

MSX Exposed

3 M

Our Order Line Ref: 02207829-001
Your Order Ref: HLH1708

LOAN ITEM DUE BACK BY:25/06/2019

The British Library, On Demand, Boston Spa,
Wetherby,United Kingdom, LS23 7BQ
OnDemand.bl.uk

OTHER MSX COMPUTER TITLES

NSX Games Book (Lacey)
Compiete MSX Programmer's Guide (Sato, Muriel, Mapstone)
MSX Machine Language for the Absolute Beginner (Pritchard)

Ultra High-Pertormance MSX Programs (Sato, Muriel, Mapstone)
Z80 Reterence Guide (Tully)

R s e Y i

MSX EXPOSED

Joe Pritchard

M|

Duuu

eiTISH LIBE ARY
SUPPLY CENTRE

3V APR 1986

fsc,\oa-m__l

SUS

SLBOURNE HOUSE

PUBLISH)

BRS

©1984 Joe Pritchard

All rights reserved. This book 1s copyright and no part may be copled or
stored by electromagnaetic, electronic, photographic, mechanical or any
other means whatsoever except as provided by national law All enquiries
should be addressed to the publishers:

IN THE UNITED KINGDOM—
Melboume House (Publishers) Ltd
Castle Yard House

Castle Yard

Richmond, TW10 6TF

IN THE UNITED STATES OF AMERICA—
Melbourmne House Software Inc.
347 Reedwood Drive

Nashville TN 37217

IN AUSTRALIA—

Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street

South Melbourne, Victoria 3205

Cataloguing in Publication

Pritchard, Joe.
MSX exposed.

Includes index,
ISBN 0 86161 182 9.
1. MSX (Computer system). 2. Software compatibility. |. Title.
001.64'4
EDITION. 7654321

PRINTING FEDCBA9B7654321
YEAR: 90 80 688 87 86 85 84

Contents

Figures
Preface

1 TheMSX System

An introduction to the components in the MSX standard

The Core BASIC

The main commands, statements and functions

Data Structures and Variables

Variable types, expressions, functions and operators

2
3
4 Cassette Tape Storage
5
6

Storing programs, data and areas of memory on tape

The ON Commands

Eror trapping and multiple branching for program control

The Video Display Processor
Elementary and advanced programming of the VOP in
different screen modes, including the graphics macro

language and sprites

35

55

7S

=

7
8

10

12

Joysticks

Using the Joysticks with BASIC programs

The MSX Sound System

Programming the programmable sound generator
(PSG) for sound effects and music

The Programmable Peripheral
Interface

Programming the PPl to access peripheral devices

The MSX Memory Map

Memory management, RAM allocation and the input/
output map

BASIC Style and Sample Routines

Program design and coding, with handy re-usable examples

MSX Machine Code

Information essential for programming MSX computers in
machine language

Appendix: Number Systems
Index

Writeto Us

Customer Registration Card

143

147

163

169

185

193

205

223

227

229

R

e ———

Figures

g
3.1
4.1
4.2
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Block schematic of MSX system

Representation of array A: DIM A (5,5)

Data recorded at 120@ baud (1200 bit/sec)

Form of tape files (sequential files)

Angle convention, CIRCLE statement

Varying the angle argument supplied to CIRCLE

Varying the aspect-ratio argument supplied to CIRCLE
Representation of the Sprite, Multicolour and Backdrop Planes
Sprite definition (1): Size, memory and resolution trade-offs
Sprite definition (2): Mapping on 8 x 8 block

Sprite definition (3): Translating the 8 x 8 sprite shape
Sprite definition (4): Assigning data to the SPRITES$ variable
Sprite definition (5): Translating the 16 x 16 sprite shape
The video display processor registers

Mapping the name table to the screen, mode @
Character defintion

Mapping colour, pattern and name tables to the screen,

mode 2

41

56

63
101
102
103
110
112
114
114
115
116
123
128
130

134

6.14
6.15
6.16
6.17
71
7.2
8.1
8.2
8.3
9.1
10.1
10.2
103
104
12.1

Mapping the graphics tables to the screen, mode 3 136

Mapping pattern-table blocks to the screen (1) 137
Mapping pattern-table blocks to the screen (2) 1798
Functions of bytes in sprite-—attribute block 149
Reading direction (1) From cursor-key combinations 144
Reading direction (2). From the joysticks 144
Envelope modification (1): The sound macrocomrmand 5 151.2
Envelope modification (2): The sound macrocommand M 153
Functions of bits in register 7, programmable sound generator 158
The MSX keyboard table 166
Memory map of slot @ (system slot) 170
Banking of slots 171
Slot-select register (1) Functions of bits 171
Slot-select register (2): Selection example 172

Registers of the Z8@ microprocessor 194

Preface

In this book | give the MSX programmer enough insight into the way in
which the various devices that make up the MSX computer can be
programmed to gain the maximum benefit from the machine. Many of the
demonstration routines for directly accessing the various system
components are written in BASIC, but the principles involved can be
transferred directly to machine code programming.

One thing that | have not tried to do is teach the programmer Z80
machine code programming, which would take a book in itself. Instead |
have given particular note to how the machine code programmer can gain
access to the MSX system components as easily as if the program were
being written in BASIC.

| would like to express my gratitude to all those who have been
involved, directly or indirectly, with the production of this book: Alfred
Milgrom and his marvellous staff, Dr lan Logan for suggesting .the
structure of the book, my family — especially my mother, father and uncle
— who have put up with an absence of mail and visits during the

preparation of the book, and my wife Nicky, who has put up with my
disappearing for several hours at a time to write and type the manuscript.
This book is dedicated to all these people, as well as to the staff of the
South Yorkshire & Humberside Microelectronics Education Programme
Regional Centre . . . and the late Mrs H.M.A. Brownlow for reasons that will

be obvious to anyone who knows me.

Joe Pritchard
Doncaster, 1984

The MSX System

The MSX System is a totally new departure for the home computer; a
series of computers that are compatible with each other in terms of BASIC
Language and performance! Any computer that claims the MSX standard
will be able to run software that has been written for other MSX machines
and MSX computers will have access, therefore, to an extremely wide
range of software. The MSX standard provides a minimum system which
machines must adhere to, thus minimising or totally removing the fears
that software written for one machine in the range will not run on others.
Once the machine possesses this minimum specification, individual
manufacturers will no doubt supply machine specific features, which will
include such items as the electronics necessary to handle a printer and
joysticks. However, certain elements of the system will always be constant,
and it is these parts of the system that this book will describe and explore.
Let's begin by taking a look at the system as a whole.

Minimum MSX Implementation

Figure 1.1 shows a block diagram of the 'innards’ of an MSX machine. This
is not the place to give an indepth description of each of the major system
components; this will be done in later chapters. However, we shall look
briefly at each component of the system to see where it fits in with regard

to the rest of the system.

Z-80 CPU

This is the heart of the MSX System, the Central Processor Unit. It is a
microprocessor chip, an electronic device that, with certain other
components, controls the action of the rest of the system. It can be
controlled by a series of instructions which it performs in a stored
sequence. This sequence of instructions is called a PROGRAM. We will
look more closely at this device in subsequent chapters; suffice to say for
the moment that any computer in the MSX series will have this chip as it's
CPU. The CPU is always running the program contained in the MSX ROM,
and it is this ROM program, called the BASIC Interpreter, that executes
your BASIC program. You can instruct the CPU to run other programs,
that you have written in a language called MACHINE CODE, by using a
BASIC command called USR. We shall meet this command in greater
detail in the chapters concerned with mixing BASIC and machine code in
your programs.

ROM

This stands for Read Only Memory, and contains a program that is
executed by the CPU when the machine is turned on. The program stored
in this area of memory is permanent and unalterable by the user, and
provides the instructions needed by the CPU to enable it to read the
keyboard, execute your BASIC programs and perform the dozens of other
tasks that your MSX computer must do. Any computer in the MSX series
will have a ROM that is very similar to the one in your machine, if not
identical. It is what is called a 32k ROM, there being space inside it to store
over 32000 different numbers, each number having a value between 0
and 255 and representing an instruction to the Z-80 or part of an
instruction or an item of data that the CPU may need to perform its tasks.
More details about 'k's and numbers will be given in the appendix, which
will investigate number systems.

RAM

Thisis anothgr area of memory in the computer, but is of a different type to
the ROM. This memory is called Random Access Memory, and the user

can modify its contents with no difficulty. This 18 where your BASIC
program lives when you have typed it in, and it 18 also the memory that the
computer uses as ‘scrap paper’ when it is running your programs Any
variables that your BASIC program declares while it is running are stored
in RAM. Commands like CLEAR and NEW affect RAM, CLEAR sets all
numeric vanables to zero and all string variables to empty strings by
directly affecting the area of RAM that holds the vanables. NEW clears
away a program from the memory of the computer by again directly
affecting the contents of RAM. The BASIC command POKE also enables
the user to modify RAM, as we shall see when we come to write machine
code programs for the machine. There is one final, and rather drastic way,
to modify RAM, and that is to turn the computer off!

The minimum amount of RAM that an MSX system can have is 8k,
and you can add memory to your system via the slot system. More details
about slots will be given in the chapter on Memory Maps.

Cartridge Slot

This is again a vital feature of the MSX concept, and all computers flying
the MSX pennant should be totally compatible in this respect. The slot is a
means by which the on board memory can be added to in various ways.
There are 4 slots on the minimum MSX system, and it is possible to add
more. For the moment, we will simply describe the slots as means of
adding more ROM or RAM to the system.

Video RAM

This is a special type of RAM that is totally dedicated to holding the
information used to put the display together. Whereas the normal RAM is
directly accessible to the CPU, the Video RAM is not. The CPU alters
memory locations in Video RAM by using the Video Display Processor.
There is 16k of Video RAM, commonly abbreviated to VRAM, and this
abbreviation will be used throughout this book.

Video Display Processor

This is another device that any computer in the MSX range must possess.
The Video Display Processor, or VDP, is a device dedicated to the control
of the video or television display of the computer. In the MSX series, the
device used is the TMS9918A or a chip that is very similar. The VDP s
directed by the CPU, and provides 4 different types of display. These
display types are called display MODES, and will be dealt with in greater
detail in a subsequent chapter. The VDP interfaces the computer to the

e

display unit that is to be used with the computer, All the information that it
requires to produce the display is held in VRAM, and the way that the VOP
interprets this data depends upon the display mode in use. VRAM is
modified whenever the user writes anything to the screen, uses the CLS
command, the COLOR command, VPOKE or any of the sprite related

commands.

Programmable Sound Generator

This device is the third chip that is central to the MSX concept and must in
all machines be compatible with the General Instrument AY-3-8910
device. The abbreviation that we shall employ for Programmable Sound
Generator is PSG, and it is responsible for the wide range of sounds that
can be obtained from the MSX computers. It interfaces directly with the
CPU and is controlled by the CPU. It is also responsible for implementing
the Input and Output functions of the system that are accessible to the
user, usually in the form of Joysticks.

System Input/Output

The CPU needs to be able to interact with other devices apart from the
display and the sound generator. These include such things as tape
recorders, the keyboard, and printers. The interface between these
devices and the CPU is called the Programmable Peripheral Input/Output
chip, or PPI for short. The PPI must be compatible with the 8255 device. It

is controlled by the CPU.

That sums up the essential components of the MSX computers.
Subsequent chapters in this book will describe how each component fits
into the system, giving the user an insight into the operation of the
computer. However, let's take a brief look at how the components are
connected together. Figure 1.1 shows how the components of the system
interact with each other; but exactly how does data pass between, say, the
CPU and the Read Only Memory?

The BUS System

In computing, the BUS is not the large, wheeled vehicle that we all
manage to miss at bus stops. A bus in a computer is a collection of
electrical conductors that carry electrical signals representing either a
binary ‘1" or a ‘0’; signals are conveyed around the computer in a binary
form, and such a 1 or 0 is called a binary digit, or BIT. If you are interested
In the binary system, then an account of it is given in the appendices at the
end of the book. 8 of these bits make up what is called a byte, and this is

AHOW3W HO

HOLVYHINIO

JHYMNYHIS AHOW3IN NdO anNnos
A, T B A ¥ i I18YWAVHOOHd ©Sd
— Eqm MO m_oav — — 30V4H3LNI
1 WvY WOH 087 H3IHdIH3d
.moo_mhmd‘o ‘ ‘ JIGYWAVYHOOYd ‘Idd
D D C Q ¥H3HdIE3d 1Nd1NO
A ™ ANV LNdNINV SI
IHL ,
A SNY v1va ANV SS3HAaQyv p G R
| g J\\\.Il,uv .. J\JU J\N’Inv v
WVYH
O3dlA
| S | N L/\r D
HOLINOW D
HOSS3O04Hd
13S AL _m D AV1dSIAa O3AlA
S~
H3INV3dS _UH_T 9Sd M_ MOILSAON
. H3QHO0O3H o . H3QHOD3Y
3dvL [5=7]- % eun =4 3dv.l
H3LNIEd ﬁu (== QuvosA
~ v/ o e ~ 7/ N\ — /S
S1Nd1noO S30V44H31INI S1NdNI

BLOCK SCHEMATIC OF MSX SYSTEM

FIGURE 11

the basic unit of data transfer around the CPU. This byte can represent
numbers between the values of 0 and 255, and all the numbers that are
used by the CPU are represented by bytes.

The data bus, which is the means of transferring information from the
CPU to the memory, PSG or VDP, carries bytes around the computer, the
bytes representing a given number being placed sequentially on the data
bus.

How does the computer know what to do with a number on the data
bus? Well, there is a second bus in the computer called the ADDRESS
bus, which is 16 bits wide. This can carry numbers between 0 and 65535,
and each of these numbers refers to a certain unique location in the
memory of the computer. When it puts a byte of data on the data bus, the
CPU also puts the address of the memory location to which it is to be
written on the address bus. This address could refer to a memory location,
part of the PPI or the VDP or sound generator of the computer system.

A third bus in the computer controls all these data transfers. This is
called the control bus, and it informs devices connected to the address
and data buses whether the CPU wants to read data from the device or

write data to it.

The final bus in the computer is that linking the VDP to the Video RAM.
This bus system, consisting as it does of a data and an address bus, is not
usable by the CPU but can only be accessed by the VDP.

We have now met the main components of the MSX computer
system. In the next Chapter, we'l examine the simpler aspects of MSX
BASIC. Should you have difficulty with some of the concepts introduced,
don’t worry. Such ideas as expressions, variables and constants | will

explain in Chapter 3.

The Core BASIC

In this chapter you will find quick descriptions of all the common BASIC
commands. These commands are in no way specific to MSX BASIC, and
so | have called the commands and statements listed in this Chapter the
Core Statements. None of the commands listed in this Chapter relate to the
excellent graphics or sound capabilities of the MSX computers; these
features will be described in detail in later chapters. The role of this chapter
is to provide a ready reference guide to the main BASIC statements that all

programs use.

The first commands we will look at are those that are used in Direct
Mode, that is, without any line numbers. They are principally commands to
help us write programs, such as commands to list the program we've

written so far.

AUTO n,m

This command generates line numbers automatically. It can be invoked by
typing in the word, or by using the function key F2. The first line number

generated is n, and subsequent ones are separated by the increment m.
Thus

AUTO 10,10

will hence generate line numbers at 10,20,30 . . . etc. The highest line
number that is allowable on the MSX machines is 65529, and if AUTO
generates a line number higher than this, or if you type one in, the error
message ‘‘Syntax Error” will be generated. If the line number generated
by AUTO is already occupied by BASIC statements, then a ““*"" is printed
after the line number to warn you of this fact. Typing RETURN at this point
will preserve whatever is on line. AUTO can be exited by either typing
CTRL-C or CTRL-STOP. AUTO n, will generate line numbers starting at
line n with the last specified increment.

It is often useful to leave blank lines in programs to separate one part
of the program from another. If you simply type in a line number followed
by a space on the MSX system, then the line is not inserted. However, the
" can be put at the beginning of a line and appears to cause no
problems. Thus

100
will give a line blank except for the **:"" at the line 100.
If you type in a line without spaces, e.qg.
10REM

spaces will be inserted at the appropriate places in the line, giving
10 REM.

CONT

This command is short for Continue, and it resumes execution if the
program is stopped by the use of CTRL-STOP. To restart the program,
type in the command and press RETURN. If the program has finished
execution altogether then CONT will have no effect. CONT cannot be used
as a statement in a program line. Also, if the stop was caused by an error
condition, CONT is not likely to be effective. Finally, CONT will not work if
the program has been edited since CTRL-STOP was pressed.

DELETE n-m

This command allows us to delete blocks of lines from the program. n is
the first line of the block to be deleted and m is the last line. DELETE n will
just remove line n from the program. DELETE -m will delete all the
program lines between line 0 and line m, including line m. Thus

DELETE -100

will delete all lines in the program from line 0 to line 100 inclusive. DELETE
100-, which we might expect to delete all lines from the program between
line 100 and the end of the program, is not allowed. If the m parameter is
less than the n parameter, as in

DELETE 300-200

then an error is generated. Also, if the lines referenced by the command
do not exist, an error is generated. Delete can be used as part of a
program line, but as soon as the delete operation has been completed, the
computer stops executing the program and returns to Direct Mode.

LIST n-m

Allows you to look at the program you are writing. n and m are line
numbers, n being the lowest line number of interest and m being the
highest. If the command LIST is used without any parameters, then the
whole of the program is listed to the screen. If it is apparent that the listing
will disappear off the top of the screen before you have read it, then a
single press of the STOP key will cause the listing to pause for a while. The
listing can be restarted by pressing the STOP key a second time. This can
be done as often as is required. If parameters are used, then the
command works as follows.

LIST n Lists the line, n
LIST n- Lists from line n to the end of the program.
LIST -n Lists from the start of the program to line n.

LIST n-m Lists lines n to m of the program including
lines n and m.

Listing is exited by CTRL-STOP. List can be a statement in a program, but
as soon as the listing is completed the computer enters Direct Mode and
program execution ceases.

LLIST

This command is similar to list but sends the listing to a printer if one Is
connected. If a printer is not connected and the command is issued, the
computer will “hang-up" until CTRL-STOP is pressed. Control will then be
returned to you with the message ''Device /O Error''. The parameters that
can be passed with this command are the same as those for the LIST
instruction.

NEW

This command wipes a BASIC program from the memory of the computer.
The command can be incorporated into a program line, but as it would
wipe the program from memory as soon as it was executed, | don't see
many applications for it in this role!

RENUM

RENUM renumbers programs, maintaining the sequence in which lines
appear in the program but altering the actual line numbers that the
statements possess. The syntax for the command is

RENUM new, old, increment

new
new is the first line number to be used in the new sequence.

old

old is the currently existing line number that is to be used as the starting
place for the renumbering operation.

increment

This is the ‘gap’ to be left between adjacent program lines.

The parameters old and increment are not compulsory; if they are

absent then the computer assumes a value of 10 for both parameters.
Here below is an example of its use.

1 REM 1
2 REM 3
3 REM 4

10

Renumber this now, using RENUM 10. This gives the range

10 REM 1
20 REM 3
30 REM 4

Renumbering this with the command RENUM 10,110,100 will give

10 REM 1
110 REM 3
210 REM 4

As with AUTO, RENUM cannot generate line numbers greater than
65529. All GOTO's and GOSUB's that are found in the program are
renumbered to take the new line numbers into account. If a GOTO or
GOSUB makes a reference to a line that does not contain any BASIC
statements — i.e. a non-existent line — then the renumber goes ahead but
an error is generated for each occurrence of a non-existent line number.
The message generated is “Undefined Line n inm’’, where n is the non-
existent line number and m is the line number of the statement that caused
the problem.

RUN

Typing in this command will cause the computer to execute the BASIC
program currently in RAM, starting at the lowest line number in the
program. If the word RUN is followed by a line number that is in the
program, then the computer will execute the BASIC program from that

line.

