

MSX turbo R

Technical
Hand Book

This is a translation for this book from japanese to english.

It's made possbile by translating small chunks of texts using
Google's Image translation services, to maintain original
scanned resolution, and also, to improve translations, going
paragraph by paragraph, editing page content to avoid bad
translation in some texts because paragraphs spanning two

pages.

Original japanese book was download from archive.org, so
thanks to the people who scanned and made this book

available.

I'm translating it to english to help this knowledge to be of use
for a wider audience :-)

htdreams - 2025/06

ASCII Publishing Bureau

MSX and MSX-DOS are trademarks of ASCII.

MS-DOS is a trademark of Microsoft Corporation.

0S-9is a trademark of Microware Systems, Inc. and Motorola, Inc.

TEX is a trademark of the American Mathematical Society.
MicroTEX is a trademark of Addison-Wesley Publishing, USA.

Other CPU names, system names, product names, etc. used in this manual are generally trademarks of their respective developers.

The TM and R marks are not stated in the text.

This book was typeset using ASCII's "Japanese TEX" except for the title page, colophon, and
some illustrations. | would like to thank ishii@cts.dnp.co.jp, the author of msdos.sty, and the Publishing
Technology Department. | would also like to thank Melhen Maker, who kindly agreed to do the illustrations on
the title page.

In order to avoid making the book too long, | have omitted the description of "Japanese MSX-DOS2"

and memory mappers. These will be explained in the "Japanese MSX-DOS2 Technical Handbook (tentative
title)" to be released soon.

Introduction

Welcome to the world of MSX turbo R. This book provides detailed information on the internals of the
MSX personal computer, which has become incredibly powerful thanks to its high-speed CPU and

large-capacity memory, and is necessary to make the most of it.

1. This technique maximizes the performance of the R800, a high-speed CPU with a 16-bit internal

configuration that delivers processing speeds more than 10 times faster than previous MSX models.

2. Information and techniques for making full use of the PCM and FM sound sources that come standard

with the MSX turbo R.

3. The mechanism of the SLOT mechanism, which is essential for mastering the MSX, and how to use it.
4. The Kanji BASIC mechanism is necessary for developing software that handles Japanese.
5. How to master VDP to bring out your techniques in on-screen displays.

MSX turbo R was the first personal computer to achieve dramatically higher performance by

upgrading the CPU to 16-bit without making major changes to the architecture of previous models.

Others changed their architecture completely when they went from 8-bit to 16-bit, which meant that
all the software and know-how that had been developed by many people on 8-bit machines was thrown
away.

We felt that it was necessary to make the CPU 16-bit to improve the performance of MSX, but that we
should not throw away the software and hardware assets developed for MSX, nor the know-how of our
users. In order to achieve this, we felt that a CPU that was upwardly compatible with the Z80 was
necessary for the new MSX, and so we developed the R800. And to achieve complete compatibility with
previous MSXs, we developed the MSX turbo R, which is equipped with the conventional Z80 as well as the

newly developed R800.

6 (T LIS

In this way, MSX turbo R maintains ideal upward compatibility with the conventional MSX.
Therefore, users can get many times the performance improvement by simply running the software assets they
have accumulated so far on MSX turbo R.! In addition, the knowledge required for software
development can be used as it is, but by using some of the know-how explained in this book, it will be
possible to further extract the machine's performance and realize a system that demonstrates outstanding

cost performance.

Ryozo Yamashita, General Manager of the 1st Product Division, Systems Business Division

1 Commercially available software for MSX may not run as fast as the R800 would be too fast and would not be
compatible, so it automatically switches to Z80 instead.

table of contents 7

table of contents

1 MSX turbo R 15
1100 £ eV Lo P T L e e A S S (PR 16
1.1.1 Here are the features of the MSX turboR! 16

1.1.2 MSXturbo R system configuration 16

1ilwti ElegantCPUSWIICNING oiiin & & & & & 50 & & & o % wes (@ oo oo 18

1.1.4 Everything packed into MSX turbo R ROM configuration , , 18

1. 148 Systemtimentoadjistspeed. , & . o 4 « 5 ovv 5 5 v W kb W R 19

1.1.6 MSXturboRI/Oport, 20
1.1.7 DRAM mode for maximumspeed 22

1.1.8 HerearethefeaturesoftheR8OO!! 23

15125 ‘Al about the R8GO s G e s A8 o e eaben & G 23

1.2 MoK tuplse R Howtouse: . & . . o vow v w4 b 4w mwh e e e e 27
1.2.1 Programming that takes advantage of the speed of theR8OO 27

1.2.2 Precautions and issues when usingthe R8BOO = = 2l

1.2.3 Added BIOS and its function description. 28

1.2.4 What BIOS was changed orremoved? , gl

1.2.5 Notes on application development 32

1.2.6 Example of a program that switchesCPUs 83

lsd: ' JHowgo use PEMtoiuts imits 0 s i o i o s e 37
1.3.1 BasiCS...cceeurrrreenun.. HowtouseinBASIC 3T

1.3.2 PCM-related BASIC instructions 38

1.3%8 Play the BEER.sound WithPCM!-_ . . © " . 0 oo o o vis b 5 o bos 39

1.3.4 dvancededition: -« v PCMin machine language! 41

2 SLOT 47
2y - - WNat [S.ISIOL? - S of o 0 e e e e e e B B 05 e & e e 48

table of contents

4
2152
215
2.14
2.15
2.1.6
Zalesl

2.2 Try switching slots

221
2l
2.2.3
2.2.4
2.2.5
2.2.6
2.2,

2.3 MSX Trubo R slot configuration

2l

How is the CPU and memory connected?

