSUB 1580
540 IF C$="f i l" THEN GOSUB 1700
550 IF C$="rep" OR C$="men" DR C$="fix" THEN GOSUB

1750
560 IF C$="sav" THEN GOSUB 1750
570 IF C$="loa" THEN GOSUB 1900
580 IF S%<10 THEN GOTO 110
590 CLS:LOCATE 1,10:PRINT"Well Done you have solve
d this adventure'":PLAY"l16fdcfdcdedcde":END

Line:
110 describe the current location (P%).
120 call the subroutine to calculate the score.
130 check if movement north is possible and set the contents of A$.
140 check if movement south is possible and set the contents of A$.
150 check if movement east is possible and set the contents of A$.
160 check if movement west is possible and set the contents of A$.
170 check to see if the player is in location 6 or 12 and set A$ to allow

movement 'In'.
180 check to see if the player is in location 9 or 11 and set A$ to allow

movement 'Out'.
190 check to see if the player is in location 35 and set A$ to allow

movement 'Up'.
200 check to see if the player is in location 34 and set A$ to allow

movement 'Down'.
210 check to see if A$ is still empty and set the message to 'nowhere

obvious!' if it is.
220 describe the directions in which you can travel.
240 set the flag E to zero and search through 25 objects.
250 if an object is found in the current location, set the flag P to one.
260 if object is found, jump to line to describe it.
270 end of loop to search through all 25 objects.
280 if the flag Eis still zero, print the message 'You can see'.
290 print description of object and set the flag to one to suppress the

message 'You can see' if a second object is found in the same
location.

Many adventure games are written in such a way as to break the
golden rule of programming and this one is no exception. In line
260, the program jumps out of a FOR NEXT loop. This is not,
generally, to be recommended, although in this instance the program
jumps back into the loop again when the object has been described.

Despite this redeeming feature, programming purists may well

137

138 Using a data file to create an adventure

like to rewrite this section of coding so as to adopt a better structure.
As well as offending structured programming enthusiasts, jumping
out of FOR NEXT loops can also cause the program to behave in an
unpredictable manner. There are a number of ways of overcoming
this if you do find yourself jumping out of a loop. Probably the
easiest is to set the value of the control variable to one greater than
the maximum value of the loop. eg.

10 FOR X=l TO 5
20 IF J=3 THEN X=6:GOTO 50
30 NEXT X
40 PRINT "end of loop"
50 PRINT "XXXXXX"

In this way, the value of X will be 6 whether the program jumps
out of the loop or the loop is terminated in the normal manner.

An alternative solution which can be adopted is to jump back into
the loop immediately after completing the task in hand. This is not
always very easy to arrange and in most cases, you would be well
advised to rewrite the section of code to avoid jumping out of the
loop!

Line:
300 input the player's instruction.
310 clear the screen and make a short sound.
320 find the first few letters of the player's instructions and store

them in B$, C$ and D$.
330 move north if possible.
340 move south if possible
350 move east if possible.
360 move west if possible.

Lines 350 to 360 are very similar to each other and deal with
movement from one place to another within the game. If the player
types 'n' or 'go north', line 330 will check first of all to see if
movement in that direction is possible. If S%(P%,l) is greater than
0, then the value held in that location of the array corresponding to
the number of the location reached by going north and the value of
the current location (P%) is changed to this value. Should this value
be zero, then the map of the game does not allow movement north
and the message 'You can't go that way' will be printed. The follow
ing lines check the value of S%(P%,2), S%(P%,3) and S%(P%,4)
respectively to see if movement south, east or west is possible.

Lines 370 to 570 examine the first few letters of the instruction
typed in by the player to see if they can be understood and, if they
are recognised as a valid word, the appropriate subroutine is called.
The list below contains all the words recognised in this section.

go north, n, go south, s, go east, e, go west, w, get, take, grab,
inventory, score, help, drop, leave, put, wear, in, go in, out, go out,
fire, blast, use, down, go down, up, go up, jump, push, press, pull,
climb, cut, insert, fill, repair, mend, fix, save, load.

The main control loop 139

In some cases, where the instruction doesn't need much inter
pretation, it is unnecessary to call a subroutine and the action can be
dealt with within the main program. If, for example, the player asks
for 'help', the computer will print the same message every time. The
score is also dealt with in this way. Each time around the main loop,
the score is calculated (line 120), so that if the player types 'score', it
is only necessary for the computer to print it. In this game, the score
is out of 10, although the player is given a percentage score.

If, for example, you wanted to add an extra line to the program so
that the computer recognised the word 'eat', this must be inserted
before line 580.eg.

571 IF C$="eat" THEN PRINT 'Tm not hungry at the moment
thank you!"

or 571 IF C$="eat" THEN GOSUB 2000

This second alternative would be necessary if you wanted to make
the game more 'intelligent'.

As the game stands, responses which are not recognised by the
computer are ignored. If, thus, the player types 'run', the computer
will not print any message at all. This can be irritating to the player,
who doesn't know whether the computer is working properly. All
that needs to be done to rectify this is to use another flag, eg. K and
add the following two lines:

112 K=0
572 IF K=0 THEN PRINT"I'm sorry I just don't understand you!"

You will of course, need to set the value of this flag to one if an
instruction is recognised and understood. This should be done by
adding :K=l to the end of each line from line 330 to 570. eg.

570 IF C$="loa" THEN GOSUB 1880:K=l

If you do decide to include this feature within the game, you will
need to set K=l in both parts of the lines dealing with movement
(lines 330-360). eg.

330 IF (B$="n" OR D$="go n") AND S%(P%,1)>0 THEN P%=
S%(P%,1):K=l ELSE IF (B$="n" OR D$="go n") THEN PRINT
"You can't go that way!":K=l

If the score is less than 10 when the program reaches line 580, the
loop will be repeated again. If, however, the player does manage to
reach a score of 100% (S%=10), the program will leave the loop and
reach line 590, where they will be told that they have won the game.

Get

600 REM** get**
610 GOSUB 730:IF L'l.<1 THEN PRINT"Yau can't see a"
:L$;" here!": RETURN

140 Using a data file to create an adventure

620 E%=0:FOR X=1 TO 25:IF B%<X>=P% AND N%(R>=X THE
N E%=1
630 NEXT:IF E%=0 THEN PRINT"You can't see a ";L$;"

here":RETURN
640 A<R>=1
650 IF R=10 AND A(11><2 THEN PRINT"You need to wea
r some protection first!":RETURN
660 IF R=6 OR R=5 OR R=18 OR R=19 OR R=20 OR R=21
OR R=23 OR R=24 THEN PRINT"You can't!":RETURN
670 IF R=13 OR R=14 OR R=12 THEN PRINT"Don't best
upid!":RETURN
680 E%=0:FOR X=1 TO 4
690 IF V$ (X > ="" THEN V$ (X > =6$ (N% <R»: E%=1: X=5
700 NEXT:IF E%=0 THEN PRINT"Your hands are full!":
RETURN
710 B%(N%<R>>=O:RETURN

There are 11 objects in this game which cannot be picked up during
play. These are listed in the chart below.

Objects which can't be picked up
Number description location found in
6 a lever 4
5 a button 3
18 a boulder 6
19 a glowing statue 37
20 a lodoria plant 18
21 an alien mask 24
23 a fuel spout 50
24 a slot 50
13 a fuel injection cap 2
14 a damaged panel 2
12 a crystal control socket 2

In addition to these items which cannot be picked up at all, object
number 10, the hyper viper, can only be 'got' when the player is
wearing the leather gloves for safety. The value of A(12) is set to 2
when the player is wearing the gloves, object number 12.

You will need to bear this in mind if you are modifying the data
file. You MUST make sure that you change the 'Hyper Viper' into
something which can only be picked up when you are wearing some
protection and you must also change the leather gloves into an
object to be worn! In a similar way, the program would not seem
logical if you changed the boulder into a piece of paper and were
then unable to lift it!

Line:
610 call the subroutine to split the sentence into two words and

store the number of any object mentioned in the variable R.

T The main control loop

Check the value of L % and if it is less than one, the object
mentioned is not recognised.

620-630 search through all 25 objects to see if it is in the current
location. If E% is zero, the object is not there and control is
returned to the main program loop.

640 set the value of A(R) to one for object number R.
650 check if the object is the 'hyper viper' and unless the player

is wearing the gloves (A(ll)=2), return to the main loop.
660 check to see if the object cannot be picked up, print a

message and return to the main loop.
670 check to see if the object cannot be picked up, print a

different message and return to the main program.
680 set the flag E% to zero and search all four elements of the

array V$(X) to find an empty space.
690 if an empty element is found, store the description of the

object in it and set the value of X to 5 so as to terminate the
loop. Also set E% to one.

700 if E% is still zero, then the array V$(X) is full and the player
can't carry any more objects until he drops one.

710 set the pointer B%(N%(R)) for the object to zero, so that it
disappears from view and return to main loop.

In this game, the player is only allowed to carry four items at any
one time. As soon as the array V$(X) is full, the player will be unable
to carry any more objects. If you want to change this so as to allow
five items to be carried, you will need to change line 680 to:

680 E%=0:FOR X=l TO 5

You will, in addition, need to make similar changes in the 'drop'
and 'inventory' routines.

Split the input sentence and check items

720 REM** split sentence and check items**
730 L$="":XX=INSTR<Z$," ">:R=O
740 L7.=0:L$=RI6HT$(Z$,(LEN(Z$l-XX>>
750 IF LENCL$)<2 THEN RETURN
760 FOR X=1 TO 25:IF LEFT$(N$CX>,LEN(L$))=L$ THEN
L7.=1:R=X
770 NEXT:RETURN

This routine is exactly the same as that used in the other games,
except for the number of objects checked for in line 760. In this
game, there are 25 objects and the program must search through all
of them to find a match between the object's description and the
word typed in by the player. For more explanation, see the descrip
tion of the same routine in 'The Wizard's Quest'. Do remember,
however, that the line numbers will be different!

141

142 Using a data file to create an adventure

Inventory

780 REM** inventory**
790 E=O:PRINT"Vou are carrying:-"
BOO FOR X=1 TO 4:IF V$<X><>"" THEN PRINTV$(X>:E=1
810 NEXT:IF E=O THEN PRINT"Not a aausage!"
820 IF A<4>=2 THEN PRINT"Vou are wearing the space
suit!"

830 IF A(11)=2 THEN PRINT"Vou are wearing the leat
her gloves"
840 PRINT
850 RETURN

Line:
790 set flag to zero and print message.
800 search all four elements of V$(X) and if they are not empty,

print description of object carried and set the flag to one.
810 if flag is still zero, print message 'not a sausage!'
820 check to see if wearing the space suit.
830 check to see if wearing the leather gloves.
840 print blank line to leave space on screen.
850 return to the main program.

Few changes have been made to this routine. The message
printed when the player is not carrying anything has been changed
and the two tests to see whether the player is wearing anything are
included. In this game, the player must be wearing the space suit
before pressing the button on the door of the airlock, otherwise the
poisonous gas will kill him. Once he has pressed this button,
however, he will be able to take off the space suit. You may like to
change this by inserting a line into the main control loop of the
program such as:

225 IF P%>3 AND A(4)<2 THEN E$="You breathe the atmosphere
and die in agony!!!" :GOSUB 1330

A(4) would be set to zero again by dropping the space suit, while
the value of A(ll) would be set to zero by dropping the leather
gloves. Thus dropping the space suit in any location greater than
number 3 would result in death!

Drop

860 REM** drop**
870 GOSUB 730:IF L7.<1 THEN PRINT"Vcu don't have a
";L$:RETURN
880 E7.a0:FOR X=1 TO 4
890 IF V$(X)=6$(N7.<R>> THEN V$(X)="":E7.=1
900 NEXT:IF E7.=0 THEN PRINT"Vcu are not carrying i
t!":RETURN
910 B7.(N7.<R>>=P7.