TRON

This command can often prove to be invaluable in getting your programs
working properly. It stands for Trace On, and after this command has been
issued, a running program will print to the screen each line number as that
line is executed. It is disabled by either NEW or TROFF. It can be used as
part of a program line or in Direct Mode.

10 PRINT ""Hello”

20 PRINT "“Goodbye"
30 TRON

40 PRINT "“MSX"

50 TROFF

1"

will produce this when run

Hello
Goodbye
(40]) MSX
(50

The next group of BASIC statements that we will consider are all
concerned in some way with variables. We have already met the LET, DEF
var and DIM statements, and so these will not be discussed here.

CLEAR n,m

Both n and m are optional parameters. CLEAR on its own will perform the
following functions:

I Clears all numeric variables to @
il Sets all strings to be ‘empty’.
i Closes any files that are still open.

If the n parameter is specified, then the CLEAR n command sets up
STRING SPACE. On turning the computer on, the MSX BASIC allocates
200 bytes of memory for use by string variables. Should you require more
space than this for string variables, then you must use the CLEAR n
command to generate more string space. CLEAR 250 will thus reserve
250 bytes of RAM for string variables. To see what happens when you run
out of string space, try the following commands.

CLEAR 0
A$ = ‘‘fred”

The m parameter specifies the highest location in the memory of the
computer that is available to BASIC programs and variables. This allows
the programmer to put an area of RAM ‘out of bounds’ to the BASIC
system. This means that the area of RAM set apart in this way is a safe
resting place for machine code programs.

ERASE array1, array?2, . . .

This command allows you to selectively clear arrays from the vanable
space of the computer without affecting the values of other variables. The
command is most useful for redimensioning already existing arrays,
without getting the *‘Redimensioned Array" error. Simply use ERASE, and
then redimension the arrays using DIM statements.

12

ERASE fr.ea

will erase the arrays fr and ea. The command can be used in program lines
or in direct mode.

INPUT

One of the most important commands in BASIC. We have seen how we
can assign values to variables in program lines so that when the program
is executed the variables are given the value. However, what happens if
we want to change the value of the variable while the program is running?
Well. the INPUT command causes execution of the program to halt so that
the user can type in numbers or strings that will be assigned to certain
specified variables. The syntax for the input command is

INPUT “‘string constant’’; variable list

The string constant is optional, and we will look at it in greater detail shortly.
The variable list consists of a number of variable names separated by
commas. Thus

INPUT ASD

will allow the user to assign values to the variables A, S and D. Note how
we only require the semi-colon when we have used the string constant.
Array type variables may also have values assigned to them using the
INPUT statement, and string variables can also be part of the variable list.

Thus
INPUT A$,A(1)

is quite legal. When the above command is encountered in a program, the
computer prints a prompt to the screen in the form of a *?". If the string

constant is specified, as in
INPUT ““Type in the first number'’; A

then the string constant is printed to the screen followed by the ‘?'. The
string constant is called a PROMPT STRING.

When the user comes to type in the response to an INPUT statement,
then the type of value typed in by the user must correspond to the variable

13

type expected by the INPUT statement. In the statement
INPUT A(1),A(2).B

the user is expected to type in 3 numbers; there are two ways in which this
can be done. If the user were to type in just one number and then press
RETURN, a second prompt, *??’, would be generated. This type of prompt
is generated every time that the computer is expecting another item of
data to be typed in. The second method is to type in all the data items at
once, separated by commas. Thus suitable data for the above INPUT
statement could be typed in as shown below:

? 1,2,3 (RETURN)

If a string input is requested, the quotation marks are not required. If,
however, you type in a string when a numeric value is expected, the error
message “‘Redo from Start” will be issued, and you will have type in ALL
the responses to that particular INPUT statement again, even if the
previous values typed in were legal. If more data items are typed in than
were expected by the INPUT statement, then the message “‘Extra
Ignored” will be displayed. This means exactly what it says; the data items
that were typed in that were surplus to requirements are simply
disregarded.

An INPUT statement can be terminated by either CTRL-C or CTRL-
STOP. The problem with both of these operations is that program
execution is halted as well. The program can, however, be restarted by
using the CONT command.

LINE INPUT ‘“‘string constant’’;
string variable
Try the below program:

10 INPUT A%
20 PRINT A$
30 GOTO 10

Run it, and type in a few strings to confirm that it works. Now type in a
string containing a comma, and see what happens. The *“'Extra Ignored”
message is generated, and the PRINT statement at line 20 only prints up
the string that was entered up to the comma. One way around this is to put

14

the string that is typed in quotation marks, but this method has problems if
you want to have quote marks as part of the string. LINE INPUT gets us
around all these problems. Change Line 10 in the above to

10 LINE INPUT A$

and re-run the program. The first thing that you will notice is that the "7’
prompt is not printed. Each character that you type in is added to A$. If
you want a prompt to be put to the screen, then a string constant can be

used, as shown below.

LINE INPUT “Only string variables”; a$

CTRL-C and CTRL-STOP have effects similar to those noticed with the
INPUT statement.

READ, DATA and RESTORE

Imagine that we have written a program that requires the names of the
months of the year to be held in a string array called year$(12). One way
that we might put the months into the array is shown below.

10 DIM year$(12)
20 year$(1) ="January”
30 year$(2) ="February”

and so on. This works, but takes up quite a lot of program space to do 12
separate assignments to the array. A more efficient way of assigning the
months to the array is to use DATA and READ statements to provide a
means of reading the months from a list held in the computer program and
assigning them to the elements of the array. The FOR-NEXT loop that we
have used in this program will be explained shortly. At this time, suffice to
say that we use it to read items from the data list and assign the data item
read to a particular element of the array, the value of the subscript
depending upon the value of the variable |.

10 DIM year $(12)

20 FOR I1=1TO 12

30 READ vyear$(l)

40 NEXT |

50 END

60 DATA January,February,March,April, May,

June
70 DATA July.August.September,October.November

80 DATA December

15

Lines 60 to 80 prowide a list of the months that we wish to be read into
the array. Each begins with the word DATA and consists of a senes of
stnng constants separated from each other by commas, Of course, in
another program, the DATA statement might be a list of numbers or a
mixed hst of both numbers and strings. However, in each case the values
must be constants and must be separated from one another by commas |f
a string constant in the list contains a comma as part of the string, then it
must be enclosed in quotation marks. Quotation marks are also needed if
traihng or leading spaces are 1o be included as part of the string. Normally,
‘spaces like these, at the beginning or end of a string, are discarded when
the computer makes use of the list. These DATA statements are not
executed by the program. A series of DATA statements in a program,
even if they are separated by lines containing other statements, are
considered to be one long list of constants. The start of the list is always at
the DATA statement with the lowest line number and the end of the list is at
the end of the DATA statement with the highest line number.

To access the constants that are held in DATA statements we use a
statement called READ. READ is followed by either a single vanable name
or a list of variable names that are separated by commas. Reading the
DATA statements is done by the vanable folowing the READ statement
being assigned the next value in a DATA statement. If no other READ
commands have been issued, for example, the first READ staterment will
assign to its vanable the first constant in the first DATA statement in the
program. In the example above, for the first tme the READ command was
executed, the constant “'January” was read into the array.

To clarify matters, imagine that there is a pointer in the BASIC
interpreter that, on running the program, pomnts 1o the first item in the first
DATA statement of the program. The first READ statement encountered
will read this value into its variable, and then move the pointer on 1o point
to the next item in the DATA statement. Any subsequent read operations
will smply move the pointer towards the end of the list. If the pointer is at
the end of a DATA statement, then after the next READ the pointer will
point to the first item in the next DATA statement. If this next DATA
statement does not exist, then the next READ will cause an 'Out of Data’’
error message 1o be issued. If the pointer still points to data items, but no
more READs occur, then the extra items are simply ignored.

What happens if we wish to get a data tem from a DATA statement
that has already been read? We cannot go backwards along the list using
READ, but the command RESTORE enables us to reset the pointer to the
first item in a DATA statement on a particular ine in the program.

16

RESTORE when used alone will set the pointer to the first item in the
first DATA statement in the program. A command such as

RESTORE 3000

will set the pointer to point at the first item in the DATA statement at line
3000. It is not possible to restore the pointer to a given data item within a
line, only to the first item on the line.

MID$ (string expression 1,n,m) = string
expression 2

MID$ gives us the opportunity to replace part of one string, string
expression 1, with another string, string expression 2. String expression 1
CANNOT be a string constant. n is the position of the first character in
expression 1 that will be replaced by the characters in expression 2. For
example;

A$ = "QQQQQQQQQ”
MID$ (AS$, 2) ="ELP”
PRINT A$

will return “QELPQQQQQ" as the value of A$. m is optional and refers to
the number of characters from string 2 that you want to be put in string 1.
The result of the replacement will be a string that is never any longer than
string 1 was in the first place.

SWAP var1i, var2

This command, as its name implies, swaps the values of var1 and var2.
String variables or numeric variables can be included, but it is not possible
to do a SWAP with one parameter a string variable and the other a
numeric variable. Neither of the parameters of the swap command can be
a constant.

* Kk %

The next group of commands we will look at are the BASIC
commands that are not DEVICE SPECIFIC. These commands, which we
will discuss in later chapters, are commands that work by sending
information to or reading information from the other chips in the MSX
computer; strictly speaking, you might say that commands such as PRINT
and INPUT are device specific, as they obviously send data to the VDP in

17

order for it to appear on the screen. However, these (wo Commands are
available in all versions of the BASIC language, and 8o | believe that | arm
justified in saying that they are not Device Specific commands. | zamples
of the latter are the SCREEN command, which operates in conunchion
with the VOP, and the SOUND command, which works with the P50

DEF USRn = integer expression

This is used by advanced programmers to inform the computer of the start
address of a piece of machine code. n is a digit between O and 9, and il i
is omitted the value assumed by the computer 16 @. The Integer expression
should evaluate to give the start address of the piece of machine code,
and so should give an integer in the range 0 to 65535, The addresses
corresponding to different values of n can be redefined throughout thc
program as many times as is necessary. The command USRn is used in
conjunction with this command and further details will be given there.

END

Nothing spectacular, this command simply causes program execution o
halt, and the computer to return to Direct Mode.

ERROR integer expression

As you will no doubt have noticed, your computer lets you know when you
have made an error in your program. The various error messages that are
printed by the computer all have a number associated with them. Thus the
error that causes the message '‘Out of Data’’ to be printed has the number
4. The command ERROR allows us to simulate any error that we so
choose by using this code number. Thus issuing the command

ERROR 4

will cause the “‘Out of Data"” message to be printed, just as if the error had
been caused by trying to READ past the end of a DATA statement. If this
statement were in a running program, then the program would stop
running with this message. However, errors generated in this way can, like
all errors, be trapped by the ON ERROR command, which we shall look at
in Chapter 5. If you do some experiments with the ERROR command, you
will find that some values of the integer expression generate the message
"Unprintable Error”. Such numbers can be used to generate ‘‘user
defined" errors, which will cause control to pass to the ON ERROR routine
if the program has one, or will cause the program to stop with the error
message if it hasn't. The numbers that give this error are 23, 26-49 and

18

60-256. It you want to add your own error messages, then you are strongly
advised to do 80 using the numbers between 60 and 255, as the others
are reserved for future expansion of the MSX system.

ERR and ERL

These are system variables — i.e, variables whose value at any time can
only be changed by the BASIC of the MSX system or by machine code or
other advanced programming methods.

ERR holds the number of the last error that occurred, whether the
error was caused by a program error or use of the ERROR statement.
More will be said about its use when we consider ON ERROR in Chapter
5.

ERL gives the line number at which the last error occurred, again
irrespective of what caused the error. If the error was generated in Direct
Mode, then ERL has the value 65535.

FORvar = x TOy STEP z
NEXT var

This is the first CONTROL STRUCTURE that we have encountered in MSX
BASIC. A control structure is a command that controls the flow of the
program. Normally, a program begins running at the lowest line number
and carries on through the program executing each line in turn. However,
if we need to execute some lines repeatedly, or miss some lines out, we
use what is called a control structure. The FOR-NEXT loop, as it is called,
enables us to execute a block of program lines a given number of times.
Other control structures are GOTO, IF ... THEN ... ELSE and GOSUB
. RETURN. These will all be examined in this section of the book.

x is the initial value of the variable var, which is called the control
variable of the loop. y is the final value, or limit value, that var will attain. z is
optional, and x, y and z are all numeric expressions.

The program lines between the FOR and the corresponding NEXT are
then executed repeatedly until the value of var exceeds the limit value.

After the statements between the FOR and NEXT have been
executed, the variable var is incremented by either 1 or the value z if the
STEP feature is present. Once the value of var exceeds the limit value, the
statement immediately following the NEXT is executed. The loop

19

10 FOR | = 1 TO 10
20 PRINT |
30 NEXT |

will print the numbers between 1 and 10 to the screen. If we had STEP 2
on the FOR statement, then the numbers 1, 3, 5. . . would be printed. Try
experimenting with the commands to get used to them. If you want to go
from a high value of x to a lower value of y then we simply have a negative
STEP value. The values of x,y and z need not be integer, but in many
‘programming applications they are. The variable name following the
NEXT statement is not necessary, but it helps program readability if it is
present.

We can have FOR . . . NEXT loops within other FOR . . . NEXT loops.
This is called NESTING the loops. It is essential in these cases that the
NEXT for the inner loop is encountered by the FOR of the inner loop before
the NEXT of the outer loop is executed. Thus

FORI=1TO10
FORJ=1TO10

is legal, whereas

FORI=1TO10 ,
FORJ=1TO10

will cause problems. The default type of the numeric variables used in FOR
... NEXT loops as control variables is Double Precision. We very rarely
require this type of accuracy in this application and so single precision or
Integer can be used instead. This has two effects; space is saved when the
variables are stored in memory, and the loops are executed more quickly
when single precision or Integer type variables are used. Try the program

_below, with Double and Single Precision and Integer variable types for |.
Details about the TIME function will be given later. Here we will justuseit to
get a relative time for each variable type.

10 DEFDBL |

20 TIME = 0

30 FOR | = 1 TO 200: NEXT |
40 PRINT TIME

The results that | obtained on the Sony HB-55 MSX machine were as
follows:

Typeof | TIME
Double Precision 23
Single Precision 20
Integer 10

Omitting the | from the NEXT statement causes the times to be- 19, 16 and
6 respectively. Putting the NEXT on a separate line gives times of 20, 17
and 7. Thus, if speed is required, the control variable of a FOR . . . NEXT

loop should be Integer.

GOSUB and RETURN

In programs, we often have sequences of statements that are repeated in
many places throughout the program. We can replace each of these
sequences by a GOSUB n instruction, where n is the line number of the
sequence of instructions that we wish to be executed at that point in the
program. We thus only need one copy of the set of instructions to be kept
in the program, and this copy is called a SUBROUTINE. A subroutine
always ends in the command RETURN, which passes control of the
program back to the statement following the GOSUB. The line number that
is referenced by the GOSUB statement must be a numeric constant; unlike
some other BASIC dialects, the line number must not be a variable or

expression.

It is a good idea when writing programs to separate your subroutines
from the main part of the program by an END command or a STOP
command. Should a RETURN be executed without a corresponding
GOSUB then an error will be generated. For this reason, | tend to keep all
my subroutine definitions at the end of my programs, and | split them up
by using REM statements (see later) to give the title and function of the

sub-routine that follows it.

GOTO n

As we have already noted, a program is normally executed in the numeric
order of the line numbers. A GOTO n statement will cause control of the
program to pass to line n. Use them very carefully — a program that is full
of GOTO statements is very difficult to read and understand. As with
GOSUB statements, the line number specified must be a constant. If the
line number specified does not exist, then an error will be generated. The
command can be used for the purpose of running a program, or portion of

21

a program without clearing the variables, by typing in GOTO n, where n is
the number at which you wish program execution to start

IF expression THEN statements
ELSE statements

IF expression THEN GOTO nn ELSE
statements

This control structure enables the computer to perform certain statements
only if certain conditions are met. The expression is any BASIC expression
that returns a ‘true’ or ‘false’ result. If the result of the expression, when
evaluated, is true then the statements immediately after the THEN are
executed. Otherwise the statements following the ELSE are executed.
Thus, only one group of statements out of the two are executed whenever
the line is executed. The IF . . . GOTO construct is a special case of the IF
... THEN construct where the THEN is not required. In this case, the
GOTO nn is executed if the expression evaluates to true. In the IF . ..
THEN . . . ELSE statement, the statements after the THEN and ELSE can
be replaced by line numbers it desired

100 IF I <6 THEN 200 ELSE 300
which is the equivalent of the statement
100 IF1 <6 THEN GOTO 209 ELSE GOTO 300

IF...THEN . ..ELSE statements can be nested, each ELSE matching up
with the nearest unmatched THEN. This can, however, get rather
confusing, and whereever possible it is advisable to keep these statements
on separate lines. If the line number that follows an ELSE, THEN or GOTO
statement does not exist, then an error will be generated.

KEY, KEY LIST

One interesting feature of the MSX computers is that they have a series of
keys which are called Function Keys. You will probably be aware that
several BASIC words can be entered into the program or in Direct Mode
simply by pressing the appropriate Key. For example, pressing F2 will
activate the AUTO command, and F5 will RUN the BASIC program
currently resident in your machine. However, it is also possible to change
what these keys do, using the KEY n command, where n is a number in
the range 1 to 10. Thus the commands

22

A$ = “PRINT"
KEY 1, A$

will cause the word PRINT to be printed every time Key 1 is pressed. This
particular example will leave the cursor immediately after the word, so that
you can type in more text. If you wish the command that you place in a
function key to be executed immediately, then you can cause the
computer to think that the RETURN key has been pressed when the
function key has been pressed by the method below. CHR$ (13) simulates
the pressing of the RETURN key.

KEY 1, “PRINT A” + CHR$ (13)

The string that we put into the function key must be less than 15
characters long.

The KEY LIST command lists the current contents of all the function
keys.

Further insight into how the function keys can be used will be givenin
Chapter 6, when ON KEY will be discussed.

ON GOTO and ON GOSUB

Although these commands begin with the word ON, they are slightly
different in the way in which they function to the ON commands that will be
discussed in Chapter 5. These commands give us a way of transferring
control to a line number depending upon the value of a BASIC variable or
expression. The syntax is shown below.

ON expression GOTO linet, line2, line3 . ..

If the value of the expression is 3, for example, then the third line number in
the list of line numbers after the GOTO would be jumped to. Thus in the

program section

100 A = 2
110 ON A GOTO 200, 300, 400

the destination line number would be 300. If the expression evaluates to a
non integer number, then the fractional part is simply disregarded. In the
ON ... GOSUB construct, the line numbers are the first line numbers of

subroutines.

23

If the value returned by the evaluation of the expression i1s ® or greater
than the number of items in the line number list, but still less than 255, then
the execution of the program continues with the next statement that 15 after
the ON ... GOTO or ON .. GOSUB statement If. however. the
expression returns a result that is more than 255 or s negative, then an
“lllegal Function Call'" error is generated.

POKE address, integer expression

This command is of use when we need to directly alter a value held in a
certain address in RAM The address in the syntax above is the address of
the byte to be altered and the integer expression is the new value that 1s to
be written to the location. The address should be between -32768 and
+65535. If the value of the address is negative, then the machine will
poke (address + 65535) with the new value. The integer expression must
return a value between 0 and 255.

PRINT list of expressions

We've already used the PRINT command in a couple of the demonstration
programs. It does as its name suggests — prints the value of an
expression to the screen. The command PRINT when issued on its own,
either in Direct Mode or as part of a program line, will cause a blank line to
be printed to the display. PRINT followed by a numeric or string
expression will print the value of the expression to the screen. MSX BASIC
divides each line of the screen into PRINT ZONES. (Note. The PRINT
command will not work in certain screen modes; these will be discussed
when we examine the VDP in detail.) Each print zone is 14 characters
long. Where a value is printed in relation to these zones depends upon the
character used to separate expressions from one another in the
expression list.

causes the next expression value to be printed at
the beginning of the next print zone.

" causes the next expression to be printed
immediately after the last one.