Exploring the inside of the 8-bit CPU Z80

There are various types of memory depending on the function

The MSX2+ slot haschanged

Expandyourslots

To switch slots

..............

How to specify the slot number

BIOS functions to operate slots

......

How to know the slot configuration

Explore the system work area

MSX2+ hardware specifications

Device enable to prevent collisions

Finally, the slot configuration has been unified

3 Kanji BASIC

3.1 Analyze Kanji BASIC

gl il
Il
3.1.3
3.1.4
Hulao
3.1.6
3.1.7

Hardware required for Kanji BASIC
What is MSX-JE compatible software?

Explaining the operating principle of the Kaniji driver

JE compatible hardware & software

Various screen modes available in Kanji BASIC

Kanji text and kanji graphics

This is the correct way to use the Kanji Driver

4 V9958 VDP

4.1 V9958 Register List.
4.2 What's new in V9958

4.2.1
4.2.2
4.2.3
4.2.4

4.3 Discontinued functions of V9958

oooooooooooooo

horizontal scroll

Weight

..................

command

YJK style display

oooooooooooooooooooooooooooo

oooooooooooooooooooo

48
48
50
50
92
53
5 h)
o7
o7
57
o8
60
61
64
65
67
67

12
72
73
73
75
76
i
78

81

83
85

85
87
87
87
89

4.6

4.7

0.1

9

44 V9958 Hardware Specifications (Changes) 90
425 N9958and MSX2+ 5 & o 55 & S wid o i 5 B 5 A KRS AW RN NN A 91
4.5.1 There are 12 screenmodesintotal _ 91
den 2 Controls the VDP register: B2 e ok e s w o 5w s ok o wh o s ok 5 & 92
i - WO958 REGISIOn e i o 5 0 i B e e e e e o 95
deied Horizontal scrolling With VDP = o 454 & & v = i o e B e st s 1 o o 95
4.5.5 Whatever youdo, don'tuseanytricks 98
Dissectingthe YJKMethod: ; ;:5 .5 ¢ 6 s 5.5 5 5 3 8 s ® 5 & 6 5 &5 & & o 99
4.6.1 Television broadcasting and the YUKsystem , 99
Akid YRGB andYJK«data Structures “2 s ww o & &'s & wow ¥ & & % &% 99
445 3 - colorsampleprogram = . » ; sex x5 & 5 x5 b e ¥ B R Y Py wa 101
4.6.4 It'sadeadlylogicaloperation 103
MRS . (So-called disColoration, = e o & @oa 5 abw P widk, & 90w 6 i e 105
4.6.6 Whatis the difference between SCREEN10and11? + 105
48,7 TowusesubtitleSiNSCREENT1 < 2 u 4 s « . 8 &8 & & & & = & 5 % 5 106
4.6.8 AtricktodisplaytextonSCREEN12 108
4869 . YJK method'and VDPxegister ', o w w & & w55 & 5 mow % & = o & § & 108
Studying Scanline Interrupts x s w o % w o & 5 % @ & % & & =« o 5w w 110
4.7.1 How does the monitor screendisplay? 110
4.7.2 InterlacedTV broadcasting L1
4.7.3 Interlacedscreenon MSX2 L0000 e 11:2
4.7.4 Exploring the principles of scan lineinterruption ., v 115
4.7.5 Hereis an example of scan line interruption ., , 114
4.7.6 Let'sfinally get to the practicalpart! 116
4.7.7 VDP register used for scan lineinterrupts 116
4.7.8 How to assemble and how the BASIC partworks 119
4.7.9 Thisis how the assembler partworks 121
4.7.10 Thisis the machine routine for the scan lineinterrupt ., 128
5 MSX-MUSIC 129
What.is an FMisynthesiS SOUrCE? . o a & m & m e i e e o o a0 oo 5 55 5 @ a0 e B 16 130
5.1.] Thehistory of electronic musical instruments leading to FM synthesis. 130
5.1.2 Let'sanalyze the sound of theinstrument 132
5.1.3 Thepitchisnot necessarily equal tempered L. .. 134
Sill. 4 - Let's analyze MSX-MUSIC © 4 o & 3 & i s i 5 % o om0 000 i o 136
5.1.5 Try making rhythm sounds using FMsoundsource . . ., 137