The main control loop 143

920 A<R>=O
930 IF R=10 AND P'l.=39 THEN S'l.(39,2)=40:Q$(39)=LEFT
$(Q$(39>,24):PRINT"The viper attacks the dog and d
rives it away!":B'l.(10)=0
940 IF R=9 AND P'l.=38 THEN PRINT"The guard goes nut
s over them and moves aside to let me in!":S'l.(3
B,3>=39:Q$C38)=LEFT$(Q$(38> ,74>:B'l.(9)=0
950 RETURN

Line:
870 call the subroutine to split the input sentence and return the

number of the object mentioned in R.
880 search all four items being carried.
890 if object carried is equal to the object mentioned then remove its

description from V$(X) and set E=l.
900 if E is still zero, you are not carrying the object.
910 set pointer for the location of the object to P%.
920 set flag A(R) to zero so that the computer knows that you are no

longer carrying it.
930 check to see if the viper is dropped in location 39.
940 check to see if the nuts are dropped in location 38.
950 return to the main program control loop.

One difference which you will probably have noticed between this
program and the other games in this book is that all the responses
are written in the second person, rather than the first person. This is
very much a matter of personal taste. In this program for example,
you will be given messages such as:

'You are not carrying a lamp' or
'You can't pull a button!'

In the previous games, these messages would have been:

'I am not carrying a lamp' and
'I can't pull a button!'

The only other differences between this subroutine and the 'drop'
routines in the other games lie in lines 930 and 940. The player must
drop the viper in location 39 to drive the dog away. This is another
example where the dog is mentioned only in the description of the
location and where the description of the location is shortened when
the dog has gone. You must bear this in mind when changing the
data file.

In line 940, a check is made to see whether the player has dropped
the nuts in location 38. The guard then goes 'nutty' and the map is
changed to allow movement east. In addition, the description of the
location is shortened and the pointer which tells the computer in
which location the nuts are found is changed to zero.

1

144

Wear

960 REM** wear**
970 GOSUB 730:IF R=11 AND AC11)=1 THEN AC11)=2:PRI
NT"O.K.":RETURN
980 IF R=4 AND AC4l=1 THEN AC4)=2:PRINT"O.K.":RETU
RN
990 IF R=11 OR R=4 THEN PRINT"You haven't got it'"
:RETURN
1000 PRINT"You can't wear ";L$:RETURN

Line:
970 call the subroutine to split the input sentence and return the

value of R corresponding to the number of the object, check if
object is gloves (number 11) and that they are carried, change
the flag A(l 1).

980 check if the object is the space suit and that it is being carried,
set the flag A(4) and return to main program.

990 if R=4 or R=ll, print message and return to main program.
1000 print message and return to main loop.

In this game, the player must wear the gloves before being able to
get the 'hyper viper' and must wear the space suit before pressing
the button on the airlock. No other objects within the game can be
worn.

The program will reach line 1000 only if the player attempts to
wear something stupid! This must be borne in mind when modifying
the data file. If you do decide to change object number 4 or object 1,
then it MUST be changed into something which can be worn.
Go in

1010 REM** go in**
1020 IF P%=6 AND A<1B>=O THEN PRINT"You can't sque
eze past the boulder!":RETURN
1030 IF P%=6 THEN P%=9:PRINT"O.K.":RETURN
1040 IF P%=12 THEN P%=11:PRINT"O.K.":RETURN
1050 PRINT"You can't!":RETURN

A Journey Through Space 145

There are just two places in this game where movement into a new
location is allowed. Studying the map will show you that movement
from location 6 takes you to location 9, while movement from
location 12 takes you to location 11.

Line:
1020 if the player is in location 6 and the flag A(l8) is still zero, you

can't get past the boulder and control is returned to the main
loop.

1030 if the player is in location 6, move to location 9 and return to
the main loop.

1040 if in location 12, move to location 11 and return to the main
loop.

1050 print the message about movement being impossible and
return to the main loop.

The main puzzle in this section of the game is how to get past the
boulder and into the cave in location 6. The boulder, object 18,
cannot be moved and the solution lies in blasting it with the phaser.
Because the boulder is one of the objects which you can't pick up,
the value of A(18) would not normally be one. Instead of introducing
yet another flag, I decided to use this and change its value to one
when you fire the phaser at the boulder. If, therefore, the boulder
has not been removed, A(18) will still be zero and line 1020 will
prevent movement into the cave. If you do decide to change the data
file, don't change the description of the boulder without modifying
the message in line 1020.

If the player types 'in' or 'go in' and he is not in one of the two
rooms where this is possible, the program will reach line 1050 and
the message 'You can't' will be printed.

Go out

1060 REM** go out**
1070 IF PX=9 THEN PX=6:PRINT"0.K.":RETURN
1080 IF PX=11 THEN PX=12:PRINT"0.K.:return
1090 PRINT"Vau can't! 11 1RETURN

Line:
1070 if you are in location 9, move to location 6, print the message

and return to the main loop.
1080 if you are in location 11, move to location 12, print the message

and return to the main loop.
1090 print the message and return to the main loop.

This routine is complementary to the previous subroutine and
works only in location 9 and 11. If the player is not in either of these
places, line 1090 is reached and a message about his ability to go in is
printed before control is returned to the main loop.

146 A Journey Through Space

Fire phaser

1100 REM** fire phaser**
1110 GOSUB 730:IF R<>2 THEN PRINT"You can't fire a

";L$:RETURN
1120 IF A<2><>1 THEN PRINT"You haven't got it!":RE
TURN
1130 IF PX<>6 THEN PRINT"That would be too dangero
us here! ": RETURN
1140 PRINT"That does the trick!":BX<1BJ=O:A(18)=2:
RETURN

As mentioned earlier, the way past the boulder is to blast it with the
phaser and this is the routine which controls that action. It is called
from the main loop whenever the player tries to 'blast', 'fire' or 'use'
an object.

Line:
1110 call the subroutine to split the sentence into two words. If the

second word is not object number 2, the phaser, a message is
printed and control returned to the main loop.

1120 check to see if the player is carrying the phaser and return to
the main loop if not.

1130 check the location and if it isn't number 6, return to the main
loop.

1140 print the message, change the pointer to the location of object
8 so that it disappears, change the flag A(18) to two and return
to the main loop.

The program firstly checks whether you are carrying the phaser
and then whether the location is correct. Only if both conditions are
O.K. does the program reach line 1140, where the flag A(l8) is set to
2. Remember that the value of this flag is tested when you attempt
to enter location 6 and therefore if you do change the data file, you
would be well advised to change the boulder to something else
which you need to shoot to get past (a soldier, perhaps).

Go down

1150 REM** go down**
1160 IF PX=34 THEN PX=35:PRINT"O.K.":RETURN
1170 IF PX=5 THEN PRINT"The ground is too 1;;1r tl~l
ow you!":RETURN
1180 PRINT"Don·t be silly !":RETURN

There is only place in this game where this instruction works,
location 34.

Line:
1160 check to see if the player is in location 34, move him/her to

location 35 and return to the main loop.

A Journey Through Space 147

1170 if the player is in location 5, print the message and return to
the main loop.

1180 print the message about the stupidity of trying to go down and
return to the main loop.

From location 34, going down takes you to location 35. The player
may well attempt to go down from location 5, but in this game he
must jump!

Go up

1190 REM** go up**
1200 IF P¾=35 THEN P¾=34:RETURN
1210 IF P¾=7 THEN P¾=5:RETURN
1220 PRINT"not here!":RETURN

Line:
1200 if you are in location 35, move to location 34 and return to the

main loop.
1210 if you are in location 7, move to location 5 and return to the

main loop.
1220 print the message that the action is not possible and return to

the main loop.

Although there is only one location where the player can go
down, I have allowed him to go up into the spaceship from location
7 to location 5, while he must jump to go the other way! (after all,
the gravity is low on this planet!). You may like to change this by
adding an extra subroutine to enter the ship again.

Jump

1230 REM** jump**
1240 IF P¾=5 THEN P¾=7:PRINT"Phew safe landing! Th
e gravity must be low!":RETURN
1250 IF P¾=7 THEN P¾=5:PRINT"The gravity is so low
, you made it !":RETURN
1260 PRINT"Not here!":RETURN

Line:
1240 if you are in location 5, move to location 7, print the message

and return to the main loop.
1250 if you are in location 7, move to location 5, print the message

and return to the main loop.
1260 print the message about the futility of jumping and return to

the main loop.

There are, thus, two ways back into the spaceship. The player can
either 'go up' or 'jump'. This is only made possible by the low
gravitational forces on the planet. You will also notice that the
message printed in line 1240 refers to the force of gravity. If you do

148 A Journey Through Space

intend to change the description of location 5 in the data file, you
should ensure that it still includes a clue about jumping. You may
also like to change the message printed in line 1240.

Press

1270 REM** press**
1280 G0SUB 730:IF R<>5 THEN PRINT"What do you want

me to press ?":RETURN
1290 IF P'Y.<>3 THEN PRINT"Not here!":RETURN
1300 IF A<4><>2 THEN E$="Woosh! The airlock opens
and you die in the poisonous atmosphere!":G0SUB 13
40
1310 PRINT"The airlock opens!":S'Y.(3,2>=4
1320 RETURN

Line:
1280 call the subroutine to split the player's sentence into two

words. The number of the object mentioned (R) is then
checked and if it isn't number 5, the button, a message is
printed and control is returned to the main control loop.

1290 check the current location and if it isn't number 3, print the
message and return to the main loop.

1300 check the flag A(4) to see if the player is wearing the space suit
and call the death routine if not.

1310 print the message and change the map.
1320 return to the main control loop.

The problem of how to get out of the space ship has already been
mentioned and you will need to take great care when changing the
data file that object number five remains something which must be
pushed and that the player must be wearing object number 4 first!

Notice that the description of the way in which death occurs is
stored in the variable E$ before the death routine is called in line
1340.

Lose game

1330 REM** lose game**
1340 CLS:PRINTE$:L0CATE 1,10:PRINT"Press the <Spac
e Bar> for another game."
1350 A$=INKEV$:IF A$<)"" THEN 1350
1360 RUN

Line:
1340 clear the screen, print the description of death held in the

variable E$ and print the message about pressing the space bar.
1350 wait for the space bar to be pressed.
1360 run the program from the start again.

One point worth noting about this game is that the player will

A Journey Through Space 149

need to reload the data file from the start if he loses the game
because the contents of the arrays will have been changed during
play.

Pull

1370 REM** pull **
1380 GOSUB 730:IF R<>6 THEN PRINT"You can't pull a

";L$:RETURN
1390 IF PX.<>4 THEN PRINT"not here! ":RETURN
1400 E$="The ship explodes. You have just pull
ed the self destruct 1 ever ! ": GOSUB 1340

This routine was written to lure the unwary player to instant death!

Line:
1380 call the subroutine to split the player's instructions into two

words, if the second word is not the lever, print message and
return to main program.

1390 if not in location 4, print message and return.
1400 set the contents of E$ to hold message and call the death

subroutine.
There is only one object in this game which can be pulled, the

lever, and checks are made that the player has mentioned it and that
they are in the correct location. Do remember to change the lever
into some other object which needs to be pulled if you attempt to
change the data file. You may also like to change the message to
better describe the method of death!

Climb

1410 REM** climb**
1420 IF PX.=20 OR PX.=23 THEN 1430 ELSE PRINT"not he
re!":RETURN
1430 IF AC17)=0 THEN E$="You slip from the rope an
d fal 1 to your death. If only you had used "+G
$(17):GOSUB 1340
1440 IF PX.=20 THEN PX.=23:PRINT"O.K.":RETURN
1450 IF PX.=23 THEN PX.=20:PRINT"O.K.":RETURN

There is a rope stretching between locations 20 and 23. Climbing is
not possible in any other locations in this game. Players who try
climbing across the rope without holding the large hook object
number 17, will slip from the rope and fall to their death.

Line:
1420 check location and if climbing not possible, print the message

and return to the main loop.
1430 check the value of the flag A(17) to see if the hook is being

carried, set the message string and call the death subroutine if
necessary.

150 A Journey Through Space

1440 if in location 20, move to location 23, print message and return
to the main program loop.

1450 if in location 23, move to location 20, print message and return
to the main program loop.

I have included a clue in line 1430, to help the player overcome the
problem of crossing the rope next time. You may like to try
experimenting with sound effects when the player falls from the
rope in line 1430.