It a PRINT statement finishes with either of these characters, often called
DELIMITERS, then the next PRINT statement will print its expressions in
accordance with the above. If the list of expressions is t0o long to fit on one
line, or if a single expression returns a value that is too long to fit on one
line, then the values will be printed to the next line. The character '?' can
be used instead of the word PRINT, as in

24

? "Hello"
which is the equivalent of PRINT "Hello".

PRINT is one of the most versatile commands that we have met so far.
Because of the variety of ways we can print to the print zones on a given
line, it is well worth playing around with the command, seeing exactly what

you can do.

PRINT USING string expression; expression
list

The PRINT USING command enables us to print strings or numbers to the

display in accordance with a preset format. For example, it enables us to

have numbers printed out to a set number of digits both before and after

the decimal point — very useful if we are printing tables of data to the

screen. The string expression in the syntax above is called a formatting
string, and it contains certain non-alphanumeric characters.

Let's take a look at these formatting characters, first examining the
ones that are used to format string expressions.
‘!D
This character simply prints the first characters only of each string in the
expression list, e.g.

PRINT USING "!"’; ""Hello”; “Goodbye"

will return
HG

as the result. Incorporation of numeric expressions in the expression list
generates a ‘'Type Mismatch™ error.

& n spaces &

This formatting string consists of 2 ampersands separated by n spaces.
2 +n characters from the string in the expression list will be printed to the
screen. If you allow n to equal 0 then 2 characters from the string
expresion will be printed. If the 2+ n is longer than the string expression,
then the string expression is printed to the display with trailing spaces.

PRINT USING “& &": “CATTLE"

will return 'CAT"' to the display.

25

SR

@

This character gives us a method of placing string variables in the middle
of a string constant. The method of use is slightly different to the other two
formatting characters that we have encountered, as there is no formatting
string as such.

A$ = ""MSX"
PRINT USING "“This is an @ computer'’; A$

Other characters are used to format numeric expressions. Let's now
look at these in a similar fashion.

#

This character enables us to specify the numbers of digits we wish to have
printed before and after the decimal point in a numeric expression. For
example, “##.##" as a formatting string will specify 2 digits to be printed
before the decimal point and 2 digits to be printed after the decimal point,
e.qg.

PRINT USING "##.##"; 10.2

will return
10.20

to the display. Replace the 10.2 with 100.7. This is printed as %100.70.
The ‘%’ indicates that there is an excess digit in the number, in this case
the 1 in the hundreds column. Try other numbers, such as 0.37 or 1.37. In
these cases a space is printed to the left of the first digit. A +° sign at the
beginning or end of the format string will print the sign of the number at the
beginning or end of the number. For example,

PRINT USING “+##.#4"; 1.3
will print the sign of the number to the left of the number.

A '-" character at the end of a formatting string will print the number to
the appropriate number of digits with a trailing minus sign.

e

added to the front of a formatting string for specifying the
number of digits to be printed will print leading ‘*’ characters if required
instead of leading spaces, e.g.

PRINT USING “**.##".2.2

26

will print *2.20 to the display. Similarily,
PRINT USING "**#.##°',10.3

will print *10.30. Note that these numbers, when formatted in this way, are
rounded up or down according to their value so that the number is
accurate to the number of digits shown.

¥¥

This is of minimal use to the European user. It is used in conjunction with
the ‘# characters, and represents 2 digit positions to the left of the decimal
point, one of the character positions being occupied by a "Y' character.

Thus

PRINT USING *‘¥¥.## 1.3

will print up ¥1.30 to the display.

[
L

The comma is quite useful in numeric formatting. Again, it is used in
conjunction with the ‘# characters. Placed to the left of the decimal point, it
causes a comma to be printed to the left of every third digit to the left of the
decimal point. For example,

PRINT USING "'#####, #%',10000.2

will print 10,000.20 to the screen.

s AAAA 90

Placed after the ‘#' characters in a numeric formatting string, it indicates
that the number is to be printed to the display in exponential format.

PRINT USING “#.# mm™7.4

will print 0.7 E +01.
There is one possible error that can turn up with numeric formatting

strings. This is when we specify more than 24 digits to be printed. A
formatting string can be a string variable. E.g. AS = “HE.HE".

REM is short for REMark — it allows you to place comments in the
program that have no effect on the correct execution of the program.

27

100 REM This is a remark

The line can be jumped to by GOSUB or GOTO commands. Execution
continues with the first statement after the REM. Any statements on the
same line as the REM, i.e. after a ‘', are ignored. The ' character can be
used at the end of a line instead of REM.

STOP

This command simply causes the computer to cease execution of the

BASIC program currently running. Control is passed back to Direct Mode.

Unlike END, any open files will remain open. CONT will cause execution to
continue.

INTRINSIC FUNCTIONS

We have already considered BASIC statements and commands. A
function is a series of operations that is performed on BASIC variables and
constants. More details will be given in the next Chapter, but here we will
discuss the Intrinsic Functions. These functions are present in the MSX
computers from the instant that the power is turned on. The programs for
working the functions out are stored in the ROM as part of the BASIC
interpreter. We will now look at them in alphabetical order.

ABS(n)

This function returns the ABSOLUTE value of the number n. This is the

value of n irrespective of the sign of the number. Thus ABS (-10) is 10, and
is hence greater than ABS (5).

ASC (n$)

This returns the ASCII code of n$.

ATN(n)

This returns the arc-tangent of the number n in radians. All trigonometric
functions, such as SIN, TAN, COS will work in radians and to double
precision. The result for this function is always between -PI/2 and + PI/2.

BINS$(n)

Returns a string representing the binary value of n. n is a numeric
expression returning a result in the range —32768 to +65535. If n is a

28

negative number, then the string returned represents the two's
complement form of the number.

CDBL(n)

Converts n to double precision.

CHRS$(n)

Returns the character that has the ASCII code n.

CINT(n)

Truncates n to an integer. n must be in the range - 32768 to + 32767.

COS(n)

Returns cosine of n in radians.

CSNG(n)

Converts n to single precision.

CSRLIN

Has no argument, but returns the current vertical co-ordinate of the screen
cursor. Details of screen lay out will be given in the chapter on the VDP.

EXP(n)

Gives e to the power of n. n must be less than 145.1, or else an “‘Overflow"’
error is generated.

FIX(n)

Returns the integer form of n, but when used on negative numbers does
not return the next lowest negative number, as does CINT.

FRE(0)

The argument here is a dummy; PRINT FRE(®) will return the number of
bytes available to you for your program, etc.

28

FRE("")

Again a dummy argument, returns number of bytes of string space left.

HEX$(n)

Returns a string representing the Hexadecimal value of n. Same
constraints apply to n as in BINS.

INKEYS

This returns either a one character string representing a key pressed or an
empty string if a key was not. pressed. Any key pressed is not echoed to
the display.

10 A$ = INKEY$

20 IF A$ = "" THEN GOTO 10 ' wait for key press
30 PRINT ASC (A%)
40 GOTO 10

This program prints out the ASCII code of the keys pressed. Note how if
you press a function key with this program running a whole string of ASCII
codes are generated.

INPUTS$(n)

This function accepts n characters before allowing the computer to carry
on executing the program. INPUT$(1) will accept one character, and the
characters so accepted are not echoed to the screen. This function is quite
useful as it allows us to write subroutines that respond to only certain key
presses. For example, the routine below waits for the space bar to be
pressed before moving on.

1000 REM Space Bar Routine

1010 PRINT *Press Space Bar to go on"
1020 G$ = INPUTS$ (1)

1030 IFG$<>" " THEN GOTO 1020
1040 RETURN

INSTR(n, x$, z$)

This function searches the string x$ for occurrences of the string z$. If nis
present, then x$ is searched from character n onwards. If absent, the
whole of x$ is searched. n must be between 0 and 255. The function

30

returns 0 if 28 was not found or if both strings were null. If 2§ is found, then
the function returns the position within x$ where z$ was found.

INT(n)

Returns the integer portion of n by simply discarding the fractional part.

LEFT$(x$,n)

Returns the leftmost n characters from x$, eg,

PRINT LEFTS$ ("GOODBYE", 3)
GOO

LEN(a$)

Returns the number of characters in the string a$. This includes non
printing characters and spaces.

LOG(n)

Returns the natural logarithm of n. n must be greater than 0.

LPOS(0)

Only used with a printer. It returns the current print head position.

MID$(a$,n,m)

This returns a string of m characters from a$ starting at character n. m can
be omitted, and if this is done then all the characters to the right of

character n will be returned.

OCT$(n)

Similar to BIN$(n), but string represents the Octal value of n.

PEEK(n)
Returns the value of the byte held at address n. n must be between
-32768 and + 65535. See POKE for further detalils.

-

K}

POS(0)

This returns the current horizontal position of the cursor on the screen. The
argument is a dummy, and the leftmost column on the display is said to be

‘column 0.

RIGHT$(a$,n)

Returns the rightmost n characters of a$.

RND(n)

This generates a random number between 0 and 1. If n = 0 then the
number generated is the same as the last one that was generated. If n > 0,
then the random number generator produces truly random numbers. To

get random integers between 0 and 10, for example, we can use a simple
user-defined function.

10 DEF FNr(Q) = INT (RND(1)*11)

Note how we use 11 as a multiplier; this is because the INT function always
rounds down, and so if we had 10 as a multiplier the number 10 would
never be produced.

SGN(n)

Returns a number representing the sign of n. If n = 0, then function
returns zero. If n < @ then function returns —1 and if n > @ the function

returns + 1.

SIN(n)

Returns sine of n.

SPACES(n)

Returns a string of n spaces. n must be between 0 and 255.

SPC(n)
Similar to SPACES(n), but can only be used with the statements PRINT or
LPRINT.

32

,,,,,

SQR(n)

Returns the square root of n.

STRING$S

This function returns a string of characters in a similar way to SPACES(n).
STRINGS$(n,m) will return a string of n characters whose ASCII code is m.
STRINGS$(n,a$) returns a string of n characters, the character being the
first character of a$.

TAB(n)
Moves the place at which the next print statement will start printing to a

position n on current line. If print position is already past position n then the
function is ignored. It is used in conjunction with PRINT or LPRINT.

TAN(n)

Returns tangent of n.

TIME

This system variable gives us access to an internal timer on the MSX
computers. As previously mentioned, the variable TIME is incremented 50
times per second on MSX computers equipped with PAL TV displays (i.e.
UK models) and 60 times a second on MSX computers with NTSC TV
displays. Setting TIME to zero will reset the clock. TIME is not incremented
during tape operations, but retains the value it had before the tape
operation commenced.

USRn(m)

Used to call a machine code routine, either in the ROM or one of the
programmers own devising. n is a digit between 0 and 9, and indicates to
the computer the address of the routine wanted. The address will have
already been assigned to the USRn call by the DEF USR statement. m is

the argument of the function and will be passed over to the machine code
routine,

33

VAL(a$)

This returns the numeric value of a$, e.g.

A$ = "12"
PRINT VAL (AS)
12

VARPTR

This function is really aimed at advanced programmers, and offers a
method of finding out where in memory variables are stored. PRINT
VARPTR(n) will return the address of the first byte associated with variable
n. If n has not been assigned, then an error is generated. The address
returned will be between -32768 and 32767. If the address is negative,
simply add 65536

PRINT VARPTR (a(0))

will return the start address in RAM of the first byte of element 0 of array a.
Note that the address of the array will move in memory as other variables
are assigned. So, whenever this information is required, use VARPTR
again.

VARPTR (#file number) returns the address of the first byte of the file
control block. This is only of value if you want to directly access the file
control block. Be very careful doing this, as it is possible to thoroughly
confuse the MSX tape system!

That sums up the simple BASIC statements that are available to the
MSX BASIC programmer. In the next Chapter, we'll look in some detail at
the raw material on which these statements and functions work —
variables, constants and expressions.

Data Structures
and Variables

All computer programs process information in some form or another; the
information acted upon could be the name and address of someone, the
number of days in the year, or the position of a Space Invader in a video
game or any one of an infinite number of things. However, before the
computer can process the data it must be represented in the computer ina
suitable form. The ways in which the data is stored in the computer is
called a DATA STRUCTURE. We'll now look at these in greater detail.
Those of you interested in number systems in general may care to look at
the relevant Appendix. The first data structure we'll look at is the character,
because within the computer, a character can be represented in a single

byte of memory.

Characters

How is non-numeric data dealt with by a computer, which, after all, is a
mainly numeric machine? Textual data, such as the letter “A™, is stored in
the computer as a number between @ and 255. This will, you will note, fit
into a byte. Each character on the computer keyboard has a numeric code

35

R RN P S B S <

assoCated with i, and the most common method of coding characters is
10 use the ASCIHl code ASCIl is an acronymn for American Standard Code
for Information Interchange. This code is utilised by the MSX machines,
and in it the lefter "A’"" is represented by the number 65. A lower case '‘a’
has the code 97 Other characters have different ASCIl codes. and to
exarmine the ASCII codes associated with different characters we can use
a BASIC function called ASC(). Typing in

PRINT ASC("B")

and pressing RETURN will give the result 66. There is a function that
performs the reverse of this operation; given the ASCIl code of a
character. this function, CHR$(), will print the character. So,

PRINT CHR$(66)

will print the letter “B"’. Some characters, such as the character with code
1. will not print a character to the screen; these are known as NON
PRINTING characters. Other characters will do some strange things when
printed; try printing character 7 and character 12,

Strings
This book 1s made up of strings. A string is a collection of characters, and
stnngs are often found to end in character 13.

Constants

A constant 1n a program is a value that does not change as the program
runs. There can be either numeric or string variables, 1.234 and '‘Hello"
being examples. A string constant may be up to 255 characters long.
There are 6 ways in which the MSX computers can represent numeric
constants, so let’s have a look at them. A numeric constant can be either a
positive or a negative number.

integer Constants

An integer constant in MSX BASIC can have a value between — 32768
and +32767. Obviously, integer constants don't contain decimal points.

Fixed Point Constants

These are numbers containing a decimal point.

36

Floating Point Constants

These are DOSitiVG_Or negative numbers that are represented in the
exponential format, i.e.

1.234 E+n

Here, n is called the exponent and the number to the left of the E is the
mantissa. Floating point constants can be in the range 10E -64 and

10E +63.

Hexadecimal Constants

These are hexadecimal numbers, and they are prefixed by the &H
characters.

Octal Constants

Octal constants are prefixed by &0 or just &.

Binary Constants
These are prefixed by &B.

Numeric constants can be either single or double precision, single
ones being represented within the machine to 6 digit accuracy and double
ones to 14 digit accuracy. Unless you specify otherwise, the constant will
always be represented to double precision. Any number in exponential
form, however, will normally be treated as single precision. If you require a
double precision number to be represented in exponential format, then the
letter “E"" is replaced by the letter “D"". Constants can also be put into

single precision by following the number with a 1"’

Thus we've got many ways or representing constants in MSX BASIC.
So far, however, the numbers retain the same value throughout the
running of the program. What would be useful would be a means of
allowing us to represent a number in some way that enabled us to change
its value as the program progressed. This is where the concept of the
variable becomes useful. A VARIABLE is best imagined as a series of
bytes in memory which the computer can refer to by a name. the
VARIABLE NAME. The series of bytes represents a string or a number.
The variable name is thus used by the programmer to access the number
stored in the variable. When we give a value to the variable, we say that we

37

are ASSIGNING a value to the variable; to do this we can use the LET
statement in BASIC, or we can just use the ' ="' sign;

LET A=100
A=100

Both of the above statements assign a value of 100 to the variable A. Each

variable type requires a certain amount of space to store the number in.
The table below shows this.

Type No. of Bytes
Integer 2

Single Precision 4

Double Precision 8

String 3 + 1 per character

Variable Names

A variable name is a collection of alpha-numeric characters (those
characters that are either letters or numbers) that form a unique identifier
for a particular variable. Names can occasionally include 1", "“#’. “$"" or
"04" as the last character of the name but this last character has a special
meaning. They indicate whether the variable is single or double precision,

string or integer. The characters are called TYPE DECLARATION
characters, and are as follows:

Character Type

% Integer

$ String

! Single Precision
Double Precision

If we don't give a variable name a type definition character, then the
computer will usually take that variable to be a double precision variable.

Making up Names

Christening variables is quite easy; a variable name can be of any length,
but only the first two characters of the name are considered by the
computer, not counting the type declaration character. Also, a variable
name must begin with a letter; should it start with a number, the computer
will incorporate the variable name as a line in the program. Thus A1l is

38

legal. but 1A I8 not. To see the effect of only the first two characters being
significant, type this in, following each line with RETURN.

NEW

THISTLE=1

THROUGH =20

PRINT THROUGH, THISTLE

You will hopefully get 20 and 20 printed to the screen, thus indicating that
the computer cannot differentiate between the two variable names. As
soon as the computer has matched the first two characters with a variable
that it knows exists, then it does not check any more. This can obviously
cause problems if we are not careful. A further point to note is that variable
names cannot contain any names of BASIC functions, commands or
statements, and it cannot differentiate between upper and lower case
letters. For example, “sprint” is an illegal variable name because it
contains the word “‘print”” which the computer will read as “"PRINT". For
similar reasons, SINK and DATA are illegal variable names because the
first name contains SIN and the second DATA. A variable name must not
start with the letters FN, as if it does the computer thinks that you are
referring to a user-defined function. Thus FNF is an illegal variable name,
as the machine thinks you are referring to a function called F. Don’t worry
about this sudden introduction of the user defined function; it will be

explained soon.

The type declaration characters have been previously mentioned; z#
and z1 are both double precision variables, z% is an integer variable and
8 is a string variable. However, we can also declare the type of variable
using some statements that | call DEF var statements. There are 4 of these,
DEFINT, DEFDBL, DEFSTR and DEFSNG, each of which is followed by

ether a single letter or two letters separated by a "'—"".

Thus DEFINT a will define all variables that begin with the letter ato be
integer variables. In a similar fashion, DEFDBL would define the variables
to be double precision, DEFSNG to be single precision and DEFSTR
would define the variables to be string types. One point to note here is that
the subsequent use of a type declaration character will overrule the DEF
var statements issued. As an example, let us issue a DEFINT a command,
and then assign the variable a # =1.234. Ifwe were 0 printa # outthenwe
would find that it was a double precision variable, as we might expect from
the use of the “'#" sign. However, a second variable, al, would stll be an

integer variable. Try the program overleal.

10 DEFINT A
20 A=1.2346
30 A#=1.234567
40 A!'=1.2345
50 PRINT A Al A#

Run the program, and note how the variables that have type declaration
characters are treated as different variables to the one without the
declaration character.

The statement DEFINT A-Z will cause all the variables available to be
integer unless otherwise said. Any variables that you want to be string,
double or single precision must be specified by the use of type declaration
characters. In a similar fashion, DEFINT I-K will define all variables
beginning with the letters |, J or K to be integers. DEFSTR can give strange
results to the unwary; variables will be string variables without the need for
a “$" sign. The statement A = "apple” would normally generate an error
message — ‘‘Type Mismatch”. However, after a DEFSTR A statement, the
statement A ="apple" is legal but the more usual A= 1.234 is not! Again,
use of the type declaration characters will overrule the DEFSTR statement.

Array Variables

An array is a data structure that is available to the MSX programmer.
However, whereas the data structures we have previously discussed are
collections of bytes, an array is a collection of numbers or strings which
can be accessed under the same name. An individual item stored in an
array is called an ELEMENT, and all the elements of an array will hold data
of the same type. When you turn on your computer, the machine will allow
you to use arrays with up to 11 elements in them, numbered 0 to 9, without
having to inform the computer that you wish to use arrays. If you wish to
have more elements than this, then the array will have to be
DIMENSIONED using the BASIC DIM statement. Thus DIM A(20) will
dimension an array called A to have 21 elements, numbered 0 to 20

When we first dimension an array, each element has the value 0 if it is
a numeric array and empty string if it is a string array. Assigning values to
an element of an array is quite easy.