table of contents

B2 CONTTOl.FM SOUND SOUNTE ..’ 4" b Sif8 5 o S 5 o A s o T s o8 S e i) b 1 139
5.2.1 Making sounds with a machine language program 139
5.2.2 Give an overview of thelibrary 141
5.2:9 . let'scompile WIth MSXeC i o il v 6 5 5 0 5 & % % % 50 5 & 149
0.3 FMsoundsource datastructure . . . 00 000000 L. 150
5.3.1 Let'screateFMsounddata 150
5.3.2 Tospecify percussiondata, 152
5.3.3 Let's specify the instrument sounddata 154
5.9.4. Whatthe OPLL drivercannotdo, -~ 'l i & % & o o 46 0w & & & 156
5.3.5 AddingSoundData [. .., 156
5.3.6 Explainingsampledata 158
5.4 Various things related to FM synthesis L. 160
5.4.1 Correction to the content of the powerful usage method 160
5.4.2 Listof MSX-MUSIC tonedata L. L. 162
R 800 instruction table 165
A.1 How touse the instructionsheet 166
A) w8 bitmovement instructions: . ot vy o RS e e e e 168
AG . 16-bitmoveinstructions [o Sl G 8 L L e e i e 169
A.4 Exchangeinstruction 0L 17
X5 pstack manipulation INStrUCIONS: e Tt 0 o 0 i e ' 0w ot & B g e i
A.6 Blocktransferinstruction . . [., 0. ... 1762
A.7 blocksearchinstruction .00 00000 172
A.8 multiplication instruction . . 0000000, 172
A eadd it OIS UG ON o e o e e o e e 173
A.10 subtractioninstruction . 0000000000 175
Akl fcomMparisORCOMIMANG <o o e b s e e e 176
A .12 logical operation instructions beT
A .13 bitmanipulationinstructions 00, 178
@i 1] Rotate Instruction < o e s e e e o e i G 179
A1 shit IS U C T Om e ks e B o O 181
W -]y (o e (Lo T S A s O I S S S B T 182
Al IS O e o e e B e 183
A.18 input/outputinstructions 185

A.19 CPU control instructions 186

Figure table of contents 14
Figure table of contents
1.1 MSXturbo R system configuration b4
1.2 Changesin ROM configuration in MSX turboR 19
1.3 R800internal blockdiagram00 L., 25
1.4 Differences in memory access methods between Z80 and R80OO0 26
2.1 ZSOCRU INEMONY . i o v vy & % bt 5 s e oo w0 s o s 49
2.2 MSXslot configuration (part1), fil
288 MSX slot configuration (Part2) . .+ & s o s v s o v s o 5 om i w5 52
2.4 Example of MSX2+ slot configuration (when expanding only slot 3) o4
2.5 Example of MSX2+ slot configuration (when expanding slots O and 3) 00
2.6 How tospecify slot number 58
2.7 ‘device enable Tt o st e e o e R 65
2.8 MSXturbo Rslot configuration 0000 L. 68
3.1 Kanjidriver operating prineiplet . o s o & & L L - g e @ mien b w b s 15
B2 | Switching sCReentMOde | i s b s s o b bl e e 78
4.1 Horizontal scrolling (whenSP2=0) 85
4.2 Horizontal scrolling (whenSP2=1) 86
4.3 List of control register functions addedtov99s8 = 96
4.4 Two types of side-scrolling mechanics o7
4.5 Datastructureof RGBscreen 99
4.6 Datastructure of YUK stylescreen L. 101
4.7 Datastructure of mixedscreen 101
4.8 Scanning lines on a televisionscreen 110
4.9 Thisis what happensininterlacedmode 172
4.10 Thisisthe principle of scan line interruption 114

12

Figure table of contents

4.11
4.12
4.13
4.14
4.15

0.1
0.2
0.3
0.4
9.9
0.6

Scanlineinterrupt procedure ., . & o o & o = o & = = » 5 ® v & & & ¥ 5 = 5 o » 115
VDP register that generates a scan lineinterrupt 116
VDP register to detect scan lineinterrupt 117
VDP registers that control screenswitching 117
Hardware vertical scrolling mechanism 118
Exploring the Structure of Four Types of Electronic Musical Instruments + + + v + . . 131
Let's"analyze the basicsound ' . & « &« @ @ 6ca 508 0 2 2 v v s 2 b B WA b 8 1532
Instrument and Synth Envelopes 134
Percussion instrumentsounddata ., ., 153
tonedatd ™ w wwn i HE B BB kB EEE CF LT B e h 8 157

table of contents 13
table of contents
1.1 MSXturboRI/Omap 2
1.2 Comparing the operating speed of the Z80andR800 , 24
1.3 List of BIOS and BASIC changes in MSX turboR 32
Tedl SO port TOMPOM. L5 2.0 ok 55 G o et s St ot s S e o B B o 45
2.1 Systemworkareaforslots, 61
2 N S X [O DO S, L e e 64
3.1 MSX-JE built-in hardware list 73
S KapjLBASIC sereen mode &= & b o e e e e e e B e e i
3.3 Hooksused by Kanjidrivers 79
4.1 VDPmodeandBASICscreenmode . | 82
L AMode registers . S B e e 83
. - | “eommand registenl i o U e e A e e e e e e 84
2l T status TegiSIEN | Ml e e e e e S A e e 84
2[5 Change of termiQaliof V9958, | o 0 0 i it & o o e B e e e i 90
4.6 DC characteristicsof V9958 L. 90
A MSX2s SCreellMOCe. . ol 5 0 i e s it ot 91
4" VDP O POrESE Coiiiie o i e o i 5 5 % 5 5 o e e e o o B b b e 4 92
4.9 Control register storage location 93
4.10 Otheruseful systemworkareas - . . . , v v v v v v e 94
4.11 System work area added and modified in MSX2+ 94
4.12 Details of OFAFCH Address (MODE) 94
4 1.8 Logical OPEration® ".oi o i w2 8 5 b e o e e s B B e e e 104
5.1 Comparing the performance of electronic musical instruments = gl

5.2 Relationship between scale and frequency

14 table of contents
5.3 List of temperaments that can be set in MSX-Music 135
5.4 Data structure for 6 instruments + 1 percussion sound . . 150
5.5 Example of data structure for 6 instruments + 1 percussion sound , 1 5l
5.6 9 Instrument sound data structure 52
5.7 Instrument sound data 155
5.8 Example of musical instrument sound data . 155
5.9 Tone data list 163

- ol —

"‘“ . i
=y = = #1‘?_‘ ‘? r

f“""' g
S ELA Sl
St

™ r L - *
R YAt it s LA L Y
. < o .
E‘-ﬁ-\ el sy,
R o o s : 3" i
S ELAE e
.