Cut

1460 REM** cut**
1470 IF P'Y.<>19 THEN PRINT"That's not the right app
roach!":RETURN
1480 IF A(1)=0 THEN PRINT"You need a knife!":RETUR
N
1490 S'Y.(19,2)=20:Q$(19)=LEFT$(Q$(19),28):RETURN

Once the player has reached location 19 in this game, he will be
unable to progress further through the jungle without cutting his
way through the dense undergrowth. He must, of course, be
carrying a knife in order to do this.

Line:
1470 check current location and print message/ return to main loop

if not in location 19.
1480 check to see if carrying the knife (object 1) and print message/

return to main loop if not.
1490 change map, shorten the description of the location and return

to the main program.

Don't forget that if you change the data file, the knife must be
changed into something to cut with: a saw or an axe perhaps. In
addition, the description of location 19 should contain the clue that
cutting a way through will be necessary!

Score

1500 REM** check score**
1510 SX=0:IF SC=1 THEN SX=S%+2
1520 IF SD=1 THEN S%=5%+2
1530 IF SE=1 THEN S%=57.+2
1540 IF SF=1 THEN S7.=S%+2
1550 IF 56=1 THEN S%=57.+2
1560 RETURN

Unlike the other subroutines described in this chapter, this one is
called EVERY time the program goes round the main control loop,
so that the computer always has an up to date record of the player's
score.

A Journey Through Space 151

Line:
1510 set score to zero, if flag SC=l then increase the score by 2.
1520 if the flag SO= 1 then increase the score by 2.
1530 if the flag SE=l then increase the score by 2.
1540 if the flag SF=l then increase the score by 2.
1550 if the flag SG=l then increase the score by 2.
1560 return to the main program control loop.

Scoring in this game is achieved in a totally different way from the
previous games. The value of S% is increased by 2, so increasing the
score by 20%, for each of the five problems solved. These five
problems are all associated with the spaceship and are described
later. Each one solved sets the value of a flag (SC to SG) to one.

Insert

1570 REM **insert**
1580 GDSUB 730:IF R=8 OR R=25 THEN GOTO 1600
1590 PRINT"Don't be ridiculous!":RETURN
1600 IF A(8)=1 AND P'Y.=2 THEN PRINT"You insert the
crystal into its socket!":SC=l:GOSUB 1640:RETURN
1610 IF A(25>=1 AND P'Y.=50 THEN GOSUB 1670:RETURN
1620 PRINT"You can't do that yet!":RETURN
1630 REM** get rid of crystal **
1640 FOR X=1 TD 4:IF V$(X)=G$(8) THEN V$(X)=""
1650 NEXT:B'Y.(12)=0:RETURN
1660 REM** insert credit card**
1670 IF A(7)=0 THEN PRINT"it pours all over the fl
oor!":RETURN
1680 SD=1:PRINT"You fill it up with fuel":RETURN

There are two objects which need to be inserted in this game,
namely the intergalactic credit card, object number 25, and the
crystal warp control, object number 8. The routine is fairly complex,
which makes it a little more difficult to modify these objects in the
data file, while still keeping a sense of logic in the game.
Line:
1580-1590 call the subroutine to split the player's sentence into two

words. If the second word is not the crystal or the credit
card, print message and return.

1600 check whether player is in location 2 and carrying the
crystal. If he is, print message, set flag SC for score, call
the subroutine to drop crystal and return to main program.

1610 if player wants to drop the credit card in the correct
location, call subroutine to do it and return to the main
program control loop.

1620 print the message that the action is not yet possible and
return to the main control loop.

1640 search through the four items being carried (V$(X)) and
remove the crystal.

1650 set the pointer for the empty socket to zero so that it
disappears from view.

152 A Journey Through Space

1670 if you are not carrying the can, item 7, the fuel pours all
over the floor and control is returned to the main loop.

1680 set the flag SD to one, print the rp.essage that the can is
full of fuel and return to the main loop.

Should you decide to modify the data file, you will need to make
sure that the can, item 7, is changed for something which needs
filling with a liquid and that you need to 'insert' item number 25 into
a slot before that liquid is dispensed. The message printed in line
1680 was deliberately kept short so as to be applicable even if the
data file were changed. You may like to change it to a more detailed
description.

The score in this routine will be increased by two when the player
inserts the crystal warp control into the empty socket found in
location number 2, the cabin of the spaceship. The score is also
increased by two when the player inserts the credit card into the slot
found in location 50 and collects the rocket fuel in the can.

Fill

1690 REM** fill**
1700 G0SUB 730:IF R=7 AND P'l.=50 THEN PRINT"Nothing
comes out!":RETURN

1710 IF R=7 THEN PRINT"Not here!":RETURN
1720 IF P'l.=2 AND A(7)=1 AND SD=l THEN PRINT"You fi
11 the fuel tanks":SE=1:RETURN
1730 PRINT"You can't do that just yet!":RETURN

Before being able to escape from the planet, the ship has to be
repaired and filled with fuel. To do this, the player must be carrying
the can full of fuel.

Line:
1700 call subroutine to split the input sentence into two words. If

the second word refers to the can and the player is in location
50, nothing comes out and control passes back to the main
program loop.

1710 if the player tries to fill the can, object 7, print the message and
return to the main loop.

1720 if player is in location 2 and carrying the can and the can is full
(SD=l), print message, set the value of the flag SE to increase
the score and return to the main program.

1730 print message and return to the main loop.

The first part of this subroutine checks whether the player is
attempting to fill the can from the fuel tank. As we have already
seen, the way to do this is to insert the credit card into the slot and
this means that we must prevent the player from filling the can in
location 50. Line 1720 increases the score by two, which is equivalent
to a score of 20%, if the player is in location 2 and carrying a full can
of fuel.

A Journey Through Space 153

Save game

1740 REM** save game**
1750 CLS:PRINT"Please insert a tape and set ready

to record"
1760 PRINT:PRINT"Press <Space Bar> when ready."
1770 A$=INKEY$:IF A$<>" "THEN 1770
1780 OPEN"cas:data" FOR OUTPUT AS 4U
1790 FOR X=1 TO 50:PRINT#1,Q$(X):NEXT
1800 FOR X=1 TO 50:FOR Y=1 TO 4:PRINT#1,S%<X,Y):NE
XT Y,X
1810 FOR X=1 TO 25:PRINT#1,G$CX>:NEXT
1820 FOR X=1 TO 25:PRINT#1,B%(X>:NEXT
1830 FOR X=l TO 25:PRINT#1,N$CX>:NEXT
1840 FOR X=1 TO 25:PRINT#1,N%CX>:NEXT
1850 FOR X=1 TO 25:PRINT#l,A<X>:NEXT
1860 FOR X=1 TO 4:PRINT#1,V$CX>:NEXT
1870 PRINT#1,SA,SB,SC,SD,SE,SF,SG,SH,P%
1880 CLOSE:RETURN

This routine is identical to the routine in the data file creating
program. It is used to write a full data file containing the player's
new position and all the other variables used in the game.

Line:
1750-1760 print message to insert the data tape and wait for the

1770
1780
1790
1800
1810
1820

1830
1840
1850
1860
1870
1880

space bar to be pressed.
wait for the space bar to be pressed.
open the file with a file name 'data' for saving the data.
save the descriptions of the 50 locations in the game.
save the current map.
save the current descriptions of the 25 objects.
save the 25 pointers to the current location of the objects
found in the game.
save the 25 words understood on tape.
save the pointers to the words understood.
save the 25 flags of the objects being carried.
save the descriptions of the 4 objects being carried.
save the flags SA-SH and the current position P%.
close the file and return to the main program loop.

It is important to note that the descriptions of some of the
locations and objects will change during the play of the game and
therefore it makes sense to save the data for all the locations, objects
and flags found in the game.

Load game

1890 REM** load game**
1900 CLS:PRINT"Please insert the data tape into th
e recorder and set ready to play"

154 A Journey Through Space

1910 OPEN"cas:data" FOR INPUT AS #1
1920 FOR X=l TO 50:INPUT#1,Q$(X):NEXT
1930 FOR X=l TO 50:FOR Y=l TO 4:INPUT#l,Si.(X,Y>:NE
XT Y,X
1940 FOR X=l TO 25:INPUT#1,G$(X):NEXT
1950 FOR X=l TO 25:INPUT#l,Bi.(X):NEXT
1960 FOR X=1 TO 25:INPUT#1,N$(X):NEXT
1970 FOR X=l TO 25:INPUT#l,Ni.(X):NEXT
1980 FOR X=1 TO 25:INPUT#l,A<X>:NEXT
1990 FOR X=1 TO 4:INPUT#1,V$(X):NEXT
2000 INPUT#1,SA,SB,SC,SD,SE,SF,SG,SH,Pi.
2010 CLOSE:RETURN

This subroutine is called right at the start of the game to load in the
data file containing the starting position. It can also be used to load a
game which has been saved during the course of play.

Line:
1900 clear the screen and print message to insert the data tape into

the recorder.
1910 open the channel to input the data file.
1920 load in the description of the 25 locations.
1930 load in the array used to hold the map.
1940 load in the descriptions of the 25 objects.
1950 load in the pointers for the locations where the objects are to

be found.
1960 load in the words recognised.
1970 load in the pointers to the words recognised.
1980 load in the flags for the objects carried.
1990 load in the descriptions of the four objects carried.
2000 load in the flags SA to SH and the current location P%.
2010 close the file and return to the main program.

If you compare this routine with the 'SA VE GAME' routine, you
will see that the data is read in from tape or disc in EXACTLY the
same order. Any error in this section, however slight, will prevent
the game working at all and you must check that there are no typing
errors when entering it into your computer.

You should now have typed all sections of the main game into
your computer and must check carefully for any typing errors before
saving a copy onto tape or disc. You will not be able to test this game
by running it until you have a data file on tape. In the next chapter
you will find the listing for the data file creating program, and this
must be typed in and RUN. You will be asked to insert a tape into
the recorder and you would be advised to save the data file created
by the program immediately after the main game on the first tape.

Because you will not be able to test each section of the program as
it is typed in, you must take extra care with data entry and check
each section against the printed listing before going on to the next
section.

I

Before looking at how the data file is created, we need to draw the
map of the game in the same way as with the previous two games.
Although the program listing here allows you to modify the descrip
tions of the locations, it doesn't, as it stands, allow you to type in
changes to this map. Only a minor modification to the program
would be necessary to allow this to be done and I will explain in
further detail how to set about it.

The map

I
In the

supply bay

2
In the

cockpit

JOURNEY THROUGH SPACE

PART I

9
In a cave
entrance

6
By a cave
entrance

Jn a tunnel

Fig.15.1 Map for A Journey Through Space

3
ln an

airlock

PRESS
BUTTON

On a flat
surface

11
At the

opening

12
In a

swamp

8
At the edge

of a chasm

continued on page 156

1

155

156 Creating the data file

continued from
page 155 14

At the edge
of the iungle

16 15
In a On the

clearing iungle floor

17
In the
jungle

A JOURNEY THROUGH SPACE
PART 2

13
In a

swamp

18
In the
jungle

CLIMB ROPE

23

On riverbank

28
In a glass

tube

33
In a narrow

corridor

34
At the top
of the stairs

GO
DOWN

27
Bv a

ventilation
shaft

26
In a glass

tube

29
In a

reception
lounge

25
In a glass

tube

CLIMB ROPE

30

In a room

31
By a vending

machine

In dense
undergrowth

CUT UNDERGROWTH

On riverbank

21
On riverbank

32

By o lift

22
By o tall

cliff

GO UP GO DOWN

35
At the bottom
of the stairs

A JOURNEY THROUGH SPACE

PART 3

50
By storage

tanks

48
In a narrow

duct

49
In a

cavern

39
In an

entrance hall

40
In a

KILL
DOG

corridor

44
In an empty

room

36
On an

undulating
walkway

47
In a wide

duct

43
On a strip of
concrete

46
In a supply

bay

45
In a repair

bay

Creating the data file

37
In a large
square

38
In an

arcade

41
At the end of
the arcade

42
In a narrow
passage

Careful study of this map will show you that there are fifty
locations. The data for the descriptions of the locations and the
objects must first be read into the arrays. I have again used the same
variable names for these arrays, so as to avoid confusion when
trying to debug the program.