A(1)=1.234

A(2)=3
LET A(4)=23

40

A(0,4) A(1.4) A(2.4) A(3.4) A(4,4)

A(0.3) A(1.3) A2,3) A(3.3) A(4.3)
A(0.2) A(1.2) AR2) A@3.2) A(4.2)
A@.1) A(1,1) A(2,1) AB1) | “A@1)

A(0,0) A(1.0) A(2,0) A(3,0) A(4,0)

FIGURE 31 REPRESENTATION OF ARRAY A: DIMA(5,5)

These statements will all assign the appropriate values to various elements
of array A. Arrays are still under the influence of the DEF var statement,
and they can also have type declaration characters. An array can be one
dimensional, like the example array A, or can have several dimensions,
such as B(10,6). The best way to view the multi-dimensional array is to
think of it as a collection of boxes arranged on a grid. The different boxes
are the various elements of the array, and Figure 3.1 shows a diagrammatic
representation of part of such an array. Should you attempt to access an
element of an array which does not exist, such as A(99) when we’ve only
dimensioned A to 30 elements, then we get the *'Subscript out of Range”
error. The number used to access an element of an array is called the
SUBSCRIPT. The subscript can be a constant, variable or expression, and
the “‘Subscript out of Range’ error often occurs when an expression
returns a too high value. The maximum number of dimensions that an
array can have is 255, but the number of elements is only really limited by
the amount of RAM in your machine.

Changing Types
Try the following:
A="fred"”

You'll get a “'Type Mismatch'’ error — you can't put a string into a numeric
variable! However, MSX BASIC will allow you to convert one type of
number to another. If you set a variable of one type to a value held in a
variable of a different type, then obviously the variable will assume the
value and the value will be held in the variable according to the variable

type. For example,

A% = 1.23456
PRINT A%

41

S I T

e ——

will print 1. The real number has been converted to an integer by this act.
The fractional part is discarded, and no attempt is made to round the
number up or down. Thus, in double precision work, such a value when
assigned to a single precision variable will only be represented to 6 digits.
During the evaluation of expressions, the degree of precision applied to

the result is the highest degree of precision possessed by a variable or
constant in the expression.

EXPRESSIONS IN MSX BASIC

In everyday lite, the sum 2+3 is a simple expression. We carry out the
addition, a process known as EVALUATION, and produce a result, or
VALUE. In this case, the result would be 5. In technical terms, we describe
an expression as a collection of numbers, constants, variables and
Operators that can be evaluated to return a result. It is not compulsory for
an expression to contain all of the above.

1+2+3+4
IS an expression, as is
A+B+1+2
However, most expressions do contain at least one operator. An
OPERATOR can alter the value of a variable or constant by performing
some arithmetical or logical operation on it.
In the expression
142
the operator is ** + . This is an arithmetical operator, and in the expression

1+ASC("A")

the ASC() is said to be a functional operator. In total, there are 4 main
families of operators available to the MSC programmer. These are:

i Arithmetic Operators
i Relational Operators
il Logical Operators
iv Functional Operators

The most obvious thing to do now is to look at each family in greater detail.

42

A4

Let's start with the ones that we're already familiar with — the Arithmetic
Operators.

Arithmetic Operators

There are 8 different arithmetic operators available in MSX BASIC. These
are exponentiation (A), Negation (—), Multiplication (*), Division (/),
Addition and Subtraction, Integer Division (¥) and Modulus Arithmetic.
we'll take a look at the operators here that are new to us shortly. The
computer will evaluate expressions according to a sequence of rules. For
example, the expression

A+B*C

can be evaluated in 2 different ways, as either (A+B)*C or as A+ (B*C).
The computer will evaluate the expression as written in the second of these
examples. The small expression in parentheses will, however, be
evaluated according to these rules. These rules are called the rules of
PRECEDENCE. The multiplication operator has a higher precedence than
the addition operator. The figure below shows the order of operator
precedence.

High

Precedence Operator
Exponentiation
Negation

Multiplication/Floating Point Division
Integer Division
Modulus Arithmetic

Addition/Substraction
Low

Precedence
Thus in the expression,

142A2
the 2 A2 will be evaluated first, giving 4, and then the 1 will be added,
giving a final result of 5. However, what if we want to evaluate the 1+2

before the exponentiation operation? Well, we use brackets, as we've

seen before. To get the expression evaluated in the way wé want, we'd
write

(1+2)A2

43

This will return the result 9. The operations within brackets are performed
first, but within a set of brackets the rules of precedence still operate. Thus
in long expressions in parentheses, we often bracket parts of the
expression to determine what order the expression is evaluated in. Such
brackets within brackets are called NESTED PARENTHESES. One
important point to remember about nesting brackets like this is that each
opening bracket (() is matched by a closing bracket ()). If this is not
adhered too then an error will be generated by the computer. This error,
however, will NOT be the message '‘Missing Bracket’”! The usual
message obtained is “Syntax Error’'. Whilst on the subject of errors,
should you place an operator in the expression and not follow it with a
constant, variable or other expression, then the message ‘'Missing
Operand” will be generated, an OPERAND being anything that an
operator works on.

Integer Division

Normal division usually returns a real number. However, integer division
simply discards the fractional portion of the result. Thus,

7¥2=3 and not 3.5

The “¥" symbol indicates Integer Division. There are a couple of points to
watch here; before the division is performed, the computer converts the
operands to integers, which must be in the range —32768 to + 32767.
The result is also truncated to an integer. Secondly, don'’t try and get the
computer to divide by zero — it's impossible and the computer knows that,
even if your program thinks otherwise! Due to the conversion to integers,
the expression

30.1 ¥01.4
will be evaluated as 30 ¥ 0. The division by zero error will also occur in real

division.

Modulus Arithmetic

When | went to primary school, which wasn't too long ago, | was taught
modulus arithmetic. We didn't call it that; to us it was remainder division.

10 MOD 4=2

The computer evaluates the expression above as 10 divided by 4 equals

two remainder two, anq it is the remainder that is returned as the value of
the expression. Similarily,

10 MOD 5=0

Whilst on the subject of arithmetic operators, it is worth examining a couple
of errors that can be generated. The firstis “Overflow", where the result of
your calculations is too great for the computer to handle. The second is
“Type Mismatch”, where you've attempted to assign a number to a string
variable. | usually do this after issuing a DEFSTR statement, as | tend to
assume that the type of a variable that has no type declaration character is
numeric!

Relational Operators

Nothing to do with Aunts working in telephone exchanges: they are used
to compare 2 values, expressions, variables or constants, and either — 1
or 0 is returned as a result. In these cases, — 1 is called TRUE, and 0 is
called FALSE. The result of an operation of this sort may then be used to
control the flow of a program, using the BASIC IF statement that we will
soon encounter. There are 6 relational operators in MSX BASIC, and these
are shown below.

Symbol Operator
= Equality
<> Non Equality
> Greater than
< Less than
>= Greater than or equal to
E= Less than or equal to

Let's see a couple of examples of the use of Relational Operators. A true
result yields —1; and a false result 0.

PRINT (1=1)
will return —1, as it is true that 1=1. The expression
PRINT (1=2)
will return the value @, or False. The more complex expression

PRINT (A-B) =1

45

. s B

will only return a True value if the expression (A-B) returns a value of 1.

You can assign variables using relational operators: obwviously,
though, the values assigned to these variables will be either ® or -1

Thus the expression
A=(1=2)

will assign the value @ to the variable A. When we combine arithmetic

operators and relational operators, the arithmetic expressions are
evaluated first.

Logical Operators

These are slightly more involved than previous operators, and can cause
confusion. However, when used correctly they are powerful programming
tools. So, here we go. The most obvious way of using logical operators is
to link together relational expressions, i.e. expressions containing
relational operators. The logical operators available in MSX are AND. OR.
NOT, EQV, XOR and IMP. The most commonly used of these for linking
relational expressions are AND, OR and NOT, and so we'll look at these
three first in this role. When used in this way, the expression containing the

logical and relational operators will return a true or false value. The
expression

PRINT (A=1) AND (B=2)

will return a true value only when both A=1 ANDB=2 A further example
IS

PRINT (A$="FRED"") AND (B$ = “"BLOGGS")

Here, A$ must contain “FRED" and B$ must contain “BLOGGS'"" The
expression

PRINT NOT (P)

will return a true value if P = 0 and a false value otherwise. As 0 is the value
used to represent “False’’, we can see that NOT False is True.

These two operators, and OR, are often employed when our program
has to make a decision based on several different conditions being met.

Logical expressions of the sort shown above can be included in IF
statements to help programs flow correctly.

The second use of these operators is to test a byte for a particular
pattern of bits. This is known as BITWISE operation, and it is this aspect of
the use of logical operators that can give rise to problems. First of all, let’s
see how the logical operators function in a bitwise fashion on single bits.
The results of the operations on various combinations of bits are shown in
the following TRUTH TABLES.

NOT
A NOT A
0 1
1 0
AND
A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1
OR
A B A OR B
0 0 0
0 1 :
1 0 1
1 1 1
XOR
A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

47

EQV

A B A EQV C
0 0 1
0 1 0
1 0 0
1 1 1
IMP
A B A IMP B
0 0 1
0 1 1
1 0 0
1 1 1

Let's explain a few things before we go on. XOR is a contraction of the
phrase “Exclusive OR". This function only returns a 1 if either A OR B is of
value 1 but not if they both are of value 1. Treat EQV as a shorthand form
of writing Equivalence; a 1 is returned only if A=B. The IMP function |
have christened Importance, as in the expression A IMP B, a 1 is returned
only if the B value is greater than or equal to the A value. How can we
apply this to numbers or variables? Well, remember how numbers are
represented as byte sequences within the computer? The integers are
stored as 16 bit numbers, thus occupying two bytes. The leftmost bit of the
binary representation of an MSX integer represents the sign of the
number, whether it is positive or negative. This is why the MSX integers
can only have values between —32768 and + 32767. Both numbers that
are to be operated on by the bitwise logical operators must be integers of
this type. Thus any expressions to be used in a bitwise operation must
return a value in this range. Let's try a bitwise ANDing of 2 numbers, say 8
and 3.

PRINT 8 AND 3

will return the value 0. To see how this situation arises, let's convert 8 and 3
to their binary equivalents and examine the bit patterns.

8 000000000001000
3 000000000000011

Now apply the truth table to the binary numbers; we find that we've got no
1's in common positions in the numbers, and thus we get the result @
returned. To make it more obvious, try the operation with binary numbers.

48

PRINT &B0001000 AND &B00000011

We can now see the bit patterns directly. In a similar fashion, the bitwise
OR command can be employed.

PRINT 8 OR 3

will return 11 as the result. Work through this using the bitwise OR truth
table. '

When we use negative numbers in bitwise operations, we have to be
careful due to the fact that negative integers in MSX BASIC are
represented in two's complement notation. Thus -1 in binary is
represented as 1111111111111111. Thus

PRINT —1 AND 2

returns 2 as a result. One use of the bitwise operators is to modify the
values of certain bits within bytes without altering the other bits.

Functional Operators

A function is a defined set of operations that can be applied to an operand
or expression. There are two types of function supported by MSX BASIC.
The first major type of function is the INTRINSIC FUNCTION — functions
present in the computer from the moment the machine is turned on. They
include such things as SIN(n), ASC() and CHR$(n). The value n here can
be an operand or expression and is called the argument of the function.
For the ASC() function, the argument must be a character. The argument
is said to be ‘passed’ to the function, and the function is said to return a
value. Should you try and pass a numeric argument to a function when a
character or string argument is required by the function, then a "“Type
Mismatch' error will occur. This error will be generated by the statement

A=SIN (“hello”)

The argument of a function can be another function, provided that the
latter supplies an argument that is of the correct type. Thus

PRINT CHR$ (ASC.1 ("A™))

will print the letter ‘A’ to the screen.

49

e A O

The second class of function supported by MSX BASIC is the User
Defined Function. These are functions written by the programmer to
perform a specific task. Let's see how we can define our own functions.

Defining Functions

Before a user-defined function can be used, the computer must be
provided with a function definition, which is simply a list of statements that
perform the function. A User Defined Function can use intrinsic functions
in its definition, as we shall soon see.

Defining a function is done with the DEF FN statement. This is an
abbreviation of Define Function, and the statement tells the BASIC
interpreter that the following line is a function definition. Function
definitions must always be executed before the function is called. The
following is an example of a function definition.

10 DEF FNtest 1 (a,b,c$)=SIN(a) + SIN(b)

Here, test is the function name, and the function simply returns as a result
the sum of the sines of the two numbers a and b. a,b and c$ are
collectively the parameters of the function, and together are called the
parameter list of the function. Each item in the list is separated from its
neighbour by a comma. These parameters are just ordinary operands; if
they are variables, they are named in accordance with the rules governing
the naming of variables.The function name is named in the same way as
variables are. It is legal to have a function that has the same name as a
variable, as the computer treats variable names and function names
differently.

The expression to the right of the * =" in the function definition can only
be one line long;

10 DEF FNtest 1 (a,b)=SIN(a)
20 + SIN(b)

will generate a “'Syntax Error”’ message at line 20. A function called test
will have been defined, but it will only return the SIN of the number a.
Variable names that appear in this expression serve only to define the
function, and changes in their values are not reflected in changes of the
value of variables with the same name outside the definition. If your
function has a parameter list, then the variables listed therein may be
included as part of the expression, but it is not compulsory.

50

A User Defined Function is called with the FN statement Remember
that before a function can be called, the corresponding DEF FN statement
must have been executed. To call the function that we defined above we
would type in something like this. ;

100 PRINT FNtest 1 (1,2"Hello")

It is vital that the number of items passed to the function is the same as the
number of parameters in the parameter list that was set up in the DEF FN
statement. Also, the types of the values passed to the function when it is
called must be the same as the types that were used in the parameter list
when the function was defined. If this is not done, then a *“Type Mismatch”
error will be generated. Parameters passed to a function in this way are
passed over on a one-to-one basis, the value of the variables or constants
in the call being passed to the corresponding variable in the function
parameter list. Thus in the example we have just seen, the variable a would
be assigned a value of 1, b would be assigned a value of 2 and c$ would
get the string ‘Hello™ assigned to it. If a variable is used in the expression,
but is not in the parameter list, then on evaluation of the expression the
value used is the current value of the variable in the program. The ability to
pass parameters over to the function in this way, and to get results
returned, makes the User Defined Function a powerful programming tool.
If we were to use subroutines (see the next chapter), then we would need
to set the variables used in the expression to the appropriate values before
the subroutine was called.

Thus we would have a piece of code like:

100 a=1

110 b=2

120 c$="Hello"
130 GOSUB 1000

This assumes that the code at line 1000 is the same code as we put in Fhe
function definition that we used a little while ago. The equivalent function
call is much more obvious.

100 result = FNtest 1 (1,2,"Hello”)
If you attempt to use a function call before you have defined it using the

DEF FN statement, then the error message "'Undefined User Functjon“ IS
issued. Functions will occur in various places in this book, so you will have

several examples to look at.

51

One final point; the DEF FN statement MUST be issued from within a
program. Attempting it from Direct Mode will generate the ‘“‘lllegal Direct”
error message, which indicates that you have executed a command from
Direct Mode that should only be executed from within a program line.

STRING OPERATIONS

Although we’ve mentioned string variables, we haven't yet discussed what
operations we can do on them. As you cannot do much arithmetic on
strings or characters, the only arithmetical operator that we use with strings
s+,

However, the operator does not perform the addition operation, but
joins the strings together. This process is called CONCATENATION.

a$="ABC”
b$ = “DEF"
PRINT a$+b$

The string “ABCDEF "’ is printed to the screen. We can thus make one long
string from 2 or more short ones.

C$=A%$+B$
is quite legal. We can, however, use the relational operators on strings.

When the computer compares two strings using the relational
operators, it does so on a character by character basis, comparing the
ASCIl codes of each character in one string with the corresponding
characters codes in the other string. If all the codes are the same then the
strings are equal. However, should a code be found in one string that is
less than the corresponding code in the other string, then the string with
the lower code is said to be less than the other string. For example,

“AA"<"AB"
Any leading or trailing spaces are also examined, and so
This comparison is fine until we come to the situation where one string is

shorter than the other string; what happens now? Well, the shorter of the
two strings is said to be less than the longer one. So,

52

| saaaREC RS RIS St T TR RV TR e eree——

“AB"<"ABC"

As in the case of relational operators applied to numbers, true and false
values are returned as the result of a relational comparison of two strings.
Logical operators such as AND can be employed to perform more
complex relational functions such as

PRINT (A$="1" AND B$="2")

This will only return a true value if A$ ="'1"" and B$ = "2"". We can also use
string comparisons to control the flow of the computer program in
conjunction with the IF . .. THEN . .. ELSE structure.

Obviously, bitwise logical operations are not possible, but a bitwise
operation can be performed on the ASCIl code of a character.

We are now ready to move on to look at the rest of MSX BASIC. Don't
be afraid to experiment with programming your machine. This is the best
way to learn about how you can get the best results from the computer. If
examples are suggested in the text, then type them in; if you can then see
a way of doing a particular job that is different to the one | have used then
experiment; your method may well be better than mine!

53

Cassette
Tape Storage

The RAM of your MSX computer will lose all record of your program as
soon as the power is turned off or you type the command NEW. It is
obvious, therefore, that we need a method of making a permanent copy of
the program that we can use to store the program indefinitely. We do this
by saving a copy of the program on to cassette tape. As well as being able
to save BASIC programs to tape, we can also save variables, arrays or
blocks of bytes.

When we transfer data to tape from the computer, it is recorded on the
tape as a series of tones, each tone representing a bit of a byte. Thus each
byte on the tape is represented by 8 tones, the pitch of the tone telling the
computer whether the bit had a 1 or @ value. This coding of data into
different audio tones is called Frequency Shift Keying, or FSK for short. If
we could “see” the audio tones on the tape, we would see Figure 4.1.

ONE CYCLE TWO CYCLES
1200 Hz 2400 Hz

lwl ,w;

MAGNETIC | | I I l |
TAPE

SATURATIOEJ_-

g (1 |80 |1 |1

N
ENCODED BITS

FIGURE 41 DATARECORDED AT 1200 BAUD (1200 BIT/SEC)

=

The actual tones used to represent 1's or @'s depend upon the speed
at which the computer is saving data to the tape. The rate of data transfer
is known as the BAUD RATE, and is a rough measure of the number of
bits sent per second. MSX computers can read or write data at either 1200
or 2400 baud.

At 1200 baud, a ‘0’ is represented on the tape by 1 cycle of a 1200
Hz tone. (1 Hz is 1 cycle per second.)

At this baud rate a ‘1’ is represented by 2 cycles of a 2400 Hz tone.
1200 baud is the usual rate of data transfer adopted by the MSX
computer, and is reliable with aimost all computers.

The 2400 baud rate will enable data transfer at twice the speed of the
1200 baud rate, but is not very reliable with some tape recorders. A ‘0 is
now represented by 1 cycle of a 2400 Hztoneand a ‘1’ is represented by
2 cycles of a 4800 Hz tone.

The baud rate is selectable by the programmer and is normally at
1200 baud. The rate can be changed using the CSAVE command, as we
shall soon see, or by the SCREEN command, as we shall see in a later
chapter. On reading the data from the tape, the computer can
automatically decide which baud rate to use to read the tape.

The computer, as well as sending data to the tape recorder and
reading it back in, can control the motor of the tape recorder if the recorder
has a remote socket. Thus the computer can turn the cassette motor on,
send data to the tape, and then turn the motor off. The BASIC commands

56

MOTOR ON and MOTOR OFF control the ta
ON will turn the motor on, and MOTOR O
MOTOR on its own will cause the motor to turn off if it |]
off. This is called TOGGLING. The motor is c:ontroﬂedS g; 'aa?ga?,",;: ,:Z
computer, and when you issue a MOTOR command, or use commands
that use the tape recorder, this relay can be heard “clicking”” whenever it
turns the motor on or off.