PR b1

3

f‘!

P *
%&} }.-*r:
XA

#

T
T

?
!I:;;?,

e E

el
Ly
< . 3
Filgs s LY -t W e v,
o LT w\li., Ad
;e bl v
e " :l'
2 LB

e A
4\ S AT :fr:li"*;‘ B o 3 Y Bl S s L S T R A e
R S v B g R e R T N T 4 i"'"‘w""fﬁﬁgﬁ;”ﬂ. rd Lo
!] ol I b ! \.‘I-';': L e *ii Es D E'I:'__.. = U i A e e LA e " ;

SR B L el SRR e i

e S &, iy L o e, Y -I-t-u'. R o e = 3 L

LS B .i.-'—.?‘-;ﬁ.H:q;ﬁﬁy:h_, R o ;

: 132 .
Bt 2o ok s G-z
a . .}"‘n w o A e .*:"‘“]

AT AR A b S SO €

16 Chapter1 MSX turbo R

This chapter is a re-edited version of the articles "MSX turbo R Technical Analysis" and

"PCM Maximum Usage" from the November 1990 and December 1990 issues of MSX

Magazine.

1.1 MSX turbo R hardware

The MSX turbo R has been much talked about, with its newly developed 16-bit CPU "R800", 256KB of
main RAM, and MSX-DOS2 with hierarchical directory support as standard equipment. Here is an

overview of the system configuration of this notable machine.

1.1.1 These are the features of the MSX turbo R!

° 280 In addition, by incorporating the high-speed CPU "R800" which is upwardly compatible, it achieves an average speed

of 4 to 5 times, and up to 10 times, faster (compared to MSX2+).

e Along with MSX-DOSY, it also comes with Japanese MSX-DOS2 and Kaniji drivers, and supports

MS-DOS compatible hierarchical directories and environment variables.

e It comes standard with 256KB of main RAM that supports memory mappers. The slot

configuration has also been standardized.

e PCM recording/playback function is standard equipment. MSX-MUSIC, which was

previously optional, is now also standard equipment.

1.1.2 MSX turbo R system configuration

The hardware configuration of MSX turbo R (hereafter referred to as turbo R) is shown in
Figure 1.1. It includes the same "Z80" compatible CPU as the previous MSX, and the newly developed
"R800" CPU. Contrary to the rumors in the industry that "the next MSX will be equipped with
Zilog's Z280 or Hitachi's HD64180 (both high-speed Z80-compatible CPUs)," ASCII actually made
the CPU.

The performance of these hardware is comparable to older 16-bit machines, and the CPU speed is on
par with the V30 (a 16-bit CPU developed by NEC). Also, putting the kanji conversion
dictionary in ROM to save RAM and disk space is a traditional MSX design policy. It is also adopted in
some recent notebook computers. To evaluate the turbo R hardware in one word, it would be "everyone has

been aiming for this."

1.1 MSX turbo R hardware

Lif

Figure 1.1: MSX turbo R system configuration

R800
V9958
S1990
DRAM
psseg i
DRAM
TC9769
ROM 3.5inch le
FDC l_ Floppy
Kanji
e . S ﬂ
ROM :
MSX :
1
cartridge :
SRAM e Ao
e |

Here is a simplified representation of
the turbo R hardware configuration,
omitting all the detailed control signal

lines. The output of the V9958 is the

video signal, the lines connected
to the TC9769 (Z80) are the keyboard

and joystick, the output of the 273
is the printer port, and the output of
MIX is the audio signal.

To explain the hardware configuration in a little more detail, first, the "TC9769" in the diagram is a

Toshiba CMOS-LSI (a type of low-power digital LSI) judging from the model number. It

is an LSl that includes a Z80-compatible CPU and a PSG sound source, commonly called the

"MSX-Engine." In the following, whenever the term "Z80" appears in this book, it refers to this chip.

Below that, "273" is the bus buffer for controlling the printer, "OPLL" is the FM sound source, and

"FDC" is the floppy disk controller. Also, "SRAM" is memory that stores the results of the kanji dictionary even

when the power is turned off, but this SRAM and the compound phrase conversion dictionary are

manufacturer optional features.

By the way, the R800 and main RAM are connected to the bus (the long vertical line in
the diagram) through the S1990. For example, when the R800 operates the VDP, the S1990 relays the

signal, and if necessary, sends a wait signal to the R800 to synchronize the signal timing with that of the

Z280. Conversely, when the Z80 uses the main RAM, the S1990 and R800 relay the signal and handle

memory mapping.