157

158 Creating the data file

Reading the data

10 REM** data file creating program**
20 CLS:LOCATE 10,2:PRINT"Data file Creator"
30 KEY OFF
40 REM** read data into the arrays for 'A JoLirney

through Space'**
50 DIM Q$(50),S%(50,4) ,V$(4) ,G$(25) ,B'l.(25) ,N'l.(25),
N$(25>,A(25)
60 FOR X=l TO 50:READ Q$(X)
70 FOR Y=l TO 4:READ S%<X,Y>:NEXT Y,X
80 DATA in the supply bay. ,0,0,2,0
90 DATA in the cockpit of the spaceship. ,o,o,3,1
100 DATA in a small airlock.,0,0,0,2
110 DATA outside the airlock.,3,~,5,0
120 DATA on a docking platform high above the plan
et surface.,o,o,o,4
130 DATA outside a cave entrance.,0,0,7,0
140 DATA on the flat surface of the planet Luci
a. The spaceship is here.,0,0,0,6
150 DATA at the edge of a deep chasm. Travel tot
he east is impossible.,o,o,o,7
160 DATA inside a gloomy cavern. A dark tunnellead
s east.,0,0,10,0
170 DATA in a dark tunnel. Drips of water keepfall
ing on my head.,0,0,11,9
180 DATA at the cave entrance. I can see a feti
d swamp in the distance.,o,0,0,10
190 DATA on a narrow footpath leading through the
fetid swamp. Swirls of purple mist rise from th
e swamp. A cave can be seen here.,0,13,0,0
200 DATA at the edge of a fetid swamp. A dry foot
path leads north through the purple mist.,12,0
,o, 14
210 DATA at the edge of a thick jungle.,0,15,13,0
220 DATA on the jungle floor. Strange insects craw
1 over my feet.,14,17,0,16
230 DATA in a clearing. Thick undergrowth prev
ents me going any further west.,0,0,15,0
240 DATA on a muddy trail leading through a dens
e jungle,15,0,18,0
250 DATA on a muddy path. The trees are alive with
strange creatures.,0,19,0,17

260 DATA at the end of a narrow path. It looksas i
f nobody has been this way for a long time because
the undergrowth is so dense that I can't travel f

urther south.,18,0,0,0
270 DATA on the banks of a narrow river. A rope
stretches across to the far side,19,21,0,0

280 DATA on the banks of a fast flowing river.A hi
gh cliff towers above me.,20,0,22,0
290 DATA underneath a tall cliff. A cave entr
ance can be seen above my head.,o,0,0,21
300 DATA on the banks of a river of mercury. Arope
stretches across to the far side,0,24,0,0

Creating the data file

310 DATA on a narrow path leading into a clearglas
s tube.,23,25,0,0
320 DATA in a clear glass tube.,24,0,0,26
330 DATA in a wide glass tube high above the plan
et surface. A door leads north.,27,0,25,28
340 DATA in a ventilation shaft. It is too narr
ow to go further north.,0,26,0,0
350 DATA in a wide glass tube leading into the top
of a large building.,0,29,26,0

360 DATA in the reception lounge of the 'LuciaMini
ng Corporation',28,0,30,33
370 DATA in a small room full of chairs made of a
purple fur like material.,0,31,0,29

380 DATA by a vending machine. The two slots are
covered with a red notice writtenin a strange lang
uage.,30,0,32,0
390 DATA by a lift. The doors are closed and the
lights are not working. I can't see any switches
or buttons to press.,o,o,o,31
400 DATA in a narrow corridor. The walls are line
d with plants whith eyes which follow my every m
ove.,0,34,29,0
410 DATA at the top of a flight of stairs. A plas
tic android stops me going down.,33,o,o,o
420 DATA at the bottom of a flight of stairs. A pa
ssage leads east.,0,0,36,0
430 DATA on a slowly undulating walkway. ,0,0,37,35
440 DATA in a large square.,0,38,0,36
450 DATA in a golden arcade. Small blue trees line
the sides of an enormous statue. A nutty guard wo

n't let me into the green building. ,37,41,0,0
460 DATA inside an entrance hall. A mad LucianRock

Hound spits molten gold at me.,o,o,o,38
470 DATA in a narrow corridor. Doors lead sout
hand east.,39,44,46,6
480 DATA at the end of the arcade. A path lead
s south between two buildings.,38,42,0,0
490 DATA in a narrow passage between tall buil
dings.,41,0,0,43
500 DATA on a narrow strip of concrete at the edge

of a sheer drop.,47,0,42,0
510 DATA in a small empty room. A door leads east
.,40,0,45,0
520 DATA in a repair bay. It is full of tools.,o,o
,0,44
530 DATA in a supply bay. A robot stands at the
counter and looks at me.,o,o,o,40
540 DATA in a wide duct.,0,43,0,48
550 DATA in a narrow duct.,0,49,47,0
560 DATA in a large cavern full of storage tank
s.,48,0,0,50
570 DATA in the fuel storage bay. A large fueldisp
enser stands here.,0,0,49,0
580 FOR X=1 TO 25:READ G$(X),B%(X),N$(X):N'l.<X>=X:N
EXT X

159

160 Creating the data file

590 DATA a strong knife,1,knife,a phaser,1,phaser,
a shovel,1,shovel,a space suit,1,suit
600 DATA a button,3,button,a lever,4,lever,a large
can,22,can,a crystal warp control,46,crystal

610 DATA a packet of wolf nuts,32,nuts,a hyper vip
er,17,viper,a pair of leather gloves,2,gloves,a er
ystal control socket,2,socket
620 DATA a fuel injection cap,2,cap,a damaged pan
el,2,panel,a panel repair manual,45,manual
630 DATA a remote control for androids,32,control,
a large hook,6,hook
640 DATA a boulder,6,boulder,a glowing statue,37,s
tatue,a lodoria plant,18,plant,an alien mask,24,ma
sk,a metal bar,16,bar
650 DATA a fuel spout,50,spout,a slot,50,slot,an i
ntergalactic credit card,33,credit card
660 CLS:S✓e=0:P%=2
670 J:$="A Journey through Space"

Line:
20 clears the screen and prints the title of the program.
30 turns off the messages about the function keys.
50 DIMension the arrays.
60 read in the descriptions of the locations into Q$(X).
70 read in the map into the array S%(X,Y).
80-570 DATA for the locations.

In a similar manner to the previous programs, each DATA line
from line 80 to 570 contains a description of the location, followed by
the numbers corresponding to the locations reached by going north,
south, east and west respectively.

Line:
580

590-650

660

670

read the description of the 25 objects, the number of the
location they are found in, the word they are recognised by
and set the pointer to the word.
DATA for the description, location and word recognised of
the 25 objects.
clear the screen, set the score to zero and the location to
number 2.
define the title of the game.

Reminder of the variables used:
S% holds the score
P% holds the number of the current location
Q$(X) holds the description of the location
S%(X,Y) holds the map
G$(X) holds the description of the object
B%(X) holds the number of the location where the object is

found

I Creating the data file

N$(X)

N%(X)

holds the word recognised by the computer as being
connected with the object
pointer to the object

It is worth noting that the routine in the main program to read the
data in does not contain a line to read in J$, the title of the game. If
you do add a line to do this, a similar line must be added to the save
game routine in the main program and to the file writing section in
this program.

Change the data file?

680 REM** change data or leave alone**
690 CLS:LOCATE 1,2:PRINT"Do you want to ch-ange the

data file <Y>esl<N>o ?"
700 AA$=INKEY$:IF AA$="N" OR AA$="n" THEN GOSUB 73
O:PRINT"DATA FILE SAVED NOW!":END
710 IF AA$="Y" OR AA$="y" THEN GOSUB 900:GOSUB 730
:PRINT"DATA file saved now!":END
720 GOTO 700

When the program is run, the data for the standard game is read
into the arrays and the section of coding between line 680 and line
720 asks the player whether he wants to save the standard game, 'A
Journey Through Space', or whether he wants to write his own data
file.

Line:
690 asks the question whether the player wants to change the data

file.
700 wait for key to be pressed, if the player answers no, the

subroutine to save the data is called and the program then ends.
710 if the player wants to change the data file, call the subroutine to

change the data, save the data file and end the program.
720 jump back to test for a key being pressed.

Should the player decide not to change the data file, the infor
mation saved on the tape will contain all the data for 'A Journey
Through Space'. Pressing the 'Y' key, however will take the player
to the section of the program which allows him to type in changes to
the descriptions of the locations, objects and words recognised.

Save game

730 REM** save game**
740 CLS:PRINT"Please insert a tape and set ready
to record"

750 PRINT:PRINT"Press <Space Bar> when ready."
760 A$=INKEY$:IF A$<>" "THEN 760
770 OPEN"cas:data" FOR OUTPUT AS #1

161

162 Creating the data file

780 REM** change this line to PRINT #1,J$ if you
want to save the name of the game as well ••. you wi
11 need to add the same line to the main game as w
ell ! **
790 FOR X=1 TO 50:PRINT#1,Q$(Xl:NEXT
800 FOR X=1 TO 50:FOR Y=1 TO 4:PRINT#1,S'l.<X,Y):NEX
T Y,X
810 FOR X=1 TO 25:PRINT#1,6$(X):NEXT
820 FOR X=1 TO 25:PRINT#1,B'l.(Xl:NEXT
830 FOR X=1 TO 25:PRINT#1,N$(X):NEXT
840 FOR X=1 TO 25:PRINT#1,N'l.(Xl:NEXT
850 FOR X=1 TO 25:PRINT#1,A(X):NEXT
860 FOR X=1 TO 4:PRINT#1,V$(X):NEXT
870 PRINT#1,SA,SB,SC,SD,SE,SF,SG,SH,P'l.
880 CLOSE:RETURN

This section of the program MUST be absolutely identical to the
section of code called in the main game when the player chooses to
'save' a game during play. Any differences between these two
routines will cause the DATA to be read in from tape in the wrong
order and this will result in a game which doesn't make any sense, if
it runs at all!

Line:
740 clear the screen and print message to insert a tape ready to save

the game.
750 print message to press the space bar when ready.
760 wait for the space bar to be pressed before saving the data onto

tape.
770 open the cassette filing system.
780 see notes.
790 save the descriptions of the 50 locations.
800 save the map.
810 save the descriptions of the 25 objects.
820 save the pointer to the locations of the 25 objects.
830 save the words recognised for the objects.
840 save the pointers to the words recognised.
850 save the flags for the objects carried.
860 save the value of the flags SA-SH and the current location.
880 close the file and return.

MSX BASIC does not require the values of variables to be defined
before they are used. In this case, the value of the flags A(X) and
SA-SH will all be zero, although their values will change in the file
saved when the player types 'save' during play.

When the data file is loaded from tape at the start of the game, the
contents of J$ are printed (line 80 of the main program). J$ does, in
fact, hold the title of the game. In all the routines for tape handling
in chapters 13 to 15, however, the value of J$ is not saved or loaded.
It is fairly simple to add one extra line to each routine to do this. In
this program, you will need to change the REM statement in line 780
to:

..
Creating the data file 163

780 PRINT #1,J$

and insert the following lines into the main program.
1785 PRINT #1,J$
1915 INPUT #1,J$

This will save the contents of J$ before any other data on the tape.