Pe recorder motor MOTOR
FF will turn it off Typing in

Saving Programs

The first thing most people wish to use ata
is to save their program; on the MSX co
which BASIC programs can be stored

further, let's examine these two method

saved on cassette tape from the computer is called a FILE. A program can
be stored on tape as a file of ASCI| characters, in which case the BASIC
command PRINT will be saved as P.RIN,T; that s, as individual letters, or
as a TOKENIZED file, in which case the BASIC command PRINT is stored

as a single number. This number is said to be the TOKEN of the
command, and each BASIC command or function h
better idea about tokens, let's see how BASIC
the MSX system.

pe recorder for with a computer
Mputers there are two ways in
on tape. So, before we go any
S. A block of information that is

as a token. To get a
program lines are stored by

10 REM test program

is stored as a series of numbers in the RAM of the computer. These
numbers are;

20, 192, 10, 0, 143, 32, 116 . ..

The 20 and 192 form a pointer for the beginning of the next line of the
BASIC program. This pointer is stored as a two byte integer, with the low
byte stored first. Thus in this particular example, the next program line is
stored at address 20 +(192*256), or address 49172. At this address we
will find another two byte pointer which points to the beginning of the next
line. The 10 and the 0 are the line number, again stored low byte first.

Finally, we get to the text of the BASIC line. Note how the REM
statement is represented by the token 143 and the text of the remark. Not
all the ASCIl codes of the remark are shown as they are not terribly
important at this time. It is in this form that the program is saved if we use
the command CSAVE. The command

CSAVE ‘‘test

57

will save the program thal s currently residing in the computer as a
lokenized file called “test’’ One obvious reason for saving programs n
this fashion is that they take less time to ransfer to lape — only one byte 18
transferred for the statement PRINT instead of the 5 bytes that wouid have
toboummanpvogrmwobunguvodnanASCum The
baud rate used for the CSAVE command is ether the default rate, 1200
baud, or the current rate selected by the last SCREEN command
However, should you wish 10 specity a baud rate, then an exira parameter
s added to the CSAVE command. Thus

CSAVE "test’’, 1
will save the program at 1200 baud and the command
CSAVE “test’’, 2

wil save the program at 2400 baud. The baud rate set in a CSAVE
command is only applicable to that command and has no effect on the
baud rate of subsequent data transfer operations. Note that after you
press the RETURN key after typing a CSAVE command, data immediately
begins to be transmitted to the tape recorder. It is thus necessary to press
the RECORD and PLAY keys on your tape recorder before pressing
RETURN. The first piece of data to be written to the tape is a single tone
called the LEADER. By "listening’ to this, the computer can determine the
baud rate at which the data was recorded when we come to reload the
program. Next comes the HEADER, which contains information about the
following file, and then finally the data representing the program is written
to the tape.

After pressing PLAY and RECORD on the tape recorder, the tape
motor will only start going if the remote plug on the tape lead supplied with
your computer is not plugged in. If it is, then the motor will not start going
until the RETURN key is pressed after the CSAVE command s entered.
After the program has been saved 1o tape, the cursor will return to the
screen and the tape motor, if controlled by the remote facility, will be
turned off.

Now let's move on 1o saving files of ASCIl characters to represent
BASIC programs. As each character is saved 10 tape, programs saved as
ASCII files take longer 10 save and hence take up more space on tape.
However, saving programs as ASCIl files does have its advantages.
Programs saved in this way can be used as data for other programs 1o
work on. We ghall look at data files in more detasl shortly But the man

acvantage in SaVing & program as an ASCII file is that a program so saved
can be added On 10 & Program that is already in memory |

Ths process. known as MERGING the two programs. is quite ysehl
2 enables us 0 store commonly used sections of programs on tape and
then incorporate them into other programs with the minimum of effort 10,
save a program in ASCIl format in MSX BASIC. we use the SAVE

command
SAVE “test”

will save the program in ASCII format to tape in a file named “‘test” The
command

SAVE “CAS:test”

will also save the program to cassette in ASCII format. However, the CAS
part of the filename s called a DEVICE DESCRIPTOR and it enables
programs o be transferred to other devices in ASCII format. For example,

the command
SAVE "CRT:test”

will perform an operaton that is similar to the LIST operation; the program
will be displayed on the TV screen. If we have a device descriptor “LPT."
n the file name then the file will be listed on a printer, if connected, just as f
the LLIST command had been issued. The baud rates used in these data
ransfers is that baud rate that was set by the last SCREEN command or
1200 baud. There is no way of selecting a baud rate with the SAVE
command as there is with the CSAVE command.

The file name used can be a string variable; thus the commands

As = “CRT?'GS'"
SAVE A$

will kst the currently held program to the screen. If we were to repeat the
above operation with A$ equal to “CAS:test’’ then the program would be
writien 1o tape as an ASCII file called “test”’. The file name used in CSAVE
commands can also be a string variable; the commands

AS = “test”
CSAVE A$ -

e

?
t

will save the program to tape in tokenised form with the file name “‘test’’

There 1s one final point to note about the SAVE command. When we
write the file. the last ASCIi code that is sent to the tape is a character 26.
This 1s sent so that the computer will recognise the end of the ASCII file
when it encounters it on reloading. For this reason the CHRS 26 is called
an End Of File marker.

Loading Programs

To load a program. we use one of two different commands, depending
upon the method used to save the program. If the program was saved with

the CSAVE command then we reload it using the CLOAD command. The
command

CLOAD

by itseif will load the next tokenised BASIC program that is found on the
tape. However, we may have saved several programs on the same tape
and so we usually use CLOAD with a file name, as below.

CLOAD “‘test”

will load the program ““test’” when it finds it on the tape. *‘Test"’ should, of
course. be a tokenised file saved by the use of CSAVE. Files encountered
while the computer is searching for “test”” will be ignored. In both cases.
as soon as the correct file is found the message

Found: test

is pnnted 1o the screen. Loading will now proceed. As soon as loading
starts, the program that was previously in the computer is lost. As soon as
the program has been loaded, the computer returns to direct mode. For
this reason, CLOAD is not much use as a statement in a program, as on
completon program execution would be halted. CSAVE can be used in a
program kne, and after the save has been completed execution of the
program continues.

if the program has been saved in ASCIl format with the save
command, then we load it back in using the LOAD command. This is the
equivalent of the CLOAD command, but works on files that have been
saved as ASCII files. Thus

LOAD “CAS:test”

60

will search for an ASCII format file called test” Should you smply want
the next ASCIH format file encountered 1o be loaded then the command
used s

LOAD "CAS

LOAD "CAStest’ R

will load the ASCII file called ““test” and execute a RUN command, thus
starting the program running. The “R’" is the only parameter that you can
pass to a LOAD command.

Verify

it would be rather nice to think of our computers as infallible in all things.
unfortunately, this is not so. The act of saving a program to tape s fraught
with problems, as the tape recorder could need cleaning, the tape
recorder can be noisy, or running at the incorrect speed, or any one of a
dozen problems might beset the act of saving. Before we NEW the
machine, therefore it would be useful to know if the computer has
recorded a faithful copy of the program onto the tape which will be
loadable on a future occasion. The command that is used to do this 1s
called CLOAD?, and it operates by comparing the bytes read off the tape
with the bytes in the computer memory. This process is called
VERIFICATION; indeed, on some computers the CLOAD? command 1s
called VERIFY. The syntax of the command is;

CLOAD? “test”

This command will look at the file “test’” on tape and compare it with the
program currently in memory.

Merge

The final command that we use to manipulate tape files representng
programs is called MERGE. As you progress with programming, you will
soon gather together a collection of subroutines that are useful in most
programs. It i1s therefore useful to have these saved on tape in such a way
that they can be incorporate into any program. We do this by saving the
subroutines to tape using the SAVE command, and when we wish to

61

incorporated them into a program that is already partially written, we use
the MERGE command. The command

MERGE "CAS:test”

will search the tape until a file called *'test’’ is encountered. This file should
be a program or program section saved in ASCII format. Once the file has
been read in, the program lines that were represented in the file will have
been added on to the program. Any lines that were in the program
resident in the computer at the time of merging, that have line numbers
identical to lines in the file, will be replaced by the lines read in from the file.
Thus, take care over the line numbers in ASCII files! Any program sections
that are to be saved in this way should be renumbered to give them fairly
high line numbers. This will reduce the chances of a conflict of line
numbers. As soon as the merge operation is completed, the computer
returns to Direct Mode and awaits more commands.

If the file name is left off, as in
MERGE "CAS:"

then the next file that is encountered will be merged into the program in
memory. Remember that for a file to be available for merging, it must have
been saved with the SAVE command.

As well as storing programs on tape, the MSX BASIC allows us to
store variables and blocks of bytes. We will now study each of these in
turn, starting off with the storing of variables on tape.

Data Files

As we have already seen, MSX BASIC provides us with a wide variety of
data structures in which we can store numbers or strings. When we turn off
the power, however, or execute a CLEAR or RUN instruction, the values of
the variables are lost. But by using the tape system of the MSX micros to
write this data to tape we can have a permanent record of the variables
that were in use at a particular point in the program. The values of the
variables are written to tape, along with a file name, and can be reloaded
at any time. A file that holds numeric or string variables in this way is called
a data file. Let us look at a specific application in which being able to save
the data used in the program is essential. Imagine we are writing a
program that stores names, addresses and telephone numbers. We could
have 3 string arrays, name$(50), add$(50) and num$(50), which hold the
name, address and telephone number for a particular person respectively.

62

Each name and its corresponding address and phone number are
collectively known as a RECORD. The start of such a file when written to
tape could look like Figure 4.2.

NI 777777 MAMMG RO

HEADER name$(1) add$(1) num$(1) name$(2) add$(2)
N N\ -
—\/ —\/
RECORD 1 RECORD 2

FIGURE 4.2 FORMOF TAPE FILES (SEQUENTIALFILES)

So, how can we get data held in a variable onto the tape? Let's
examine the BASIC statements that we can use to write data to tape.

Opening A File

Before we can write data to tape we must OPEN a file. This operation
instructs the computer to prepare an area of memory to act as a BUFFER
to which data is written before being sent to tape. A FILE CONTROL
BLOCK is also created. This is an area of memory that the computer uses
to ensure that the file operation goes ahead as smoothly as possible. Data
in the buffer is only written to the tape when the buffer becomes full, or
when we signal to the computer that we no longer require the file. It is also
necessary to open a file before we can read data from it.

The statement that we use to open a file is of the form

OPEN “CAS:filename’’ FOR operation AS #mumber

The file name is the name under which the file will be saved to tgpe. Note
how we again have the chance to use device descriptors to specify where

63

the data s written to. Once we have opened a file, we can either write dala
to it or read data from the file. Thus the operation in the above staterment
can be INPUT aor OUTPUT. It we open a file for output, then data s
transferred from the computer to the tape. If a file in opened for input then
data (s transferred from tape to the computer. The number in the above
statement serves as a specifio (dentifier for the file during the time it s
open, and it s used whenever we need to access the file. Thus the
command

OPEN "CASitest” FOR OUTPUT AS #1

will open a file on tape called "test" with the file number 1. The file number
I8 between 1 and 15, and 80 It Is possible to have more than one lile open
atonce. It we want to set a top limit on the number of files that we want (o

have open at one time, then we use a command called MAXFILES, The
statement

MAXFILES = 6

will allow you to have only 6 files open at once, with the numbers 1 to 6
used as file numbers,

MAXFILES = 0
does not allow you to have ANY files open at all. After such a statement
has been executed, the only tape operations that are available are the
program save and load operations,
In the OPEN statement, "CAS:" can be replaced by either "CRT " or

"LPT:". Again, for “LPT:" to function correctly a printer must be
connected to the computer, The statement

OPEN "CRT:test" FOR OUTPUT AS #1

will cause everything that we write to file number 1 to be written to the
screen.

Writing Data to Files

The staterments employed here are similar to those we use to print data to
the screen. Instead of PRINT, we have PRINT #. and instead of PRINT

64

USING we have PRINT #, USING. In each case, the "‘#" is followed by a
file number. Thus the statement

PRINT #1,35

will print the value 35 to the file with number 1. The statement

PRINT #1, USING “#.##":A

will print the value of the variable A to the file with 2 digits after the decimal
point. Remember that before either of these commands is executed, the
file to which data is being written must be open for output. In a similar way,
fles opened for input can be accessed by the use of INPUT # LINE
INPUT # and INPUTS # commands. Thus the statement

INPUT #1,A

will read a numeric value from the file with number 1 and assign the value
read in to the variable A. The statement

A$=INPUT$ (3,#1)

will cause the execution of the program to wait until 3 characters have

been read in from file number 1. For more details, see the notes on
INPUTS.

INPUT #ilenumber,variable will work in a similar way to the straight
forward INPUT statement, but no prompt will be generated. If you are
carrying out an input to assign a string variable, then the same
considerations apply as in the normal INPUT statement. The LINE INPUT
statement will read in all the characters it encounters in the file until a
character 13 is encountered. This final character is then read in and the
resultant string is assigned to the variable in the LINE INPUT # statement.
Some applications will be given shortly so that you can see how these
statements are used.

Closing Files

When we have finished using a file, whether the file was open for input or
output, we have to CLOSE it. This is vital for files that are being used for
output, as if there is a data item in the buffer, closing the file will ensure that
this item is written to the tape. The act of closing a file also releases the
RAM that the computer allocated for that file for the buffer and control
block for other purposes. Once a file has been closed, you have to re-open
it before you can access it again. The statement

65

CLOSE #

will close the file that has number 1 associated with it. If the “#1"" is omitted
then all files that are currently open are closed.

Examples of the Use of Data Files

In this section, we'll look at how the statements and commaan we’'ve met
concerning data files can be used in BASIC programs. The' first gxample
program, below, is a trivial example but it illustrates the main points.

10 REM Writing a file to tape

20 OPEN ‘““‘CAS:test” FOR OUTPUT AS #1
30 FOR I=1TO 10

40 PRINT #1,

50 NEXT |

60 CLOSE #1

Line 20 opens the file for output. Line 30 and line 50 make up a FOR-
NEXT loop, and the data is written to tape in line 40. Line 60 closes the file
to finish the operation. We saw earlier on how we could replace the device
descriptor and the file name with a string variable for the save program
commands; well, we can do the same here. If we were to insert a line 15,
containing A$ = “CAS:test”, then we could change line 20 to OPEN A$
FOR OUTPUT AS #1, and this would be perfectly legal. .

This is a good place to look at how data is represented in the tape file.
If we change the Device Descriptor to “CRT:", we will see the data written
to the screen. As you will see, the numbers are written to the screen in the
format used by the standard print statement. Thus in the example just
seen, the digits are written to tape separated by carriage returns. Strings
would also be written to the tape as they would be written to the screen.

The file that we have just written out to tape can now be read back into
the computer. The program below demonstrates this in action.

10 REM reading a file

20 OPEN “CAS:test” FOR INPUT AS #1
30 FOR I=1TO 10

40 INPUT #1,J

50 PRINT J

60 NEXT |

70 CLOSE #

As soon as the file has been located on the tape, the FOR-NEXT loop will
read in 10 numbers from the file using the INPUT #1, J statement at line
40. The value thus read in is then printed to the screen. An interesting
feature of the way in which MSX BASIC reads data from tape files is that
line 40 can be rewritten as

40 INPUT #1,J%

or

40 LINE INPUT #1,J$

If this is done, and line 50 altered to read PRINT J$, then it will be noticed
that J$ contains a string representation of the number that the computer
has just read from tape. There is a simple explanation for this. The data
items in the file appear just as they would if you were typing in a response
to a normal input statement. With numeric values, therefore, the first
character that the INPUT statement encounters in a file that is not a space,
carriage return or line feed, is treated as the start of a number. Then, each
subsequent character is treated as a part of the number until a carriage
return, line feed, comma or space is encountered. In this case, with the
computer expecting a string input, the first character that is not a space,
carriage return or line feed, is treated as the start of the string. If this first
character read is a ‘", then the string item read in will consist of all
characters up to the next ‘. If the first character that is read in by the
string input statement is nota ‘"', then the string item read in will consist of
all characters up to the next carriage return, line feed, comma or after 255
characters have been read in from the file. If we wish to read in items from
the data file that are strings containing commas, then we use the LINE
INPUT # statement. With this statement, the string read in consists of all the
characters read in up to and including the next carriage return and line
feed. This command is thus of great use where data has been written to
tape containing commas, and can also be used to read in to a string
variable a line from a BASIC program that has been saved as an ASCII file.

If we construct a file full of string variables, using the program lisged
below, then we can see what happens when we attempt to read.a string
item from a file using an input statement that is expecting a numeric value.

10 OPEN “CASiest” FOR OUTPUT AS #1
20 FOR I=1TO 10

30 PRINT #1, "“Hello”

40 NEXT |

50 CLOSE #1

67

The file of strings produced by the program can be read back into the
machine using INPUT #1, A$, for example.

10 OPEN "CAS:test” FOR INPUT AS #1
20 FOR I=1 TO 10

30 INPUT #1, A$

40 PRINT A$

50 NEXT |

60 CLOSE #1

However, replacing line 30 with INPUT #1,A and replacing line 40 with
PRINT A will give totally different results. No error is generated, but the
value 0 is assigned to the variable. Even if the string is something like
1.234", the numeric value will still be 0.

Itis thus quite plain that data must be read from the file in the order in
which it was written to the file. Data files can, of course, contain a mixture
of both numeric and string data types, as the program below
demonstrates.

10 INPUT""How many strings’’; N

20 OPEN “CAS:string” FOR OUTPUT AS #1
30 PRINT #1 N

40 FOR I=1 TO N

50 INPUT A%

60 PRINT #1,A%

70 NEXT |

80 CLOSE #1

Line 10 asks for the number of strings that we wish to write to the tape. The
file is then opened in line 20 and the first thing that we write to it is the
number of strings that follows. A FOR-NEXT loop then accepts an input
from the keyboard and then prints the string typed in to the tape file.
Finally, the file is closed. Thus we have a file containing both numeric and
string data. The file that is produced by this routine can be read by the
program below.

10 OPEN “CAS:string” FOR INPUT AS #1
20 INPUT #1,N

30 FOR I=1 TO N

40 INPUT #1,B%

50 PRINT B$

60 NEXT |

70 CLOSE #1

68

Note how we read in the string into B$; the variable into which a value is
read from tape does not have to be the same variable name that was
written to tape when the file was created.

Use of Variables in Open Statements

The filename and device descriptor can be replaced by a string variable if
desired. We have seen how to do this earlier in the chapter. The file
number can also be replaced by a numeric variable. The statement

OPEN “CAS:test’” FOR OUTPUT AS A

is legal provided that the current value of A is between 1 and the current
value of MAXFILES. When a file has been opened in this way, the INPUT #
or PRINT # statements can also contain a file number that is a variable.
Here, the variable name that was used in the OPEN statement for the file
concerned simply replaces the digit. Thus

PRINT #A, '‘Hello”

will print the string “‘Hello” to the file. If we used variable in this way,
however, we must be careful that the value of the variable being used as a
file number does not alter while the file is in use!

As a final example of the use of data files on tape, | list below a
subroutine that would write the data from our imaginary name, address
and telephone number to tape.

1000 REM Save file subroutine

1010 OPEN *“CAS:data” FOR OUTPUT AS #1
1020 FOR I=1 TO 50

1030 PRINT #1,name$(l)

1040 PRINT #1,add$(l)

1050 PRINT #1,num$(l)

1060 NEXT |

1070 CLOSE #1

1080 RETURN

Here we simply use a FOR-NEXT loop to write the elements of the arrays
out to tape. When we read the arrays back in, it is necessary that the arrays
into which the data is being read in have been dimensioned so as to
accommodate all the data that was in the file. In the above example, if we
read in the data into arrays that had only been dimensioned to 20

69

elements, as soon as we tried to read in element 21 from the tape we
would get a ‘Subscript out of Range’ error.

You now have enough information to enable you to write simple file
handling programs. One thing that you will have noticed is that you cannot
read, say, record 21 from a file without first having read record 20, and the
other records prior to that. Files written in this way are called sequential
files, as the records are accessed in a particular sequence.