18

Chapter1 MSX turbo R

The reason why the turbo R has such a complex configuration is to maintain compatibility
with existing hardware and software. | think they managed to do this. Bravo.
As you can see, the turbo R has few parts, but its internal processing has become very
complicated. Furthermore, the S1990 is a 160-pin flat package, so it is impossible to solder it by hand.
Although we are grateful for the faster and smaller hardware, the crafting techniques of the good old days

of single-board microcomputers are no longer applicable. However, the MSX cartridge slot remains

the same as it was in the past, so the MSX will continue to be a useful teaching material for beginners to
hardware.

1.1.3 Elegant CPU switching

JVC's MSX2 machines, the HC-90 and HC-95, used two different CPUs, which could be switched with a
switch. However, the turbo R uses a specially developed LSI, the "S1990", to manage the system, so even when

the power is on and a program is running, the CPU can be switched and the program can continue to run.

Thanks to this hardware, it is possible to automatically run conventional MSX software in Z80 mode, and
turbo R software in the faster R800 mode. It is also possible to create MSX2 / turbo R compatible software

that checks the hardware type and selects Z80 for conventional MSX and R800 for turbo R.

1.1.4 Everything packed into MSX turbo R ROM configuration

The turbo R should have a lot of ROMs built in, but when you open it up, you'll find that the number of
ROMs is surprisingly small. The reason for this is the mega ROM control function of the S1990.
The MSX2+ has a built-in ROM like the one shown in the upper part of Figure 1.2. The main ROM
and sub ROM are connected to different slots, and the kanji ROM is connected to an I/O port, so
they need to be different ROMs regardless of the total capacity. However, using one 128KB ROM is cheaper

than using four 32KB ROMs, and it also reduces the board area and power consumption.

So, in turbo R, the main, sub, OPLL driver, DOS, kaniji level 1, and kanji level 2 were all packed
into one 512KB ROM, as shown in the lower part of Figure 1.2. However, because of the mega ROM
control function of the $S1990, which is placed between the CPU and the ROM, from the software's point of
view, for example, the kaniji level 1 ROM appears to be connected to the I/0 port addresses D8H

and D9H.

In addition, a total of 64 KB of DOS ROM (16 KB for MSX-DOS and 48 KB for
MSX-DOS2) was connected to the 16 KB space in slot 3-2 using a 4-bank switching system.

1.1 MSX turbo R hardware

13

Figure 1.2: Changes in ROM configuration in MSX turbo R

280

MSX2+ ROM structure diagram

decoder

decoder

main

sub

kanji driver

Level 1 Kaniji

Level 2 Kanji

R800

32 kilobytes

MSXturboR ROM structure diagram

32 kilobytes

$1990

32 kilobytes

32 kilobytes

Z80

main
sub
kanji driver

OPLL driver

DOS

Level 1 Kanji

Level 2 Kaniji

Kanji conversion dictionary

512 kilobytes

512 kilobytes

1.1.5

System timer to adjust speed

When the R800 tries to use the V9958 (the LSI that controls the screen display) at intervals of

less than 8 microseconds, the VDP interface circuit built into the S1990 automatically puts the R800 into a

wait state. This means that there is no risk of the V9958 malfunctioning due to the CPU processing being

too fast.

However, other peripheral LSIs do not have an automatic wait function, so the software itself must

adjust the timing.

EX (SP) ,HL
EX (SP) ,HL

or

PUSH HL
POP ° HL

20 Chapter1 MSX turbo R

The timing was adjusted by embedding instructions that take time but have no side effects, such as the
following, into the program. However, as | will explain later, the execution time of the R800's
instructions is uncertain, so it is impossible to achieve timing in this way. Therefore, the turbo R has a
"system timer" to adjust the speed.

This is a 16-bit counter that increments every 3.911 microseconds, with the lower byte connected to
the 1/0 port at address E6H and the upper byte connected to address E7H. However, it would be
inconvenient if the counter value changed while trying to read the 16-bit value, so it is best to use
either the lower byte or the upper byte.

Listing 1.1 shows an example of a program that waits for 3.911 microseconds times the value of the B
register. If you rewrite the program to use the high byte of the counter instead of the low byte, you can

create a program that waits for 1001.2 microseconds times the value of the B register.

list 1.1 (TIMER.Z80)

.280
COUNTLOW EQU OE6H : Counter lower 8 bits
COUNTHIGH EQU OE7H - Upper 8 bits of counter
; B register value 3.911uS wait
; Theerroris -3.911uS..+0S
;Do not specify O
: Interrupts must be disabled

)

: C, A, Fare destroyed

)

WAIT:
IN A, (COUNTLOW) ; Get the current value of the counter
LD C,A ; and save it

WAIT_LOOP:
IN A, (COUNTLOW) : Get the current value of the counter
SUB & ; Calculate the elapsed
CP B ; time Has a specified time elapsed?
JR €;WAIT LOOP . Loop if it has not elapsed
RET

1.1.6 MSX turbo R 1/0O port

The turbo R press release did not include an I/0 map, so the editorial team added the information
obtained from interviews and hardware analysis to the MSX2+ I/0 map to create the I/0 map

shown in Table 1.1. Items with an "R" note are the I/0 ports newly added to the turbo R.

First, the "D/A converter" is an 1/0 port for controlling PCM recording and playback without
going through the BIOS. We'll explain the details later. "Pause key control" is an 1/0

port for disabling or allowing the pause key to stop a program. It appears to have been
provided to prevent situations where a program is interrupted during disk input/output, resulting in

the disk being destroyed.