Changing the data

890 REM** change data for new game**
900 CLS:FOR X=l TO 50
910 CLS:LDCATE 1,1:PRINT"Location number ";X
920 LOCATE 1,3:PRINT"Old description"
930 LOCATE 1,4:PRINTQ$(X>
940 LOCATE 1,10:PRINT"What is the new description

950 INPUT Q$(X>
960 PRINT"Is this correct <Y>esl<N>o?
970 AA$=INKEY$:IF AA$="n" DR AA$="N" THEN 910
980 IF AA$="y" OR AA$="Y" THEN 990 ELSE 970
990 NEXT X
1000 CLS:FOR X=l TO 25
1010 CLS:LDCATE 1,1:PRINT"Object number ";X
1020 LOCATE 1,3:PRINT"Dld description"
1030 LOCATE 1,4:PRINTG$CX>
1040 LOCATE 1,10:PRINT"What is the new description

1050 INPUT G$CX)
1060 PRINT:PRINT"What word will it be recognised b
y ";:INPUT N$CX)
1070 PRINT"Is this correct <Y>esl<N>o?
1080 AA$=INKEY$:IF AA$="n" DR AA$="N" THEN GOTO 10
10
1090 IF AA$="y" OR AA$="Y" THEN 1100 ELSE 1080
1100 NEXT X
1110 RETURN

When this section of program is reached, you will be shown a
description of all 50 locations and will be asked to type in a new
description. You should try to make sure that no words are split
across two lines on the screen, as this will make for an untidy
display when the game is run. Once you have typed in a new
description and pressed <RETURN>, you will be asked whether
this description is correct and if you press the 'N' key, you will be
asked to type the description in again.

Do try to bear in mind the puzzles set in the game when making
the changes to the descriptions. It would be a very stupid game
indeed if the player had to jump from a flat piece of earth or if they
had to climb across a footpath!

Once you have typed in the new descriptions of the locations, you
will then be shown the current descriptions of the 25 objects found
in the game and will be asked to type in their new description,

164 Creating the data file

together with the word they are recognised by.
It is again important to make sure that when you change descrip

tions of objects within the game, they are changed to something
which makes sense within the context of the game. Do bear in mind
that certain objects are associated with a particular command. The
knife, for example, must be used to cut your way through the dense
undergrowth and if you were to change it to a tortoise, how could
you find your way through the dense growth? Cutting with a
tortoise would certainly be illogical!

Line:
900 clear the screen, repeat the loop 50 times.
910 clear screen and print the number of the location.
920 print message about the old description.
930 print old description of the locations.
940 print message to ask for input of the new description.
950 input the new description of the location.
960 print message to ask if this is correct.
970 get keyboard input and if player presses 'N' key, return to

input the description again.
980 if player doesn't press the 'Y' key, jump back to keyboard

input.
990 next description.
1000 clear the screen and repeat the loop for the 25 objects.
1010 clear the screen and print the number of the object.
1020 print the old description of the object.
1030 print the description of the object.
1040 print message to ask about the new description.
1050 input the new description of the object.
1060 print message about the word it is recognised by and input the

word recognised.
1070 print message to ask if it is O.K.
1080 wait for key to be pressed, if player presses 'N' key, return to

input words again.
1090 if key pressed is not 'Y', jump back to test the key being

pressed.
1100 next object.
1110 return to the main program.

Do make sure that you take care when typing in the description of
the objects that the words recognised by the objects are not
duplicated. To illustrate this, consider a game where object number
7 is a red button and object number 11 is a blue button. Thus the
contents of G$(X) would be:

Object number
7
11

description
a red button
a blue button

word recognised
button
button

1 Creating the data file

If you were to use the same word to recognise two different
objects, the computer would search through and find a match
ONLY for the first occasion. If you do have two objects in your game
which are very similar, such as those above, you MUST make sure
that the two words recognised are different. In the above case, I
would suggest that you use 'red button' and 'blue button' for N$(7)
and N$(11) respectively.

Conclusions
There are a number of advantages of writing a program in which the
data for the game is loaded in from tape or disc and these are
summarised below.
1. The program will occupy less memory space, which means that
it is possible to include more locations, objects, puzzles and
problems. You can also include far more detail in the descriptions of
the objects and locations because of the freedom given by extra free
memory and in addition, you may well find enough space to add
graphics as well.
2. The player will find it more difficult to cheat and solve the
adventure by escaping from the game and listing it.
3. The program can be better structured, without making the game
so easy to solve that the player wants to cheat. It always makes it
easier to develop a program if the structure is sorted out properly at
the start rather than allowing the program to grow at random during
development of the game. However, a typical 'spaghetti' style
program will be much more difficult for the player to solve by listing
it.

At the same time, however, there is one major disadvantage of
developing a program in which the data for the game has to be
loaded in from tape every time: TIME. Each time that you make a
simple typing error and the program crashes, you will have to
correct the mistake and then load in the tape again. This will take
several minutes at the very minimum and unless you have a great
deal of patience, the whole process can be very daunting.

However, for those of you fortunate to own a disc drive, this
process will take only a few seconds and the difference in time
between loading the data from disc and READing it from DATA
lines within the program will be very small. With MSX BASIC, there
are few changes needed within the program, as the PRINT #1 and
CLOSE commands will operate identically in a disc or tape environ
ment. The open command will need to be changed to take into
account the fact that we are using a disc file rather than a tape file.
On a disc based system, it is possible to open more than one file at
any one time. Whenever the CLOSE command is issued without a
channel number, it will close all the files. The open command will
need to be changed to something like OPEN "A:data.DAT" FOR
OUTPUT AS #1. The whole topic of sequential access files on MSX
micros is more complex than simple file handling on tape, due to the

165

166 Creating the data file

numerous types of files available. If you do have a disc drive, then
you can spend many happy hours exploring the different facilities
which are opened up by the disc medium. As you will probably
have realised, the actual changes needed to allow this program to
work from disc are minimal, although there are many new
possibilities as well. One of the first things you should do is to
change the messages about inserting a tape into the recorder.

T

1
Adding the final touches

So far, we have taken a close look at many of the standard features
of adventure games, but have not spent much time examining those
refinements which can truly transform a game into a masterpiece.

Function keys
MSX machines have ten function keys available for use and so far
we have completely ignored them. Moreover, the messages associ
ated with their definitions have been turned off at the start of the
games listings. Having recently been playing one of the adventure
games from 'Level Nine Computing' on my Toshiba MSX machine
and seeing how useful these keys can be to an adventure, I see no
reason at all why we shouldn't crib a few ideas from the experts. All
of the MSX versions of their games are loaded into the computer in
two sections. The first program is a very short one and serves two
purposes. Firstly, it prints the titles and secondly, it changes the
definitions normally associated with the function keys into words
which are of far more use to the adventurer. There is, in fact, a
second advantage to be gained from this approach. We have, until
now, been unable to include instructions within the game because
the memory used by them can be better utilised in setting puzzles
and problems. If, however, the titles and instructions are included
in a short program to define the function keys, we need have no
such worries.

The listing below shows how this could be done for 'The Wizard's
Quest'.

10 KEY 1. 11 QO n □rth"+CHR$ (13)
20 KEY 2~ 11 go scuth"+CHR$ (13>
30 KEY 3, 11 go east "+CHR$ (13)
40 KEY 4, "go west"+CHR$(l.3)
50 KEY 5,"inventory"+CHRSC13)
60 KEY 6,"help"+CHR$(13)
70 KEY 7,"score"+CHR$(13>
80 KEY 8,"search"+CHR$(13)
90 KEY 9, "pray" +CHR$ C 13>

16

167

168 Adding the final touches

100 KEY 10,"wait"+CHR$(13l
110 SCREEN 0
120 LOCATE 10,2:PRINT"The Wizard's Quest"
130 CLOAD"Wizard" ,R

Line:
10-100 define the function keys 1 to 10
110 set the screen mode
120 print the titles
130 load the main program

You will notice that I have defined the function keys to print some
of the commonest instructions used in adventure games. The PRINT
CHR$(13) command at the end of each of these lines is used to enter
the command into the computer whenever that function key has
been pressed. Although the 'get' command is one of the most
commonly used instructions in adventure games, this has not been
assigned to a function key because the player would still have to
type in the name of the object to be picked up. For that reason, the
definitions given to the function keys are single word commands
only.

The final line of this short listing is used to load the main game
into the computer. You must make sure, of course, that the main
game has been saved with the same filename as that listed in line
130 of this program. You may also like to delete the line in the main
program which turns off the function key messages at the bottom of
the screen.

If you want to insert the instructions in this program, this should
be done immediately before the command to load the main game.

Full sentence decoding
In all the games in this book, I have stuck to the traditional one or
two word sentence recognition. Many commercial games now
include the ability to understand far more complex sentences.
Unfortunately, BASIC doesn't leave much room in memory for the
inclusion of very complex sentence analysis, but you should be able
to make a few improvements. The simplest of these would be to
allow the inclusion of the word 'the' in the sentences so that the
player can type 'get the rope'. This makes the game seem a little
more realistic and should help to involve the player more in the
game.

In order to do this, a short section of code will need to be inserted
into the routine used to split the sentence into two words. It is at this
point that you really start to appreciate the inclusion of INSTR
within the BASIC language. Adding this feature should prove to be
an interesting, and not too difficult exercise.

Data compression
Many commercial adventure games contain detailed descriptions of

I Adding the final touches

objects and locations such as would be impossible to achieve in
BASIC. Even storing the data for the game directly in memory
would not allow the quality of description achieved by some
programmers. Level 9 Computing' s specially created adventure
language, 'A-CODE', illustrates just what can be achieved in 32K of
RAM. Just how this works they haven't revealed, although we can
make an intelligent guess. Most data compression techniques rely
heavily on redundancy of letter and word associations.

Over 25 per cent of average English text is made up of just ten
words: I, is, it, that, the, of, and, to, a, in. Of the other words in
common use, many contain standard groups of three letters which
are sometimes called trigrams: and, the, tha, ent, ion, for, nde, nee
and has. In addition, several letters always occur in combination, for
example Q is always followed by U. If these letter combinations are
replaced in the text by single characters chosen from the other ASCII
codes which are not needed in text programs, it is possible to
compress text into a comparatively small space.

Attempts to code the data in this way using BASIC are, however,
unlikely to be very successful because it is likely that the routines to
decode the data will slow the game down to an unacceptable level.

Three dimensional games
As you will recall, there are a few locations in the games listings in
this book where you can go up or down into new rooms. The
number of occasions where this is possible is so small that I decided
to write them as subroutines rather than trying to create a full three
dimensional game. Imagine, however, an adventure based on that
famous film 'Towering Inferno', where the object is to escape from
the building alive or, perhaps, an adventure set in a large office
block. In such circumstances, there would be too many floors to
consider writing a two-dimensional game, so where do we start
when developing such a program?

How do you draw a map of a three dimensional game?
The easiest way of tackling this problem is to draw a separate map of
each floor of the building and clearly label any stairs (or other means
of moving up or down such as lifts), together with the number of the
location reached by going up or down from that position. Once you
have done this, converting it into the data for your game should be
no more difficult than for a two dimensional game. If, for example,
location number 45 is by the stairs on floor number 3, the data line
would look something like:

110 DATA by the emergency exit. A sign reads
'Floor 3'.,32,33,0,41,21,67

This line would indicate that movement north would take you to
location number 32, movement south to location number 33, move
ment east is not possible, movement west takes you to location

169

170 Adding the final touches

number 41, movement up takes you to location 21 and movement
down to location 67.

Of course, you will need to increase the size of the array holding
the map to hold these extra numbers. Thus the second number in
S% in the DIM statement will need to be increased from 4 to 6. In
addition, you will also need to change the line which READs this
DATA into the arrays so that it too reads 6 items rather than 4. The
main difference between a two-dimensional and a three-dimensional
game will be that two extra lines will need to be inserted into the
main control loop. These lines will be very similar to the lines used
to move the player north, south, east or west. The two lines below
can be used in any game where the data has been changed in this
way, although the line numbers will need to be changed to suit your
own program:

200 REM** go up**
210 IF (B$="up" OR D$="go u") AND S%(P%,5)>0 THEN
PRJNT"O.K.":P%=S%(P%,5)
220 IF (B$="do" OR D$="go d") AND S%(P%,6)>0 THEN
PRINT"O.K.":P%=S%(P%,6)

These lines don't, of course, print any message if the player
attempts to move up or down from a location where this is not
possible, although it shouldn't take more than a couple of minutes
to rectify this.

Don't forget, though, that you are using far more memory space
to store the array holding the map and this will reduce the number
of features you can pack into your game. Whether you write a game
incorporating these ideas or not is really determined by the plot of
the game. If it is set in a multistorey building, then you will probably
want to write your game in this way.