Saving Bytes

Once you start to write machine code programs you will soon want to save
the machine code you have written. Everything that we have written to
tape files so far has been structured in some way — the BASIC programs
we saved and the data files that we have constructed were all written to
tape without us needing to know exactly where in the computer’'s memory
the data that was saved was stored. When we come to save machine
code, or any other blocks of bytes to tape, however, we need to know 2
things about the bytes that we want to save.

i The position in memory of the first byte that is to be saved — the
START ADDRESS.

i The position in memory of the last byte that is to be saved — the
END ADDRESS.

The commands that we use to write bytes to tape and to read them back
from tape are BSAVE and BLOAD, respectively. Think of the commands
as Byte SAVE and Byte LOAD. The BSAVE command has either 2 or 3
parameters. The essential parameters are the start and end addresses of
the code to be written to tape. The third parameter is the EXECUTION
ADDRESS, and this is only specified if the file represents a machine code
program. The execution address is the address from which the program is
run, and provides information for the computer when the file is reloaded.
The command

BSAVE ‘‘test’’,200,499

saves 299 bytes of memory to tape, starting at address 200 and ending at
address 499. It is possible to have a device descriptor with the filename,
such as "CAS:test”, but at the time of writing the only device supported
was the cassette recorder. The file name, as we might now begin to
expect, can be replaced by a string variable. The start and end addresses

can also be replaced by numeric variables, as the command below
demonstrates.

70

start = 200
ed = 499
BSAVE ‘'test” start.ed

will save the bytes between start and ed. We couldn't use ‘end as a
varnable name here because it is a BASIC statement |If it becomes

necessary to specify an execution address then it is the third parameter of
the command, as can be seen below.

BSAVE ‘“'game’,49800.50000,49820

This command will save the bytes between 49800 and 50000, with an
execution address of 49820. If the execution address is not specified, then
it is assumed to be the start address.

To reload the bytes saved with BSAVE, the BLOAD command is
used. In its simplest form, BLOAD is used in the manner below.

BLOAD, “CAS:"

When used with just the device descriptor in this way, the command will
load the next suitable file encountered on the tape. The command

BLOAD ‘‘test”

loads in the file “'test’” from the tape. In both these examples, the file is
loaded to the address from which it was originally saved. If the file name is
followed by the letter ‘R’, as below,

BLOAD *“‘game’’ R

then the file is loaded into the computer and is then run, execution starting
at the execution address specified when the file was saved. There is one
more parameter that we can use with the BLOAD command. This is called
'OFFSET' and enables us to load the file in to your computer at a different
address to that from which it was saved.

BLOAD *‘game’' ,R,200

will load the file to (start + 200). Any execution address that was specified
when the file was written will also have 200 added 10 it to take the new load
address into account.

That just about sums up the tape handling facilitiues in MSX BASIC.

n

Before we leave this chapter, a few words on a couple of points that are
useful on certain occasions. The first is concerned with the function
EOF(n), where n is a file number. This function returns the value -1 if the
End of File n has been reached, and returns a 0 if the end has not been
reached. If you design your file handling routines so that you are always
aware of how many more data items there are in the file to be read in, t_hen
you will probably never use this function. If you try to INPUT a data item
from a file that doesn't contain any more data, then an error is generated.
Checking the file with the EOF(n) function before you actually perform an
input will prevent this happening. This function is particularly useful if the
file being read in is off an unknown length.

The final points concern errors that are sometimes generated during
tape operations.

Tape System Errors

Bad File Name Error Number 56

This error is caused by an incorrect filename being used with a LOAD,
SAVE, etc. statement.

Input Past End Error Number 55

Caused by attempting to read data from a file that is either empty of all
data or a file that has already had all its data read in.

File Already Open Error Number 54
An OPEN statement has been issued for a file that is already open.

File Not Open Error Number 59

A PRINT #, INPUT # statement has been issued for a file that is not open.
Files must be open before these commands are used.

Direct Statement in File Error Number 57

This error occasionally occurs if a direct command is encountered during
the LOADing of an ASCII format file. The load is terminated immediately.

Bad File Number Error Number 52

This occurs when a statement or command accesses a file with a file
number that is outside the range set by MAXFILES, or an attempt is made
to access a file that is not open. It is also generated if you try to execute an

INPUT from a file that has been opened for output or vice versa. It is thus a
general ‘catch all’ error message.

72

Device 1/O Error Error Number 19

This error occurs when somethin
examples are the user typing CTR
poorly recorded piece of data on t
tape input or someone pulling the
during a loading operation. This
connected, or to the screen if somet
innards!

g rather drastic happens; typical
L-STOP during a tape operation, a
he tape, electrical noise reaching the
earphone lead on the tape recorder
can happen to the printer if it is
hing goes wrong with the computer's

73

The ON Commands

While writing this book, | was often bothered by various little problems that
needed my attention. Whenever one of these happenings occurred, | left
the typewriter, having first made notes from which | could pick up where |
left off on my return, dealt with the problem, and then returned to carry on
with the book as if nothing had happened. This is not a dissertation on the
rigours of the writer’s life, but is an example of an INTERRUPT . . . In the
computing world, an Interrupt is a signal that is applied to the Central
Processing Unit of the computer to inform the CPU that a device
somewhere in the computer needs immediate attention. The CPU finishes
what it is doing, stores away the present contents of its internal registers,
and then goes away and performs the required job. This is called
SERVICING the interrupt, and once this job is completed the CPU

resumes its earlier task.

The example of an interrupt that you will probably be most familigr
with on the MSX computers is the action of the STOP key. Whatever is
happening, pressing this key, especially in conjunction with the CTRL key.

75

will cause the program execution to halt. Other interrupts on the MSX
machines read the keyboard and help keep the TV or monitor display
going. The fundamental thing about interrupts is that no matter what the
computer is doing, the occurrence of the interrupt event causes it to go
away and do something else, then return and carry on as if nothing had
happened.

This is very similar to the behaviour of the MSX computers when we
use BASIC programs that utilise the ON commands. Certain events, such
as an error, the depression of a function key or the collision of two sprites,
will cause the control of such a program to be passed from the current line
being executed to a special routine, which ‘services’ the BASIC ‘interrupt’
that the event causes. These ON commands are incredibly powerful; that
is why they occupy a chapter on their own. Let's start to examine some of
these commands, beginning with the ON ERROR command, a command
which gives us the ability to make our programs much more easy for other
people, and ourselves, to use.

ON ERROR command

We are all aware of the normal behaviour of the computer when an error
occurs; program execution stops, an error message, or REPORT is
printed to the screen, and the system variables ERR and ERL contain
details about what the error was and where in the program the error
occurred. We have already seen in Chapter 2 how errors all have numeric
codes associated with them; we will now go on to look at how we can
make use of these codes to cause the computer to resume execution of
the program with the minimum fuss and bother when an error occurs. This
is very important if someone who is not an MSX expert is using your
program. The sudden ‘beep’ and the message “‘Input past end” will
reduce many people into a state of mind that is convinced that computers
are a menace! The ON ERROR command causes control to be passed to
a certain line number after an error has occurred. The full syntax is shown
below.

ON ERROR GOTO n
where n is an existing line number. Thus, the command
ON ERROR GOTO 3000
at the start of a BASIC program will cause control of the program to be

passed to line 3000 in the event of an error happening. The program
statements at line 3000 and on subsequent lines that deal with errors are

76

called the ERROR TRAP. When we use the ON ERROR command, we are
said to be enabling error trapping.

Let's see an example of error trapping at work. Type in the command
NEW, and then enter the below program. We'll look at screen modes in
greater detail in the chapter on the VDP.

10 SCREEN 1
20 ON ERROR GOTO 3000
30 FOR I=1 TO 30
40 PRINT |
50 NEXT |
60 GOTO 30
3000 SCREEN 0: PRINT “Ooops, Error number
‘ERR: " has occurred at line ";ERL
3010 END

Before we see the program operating as an error trap, run it and make
sure that it works. If the message that is in the PRINT statement in line
3000 is printed to the display, then you've made a programming error!
Assuming that all is in order, the program should begin to print out the
numbers using the FOR ... NEXT loop. Type CTRL-STOP to halt the
program. This ‘error’ is not trapped by the ON ERROR command; it is
trapped by a command that we shall meet later in this chapter. However,
while the machine is in Direct Mode, type in some rubbish; type in
anything that would normally generate a syntax error, or any other error.
You will, with any luck, enter the error trap from Direct Mode by this
method. The “Ooops . . ."” message will be printed, together with the Error
number and the number 65535 instead of an error line. The number
printed depends upon the error that you caused. You can see from the
code that the error number is passed to the error trap routine in the system
variable ERR and that the error line is passed over in the variable ERL. To
see the error trap operate from within the program, replace line 40 with the

code
LPRINT |

| am assuming here, by the way, that you have no printer connected. Run
the program. As we might expect, the machine cannot execute the
program due to the printer not being connected. If we now press CTBL-
STOP, the error trap is entered with ERR =19, due to the I/O Error being
generated. It is also possible to enter the error trap by use of the ERROR

command, from either direct mode or from within a program.

77

What has this simple routine demonstrated? Well, it has shown that the
system variables can be treated just like normal BASIC variables; they can
be printed as part of a PRINT statement expression list, and they can also
be used inIF ... THEN ... ELSE statements, as we shall soon see. The
various ways in which control of the program can be passed to an error
trap have also been seen; the generation of an error in Direct Mode, the
generation of an error in the running program or the use of the ERROR
command. However, this simple demonstration doesn't help us regain

control of the program. For that, we need to look at another command.
called RESUME.

Replace the END at line 3010 with RESUME and repeat the above
experiments. You will see some rather interesting, but not terribly useful
effects. Whenever an error trap routine finds a RESUME statement, the
computer passes control back to the statement that caused the error in the
first place. Thus, when the error trap was entered due to a syntax error,
instead of the machine simply reporting the fact and stopping, it tried to
interpret the offending statement again. This will eventually lead the
computer around in circles, and the only way out of the loop will be to
press CTRL-STOP. A similar situation will occur with other errors. Thus the

RESUME command by itself is not very useful. However, it has other, more
useful forms, which we shall now see.

3010 RESUME NEXT

is the next command to try at this line. Now, after executing the routines in
the error trap, the RESUME NEXT command passes control of the
program to the next executable statement after the error statement. Thus
syntax errors will not cause the loop condition to arise.

The final form of the RESUME command is the most useful. We
usually require error handling routines to either restart the program or
rerun a small part of the program. For example, if an 1/0 Device error IS
generated, we would probably want to re-execute the part of the code that
caused the error, after having first given the nature of the error to the user
of the program. For example, the user might be asked to check the tape
recorder or printer before trying the routine again. The command that
enables us to return to a certain line number after an error trap has been
executed is

RESUME n

where n is an existing line number in the program. Look at the example
below, which is from a program that uses tape files. Two main errors were

78

expected; either an I/O Device error or a bad file name error. These have
the error numbers 19 and 56 respectively.

3000 REM Error trap routine

3010 IF ERR=19 THEN RESUME 10
3020 IF ERR=56 THEN RESUME 20
3030 ON ERROR GOTO 0

Line 10 of the program called a menu, so that the user could retry that
option that had caused the I/0 error. Line 20 prompted the user for a file
name; thus on the occurrence of the bad file name error, the user was
prompted again. The ON ERROR GOTO 0 at line 3030 is so that any
programming errors would not cause a jump back into the program but
would allow a report of their nature and whereabouts to be made. Thus in
this case, any errors generated except numbers 19 and 56 will cause
normal error handling to occur. Once the error trap has been entered, then
the ON ERROR trapping is turned off until a RESUME instruction has been
executed. Once this occurs, then the ON ERROR trap is reactivated.

RESUME must always be followed by a line number in the last method
of use that we discussed. It cannot be followed by a variable or expression
that evaluates to a legal line number but must be a constant. Error trap
routines can include calls to subroutines; errors generated in these
routines will give their usual error message, as the error trapping will be
deactivated until the RESUME is encountered.

Error

Error traps will work with the BASIC ERROR n command, thus enabling
the user to set up his or her own errors that can be trapped like any other
BASIC error. Again, ERL and ERR will carry appropriate values into the

error trap.

Multiple ON ERRORS

A BASIC program may have more than one ON ERROR statement in it.
Each ON ERROR statement takes over from the last one that was
executed, and so errors can be directed to different error trap routines
according to where the error occurred in the program. For example:

10 ON ERROR GOTO 2000

20 PRINT ‘“‘Hello"
30 hdfgf: REM deliberate error
40 ON ERROR GOTO 3000

79

50 dfhsdg: REM deliberate error
60 PRINT "Hello"
70 END
2000 REM first error trap
2010 PRINT '“2000"
2020 RESUME NEXT
3000 REM second error trap
3010 PRINT "“3000"
3020 RESUME NEXT

The first deliberate error in the program will be passed to the error trap at
line 2000. The ON ERROR GOTO at line 40, however, redirects the
subsequent error to line 3000.

POSSIBLE PROBLEMS

As with subroutines, it is vitally important that the program does not
accidentally run into an error trap without entering it in the correct manner.
GOSUB is the appropriate method of entry to a subroutine and the only
method by which a program should be able to enter the error trap is
through an error being generated. If the trap is entered without the error
being generated, then the execution of the RESUME instruction in any of
its forms will cause an error message to be generated. Thus it should be
impossible for a program to accidentally run into an error trap routine.
They should be separated from the rest of the program by END or STOP
instructions.

One final command that | will mention here is the LIST. command, a
special case of LIST. It has already been stated that we can't follow the list
command with a variable for a line number, even if the variable is a system
variable such as ERL. LIST., when placed in an error trap, will stop the
computer by listing the line of the program that caused the error to occur.
LIST. can thus be treated as a LIST ERL command. It is thus useful for
debugging programs. It can also be used in Direct Mode.

ON KEY command
This command, whose full syntax is

ON KEY GOSUB 100,200,300 . . .

enables us to define a series of line numbers to which control of the
program will be passed in the event of one of the function keys being
pressed. Control will be passed in the form of a subroutine call, and so the

80

sequence of lines after the one specified in the ON KEY statement will
have to finish with a RETURN. In the above example, control of the
running program will be passed to the subroutine at line 200 if key F1 is
pressed while the program is running. This EVENT, as it is called. will only
be trapped in this way if the function key of interest has been ‘turned on’
by a KEY (n) ON command, where n is the number of the function key.

Let's look at an example of trapping the function key F1 to jump to a
subroutine whenever it is pressed. Don't worry about the SCREEN

commands and the writing to the graphics screen yet; we'll look at these
two features in Chapter 6.

10 KEY (1) ON
20 ON KEY GOSUB 1000
30 SCREEN 1
40 FOR I=1 TO 10
50 FOR J=1 TO 100: NEXT
60 PRINT |
70 NEXT
80 GOTO 30
90 END
1000 SCREEN 3
1010 OPEN “GRP:” FOR OUTPUT AS #1
1020 PRESET (0,20),2
1030 PRINT #1, “That was F1"
1040 CLOSE #1
1050 TIME=0
1060 IF TIME<20Q THEN GOTO 1060
1070 RETURN

Line 10 activates the key that is to be used when we wish to enter the trap
routine, which in this case is F1, and line 20 sets up the line to which
control is passed when the key is pressed, in this example line 1000. The
key number in line 10 need not be a constant; it could be an expression or
variable that returns an appropriate value. Thus putting the lines below in
the above program would be perfectly legal.

5n=1
10 KEY (n) ON

The KEY ON command can come before or after the ON KEY GOSUB
statement. In the above example, we have only activated key 1 to jump to
a subroutine. Suppose that we wanted to use key F5 to cause a jump but
no others; in this sort of situation a comma is placed on the ON KEY

81

GOSUB statement for each key that is inactive. Thus, to make key 5
operate instead of key 1 in the last example program, replace lines 10 and

20 with the two lines below.

10 KEY (5) ON
20 ON KEY GOSUB ,,,, 1000

In a similar fashion, the lines

10 KEY (6) ON
20 ON KEY GOSUB ..., 1000

will cause key 6 to cause the jump to the subroutine at line 1000. To set
more than one key up to do a jump to a subroutine, it is necessary 1o
execute a KEY ON command for each key that is of interest, and also to
define a line number for that key on the ON KEY GOSUB statement. Thus
the lines

10 ON KEY GOSUB 2000,,3000,4000
20 KEY (1) ON
30 KEY (3) ON
40 KEY (4) ON

will activate keys 1, 3 and 4, so that when the program is running pressing
key 1 will cause control to pass to line 2000 of the program, key 3 will pass
control to line 3000 and key 4 will pass control to line 4000. If a key is
activated by a KEY ON statement, but is not given a line number in the ON
KEY GOSUB statement, then any presses of the key are simply ignored.

When we have several keys to turn on with the KEY ON statement, it is
quite clear that using several KEY On statements is probably NOT the
most efficient way of activating the keys. My favourite method where |
need to turn on several keys at once is to use FOR ... NEXT loops or
DATA statements. As an example, look at the activation of keys 1 to 6.

10 FOR I=1 TO 6
20 KEY (I) ON
30 NEXT

If there are 6 keys to be activated, but they are not in the sequence that

these are in, then we use a DATA statement and a FOR . . . NEXT loop to
read from ghe DATA statement, as shown overleaf.

82

10 FOR I=1 TO 6
20 READ n

30 KEY (n) ON
40 NEXT

|||||

This latter program turns on keys 1,2,4,6,7 and 8, something that would be
a little difficult to do efficiently by just using FOR .. . NEXT loops.

If we wish to disable a function key that has been active in a program
then we use the KEY (n) OFF statement. This is useful when we want the
function key to be active for part of the program but inactive in other parts
of the program. Thus the command

400 KEY (2) OFF

will ensure that pressing F2 after this command has been executed has no
effect. Of course, if we then want to turn the function key back on we can
use a KEY ON command to do so.

KEY (n) STOP has similiar effects to the KEY OFF command; however,
while all key. presses of the function key are ignored after a KEY OFF
command, they are stored up during the time in which the KEY STOP is
active. As soon as a KEY ON command is issued for that particular key,
the computer will remember if the relevant function key has been pressed
during the KEY STOP period, and, if there has been a key press, will pass
control to the appropriate line in the program. If the function key
concerned was not pressed during the STOP period, then nothing more
happens.

When a key trap routine is entered, a KEY STOP command is issued
by the computer for that particular function key. A KEY ON instruction is
issued when the RETURN is executed. Thus pressing the function key
during the execution of its subroutine will cause the routine to be executed
a second time as soon as the RETURN is executed.

While using the ON KEY GOSUB command, if you should need
reminding about what each key does, don’t forget that you can program a
string into the function keys. This will be displayed in the normal fashion on
line 24 of the display. The nature of the text held in a function key malfes
no difference to the way in which the computer responds to the key being
pressed in an ON KEY GOSUB operation. Remember that if this line 24
display irritates you, the command

83

KEY OFF

with no key number involved will remove this display. KEY ON will restore
the line 24 display.

The next ON command that we will look at also involves the trapping
of an event that is caused by a key press; in this case the pressing of the

STOP key.

ON STOP GOSUB n

The main method of stopping a program on the MSX computers is to hold
down the CTRL key and the STOP key simultaneously, thus issuing what is
known as a Control-Stop command, usually abbreviated to CTRL-STOP.
The program will immediately stop executing. This, however, is not always
a desirable proposition, especially if the program is being used by
someone other than yourself whom you don't wish to be able to see the
program. ON STOP GOSUB n enables you to prevent the CTRL-STOP
function from stopping your programs. It does not affect the use of the
STOP key on its own, which will normally produce a pause in program
execution, and neither does it prevent the use of the STOP command
within a BASIC program. The CTRL-STOP trap that is set up using this
command is only entered by pressing CTRL-STOP when the BASIC
program is running. When the trap is active, pressing these keys will cause
the program lines starting at the line specified in the ON STOP GOSUB
instruction to be executed. Control is passed back to the program by
means of a RETURN statement. The CTRL-STOP is thus another form of
subroutine, as are all the routines that we have seen in this chapter with the
exception of the ON ERROR trap routines, which ended with a RESUME
command instead of a RETURN command. In common with the other
traps that we have seen in this chapter, the ON STOP GOSUB command
has to be ‘turned on’ by the use of a

STOP ON

command. This can be issued before or after the ON STOP GOSUB
command. Thus the two lines

10 ON STOP GOSUB 5000
20 STOP ON

will cause control of the program to be passed to line 5000 whenever the
CTRL-STOP event occurs. As an example of what can be done with the
ON STOP ... command, the code below will completely inactivate the

84

CTRL-STOP operation, and this combination of keys will no longer stop the
program when it is running.