1.1 MSX turbo R hardware 21

Table 1.1: MSX turbo R I/0 map

address Purpose Note

OOH~ 3FH| homemade hardware

40H~ 7BH [Manufacturer options

TCH~7DH| OPLL +|B

80H~87H|RS-232C i 12— &

' 88H~-8BH | external VDP 2 | XX

90H~-93H | printer 2

98H~9BH|VDP T

AOH~ A2H|PSG i

A4H~ ASH|D/A converter R According to a survey by the MSX Magazine editorial team
A7H | pause key control R 1 MSX; Compatible

A8H~ ABH|8255 1 (B 2 MSX; Compatible

ACH~ AFH| MSX-Engine 2 + MS X34 Compatible

BOH~B3H|SONY ¢ SRAM 1 XX R turbo R Newly established

B4H~ BSH |clock 2 B Always operate through the BIOS.

B8H~-BBH | light pen 2 |1XX

BCH~BFH | VHD control 2 | XX —— It should not be operated by application

COH~C1H|MSX-Audio 2 1XX programs.

C8H~ CCH| MSX-Interface 2 XX X Thisis afactory-installed option, but

DOH~-D71 | floppy disk . - AX was not implemented in the turbo R

D8H~DOH |No. 1 level Kanji ROM |2 prototype we investigated.

DAH~-DBH |No. 2 level kanji ROM |2
DCH Kanji ROM expansion |[R|— . X X X It was included in the previous model

E3H~ESH|, . # 1387 but has been removed from the turbo

E6H~ ET7H | system timer R R model.
F4H reset status +|(B 7 Something is connected, but it's not
FSH device enable 2 mentioned in the specs. It looks like

F6H~-F7H |AV control 74X there's a register for hardware testing.

FCH~FFH | memory mapper 2 1B

"Kanji ROM Expansion” seems to be a reserved function for 24-dot Kanji ROM and JIS Level 3
Kanji ROM that may be created in the future. The "?" below it is not written in any of the documents,

but it seems that some hardware works inside the S1990 when reading and writing to the 1/0 port. |

think it is an 1/0 port for testing turbo R hardware at the factory. And "System Timer" is as | have

already explained.

Although this is not mentioned in the table, in order to keep up with the speed of turbo R, you

should use the BIOS to operate the PSG, joystick, mouse, printer, keyboard, and clock
(battery-backed clock IC).

22 Chapter1 MSX turbo R

Next, there is a feature shared with the MSX2+ that | would like to explain in more detail: the

“reset status.” This is an I/0O port that distinguishes between a hardware reset and a restart caused by jumping

to address O of the main ROM. Specifically, when address 17AH of the main ROM is called, the

value of this reset status is read into the A register, and when address 17DH is called, the value of the A

register is written into the reset status. For example,

CALL 17AH
OR 80H
CALL . 17fDH
RSl OH

By following this procedure, setting bit 7 of the reset status to 1 and then jumping to address O, you can
reliably restart the MSX.

By the way, the reason why you can't use the reset status without going through the BIOS is because the
logic of the hardware signal for the reset status is reversed depending on the machine. The BIOS
compensates for that difference.

With the turbo R, which comes standard with DOS2, the "memory mapper" has become increasingly
important. It requires a somewhat complicated procedure to use the extended BIOS and to operate.

Finally, as a side note, Table 1.1 includes functions that were once put to practical use or prototyped,
but are not included in recent MSXs. The author thinks that the recent MSX has become a standard

computer, and there are too few cute peripherals, but what do you think?

1.1.7 DRAM mode for maximum speed

Each memory has a minimum time interval between reads and writes, called the "access time." If the

CPU speed is too fast, a "wait" must be inserted to match the CPU speed to the memory. This

access time varies by type, and the faster the memory, the more expensive it is. In general, RAM has a

shorter access time than ROM.

To take advantage of the speed of the R800, it is better to store programs in RAM rather than ROM.

Therefore, a "DRAM mode" was provided that transfers the contents of the BIOS, BASIC, sub-ROM, and
Kanji driver ROMs to DRAM (main RAM) for use.

1.1 MSX turbo R hardware 23

This separates the last 64KB of main RAM from the memory mapper, transfers the ROM contents, then

write-protects it and connects it to the CPU. From the CPU's perspective, it appears that the normal ROM
has been replaced with a high-speed ROM. When executing programs written in BASIC, the ROM containing the

BIOS and BASIC interpreter is often used, so the speed of the DRAM mode can be utilized.

However, when running machine language programs, especially DOS programs, the time that ROM is
used is relatively short, so it may be more advantageous to use the extra memory for a RAM disk or
similar, rather than using DRAM mode.

Also, programs on ROM cartridges will run faster if they are transferred to RAM, but with turbo R

disk-based software will likely become more mainstream than ever before.

1.1.8 Here are the features of the R800!

e Itis object-compatible with the Z80, so Z80 software will also work, except for parts that depend on

CPU timing.

e The CPU clock speed is 7.16 MHz. However, since the number of clocks per instruction is

significantly reduced compared to the Z80, it is equivalent to 29 MHz in Z80 terms (when

there are no wait states).

e Supports multiplication instructions with precision from 16 bits x 16 bits to 32 bits, enabling a

significant improvement in calculation processing speed.

e Access to the upper/lower 8 bits of the IX/IY registers, which was undefined on the Z80,

is now officially guaranteed.