Commercial games
Although writing your own adventure is a challenge from which
you will get a great deal of pleasure, you can't really enjoy playing a
game you've written yourself. After all, you do know the solution!
Anyone interested in writing adventures will inevitably want to
have a go at playing somebody else's, even if it's just to get a few
ideas! The following list contains some of the adventures which are
available for MSX machines at the time of writing, although,
hopefully, many more will be available by the time you read this.

Your local stockist should be able to get hold of these games for
you, but if not, you should be able to find them advertised in many
of the computer magazines.

Level Nine Computing

This company has a large number of adventures available for most
of the major home computers. In the MSX versions, the function

Adding the final touches 171

keys have been defined to contain some of the most useful
commands.

Colossal Adventure: a superb version of the game which started it all
off. This is not a game to be solved in a hurry and if you've never
played an adventure before, you can be sure of many months of
pure enjoyment.

Adventure Quest: an epic adventure which follows in the tradition set
by Colossal. This is one of my own favourites in the middle earth
trilogy, containing some of the most fiendish puzzles to solve.

Dungeon Adventure: the final part of the middle earth trilogy. This
game contains many elements of the Dungeons and Dragons theme,
although a knowledge of this is not necessary to solve the game.

Lords of Time: this game is quite simply superb. In it, you play the
part of a time traveller who must enter the old clock and tum the
cogs to travel through time to many of the different ages. Of all the
games produced by Level Nine, this is my own favourite and is one
I'm sure you'll enjoy too.

Snowball: this game is probably the most impressive adventure you
are likely to come across in a long while. It contains over 7000
locations, a fact which impresses me almost as much as the game
itself! If you're a science fiction fanatic, then this is the adventure for
you.

Return to Eden: this is the follow-up to Snowball and, although it
contains only 240 locations, compared to Snowball's 7000, is the first
graphics adventure from this company. I must admit some dis
appointment with this game. It is as difficult as any of their others to
solve, but they have changed the character set and it is, unfor
tunately, difficult to read the descriptions on the screen. The
graphics too, are disappointing. Not that there is anything wrong
with them, just that they take so long to draw, that you've forgotten
what you were going to do. Fortunately, they can be turned off
when you've seen them once! If you can't wait for a graphics
adventure, then this could be just the one for you.

Emerald Isle: the second graphics adventure from this company. This
one is a little easier to solve than their other games and should prove
to be good introduction to adventures. Fortunately, the character set
has not been changed in this game and I found it more enjoyable to
play than Return to Eden.

Melbourne House

The Hobbit: originally written for the Sinclair Spectrum, this must be
the most famous graphics adventure yet. The graphics in the MSX

172 Adding the final touches

version are second to none and the game sets the standard by which
all other graphics adventures will be judged. It is another excellent
adventure to cut your teeth on.

Playing the game
Most of this book has dealt with writing adventures, but little
mention has been made of playing them. Much of what's been said
about writing games will be of direct relevance to those who want to
play adventures. In addition, playing a few games written by other
enthusiasts should give you a few ideas for puzzles and guide you
into a new direction of exploration.

To the novice who has never played an adventure previously,
exploring the territory in a game can be quite a bewildering
experience. If you don't chart your progress by drawing a map as
you go along, you may soon find yourself going round in circles, or,
even worse, continually being killed in the same place. Drawing
maps of games written by others isn't always as easy as it sounds.
There are some perverted souls who delight in creating a world
where the normal rules of logic don't apply. In such games, you
may find yourself going north into a new room, but on going back
south again, find yourself in a totally unexpected location. This is
fine in a maze, but not in the main part of a game. If I come across
too many instances where this happens, I usually give up. Not, I
hasten to add, because I can't do it, but because I like games to be
logical and finding the solution to depend on my own skill rather
than on a chance element.

My own approach when mapping out somebody else's adventure
is much the same as when mapping my own, the major difference
being in the numbering. Each time I enter a new location, I add it to
the map, place a brief description alongside it and give it a number.
The diagram on page 173 shows you how I normally cope with a
game where normal logic is not obeyed.

How do you draw a map of a maze? This is a question often asked
by adventurers and is not an easy question to answer. Until you
have actually tried to map your way through a maze, you won't
realise just how difficult it can be, especially if the maze is in total
darkness! The easiest way of tackling this is to enter the maze
carrying as many objects as the game will allow. In each location you
enter, try dropping one of the objects so that each time you end up
back in that room, you will know exactly how you got there. If the
maze is too complex, however, you will soon run out of objects to
drop and your map may well end up in the bin. In the original
Colossal cave, you were able to carry just enough objects to find
your way through the Pirate's maze, but in the Level Nine version,
you are restricted to only four, making progress that much more
difficult.

The secret to a maze actually lies in a password made up of the
letters n, s, e, w, u and d (the usual directions), but of unknown
length and mixture. Once you have found out the right combination

T

BY A RIVER

4

SWIM

ON THE
RIVER
BANK

3

ON A FOOTPATH

Adding the final touches 173

SOUTH

IN A FOREST

NORTH

2

GOIN

OUTSIDE
A HUT

D INA
HUT

Fig. 16.1 Constructing a map to help solve an adventure game

of moves, you will be able to find your way through the maze with
no further difficulty, but if you are limited to carrying only three or
four items, finding the right combination can be rather more a
matter of chance than skill.

In the map shown above, the player can move north from location
number 2 to reach location 1, but movement south takes him from
there to location 3. In addition, it is likely that you will come across
places where you will need to move by swimming, jumping,
crawling, flying or even waiting. Adding these to your map can be
done by drawing wiggly lines as shown on the map.

As you progress through the game, slaying the odd dragon or
two, you are bound to come across the perennial problem faced by
all adventurers; that of vocabulary. Many authors are kind enough
to provide you with a list of words which the computer understands,
or even a full guide to the syntax of the language as in the Hobbit. In
most games, however, you are on your own and will have to find
out what the computer understands by trial and error. Before
starting the game, its worth spending a little time trying out the
'standard' adventure vocabulary to see which words are recognised.

Does the game allow you to GET and DROP objects, or does it
expect you to try to TAKE and LEA VE them? Some games even give
you a choice! Is it possible to EXAMINE objects which you are not
carrying? Do you have to type in the whole word or will the
computer accept just the first few letters? Typing KIL ORA may
annoy the purist, but it is much quicker to type than KILL THE
GREEN DRAGON and makes for a quicker route through areas of

l

174 Adding the final touches

the adventure which you have previously explored.
One of the most important points to check is whether the

computer will allow you to SAVE a partially completed game. This
really will SA VE you time later (pardon the pun!) and any commercial
game worth its salt will incorporate this facility. To make life easier
for yourself, your best course of action is to regularly SA VE a game
during play and then when you are much more familiar with the
plot, try to save a 'clean' game; that is one where you have achieved
as many tasks as possible in the smallest number of moves. This
aspect of time is really of vital importance in games, such as Colossal
Caves, where you are carrying a lamp which runs out. If you have a
tape with your best performance so far on it, it will allow you to get
further into the game without the inconvenience of having to start
from the beginning each time.

Playing an adventure game is, in many ways, similar to solving a
good crossword - you spend hours puzzling over a clue only to find
the solution staring you in the face. All you have to do is to read the
messages carefully, think of the obvious (and not so obvious) things
to do with the objects you have come across and suddenly the
solution will hit you. Once you know the answer to a puzzle, you'll
wonder why you didn't think of it before!

The job of the progammer is to create puzzles which are reasonably
devious. Almost anyone can create a puzzle which is impossible to
solve and when you come across a game where your progress is
zero, it will soon end up in the bin. A really good game should allow
you a fair length of rope and enable you to explore many areas of the
fantasy world without being killed in your first few moves. It is for
this reason that Melbourne House, Infocom, Adventure Inter
national, Epic and Level 9 adventures have proved so popular with
enthusiasts. Quite a few companies do not, as yet, produce MSX
versions of their games and if that sounds like a plea to their hearts,
then you are quite right it is!

Yet another point to find out as soon as possible when playing a
new adventure is just how many objects you can carry at any one
time. Don't forget to look out for those objects in the game which
allow you to carry extra items, such as a pack horse, a shopping bag,
a tool box or a rucksack. In some games you may come across items
which you can wear and this often allows you to carry more. In fact,
it may be necessary for you to wear the object in order to complete
the game. The palace guards may not let you in unless you are
disguised as a soldier by wearing the uniform you found in the
cottage, or those alien goggles may allow you to read the strange
runes carved into the wall. The magic ring may make you invisible
or the rubber gloves insulate you from a nasty shock!

Many of the newer games allow you to enter instructions in the
form of full English sentences such as 'GO IN AND OPEN THE
CUPBOARD DOOR', or 'TAKE THE RED TOOTHBRUSH AND
BRUSH YOUR TEETH'. To a newcomer to adventures, this sort of
facility does seem to be much more 'user friendly' than the traditional

T
I

I

Adding the final touches 175

two word sentence input. If that were always the case, however,
many of the very best adventures wouldn't be very popular at all!

Once you are fully accustomed to the constraints of two word
input, it is surprisingly easy to use and leads to far less confusion by
the computer of your exact intentions. If you type in a long sentence
and the computer fails to understand the first part of your instruc
tions, it may go to complete your other instructions, with disastrous
effect, or it may just stop at that point. Imagine, for example, that
you have typed in 'KILL THE GREEN DRAGON AND MOVE
NORTH', but that you have forgotten to carry the sword needed to
kill the dragon. If the computer stops after trying to kill the dragon
and tells you that you haven't any weapons, things are not too bad,
but if it tries to move you north, then you will very likely get killed.
There really is nothing more frustrating than spending three quarters
of an hour making good progress in your quest, only to get yourself
killed by making a minor mistake. Of course, if you have planned
your journey carefully, you will have regularly saved your position
on tape or disc so that when you do make a mistake, it is not a major
disaster. Don't be surprised, however, if the very first time you
forget to save your position, you get yourself killed by an evil troll!.
If you are using a tape based system, the time spent in regularly
saving your position may seem to be wasted, especially in the more
complex games where the routine to save a game may take several
minutes, but if you try to avoid it, don't say I didn't warn you!

If you are really determined to succeed and solve the game, it is
most important that you read the description of every location very
carefully and EXAMINE virtually everything you come across in
great detail, as you never know what you might find. Don't assume
that the objects you find have to be used in the most obvious way.
That screwdriver might be quite sharp on examination and it could
make an excellent weapon to stab that evil monster. That piece of
driftwood may make an excellent handle for an axe, if only you can
find the flint to go with it! Can you open that grate set into the wall,
climb the old oak tree, swim across the crocodile-infested river or fly
on the back of the old eagle?

One trick which is to be found in many adventures is where
making an action in one room will have an effect somewhere else in
the game. This is sometimes known as the 'Pearl' trick and, if it is
used extensively within a game, can lead to confusion. In one recent
game, I have come across a large stone wheel and on trying to turn
it, have heard a distant rumbling, only to find that I had opened up
the snake pit further in my travels. Whenever you do come across
puzzles like these in a game, you should try mapping the game both
before and after trying out the puzzle to see what difference it really
does make.

Yet another method of writing adventures adopted by some
programmers is to divide the game up into a number of different
sections, each with its own set of problems to be solved before being
able to progress to the next section. In a sense, therefore, these

L_

176 Adding the final touches

games consist of a series of linked mini-adventures, where progress
to the next one depends on your completing the previous game.
Watch out in these adventures for objects which need to be carried
from one location to the next. This is especially true if the game
won't allow you to go back to pick up the rope needed to build the
raft. In some of the recent games I've played, I've flown on a magic
carpet, crashed my plane on a desert island, floated on a log down a
river and jumped from a low flying aircraft using a large umbrella as
a parachute. There is certainly no going back when the plane has
crashed or the carpet flown away!

Finally, watch out for games in which the solution is to be found
from a play on words rather than a completely logical approach. The
pie man may be a mathematician or the mouse a person. This sort of
adventure will have you tearing your hair out at times and is
definitely not to be recommended for the beginner.