1 ON STOP GOSUB 20000
2 STOP ON

20000 RETURN

If you disable the STOP key in this way in a program, then TAKE CARE! |t
is possible to get into an infinite loop if the program has-bugs in it, and
should this occur the only way to get out of the loop may be to reset the
machine, with the resultant loss of program.

The STOP OFF command turns off the CTRL-STOP trap. The STOP
STOP command turns off the trap, but if CTRL-STOP is pressed the event
is remembered and acted upon as soon as a STOP ON command is
issued.

There is one occasion in a BASIC program protected in this way when
the program can be broken into by use of the CTRL-STOP function. This is
when an error trap has been entered: until the RESUME statement, all
trapping by the use of ON commands is disabled.

When the computer has executed a CTRL-STOP trap routine, the
RETURN statement also executes a STOP ON statement. This is because
during the trap handling routine, the computer acts as if a STOP STOP
command has been issued. If you put a STOP OFF command within the
trap routine, then trapping is NOT activated by the RETURN statement,

and any subsequent CTRL-STOP’s will have the usual effect.

ON SPRITE GOSUB n

This command can only be properly discussed when we have gained a
knowledge of the sprites available in MSX BASIC. This will be fully covered

in the next chapter, where we will also discuss this command.

ON INTERVAL = time GOSUB n

This command enables us to program the computer to stop whatevgr itis
doing after a given time interval, execute a subroutine_stanir)g at line n,
and then return from that subroutine and carry on until the interval hgs
elapsed again, when the process will be repeated. To implement this
command, the computer makes use of an interrupt that is generated by

85

the VOP. This tells the CPU to axecute some ROM routines that rond the

keyboard and update the value of the TIME variable. The number of times
that this happens per second depends upon the type of MSX aystorm that
you've got. It it is a computer that can drive a TV set in the UK, then thig
interrupt occurs 50 times per second. If the machine 18 one that was
originally intended for the Japanese market, and cannot drive n UK
television set, then this interrupt occurs 60 times a second, This interrupt s
counted by the computer and made use of when weo use the ON

INTERVAL command.

The delay, time, is given by the delay required in seconds multiplied
by the number of times per second that the interrupt is generated, Thus in
the UK the value of the parameter time is given by

time = required interval* 50

Thus for a delay of 5 seconds between executions of the sub-routine
specified in the ON INTERVAL command, the command used would be

10 ON INTERVAL =250 GOSUB 1000

To activate trapping of the ON INTERVAL command, an INTERVAL ON
command has to be issued in a similar way to the KEY (n) ON commands.
Again, the sub-routine that is called must end in RETURN.

The program listed below makes use of the ON INTERVAL command
to give an ‘alarm clock’ style program. Once the INTERVAL ON command
has been executed the computer enters the subroutine at line 1000 every
10 seconds. The frequency of entry into the subroutine can obviously be
varied by altering the time parameter in line 10.

5 SCREEN 0
10 ON INTERVAL =500 GOSUB 1000
20 INTERVAL ON
30 FOR I=1 TO 1000000
40 PRINT |
50 NEXT |
60 END
1000 SCREEN 3
1010 OPEN "GRP:" FOR OUTPUT AS #1
1020 PRESET (0,40)
1030 PRINT #, "“Wake up!"
1040 BEEP:BEEP
1050 CLOSE #1

86

1060 FOR T=1 TO 2000: NEXT T
1070 SCREEN 0
1080 RETURN

As soon as the interval on command is issued in line 20, the routine at line
1000 is entered each time the requested time delay finishes — in this
case, for example, the routine will be entered after 10, 20, 30 . . . etc
seconds. This time includes time spent executing the trap routine. Thus if
a trap routine takes 3 seconds to execute, and the time parameter in ttlwe
ON INTERVAL command is still set at 500, then the trap will be re-entered
7 seconds after it was last exited. If you only wanted the interval to elapse
once, giving one entry into the routine and no more, then an INTERVAL
OFF instruction in the subroutine will ensure that this happens. On entry to
the subroutine, an INTERVAL STOP command is executed. This has
similar effects to the STOP STOP command. If another time delay expires
while the trap is being executed, then as soon as the RETURN at line 1080
is executed the trap is re-entered. You can see this in action by reducing
the time parameter in line 10 of the demonstration program to, say, 10.
This is a silly example, but if you have a low value of a time parameter, the
execution time of the trap routine has to be similarly short if the program is
to do anything other than repeatedly run the trap routine. You have been
warned. INTERVAL OFF and INTERVAL STOP instructions can, of course,
be used in other parts of the program to prevent the ON INTERVAL calls
occurring when they are not needed. Within the time constraints
mentioned above, the trap routine can execute any commands you wish.
As with all the other ON commands, the program will continue executing
as if nothing had happened when the RETURN command is executed.

ON STRIG

This command is used with the joystick; therefore we will deal with it in
Chapter 7.

* Kk %

That finishes the ON commands. The ability of ON INTERVAL to
perform a regular subroutine call will be used in the next chapter when we
go on to look at sprites and graphics as we look at the Video Display

Processor.

87

The Video Display
Processor

The Video Display Processor, or VDP for short, is the device in the
computer that gives the MSX microcomputers ther excellent graphics
abilities. It is one of the chips that is part of the MSX standard, and so in this
chapter we shall look at in detail, beginning with some general information.

The device listed in the MSX specificaton is the TMS 9918 or
equivalent. It controls the display that the MSX can prowide to eiher
television or monitor, and is in total control of 16384 bytes of Video
memory, known as VRAM. 16 colours are avadabie, as we shall later see.
The VDP is in communication with the Central Processor Unit via the bus
system of the computer, and the following types of information transfer are
possible between the CPU and the Video Processor.

i The CPU sends bytes to the VDP REGISTERS
i The CPU reads bytes from the VDP regsiers

i The CPU sends bytes to the Video RAM
iv The CPU reads bytes from the Video RAM

89

A couple of definitions at this point; a register is best seen as a byte of
RAM within the Video Processor chip, that controls the operation of the
VDP, It I8 not part of the VRAM. Within the VDP there are 8 registers called
WRITE ONLY registers; the Z-80 CPU can write bytes to these registers
hut cannot read data from them. There is also one READ ONLY register,
called the STATUS REGISTER, We'll look at these in more detalil later in the
chapter, The Video RAM holds data pertaining to the sprites, the screen
display, the colours in use and various other things. By directly accessing
the Video RAM or the VDP registers, we can greatly increase the
programming power at our disposal. The second part of the chapter will
deal with this method of using the VDP from BASIC. However, in the first
part of the chapter we'll look at the BASIC commands that are available to
us without having to gain a knowledge of the arrangements of the Video
RAM or the Video Processor registers.

Display Modes

A Display Mode is a particular way of arranging the display screen. The
MSX computers have 4 modes, all using the Video RAM in different ways
and each mode being best suited for a particular application. Display
Modes are selected using the SCREEN command.

Mode © Text Mode
Mode 1 Text Mode
Mode 2 High Resolution Graphics mode
Mode 3 Low Resolution Graphics mode

Let’s look at these modes in some detail now, and see what we can do
with each of them.

Mode 0

This is a text mode which offers you the characters displayed on the
keyboard of the computer — that is, letters, numbers and various non-
alphanumeric characters. The mode is specified as offering 24 lines of 40
characters per line; however, the MSX microcomputers that will be
available in the UK will actually display 24 lines of 37 characters. The
actual characters that are displayed in this mode are stored in part of the
Video RAM. This means that by directly altering the VRAM we can alter the
shape of the letters printed to the screen. We'll look at how we can do this
later in the chapter. Two colours out of the 16 available can be used in this
mode, one for the letters displayed and one colour for the background.

90

Mode 1

This gives us 24 lines of 32 characters, but again the UK machines will
display 24 lines of 29 characters. In the MSX specification, two colours oot
of the available 16 are usable, one for the foreground colour — that is the
characters displayed — and one for the background. MHowever by

manipulating the VRAM directly, we can modity this slightly. Again, it ig
possible to modify the character set in VRAM. o

The graphics commands of MSX BASIC, such as PSET, LINE or
DRAW will genprate errors If you try to use them in a text mode. However
in mode 1 spntes are availlable, and we shall discuss these later in lh(;
chapter. One important thing to note is that a text mode will be returned to
whenever you execute an INPUT statement from within a graphics only
mode or when the computer has finished execution of a program. As this
results in the loss of whatever was on the screen at that point, remember to

finish the program in an infinite loop it you wish to examine the results of
graphics commands.

Mode 2

Mode 2 gives us access to high resolution graphics capability. We can
have 16 colours on the screen at one time, and we can use sprites. The
resolution of the screen is 256 by 192 pixels. Treat a pixel as a dot on the
screen. However, in each group of 8 pixels in the horizontal direction you
can only have two separate colours — one foreground colour and one
background colour. Thus it is not possible in the horizontal direction to
have a row of 8 pixels all having different colours. In the vertical direction,
however, there are no such limitations. For 8 vertical pixels in this mode, 8
different colours can be used if necessary.

Mode 3

This is the low resolution graphics screen, again with 16 colours and
sprites. The resolution of the screen in this mode is 64 horizontal pixels by
48 vertical pixels. Any colour can be held by any pixel in any screen
position. There are no problems with horizontal colour resolution as there

are in Mode 2.

If you have experimented at all with the graphics modes of the MSX
computers then you will probably be aware of the fact that ghe normal print
statements do not print text to the graphics screens. There is a way around
this problem, and we shall look at this shortly.

Printing Text

We'll firstly look at the commands available to us in the text modes, with the

o1

exception of sprite control, which has a separate section in this chapter. To
see the characters that are available to you in text mode, enter the

program below.

10 SCREEN 0

20 FOR 1=32 TO 255
30 PRINT CHR$ (l);
40 NEXT |

50 END

Line 10 selects screen mode 0. If we wanted any other mode here, we
simply put in the appropriate number instead of 0. We then simply print out
all the characters between ASCII code 32 and 255. Note how as the
characters are printed we use the full width of the screen. We can, in fact,
vary the number of characters that we write to a line by the use of the
WIDTH command.

WIDTH 20

will set the display line to 20 characters. Legal values of the parameter in
the WIDTH command are between 1 and 40 in screen mode 0, and
between 1 and 32 in screen mode 1. Try including the line below in the
above program:

15 WIDTH 15

Note how the use of this command also affects the function key display on
line 24 of the display. The width of the display line set with this command
stays fixed at that length, even if you change display mode. The only way
to restore it to its original value is to reset it with a WIDTH command.

When you have filled a screen with text, the CLS command will clear
the screen to blank. The CLS command also works in the graphics modes.

LOCATE XY

The LOCATE command enables us to position text on the text screen
wherever we want it. The full syntax of the command is:

LOCATE X,Y,cursor
The cursor parameter is optional, and if omitted is assumed to be 0. The

command ensures that the next print statement issued by the system
prints the text at location X,Y on the screen, X being the horizontal position

92

from the left of the screen and Y being the vertical position from the top of
the screen. In the MSX system, the top left hand character of the text
screen is atlocation 0,0. X increases from left to right and Y increases from
screen top to bottom. The cursor parameter determines whether or not the

cursor block will be displayed after the next print statement has been
executed. Look at the example below:

10 LOCATE 10,10,0:PRINT “#"
20 GOTO 20

will print the “#" but nothing else. However, if we alter line 10 to

10 LOCATE 10,10,1:PRINT “#"

will cause the “'#’ to be printed, followed by the cursor block. With the
cursor parameter equal to 1, the cursor is said to be enabled, and is
disabled if the parameter is equal to 0.

Colour

So far, we've not strayed away from the white letters on a blue background
that the MSX computers all start off with when we turn them on. Changing
text colour is easy, if we can remember to use the Japanese spelling of
colour! Seriously speaking, though, the COLOR command enables us to
change the text colour, the background colour and the border colour of
the text display. The full syntax is

COLOR foreground, background, border

The foreground colour is that colour which the text is printed in, the
background is the colour of the blank screen and the border colour is the
colour of the edges of the screen which cannot be written to. Thus the

command
COLOR 15,1,1

will give us white lettering in a black background with a black bprder. The
colours available and the numbers used to represent them in COLOR

statements are as follows.

@ Transparent 4 DarkBlue
1 Black 5 LightBlue
2 Medium Green 6 DarkRed
3 Light Green 7 Cyan

93

8 Medium Red 12 Dark Green

9 LightRed 13 Magenta
10 Dark Yellow 14 Grgy
11 Light Yellow 15 White

Just one word of explanation is needed here, and thgt is about the qolour
transparent. This simply allows whatever is under it — whatever is the
background — to show through. Due to the fact that we are only supposed
to have two colours available to us in the text modes, chgngmg the
foreground colour will change the colour of text already written to the
screen to the new colour.

Text in Graphics Modes

Try the program below:
10 SCREEN 2
20 PRINT "'Hello”
30 GOTO 20

Nothing is printed to the screen. This is because some rather special
techniques are employed to write text to the graphics screens. However,
once mastered, they give a great degree of control over the positioning of
text on the display screen and allow us to mix both text and high resolution
and low resolution graphics with text.

We gain access to the graphics screens by the use of an OPEN
command and a Device Descriptor. The new descriptor is called GRP:.
Just as we were able to write text to the text screens using OPEN"'CRT:"",
we use OPEN"GRP:" to write to the graphics screen. The full syntax of the

command needed to prepare the way for writing text to the graphics
screen is

100 OPEN"GRP:" FOR OUTPUT AS #number

or

200 OPEN"GRP:" AS #number

The command can only be sensibly used from within a program after a
graphics mode has been selected. The parameter number is the
equivalent of the file number that we used when we were writing text to
tape files. In a similar way, we use the PRINT # and PRINT # USING

94

commands to write text to the graphics screen. RESET :
try the demonstration program below. your machine and
10 SCREEN 2
20 OPEN “GRP:” AS #1
30 PRINT #1,"Hello"
40 CLOSE #1

50 GOTO 50: REM prevents return to Direct
Mode

You'll see the word ““Hello™ printed to the top left-hand corner of the
display. If you stop the program and then re-run it, you will find that the
printed text has moved down the screen by 1 line. This is due to the
computer “‘remembering” that it printed a carriage return at the end of the
word “Hello™ on its previous run. Thus the new text is printed accordingly.
We are therefore in need of a method of positioning the text we wish to
print to the graphics screen. LOCATE will not work, and the WIDTH
command has no effect until we return to a text mode, when the width we
specified in the WIDTH command that was executed in the graphics mode
will come into effect.

The command we use to position the text is called PRESET. The
syntax of the command when used for text positioning in graphics modes
is

PRESET (X.Y)

where X is the horizontal position of the character and Y is the vertical
position of the character. PRESET works on a 256 by 192 grid in mode 2
and on a 64 by 48 grid in mode 3. The program below shows the PRESET
command in use, to position text randomly on the screen.

10 SCREEN 2

20 OPEN"GRP:" AS #1

30 PRESET (RND(1)"256,RND(1)"192)
40 PRINT #1,"Hello”

50 GOTO 30

60 CLOSE #1

The CLOSE statement is rather superfluous here as it is el e;;(élgg:
due to the GOTO at line 50. The coordinates pasged s th? he strin
command refer to the top left hand corner of the first character of the string

that is to be printed.

95

]

The coordinate system used again has position 0,0 in the top left hand
corner of the screen. Due to the difference in pixel size, text printed in
Screen mode 3 is larger than the text printed in any other mode. It is thus
excellent for title pages in programs and other such applications where
large text is needed. To see this big text in action, simply change the
SCREEN 2 in the above program to SCREEN 3. Changing the colour of
text printed to the graphics screen is very simple — we just use the
COLOR command. We now, of course, have the 16 colours of the
graphics modes available to us. This, and the degree of variation we can
have in positioning the text makes the use of text in graphics modes very
useful. The program below shows how we can change the text colour with
the COLOR command. The colour of the words printed to the screen will
be repeatedly changed as the program runs.

10 SCREEN 3

20 OPEN"GRP:’ FOR OUTPUT AS#1
30 PRESET (0.0)

40 COLOR RND(1)*15

50 PRINT #1,"Hello’"

60 GOTO 40

70 CLOSE #1

The background colour and border colour parameters can be used in
such commands, but while in the graphics mode only the foreground and
border parameters are acted upon. The background colour used when
printing text to the graphics screen is the same one that was in use in the
last text mode used. If you want to change the background colour of the
screen using the COLOR command whilst in a graphics mode, then use
the command combination below.

1010 COLOR foreground, background, border
1020 CLS

This will, of course, clear the screen of anything there already.

If, while indulging in all these colour changes, you accidentally come
back to the text mode with a completely unreadable colour combination,
then a press of F6 will set matters to rights.

When all the text has been written to the graphics screen that you
want to write, the CLOSE #1 instruction must be executed. If you've used
some other file number than 1 here then simply replace the 1 with the
number you used.

-

Let's now go on to look at the simple
available to us in modes 2 and 3. The g
terms is to make a pixel at a particular scre
is often called plotting a point. The ¢
graphics commands again starts at the t
wWhen BASIC encounters coordinates i
have values that are beyond the edge o

in the coordinate pair are within the range -32768 to +32767. The values
that would be outside the screen are replaced by the closest value that is
just on the screen. Thus, 0 would replace any negative values that are
specified as a coordinate, if the coordinate is an absolute coordinate. We
say that we are plotting a point in an absolute fashion if the coordinate
refers to the position of the pixel to be modified with respect to 0,0. It is
possible to specify the position of a pixel with respect to another point

apart from 0,0. This is said to be plotting a point relative to some point on
the screen..

graphics commands that are
mplest thing to do in graphics
€N position a certain colouyr. This
Oordinate system used by the
op left hand corner of the screen,
N commands it will allow you to
f the screen, as long as the values

The commands that we can use to plot a pixel in a given colour are
called PSET and PRESET. These commands are virtually identical in
action. The syntax for the PSET command is

PSET (X,Y), colour

X and Y specify the coordinates of the point, and the colour parameter
specifies the colour that you want the pixel to be. The colour parameter
can be omitted from the PRESET command, which has the same syntax
as the above. If the colour is left out then the current background colour is
chosen. This was the way we used PRESET to position text on the
graphics screen. If we wanted to, we could use PSET to do the same job,
using a transparent pixel colour:

PSET (X,Y),0

The size of the pixel obviously depends upon the graphigs mode in use.
To see this in action, type in the program below, and run itin both modes 2
and 3.

10 SCREEN 2: REM or SCREEN 3
20 PSET (RND(1)*50,RND(1)*50),RND(1)*15
30 GOTO 20

Although the size of the area of the screen affected by the program is the

same in both cases, the pixels that are plotted in Mode 2 are only a.quaﬂ:f
of the size of those plotted in Mode 3. As a further demonstration, the

97

Y

below program draws a graph, showing the Sine and Cosine for various
angles in two different colours. The sines and cosines are evaluated before
we begin drawing, to speed up the drawing process. The angle in
degrees, represented by 1%, has to be converted first into radians before
the sine or cosine functions can be applied. Thus A is the angle in radians.
This program is also a good example of the slow speed of trigonometric
function evaluation on MSX computers!