1.1.9 Allabout R800

The R800 used as the CPU for turbo R is a high-speed CPU that is software compatible with the
conventional Z80. In other words, unless the CPU is too fast, software developed for the Z80 can be run
at high speed on the R800 as is.

The features added to the Z80 include a 16-bit multiplication instruction and an instruction for
byte access of the IX/IY register, which was considered a "trick" in the Z80. For details, please
refer to the R800 instruction table in the appendix of this book.

The clock frequency of the conventional MSX is 3.58 MHz, and that of the turbo R is 7.16 MHz.
From this alone, it seems that the speed has only doubled, but in fact, that is not the case. The number
of clocks required to execute one instruction is reduced with the R800, and since there is no M1 cycle wait
to access RAM, program execution speed is even faster. With the conventional Z80, a clock frequency of

about 29 MHz is required to achieve the same processing speed as the R800, so this is a significant

speed increase.

24 Chapter1 MSX turbo R

Table 1.2: Comparing the operating speeds of Z80 and R800

instruction MS.X2+ turbo .

(unit ,us) (unit uS) magnification
LD r,s 1.40 0.14: [51600, 3
LD . HL) 225 0.42,|] % 6ud
s r,(IX+n) S5R7 G703 se=Red
PUSH qq 3:3b 86! x 6.0
LDIR (BC £.03 6.43 D8 |3 6.6
ADD AT 1.40 el || =100
INC r 1.40 0.14"y x1070
ADD HL,ss 3.36 Q.14 | <240
INC SS 1.96 0.14 | x14.0
diE = I 04 2.1 =3
JR 3.63 D2 || 8.7
DJNZ (B =1 3.91 D F—=0e
CALL 5.03 0.84 | x6.0
RET 307 0561 =t
MULTU A,r — 1.96 —
MULTUW HL,rr —- 5.03 —

Table 1.2 shows the results of comparing the speed of the Z80 and the R800 for each type of

instruction. It is worth noting that data transfer between registers (LD instruction) and addition

are 10 times faster. However, the values in this table are measurements of the speed when the R800
operates with no waits. In reality, the speed may decrease due to waits, so be careful. The conditions under
which waits occur and how to avoid them will be explained in detail later.

The internal structure of the R800 is shown in Figure 1.3. In the R800, the external data bus is 8

bits, but the data bus inside the CPU is 16 bits, so a 16-bit add instruction is processed in one cycle.

Looking at this hardware configuration, the R800 appears to be closer to 16-bit CPUs with 8-bit

external data buses, such as Intel's "8088" or Motorola's "MC68008," than to the 8-bit CPU of the Z80.

At the top of Figure 1.3, there is something called an "address extension mechanism

(mapper)", but this seems to have been prepared so that the R800 could be used for things other than
MSX. When using it with turbo R, the slot control mechanism and memory mapper built into the

S$1990, not the R800, will control the system.

1.1 MSX turbo R hardware 25

figure 1.3: R800 internal block diagram

clock oscillator MSX control mechanism

address extension mechanism

(mapper)

f1 11 U

< extended address bus >
< address bus > Z
D)
FA 3
<

At 4

4 =
data bus 3‘
~.
(@]
g E
e
o

Next, let's explain "DRAM page access" in detail. First, the bottom part of Figure 1.4 shows the
previous method of memory access using the Z80. The upper byte of the address (row address) is sent to

the DRAM, the RAS (row address strobe) signal is set to LOW, the lower byte of the
address (column address) is sent to the DRAM, and then the CAS (column address

strobe) signal is set to LOW. This specifies the memory address.

Meanwhile, the upper part of Figure 1.4 shows DRAM page access on the R800. By keeping the upper
byte of the address and the RAS signal fixed and varying only the lower byte of the address and the CAS
signal, the DRAM is used twice as fast as with the conventional method. In this way, with the R800,
when the DRAM is used continuously without changing the upper byte of the address, page access is
performed automatically.

Now, the types of DRAM that are easy to connect and use with the R800 include 256kbit (32kB),
1Mbit (128kB), 4Mbit (512kB), etc. Even though the turbo R has a minimum main
RAM capacity of 256kB, you can get by with just two 1Mbit DRAMs.

26 Chapter1 MSX turbo R

Figure 1.4: Differences in memory access methods between Z80 and R800

How to access memory on the R800

RAS Memory cycle + 140nS

Tk /
CAS e i R et

Traditional memory access methods

Memory cycle 280nS

>

RAS 'd /
CAS \ ' | /

g

The first MSX, developed in 1983, used eight 16-kilobit DRAMs, but the main RAM capacity was
only 16 kilobytes. Considering that, today's technology is amazing, as it can achieve a RAM capacity of
256 kilobytes with just two DRAMSs. The functionality of the MSX has increased, but the size and

power consumption of the hardware has decreased. The application of Japan's latest semiconductor

technology can be seen in the much talked about notebook computers and turbo R.

1.2 MSX turbo R Howtouse 20

1.2 MSX turbo R Howtouse

1.2.1 Programming that takes advantage of the speed of the R800

The R800 is certainly fast, but to get the most out of its speed, that is, to avoid waits and utilize the
capabilities of the R800, you need to be creative with your programming. Remember that there are three

waits for access to an external slot, two waits for access to the internal ROM, and one wait when the

internal DRAM cannot be page-accessed.