--,,.--

I

I

The three adventure listings contained within the pages of this book
follow a very similar pattern, based on a set of common subroutines.
All adventure games contain a number of standard features and I
have attempted to show you how you can adapt one adventure
system to deal with several different types of games. This is,
however, not the only approach which can be adopted when
writing an adventure game. The main advantage of adopting a
standard format lies in the ease with which a new game can be
created. Once you've mastered the basic ideas, however, you'll be
only too eager to experiment with alternative techniques.

Whichever method you choose to adopt, a modular approach
does help to make program development much easier and you
would be well advised to break your program down into a number
of short sections which can be thoroughly tested. Before examining
the programming details, however, we really need to take a closer
look at some of the ideas underlying any adventure. The most
interesting and exciting area where different approaches can be
useful is in setting problems for the player to solve.

Problems involving objects

Objects in an adventure game can serve several different purposes
and these are illustrated in the list below.

1. Objects which can be seen by the player but not picked up at all,
although they may contain a clue written upon them or reveal a
second object when searched.

2. Objects which can be seen by the player and readily picked up.
These may be 'tools' for use later in the game.

3. Objects which can be seen by the player but can't be picked up
until the player has taken some specific action.

4. Objects which can't be seen at first. These may be hidden

1

behind or underneath some other object. 177

178 Getting to grips with BASIC

5. Objects which must be moved out of the way to progress further
into the game.

6. Objects which are dangerous and which must be eliminated or
the player will lose the game.

7. Objects which are described within the main description of the
location.

There a number of advantages to be gained from keeping the
description of objects in a separate array from the main description
of the location, the main one being that it is easier to write the
coding for 'get', 'drop' and 'inventory' routines. That is not,
however, to say that it is better from the player's point of view.
Games in which there is no attempt to separate the description of
objects, directions of motion and locations can be very exciting to
play. Writing a program in this way is likely to provide you with a
major headache in separating the description of the object from the
description of the location and storing it in another array.

Searching through an element of a string array for the object in
question is most easily achieved by using the INSTR command.
Supposing, for example, that the description of location 21, held in
the array loc$(X}, is:

I am sitting in a chair at the side of the fire. A man with a gun stands
by the door and a knife lies on the table.

The player may well try to 'GET KNIFE' and the first thing the
program would have to do is to find out if the knife is there. Before
being able to do this, the program would, of course, need to split the
player's sentence into two words. It may well be that the word
KNIFE is held in the variable word$ and the following line could be
usd to search the description for the word KNIFE.

1000 X%=INSTR (loc$(X), word$)
1010 IF X%>0 THEN GOSUB 2000 ELSE PRINT "I can't see it
here!"

If the word held in the variable word$ is found in the description
of the location, X% will store the position in the string where the
word is to be found, otherwise it would be zero. Thus line 1010 will
print a message that it isn't to be found if X% is still zero. You will,
of course, need to write a routine at line 2000 to deal with the action
if the object is found in the current location and this will prove to be
quite a complex procedure. The main problem caused by including
objects within the main description of the location is in removing it
from the description when you pick it up. It's easy enough to
remove the word 'knife' from the location, but programming the
computer so that it removes the other associated words is going to
be very complex.

There are many other possible uses of the INSTR command in an
adventure game. One of the features of the method I adopted to

T

Problems involving objects 179

analyse the player's instructions is that it is easy to follow. At the
same time, however, it does tend to lead to a very long section of
coding which in turn is RAM hungry. A far more compact routine
can be achieved by storing all the instructions which can be
recognised by the computer within one string. This is a technique
widely used by adventure writers and is illustrated in the short
listing below.

100 REM ** input instructions **
110 INPUT"What do you want to do here ";Z$
120 Z$=LEFT$(Z$,3)
130 A=INSTR("EATDRILOOPRAHELSHODROGETPUT",Z$)
140 ON A GOSUB X,Y,Z,

After the player's instruction is input, the computer looks to see
whether the first three letters of Z$ can be found within the string
containing words such as EAT, DRINK, LOOK etc. Should a match
be found, the variable A will contain a number greater than zero and
an appropriate subroutine will be called in line 140.

The routine to split and analyse a sentence is often referred to by
programmers as a 'PARSER' and the parser used here, although
efficent in memory usage, is far from tolerant of alternative inputs.
The parser, more than any other section of an adventure must be
planned very carefully so that the computer recognises the verbs,
objects and modifiers you want.

In this short chapter, I have introduced a few ideas which should
enable you to explore some of the other methods of doing things.
There's a lot to be said for experimenting with various techniques to
find the method which suits your own programming style. Whatever
method you choose to adopt to deal with the 'Standard' sections of
an adventure such as 'GO', 'INVENTORY', 'GET' etc, it's important
to make sure that the game is enjoyable to play. Playability can be
easily ruined if the parser fails to recognise many of the player's
intentions and for this reason, it is good practice to write the game in
such a way that the computer understands several alternative
words.

1

MSX machines boast some of the best graphics around. As you'll
already know, there are two graphics modes to choose from: high
and low resolution. The quality of picture possible in the high
resolution mode (SCREEN 2) makes this the obvious choice for
graphics adventures. The screen is made up of 256 pixels across by
192 down in SCREEN 2 and although it is possible to POKE into
each of the screen locations using the VPOKE command, it is far
easier to make use of the sophisticated commands available in the
Graphics Macro Language (GML).

(0,0)
Y----i►~

(0,255)

(0, 191)

Fig. 18.1 Screen layout in SCREEN 2

Printing text on the graphics screen

When you first enter the graphics mode, the colour of all pixels is set
to the background colour and it is important to remember that you
cannot print text onto the graphics screen using the normal PRINT
command. If you do want to mix text with graphics, you will need to

180 open a channel immediately on entering the graphics mode and

__,,,,..

Printing text on the graphic screen 181

close the channel again on exit. The following listing illustrates this
technique:

10 SCREEN 2
20 OPEN "GRP:" FOR OUTPUT AS #1

100 PRESET (100,100):PRINT #1,"Press the Space Bar"
110 A$=INKEY$:IF A$<>"" THEN 110
120 CLOSE #1
130 SCREEN 0

Line 20 of the listing is used to open channel 1 to allow text to be
printed on the screen and line 100 illustrates how this can be done.
The cursor is moved to location (100,100) before the text is printed
using the PRINT #1 command. There are two important points to
note when moving the cursor to the point where you want the
printing to start. The first, and most important, thing to make a note
of is the colour of the screen at that point. Using the PRESET
command will turn the pixel off, whereas you may like to set the
colour to the foreground colour using the PSET command. In which
case, line 100 would become:

100 PSET(l00,100),3:PRINT #1,"Press the space bar"

The number 3 would select colour 3 (light green)

Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Colour
transparent
black
medium green
pale green
dark blue
pale blue
dark red
cyan
medium red
pale red
dark yellow
pale yellow
dark green
magenta
grey
white

The second thing to notice is that the screen width allows only 32
characters to be displayed on each line.

Line 110 is used to prevent the program from returning to the text
mode (SCREEN 0) until the space bar is pressed. If this line is left
out, the program will return to text immediately after the picture has
been drawn.

182 MSX graphics

PSET and PRESET

The PSET and PRESET commands are the simplest of the graphics
commands and allow the colour of individual pixels to be selected.
The following listing illustrates its use:

10 FOR X=l TO 255
20 PSET(X,10),2
30 NEXT X

which will draw a green line across the screen. Each pixel's position
is given by two coordinates (across,down). Whilst the PSET
command is used to turn a pixel on, the PRESET command is used
to turn if off again.

Although it is possible to create superb pictures using just these
two commands, you'll need a lot of patience to work out the exact
coordinates and with so many easy to use commands in the
Graphics Macro Language this is not really the best way of creating
the pictures to accompany your adventure.

Graphics using the line command

The LINE command in MSX BASIC is one of the most versatile and
useful instructions to the adventure programmer. In its simplest
form, it allows straight lines to be drawn between the two
coordinates specified. Try the following short program to see how
this works.

10 SCREEN 2
20 FOR Y=l TO 10
30 LINE (10, Y)-(100, Y), Y
40 NEXT Y
50 GOTO 50

Line 30 draws a line from the first coordinate to the second
coordinate in the colour specified by the variable Y. It is possible to
use the LINE command to draw a box by adding a simple extension
to the instruction. Try the following two listings to see how this is
done.

Listing 1
5 REM drawing a box
10 SCREEN 2
20 LINE(l0,10)-(100,100),14,B
30 GOTO 30

Listing 2
5 REM draw and fill a box
10 SCREEN 2

-..........
I
I

20 LINE(l0,10)-(100,100),14,BF
30 GOTO 30

Graphics using the line command 183

Adding the letter 'B' to the end of the LINE instruction has the
effect of drawing a box in the colour specified between the two
coordinates, whilst the letters 'BF' draw and fill the box with the
chosen colour.

In most of the locations in the graphics adventure in this book, I
have used the LINE command at the start of each subroutine to
draw the ground and the sky. The colours in MSX BASIC are all
rather bright and the most suitable colours for most pictures will be
7 (cyan)for the sky and 3 (pale green) for the ground.

Listing 3 illustrates how you can draw the background (sky and
ground) for your picture.

Listing 3
10 SCREEN 2
20 LINE(0,0)-(255,100),7,BF
30 LINE(0,101)-(255,191),3,BF

1000 GOTO 1000

Line 20 is used here to draw the sky, whilst line 30 draws the
green grass. On some TV sets, you may find the green chosen a little
pale and could try changing the colour to a darker green.

Before going further with the design of your pictures, it's worth
while sitting down with a piece of graph paper or, even better, a
screen layout pad from your manual and drawing a sketch of the
picture you want to create. In that way you should achieve a better
idea of just what effect you are trying to achieve. Do remember,
though, that making the design very complicated will take a lot of
programming and this in tum will mean less room for the rest of
your game.

The LINE command comes in very useful when drawing buildings,
mountains and any other objects with straight edges. Listing 4
illustrates how a house can be built up out of rectangles for the
doors and windows and a triangle for the roof.

Listing 4
10 REM ** a house **
20 SCREEN 2
30 LINE(0,0)-(255,100),7,BF
40 LINE(0,101)-(255,191),3,BF
50 LINE(l00,100)-(200,170).14.BF
60 LINE(90,100)-(210,100),10
70 LINE(90, 100)-(150 ,65), 10
80 LINE(150,65)-(210,100),10
90 PAINT(150,99),10

184 MSX graphics

100 LINE(120,170)-(130,140),1,BF

1000 GOTO 1000

Lines 60 to 80 are used to draw the outline of a triangle for the roof
in colour 10 (dark yellow) and this is filled in using the PAINT
command in line 90.

Circles and arcs are also easy to draw in MSX BASIC. The simplest
use of the CIRCLE command is to draw a circle, which can be filled
in using the PAINT command. This is very useful for drawing the
sun, moon etc in your pictures and is illustrated in listing five.

Listing 5
10 REM ** drawing circles **
20 SCREEN 2
30 CIRCLE(lO0, 100),30, 15
40 PAINT(l00,100),15
50 GOTO 50

In this form, the CIRCLE command is followed by the coordinate
of its centre (100,100), the radius (30) and the colour (15). If you want
to change the aspect ratio of the circle so as to make its width greater
than the height, for example, you must change line 30 in the above
listing to something like:

30 CIRCLE(lO0, 100),30, 15,,, 1/3

Notice that the extra commas between the colour and the aspect
ratio MUST be included. The effect of this would be to draw an
ellipse which is wider than it is tall. Changing the aspect ratio to 2/3
would have the opposite effect.

The final thing you can do with the CIRCLE command is to draw
an arc. This is achieved by giving the computer a start angle and an
end angle in radians.

The exact format of the CIRCLE command is best understood by
trying a few examples. Try changing line 30 in the above listing to:

30 CIRCLE(l00,120),50,4,3

or

30 CIRCLE(lO0, 120),50,3,2

Drawing an arc and then using the PAINT command to fill in an
area of the screen is a very useful method of drawing such things as
hills, cave entrances, railway arches etc. The only point worth
noting is that the PAINT command must be used to fill in a
completely closed shape of the same colour. If you attempt to
PAINT a shape which is not completely closed or which has been

Graphics using the line command 185

drawn in a different colour, it will result in PAINTing the whole
scr~en in the chosen colour.