10 SCREEN 0: LOCATE 10,10:PRINT "‘Please
Wait”’

20 DIM S(360), C(360)

30 FOR 19%=0 TO 360 STEP 2: A=1%/57.33

40 S(1%) = SIN(A): C(1%)=COS(A)

50 NEXT 1%

60 SCREEN 2:REM or SCREEN 3

70 FOR 1% =0 TO 360 STEP 2

80 PRESET (1%/2,5(1%)*30 + 50),7

90 PRESET (1%/2,C(i%)*30 + 50), 1

100 NEXT 1%

110 GOTO 110

The graphs can be plotted in both mode 2 and mode 3, simply by
changing line 60 accordingly. The next demonstration is what is called in
computing circles a ‘‘Random Walk”. The next pixel to be plotted is
specified to a certain degree by random factors. In this particular case, the
X and Y coordinates are either incremented or decremented, depending
upon the values of 2 random numbers.

10 SCREEN 2
20 X%=100:Y% =100

30 PSET (X%,Y%),15

40 N% =RND(1)*2:M% = RND(1)*2

50 IF N%>Q THEN X%=X%+1 ELSE X% =X% —1
60 IFM%>0 THEN Y%=Y%+1 ELSE Y%=Y%—1
70 GOTO 30

Try altering the amounts by which X% and Y% are altered in lines 50 and
60.

Now that we can use the PSET and PRESET commands to plot
individual pixels, it would be nice to be able to draw lines between points
on the screen. The MSX BASIC command that we use to do this is called
LINE. The full syntax of the LINE command is

LINE (X,Y)-(X1,Y1)

98

XandY are the coorc‘ii‘nates of the position at which line drawing is to start
and X1,Y1 is the position at which the line is to be finished. Thus the lin
drawn by the command - o

LINE (10,10)(100,100)

will start at position 10,10 and finish at position 100,100. We can specify
the colour of such a line by either a COLOR command before we draw the
line or by a colour parameter at the end of the LINE command, as below.

LINE (10,10)-(30,100),1

This command would draw a black line between the specified
coordinates. The numbers used in the colour parameter are those that
we've already seen. There is one final parameter that we can add to a line
command, which is quite useful. To draw a rectangle, or ‘box’, on the
screen would normally take 4 LINE statements to draw. By adding the
parameter B to the LINE statement. The command

LINE (10,10)-(100,100),1,B

will draw a black box to the screen with it's top left hand corner at position
10,10 and it's bottom right hand corner at 100,100. We can replace the
letter B with BF. This will draw the box and then colour it in in the colour
specified in the LINE command. Obviously, the shapes drawn with this
extended line command are all rectangles with parallel sides. Should we
want to draw irregular shapes or triangles, we will still have to separate

LINE commands.

Before leaving the LINE command, let's look at how we can draw
lines or plot points relative to the current graphics position, rather than to
and from absolute coordinates. The X,Y pair of coordinates in any
graphics command so far encountered can be replaced by an expression

of the form

STEP (X.Y)
The STEP signifies that relative addressing of the coordinates is to be
used. Thus the pair of commands

200 PRESET (100,100)
210 LINE STEP (10,10)-(30,60)

will result in the drawing of a line from point 110,110 to point 30,60. The

99

10.10 in the STEP expression refers to point 1@,10 relativ@e to thfee;agr:
gra'lphics point used, which in this case was the point 100,100 specified |

the PRESET command.

The final form of the LINE command is to omit the start coordinates.
The command is

LINE-(X1,Y1)

dnd the line is drawn from the last graphics point that was accessed to the
point X1, Y1.

We've seen how we can draw boxes to the screen; what about
something a little more difficult, such as a circle? Most home computers
require that the user write a subroutine to draw circles; not so the MSX
system. The command CIRCLE enables us to draw circles or 'elhpses in
either of the graphics modes. The full syntax of the command is

CIRCLE (X,Y), radius, colour, start angle, finish angle,
aspect ratio

STEP (X,Y) can be used instead of the (X,Y) expression in the aboye
syntax. Of the parameters, colour, start angle, finish angle and aspect ratio
are all optional. Let’s begin by drawing a few circles.

10 SCREEN 2

20 X=RND(1)*256:Y =RND(1)*192:REM random
circle position

30 R=RND(1)*30:REM Random circle radius

40 CIRCLE (XY),R,RND(1)*15:REM draw circle with
50 REM random colour
60 GOTO 20

This program will run in mode 3 as well, but the circles will be drawn with
much thicker lines. If you were to use the STEP (X,Y) method of positioning
the circle, then the first circle drawn in the above program would be
dependent upon the position reached by the last PSET, LINE etc.

command. The CIRCLE command can only be used in the graphics
modes.

Let's now look at the final three parameters that we can use with the
CIRCLE command — the start and finish angles, and the aspect ratio.
These are used when drawing sections of circles or ellipses. Let's start by
looking at how we can draw sections of circles to the screen.

100

_

We do this by specifying the start and finish angles in the CIRCLE
command. These parameters are in radians, but we can use the function
that we designed a short while ago to convert degrees to radians to solve
this problem. | will thus address this problem in degrees, as | believe that
more people are familiar with this measure of angle. The angles used in
these two parameters are between O and 360 degrees. The MSX
computers draw circles as illustrated in Figure 6.1,

(1.57rad,ie)
90°

(3.14rad, i.e: m) Q
180° 0°/360°(Drad)

270"
(4.711ad,ie:3)

FIGURE 61 ANGLE CONVENTION, CIRCLE STATEMENT

The circle is thus drawn in an anti-clockwise direction, starting at the
start angle and ending at the finish angle as we might expect. Thus when
we draw a circle command, the start angle is taken by the system to be 0
degrees and the finish angle is assumed to be 360 degrees. The program
below allows you to see the effects of changing the start angle of the circle
drawing procedure. Line 20 of the program defines the function for our
degrees to radians conversion. In line 30 we call this function, putting the
required start angle as the argument of the function. You can thus change
the start angle by altering the parameter passed to the function.

10 SCREEN 2

20 DEF FNA(angle)=angle/57.33

30 st=FNA(180):REM to change start angle, change
40 REM this argument

50 CIRCLE (100,100), 40,15,st

60 GOTO 60

101

T

Figure 6.2 shows the effects of varying the argument.

START
FINISH FINISH
START
ARGUMENT ARGUMENT
IS 90° IS 270°
START FINISH START/FINISH
ARGUMENT ARGUMENT
IS 180° IS 360°

FIGURE 62 VARYING THE ANGLE ARGUMENT SUPPLIED TO CIRCLE

It is possible to draw segments of circles by specifying the finish angle
parameter in the CIRCLE command as well has the start angle parameter.
Thus drawing a circle with the start angle equal to @ degrees and the finish
angle equal to 90 degrees would give us a line describing a quarter circle.
The length of the arc thus produced still depends upon the radius of the
circle, and the position of the arc is set by the X,Y coordinates specified in
the CIRCLE command. Again, experiment with varying values in the finish
angle parameter, remembering that the CIRCLE command must be given

its angles in radians.

The final parameter of the CIRCLE command, the aspect ratio, is used
when we want to draw ellipses. As you may know, an ellipse is a ‘flattened’
circle. The aspect ratio of the ellipse is a measure of how flattened the
ellipse is with respect to a circle. It is the measure of the vertical radius of
the figure to the horizontal radius of the figure. In a circle, these two radii
are the same, and a circle has an aspect ratio of 1. Figure 6.3 shows two
ellipses with their respective aspect ratios. Very large aspect ratios will lead
to a straight line, as will very small aspect ratios. The centre of the ellipse is
again specified by the X,Y coordinates specified in the CIRCLE command.

102

One point of interest to all users of the CIRCLE command is that if the
ngles specified are negative, the angles will be treated as positive ones
2ng the perimeter of the circle or ellipse will be connected to the point X,Y.

ASPECT RATIO = V.
_T ;
Y = 1
|
B o
f— H—+
ASPECTRATIO = 2
v 1
= 2
v
o=l sy

(&)

S
(64}

f ASPECTRATIO = 0.
v -1—
i = 0
=

| FIGURE 6.3 VARYING THE ASPECT-RATIO ARGUMENT SUPPLIED TO
CIRCLE

Paint

We know how to draw circles or lines in colour by specifying the colour
Parameter in the command. We can plot pixels in colour in a similar way.
However, what happens if we want to fill a circle or some irregular shape

e

103

with colour? One possibility would be to plot every pixel in the shape‘ in the
colour required. This would work, but in BASIC ‘wouid take a long time to
achieve. MSX BASIC provides us with a routine in ROM that wprks on this
principle but in machine code, which means that it is many times faster
than BASIC. This routine is called PAINT, and the command has the

syntax shown below.

PAINT (X.Y), colour, colour to be regarded as border.

The STEP (X,Y) form can be used in place of the (X,Y) expression. Both
colour, which is the colour with which we wish to fill the shape, and border
colour, which will be explained soon, are optional parameters. So, how do
we use this command? The X,Y coordinate specifies the position at which
the computer is to begin filling the shape with colour. It does this on a line
by line basis, and recognises the edges of the area that it is to fillvin the
following fashion. As the PAINT operation proceeds along a line, it tests
the calour of any pixel it encounters. If the pixel is not of the colour that is
recognised as a border colour, then the pixel colour is changed to the
paint colour. If it is a pixel that is the border colour then the operation goes
no further along that line in that direction. Thus if we draw a circle, and
position the X,Y coordinates of the PAINT command in the circle, the circle
is filled with colour. If the coordinate pair specified in the PAINT command
is outside the circle, then the rest of the screen will be filled with colour but
the inside of the circle will not be. These examples assume that the circle is
drawn in a colour that will be treated as a border colour by the PAINT
routine. An important point to note here is that the parameter specifying
the border colour is disregarded in screen mode 2. Here, the border
colour is the same as the paint colour in use. In mode 3 a border colour
can be specified. Let's now look at a few programs that demonstrate the
potential of the PAINT command.

10 SCREEN 3
20 CIRCLE (100,100),40,15

30 PAINT (100,100),5,15:REM set different border
40 REM and paint colours
50 GOTO 50

Note how we set the border colour to the colour in which we drew the

circle. Run this program, then add the line below which will fill in the
background in a different colour.

45 PAINT (100,190),1,15

104

Again we've set the border colour to the colour in which the circle was

drawn. Due to the fact that this command has directly specified the border
colour, it will not work properly in screen mode 2. Be|
of the use of paint in mode 2.

Ow is a demonstration
10 SCREEN 2

20 CIRCLE (100,100),40,5

30 CIRCLE (100,100),50,15

40 CIRCLE (100,100),60,15

50 CIRCLE (100,100),70,1

60 PAINT (100,100),5

70 PAINT (100,152),15

80 PAINT (100,190), 1

90 GOTO 90

It is therefore clear that more care has to be taken when using the PAINT
command in mode 2; the colour which we draw the outline of the shape to

be filled in in mode 2 must be the same as the colour in which we intend to
fill the shape in with.

The final simple graphics command that we shall look at is called
POINT. This command allows us to find the colour of a pixel at a given
screen position. The syntax is

POINT (X.Y)

and the statement containing the POINT command is usually one that
assigns a value obtained from the point command to a variable. The
POINT command returns a value between 0@ and 15. X and Y give the
position of the point of interest. A typical example of the use of POINT is in
the statement

200 IF POINT(x,y)=1 THEN GOSUB 2000 ELSE
GOSUB 3000

GRAPHICS MACRO LANGUAGE

This rather grand title is given to a series of graphics commands bgsed
around the DRAW comrand. The DRAW command and its associated
string of functions do indeed form a language within BASIC. The syntax of
the DRAW command is

DRAW string of graphics commands

105

The DRAW command only works in the two graphics modes, and any
command passed to the DRAW command in the string of graphics
commands will start drawing from the last point referenced — this is simply
the last point drawn to or plotted by a graphics command of any type.

The string of graphics commands consists of certain letters and
numbers, along with certain non-alphanumeric characters. The simplest
commands in the graphics macro language are those for drawing straight
lines. In each of the commands listed below, n is the number of pixels that

you want to draw over.

Command Function

Un Draw upwards on screen
Dn Draw downwards on screen

Ln Draw to left on screen

Rn Draw to right on screen

En Draw diagonally, up and right
Fn Draw diagonally, down and right
Gn Draw diagonally, down and left
Hn Draw diagonally, up and left

The demonstration program below draws a square. Note how we use the
PRESET command to position the square and define the colour to be

used.

10 SCREEN 2

20 PRESET (100,100),15

30 DRAW *“U50L50DS50R50"
40 GOTO 40

Should we wish to draw lines that are at a particular angle, then we can
use the M X, Y command, which is similar in many ways to the LINE
command that we've already met. If we wish to use the M command to
draw to a point relative to the last point visited, rather than 0, as we do
when we use the STEP command in LINE, then we prefix the X or Y
coordinate with a + or —. For example,

1000 DRAW ‘M +10,100"

would move to a point 10 pixels to the right of the current graphics position
and 100 pixels down the screen from the current position. The negative
sign enables us to reference a point to the left of the current X position and
‘above’ @he current Y position. Always remember that the M command
draw a line as it moves in the current foreground colour. If you wish to

106

move to a point on the screen without drawin

, g a line, then an
commands that we've seen so far can be prefi y of the

xed with the letter ‘B’

The: ‘N’ com.mand allowg you to draw a line with any of the commands
that we've previously examined, and then return the current graphics

position to where it was before the command prefixed with the N
command was executed. Thus the command

DRAW “M100,100NU50"

will draw a line first to position 100,100, and then draw a line to position
100,50. However, the next line to be drawn will take as its start position
100,100, which is the position of the start of the N prefixed command. To
make this clearer, type in the program below, and run it.

10 SCREEN 2
20 PRESET (100,100),1

30 DRAW “NU10ONL10ONL10ONR10OND100"
40 GOTO 40

The N before every command in the string has the effect of every
command in the string drawing from the same start position.

Colour

Colour changes in the graphics macro language are easy to perform. The
character ‘C’ is inserted into the command string, followed by a number
between © and 15 which represents the colour wanted. The colour code
numbers are those which we’ve previously discussed for use in the text
and graphics modes. Thus the line of instructions below will cause a black
square to be drawn.

DRAW “C1U50L50D50R50"

The colour commands can be placed anywhere in the DRAW command
string.

Another command that is of use is the Angle command, ‘A’. One
drawback with this command is that there is not a terribly large number of
different angles available to you; 4 in fact! The syntax within 2 SRR
command string is An, and n has a value according to the table below. As
in the CIRCLE command, angles are measured in an anti-clockwise
fashion.

107

Value of n Angle

0 0 degrees
1 90 degrees
2 180 degrees
3 270 degrees

The demonstration below will draw a square using the angle commands
instead of the D, L and R commands.

10 SCREEN 3

20 PRESET (100,100),1

30 DRAW “A1U90A2U9DA3U90AOU90D"
40 GOTO 40

Scale Factor

In normal circumstances, the n parameter that we pass over to commands
such as U or D, corresponds directly to the number of pixels that you want
drawn over. A command of the form Sn, where n is a value between 0 and
255, enables us to vary the number of pixels represented by a certain
value of n in these commands. The value of n over 4 is the scaling factor,
and so if we have a value of n=1, a figure will be drawn that is 1/4 the size
of the figure drawn with no scaling commands involved. Similarily, if we set
n =8 by issuing the command S8, then the figure drawn will be twice the
size of the one we would get without the scaling factor.

Subroutines

It would be nice if we could have, within the graphics macro language, the
equivalent of the BASIC subroutine; that is, a means of keeping only one
copy of a set of commands but being able to call it into use whenever we
wanted to. We can, in fact, do this by using the X command and string
variables. For example, we might set sq$ to contain the commands that
draw a square. We could then call this into use in another string as part of a
DRAW command using the command

Xsq$;

The full commands needed to draw a square in such a way would be as
follows:

A% ="U30R30D30L30"
DRAW "'XAS$;"

108

r—

The program below shows this in greater detail, and shows how a string
used in an X command can itself call other strings with X commands.

10 SCREEN 2

20 a$="U30"

30 b$="Xa$;,L30D30R30D"
40 PRESET (100,100),1
50 DRAW “Xb$;"

60 GOTO 60

Thus by using the X command, it is possible to assemble strings of
commands for the DRAW command that are, in effect, more than 255
characters long. Any string variable name that we use in this way must be
followed by a semi-colon.

Variables in the graphics macro language

In all the commands that we've discussed above, the numerical
parameters have all been constants. This need not always be the case, as
we can use a variable that has been assigned a variable in the normal way
in the BASIC program in the DRAW command string. The variable name
used is prefixed by the *' =" sign, and is followed by a **;”". Thus we could

have:

100 up=100
110 DRAW *'U =up;D30R30"

Expressions are not allowed in a string that is passed over to a DRAW
command They must be evaluated and the values obtained assigned to a

variable and the variable passed to the string.

In all these commands, the **;”’ can be used as an optional separater
of commands. Any spaces are ignored by the DRAW command when the
string is interpreted. As must by now be fairly obvious, the graphics macro

language can only be used in graphics modes.

SPRITES

We've seen how we can write text to the graphics screen, and how we can
draw lines and circles using the graphics commands. However, once we
start writing games software, for example, we begin to want characte(s
that look like space invaders, giant cucumbers, or whatever our game 1S
about! We can create these characters for use in graphics modes qmte
easlly. They are called SPRITES and are extremely useful in graphics

|
\
|
| 109
|

R

programming. A sprite can be defined in simple terms as a character
whose shape we can define and that we can move at will on the screen,
We can also tell if two sprites collide with each other as they travel around
the screen. They can be bigger than normal characters, and a sprite can
be made up of more than one character. No matter how many characters
a sprite is composed of, the computer treats it as a single entity for the
purposes of BASIC programming.

Before we go and examine how we can define and use sprites, it will
1 be useful to look at how the Video Display Processor looks at sprites.

BACKDROP
PLANE

PLANE 31

SPRITE I
PLANE 0

FIGURE 6.4 REPRESENTATION OF THE SPRITE, MULTICOLOUR AND
BACK DROP PLANES

110

The picture that the VDP presents to the television screen or monitor
can be imagined as being made up of a series of la
PLANES. These are shown diagrammatically in Figure 6.4. Images that
are onthe Display Planes closest to the observer appear to pass in front of
images that are on Display Planes further back. This is what gives sprites
their useful ability to pass in front of or behind other sprites. Note that it is
not possible for a sprite to pass behind an object that is on a Display Plane
that is further back than the sprite in question. The Display Planes closer to
the viewer are said to have a higher PRIORITY than those planes that are
further away from the viewer. Thus the Display Plane upon which Sprite 0
is seen has a higher priority than the plane on which Sprite 3 is normally
seen. There are 32 of these Sprite Display Planes; this explains why it is not
possible, except by the use of very advanced programming techniques, to
have more than 32 sprites on the screen at once, as there is only one sprite
per Plane. After the Sprite Planes comes a Display Plane known as the
Multicolour Plane. Itis on this plane that the images created by the normal
text handling and graphics commands are displayed. Thus images that
are produced by commands such as PRINT and DRAW always have a
lower priority than images that are sprites. The final Display Plane that is

accessible from software is called the Backdrop. We normally see this as
the border to the display screen.

yers, which are called

Sprites are not available in Mode 0, but are available in the other
modes, including text mode 1. Sprites can be of various sizes on the
screen. The smallest sprite size is the 8 by 8 pixel sprite; this gives an
image size the same as that given by printing a text character to a Mode 2
screen. The other sprite size is 16 by 16 pixels. Both of these sprites can
be ‘magnified’ on the screen, thus making them bigger. There are thus 4
different sprite sizes available to the MSX programmer. A sprite’s colour is
set when we position it on the screen. If a pixel of a sprite is not coloured in,
then we can see the images present on lower priority planes through the
transparent pixels of the sprite. Thus if one sprite is over another sprite, the
colour of the lower priority sprite will be visible through any transparent
areas of the higher priority sprite.

The information that is required to define a sprite is stored in Video
RAM as an area of bytes called a SPRITE GENERATOR TABLE. A
detailed examination of such a table will come later in the chapter. As there
s always a given <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>