The POINT command is often used in arcade games as a means of
testing the colour of a pixel at a specified point on the screen. In an
adventure game, however, this instruction will be of little use
unless, that is, your game contains an arcade element. The DRAW
command, on the other hand, is one of the most powerful and
sophisticated graphics commands available. With careful use, you
should be able to build up some amazing pictures using the DRAW
command alone.

Drawing instructions are presented as character strings containing
GML (graphics macro language) commands. Try the following
example:

10 SCREEN 2
20 DRA W"Rl20D120L120U120"

1000 GOTO 1000

The effect produced on the screen will depend on whether or not
you have previously used any of the graphics modes. If you run the
program immediately after turning the computer on, a box will be
drawn at the top left hand corner of the screen, but if the computer
has previously used a graphics mode, the box will be drawn from
the last pixel addressed. The computer has, in effect, drawn a series
of lines: first right by 120 pixels then down by 120 pixels, left by 120
pixels and finally up by 120 pixels - back to where it started. In
addition to L,R,U,D, there are a further four elements of GML
notation dealing with movement. The full list is shown below.

CML commands
L <n> left by n pixels
R <n> right
U <n> up
D <n> down
E <n> move diagonally up and right
H <n> move diagonally up and left
F <n> move diagonally down and right
H <n> move diagonally down and left

There will be many occasions when drawing pictures for your
adventure where you need to move your cursor without drawing.
This can be done by using the M <x,y> command. Try the
following example to see how it works.

10 SCREEN 2
20 DRAW"M120,99R100D120L45U23"
30 GOTO 30

186 MSX graphics

As you can see, the computer moves the curser 120 pixels across
and 99 down before starting to draw the lines. All of the above
commands can be prefixed with the letters N or B. Bis used to move
the cursor without plotting any points, whereas N moves the cursor
but returns to the place it started from when if has finished. The
table below shows the full list.

A <n> sets the angle at which a line is to be drawn. It can be
anywhere between O and 3, where O corresponds with O degrees and
3 is 270 degrees.
B moves but doesn't plot any point.
C<n> sets the colour of the line. n must correspond to the
COLOR (between O and 15).
S<n> sets a scale factor which modifies the distance moved in
the other commands.
N moves the cursor, but returns to the last point when
finished.
X<string variable> allows you to execute a draw command
from within a draw command. This is useful if you have previously
defined a graphics shape.

The DRAW command is probably the most powerful and
sophisticated method of drawing pictures on any home computer
and with a bit of practice you should be able to build up some
superb pictures to illustrate your game.

Sprite graphics

Sprites are one of the most important areas of graphics programming
for arcade games, but are not nearly so important when designing
pictures for adventure games. They can, however, be useful to draw
small characters, particularly if you choose the option in the SCREEN
command to define 16 by 16 sprites. Sprites are small graphics
shapes which you can define and move around the graphics screen
totally independently of all other shapes on the screen. Before
starting to define sprites, you really need to familiarise yourself with
some of the terminology.

The graphics screen can be viewed as a plane (or surface) on
which you can arrange your pictures, rather like a piece of paper.
This plane is known as 'plane zero'. The sprites can be viewed as
small shapes which can be placed on different planes above the
screen in much the same way as sticking pieces of paper onto the
background. A sprite on plane 3 will, therefore, appear to be in front
of one on plane 1. Remember, though, that MSX machines will
allow only one sprite at any time on any one plane.

How do we set about defining and using sprites? If you enter
SCREEN 2 without any further numbers, the sprites can be defined
as shapes of 8 x 8 pixels and the first thing you'll need to do is to

Sprite graphics 187

draw your sprite on a piece of graph paper. The diagram below
illustrates this.

16 + 8 + 4 = 28

16 + 8 + 4 =28

8

64 + 32 + 16 + 8 + 4 + 2 + l = 127

8

16+4=20

32 + 2 ~ 34

64+1=65

Fig. 18.2 Sprite graphics design

Each of the small squares you've shaded in corresponds to a
binary number 1 and each empty box corresponds to a binary
number zero. The character is, effectively, built up out of eight rows
of binary numbers and we need to convert these rows into denary
(base ten). There is a way to allow the computer to do this for us, but
it's not a difficult task to do for yourself and storing the BINARY
numbers in DATA lines will use a lot of valuable RAM. Listing 6
illustrates how to convert the shape shown above into a sprite.

Listing 6
10 SCREEN 2
20 A$="":FOR X=l TO 8
30 READ B:A$=A$+CHR$(B)
40 NEXT X
50 SPRITE$(1)=A$
60 PUT SPRITE 1,(100,100),1,1
70 GOTO 70
80 DATA 28,28,8,127,8,20,34,65

The SPRITE$ in line 50 is used to define a sprite. The FOR NEXT
loop is used to read the eight data items corresponding to the eight
rows of the character. These are then added to A$ before the
SPRITE$ command converts it to a sprite. Once the sprite has been
defined, it may be placed on the screen using the PUT SPRITE
command, the exact format of which is described below.

188 MSX graphics

PUT a SPRITE number C on PLANE number A at position (X, Y) in
colour B.

100 PUT SPRITE A,(X,Y),B,C

The simple 8 x 8 sprite may be enlarged to a 16 x 16 sprite by
setting an option in the SCREEN command. To do this, you should
replace line 10 in the above listing with:

10 SCREEN 2,1,0

In practice, however, a more detailed sprite can be defined if you
choose:

10 SCREEN 2,2,0

which allows you to define a 16 x 16 sprite from the start. You will,
of course, require 32 items of DATA to deal with what are,
essentially, four 8 x 8 sprites placed next to each other on the screen.
The first 16 items of data deal with the left hand side of the sprite
whilst the final sixteen deal with the right. The rest of the procedure
is much the same as with defining 8 x 8 sprites. If you are feeling
really adventurous, you can even magnify these 16 x 16 sprites to get
32 x 32 sprites using SCREEN 2,3,0.

Before designing your graphics for an adventure game, it's most
important to plan the structure of your game carefully. The easiest
way to do this is to enter all graphics through a short control
subroutine which in turn calls the individual subroutine for each
location. In that way you won't lose track of where you're up to in
program development. It's all too easy to be dragged away from the
keyboard for a few hours only to return and be unable to track down
where you were up to. Good planning really does help you to
design a program which doesn't need to be patched up to hide the
flaws. With MSX BASIC you have all the tools to handle the
graphics, the only limitation being the somewhat gaudy colours
available.

Adventure, 5, 6
Animation, 100
Arc, 184
Arrays, 12, 36
ASCII codes, 88

Boxes, 182

Cassette, 85, 101, 165
Castaway, 10
Changing data, 63
Cheating, 11
Circles, 94, 184
Clear string space, 34
Climb, 72, 149
Codes, 88
Colossal caves, 6, 171
Colours, 181
Commercial games, 170
Control loop, 41, 107, 137
Control graphics, 93
Control key, 50
Crowbar, 79
Cut, 150

Data, 17, 105
Data compression, 90, 168
Data files, 17, 161
Death, 120
Debugging, 35
Detective agency, 10
Descriptions, 35
DIM, 34
Disc usage, 85, 101, 165
Drink, 74, 127
Drop, 57, 118, 142
Dungeons and Dragons, 7

East, 35
Errors, 35, 37

Fill, 81, 151

Ind

Fire, 146
Flags, 56, 62, 67, 70, 84, 107, 112
Flowcharts, 15, 45, 108, 135
Full sentence decoding, 168
Function keys, 167

Garbage collection, 46
Get, 54, 116, 139, 168
Give, 74, 125
Go down, 83, 146
Go in, 63, 114, 144
Go out, 61, 129, 145
Go up, 73, 147
Graphics, 7, 91, 93, 180
Graphics macro language, 185

Hobbit, 6, 171
House, 183

Ideas, 9
Improvements, 167
Initialising, 103, 133
Insert, 151
Instructions, 167
Inventory, 35, 57, 118, 142

Journey through space, 131
Journey through time, 10
Jump, 147

Kill, 68
Kiss, 129
Knock, 122

Land, 128
Level 9, 170
Light pen, 101
Line, 94, 182
Locations, 34, 94, 105
Load game, 85, 153
Lose game, 51, 116, 148
Lost Horizons, 9 189

190 Index

Maps, 18, 20, 21, 25, 92, 155-157, 173
Maze, 26, 172
Melbourne House, 171
Memory, 8
Movement, 27, 49
MSX, 1,813

North, 35

Objects, 24, 25, 35, 133
Oil, 80
One way, 25
Open files, 161
Out of data, 34

Paddle, 79
Paint, 94, 184
Parser, 179
Pictures, 91
Pixels, 182
Planning, 14
Plant, 81
Play, 120
Playing adventures, 172
Plot, 9, 10, 13, 20
POINT, 185
Pray, 62, 122
PRESET, 181, 182
Press, 83, 148
Printing text, 180
Problems, 177
Pour, 82
PSET, 181, 182
Pull, 65, 149
Puzzles, 87

RAM, 12, 16
Read, 67, 124
READ DATA, 40, 105, 170

Ring, 124
Roll playing, 7

Sail, 127
Sample run, 20
Save game, 17, 39, 84, 153, 161, 174
Score, 53, 150
SCREEN, 30, 91, 110, 118, 180
Search, 69
Snow White, 102
Sound, 91, 121, 123
South, 35
Spelling, 38
Splitting sentence, 52, 117, 141
Sprites, 92, 100, 186
Stab, 126
Story, 11
String handling, 12
Swim, 78,115

Talk, 68
Tape, 84, 85, 101, 165
Testing, 37
Three dimensions, 18, 36, 169
Throw, 70

Unlock, 79, 119
Up, 73
Use, 75

Vampire, 10, 24
Variables, 30, 160

Wave, 66
Wear, 65, 144
West, 35
Width, 30
Win game, 112
Wizard, 16, 19

BOOKSFOR
MSX

OWNERS

Getting started on your MSX
M Edwards & A Harris

For first time users of MSX
computers It explains all
about programming in BASIC
and develops a full feature
BASIC arcade type game at the
same time The listing for the
game is built up gradually to
illustrate each new command
as it is introduced. An
introduction to machine code
and a useful glossary of terms
are also included

Illustrated, 234 x 156mm,
192pp £6 95
0 85242 858 8
PRODUCT CODE No 170079

MSX Adventure Programming
Steve Lucas

The book to teach you how to
write your own adventure
programs, including developing
the plot, drawing the map, and
translating the objects in the
game into DATA statements
High-resolution graphics and
sound are also described, and
listings for three typical
adventure games are
also included

Illustrated, 234 x 156mm,
224pp £7.95
0 85242 857 X
PRODUCT CODE No 170052

The book describes,
demonstrates and illustrates the
full range of useful applications
for the MSX computers. From
word processors, databases and
spreadsheets to problem
solving, from 'bolt-ons' like
cassette and disc drives,
printers, plotters, joysticks,
light pens and mice, to
communications uses-Prestel,
Micronet 80, databases, private
bulletin boards, MSX- net and
Telecom Gold

Illustrated, 234 x 156mm, £7.95
0 85242 852 9
PRODUCT CODE No. 170001

Available from good bookshops and specialist outlets.

In case of difficulties from
ARGUS BOOKS

PD Box 35 Wolsey House Wolsey Road Herne! Hempstead Herts HP2 4SS
Telephone 0442 41221

Please add 10 % of the total cost ordered to cover postage and packing (minimum 50p)

· [TI@rnr:J ITJmm m

	Front cover
	Preface
	Programs
	Contents
	Why MSX?
	Introduction
	1. Getting Started
	2. Writing the data
	3. The main control section
	4. Setting the puzzles part 1
	5. Setting the puzzles part 2
	6. Setting the puzzles part 3
	7. Setting the puzzles part 4
	8. Making life difficult
	9. Snow White part 1
	10. Snow White part 2
	11. Snow White part 3
	12. Snow White part 4
	13. Using a data file to create an adventure
	14. A Journey Through Space
	15. Creating the data file
	16. Adding the final touches
	17. Getting to grips with BASIC
	18. MSX graphics
	19. Index
	Advert
	Back cover