Ideally, programs should be placed in the same 256-byte range (page-accessible range) of the upper
bytes of the internal RAM addresses, and data should be placed in the registers. In this case,
no memory access is required for data, and memory access for the CPU to read the program is also performed
in page mode, so there is no wait time for the CPU. It is difficult to write all programs like this, but it

is a good idea to try to get as close as possible to this condition for at least the subroutines, which

require the highest speed.

Now, whether a page can be accessed or not depends on the addresses of the program, data, and stack.

do. for example,

PUSH HL

The execution time of an instruction is 4 clocks if the high byte of the address where that instruction is
located matches the high byte of the stack pointer. If they don't match, it's 5 clocks. There's probably little

need to think this through when creating a program, but it's important to remember that the execution

time of an instruction varies depending on the situation.

1.2.2 Precautions and issues when using the R800

The Z80 refreshed the DRAM after each instruction, but the R800 takes 280 nanoseconds to refresh

the DRAM every 31 microseconds. Note that because of the time it takes to refresh, and the DRAM page

accessibility conditions mentioned above, it is not possible to accurately predict the execution time of

an R800 program.

So to adjust the speed of the program, we will use something called a "system timer". | will explain

how to use this system timer and how to adjust the speed between the CPU and the VDP later, so please wait.

Also, as with any new CPU, one of the problems with the R800 is the lack of development
equipment. In particular, it is inconvenient that the "ICE (in-circuit emulator)" which is so useful when

developing software cannot be used for debugging.

28 Chapter1 MSX turbo R

Therefore, to create software for the turbo R, it is best to first thoroughly debug using the
conventional MSX and Z80 ICE, and then rewrite the programs that should work for the turbo R.

Create a program that can also be used for the Z80, check that it works, and then rewrite only the parts
that use multiplication for the R800. At this point, it is also a good idea to break it down into subroutines
and check their operation. Then, if you put the whole thing together and it doesn't work, you'll :

have to look at the source listing and think about it.

1.2.3 Added BIOS and its function description

To control the turbo R's new hardware features, a BIOS was added for CPU switching and PCM
recording and playback.

Here, we will explain the BIOS name (label), entry address, function, and each register in
that order. The symbols used to describe BIOS functions are as follows. First, E is a register that
should be set before calling the BIOS. R is a register to which the BIOS returns a value, and M is a

register to which the BIOS writes a meaningless value, i.e., the original contents are destroyed. IYH

represents the upper byte of the IY register, and the contents of the lower byte are ignored.

CHGCPU O180H street address

function Switch CPU.

E Bits 1 and O of the A register set the mode as follows. "R800 DRAM" is a mode in which
the contents of the BIOS ROM are transferred to DRAM.

b7 bg bs by bz by b; by

mode

Always write O

LED

mode

00 | Z80
01 | R800 ROM
10 | R800 DRAM

1.2 MSX turbo R Howtouse 29

Note

Also, if bit 7 of the A register is 1, the LED indicating which CPU is running will change.
Conversely, if bit 7 of the A register is O, the CPU will be switched, but the LED will not

change.
none

AF

The contents of the registers before switching the CPU are carried over to the new CPU,
except for AF and R. Also, interrupts are enabled after switching. Note that you should take

note of the following points when switching CPUs, which will be explained in detail later.

GETCPU 0183H address

function

E

R

Note

Check the running CPU.

none

Depending on the CPU being used, the following values will be returned in the A register:

0 | Z80

1 | R800 ROM

2 | R800 DRAM

function

E

F

You need to make sure your hardware is turbo R as explained later before calling up this

BIOS.

PCMPLY 0186H address

Plays PCM sound.

A

b7 bg bs bsg bz ba by bg

frequency

Always write O
VRAM / MRAM

EHL (data address)
DBC (data length)

30 Chapter1 MSX turbo R

If bit 7 of the A register is 1, the PCM audio data is stored in the video RAM, if it is O, the

PCM audio data is stored in the main RAM. Note that the values of the D and E registers are only

meaningful if there is data in the video RAM.

Bits 1and O of the A register set the sampling frequency, with 15.75 kHz only available
when the turbo R is running in RBOO DRAM mode.

00 | 15.75 kilohertz
01 | 7.875 kilohertz
10 | 5.25 kilohertz
11 | 3.9375 kilohertz

R carry flag
0 Normal termination
1 Abnormal termination

A (Cause of abnormality)

1 Frequency specification error

2 Interruption with STOP key

EHL (interrupted address)

M all

PCMREC 0189H sddress

function Records PCM sound.

E A

b7 bg bs bsg bz by by bg

frequency

compression

trigger
VRAM / MRAM

EHL (data address)
DBC (data length)

The method for setting bits 7, 1, and O of the A register is the same as that explained for

PCMPLY. Bits 6 to 3 of the A register are called the "trigger level" and specify the
volume of the sound that triggers recording to begin. If this value is O, recording will

begin immediately.

1.2 MSX turbo R Howtouse 31

Also, if bit 2 of the A register is 1, the recorded data is compressed. If it is O, it is not

compressed.

R carry flag

0 Normal termination

1 Abnormal termination

A (Cause of abnormality)
1 Frequency specification error

2 Interruption with STOP key

EHL (interrupted address)

M all

1.2.4 What BIOS was changed or removed?

Table 1.3 lists the BIOS that were changed or removed in turbo R. We will briefly explain each one
below.

First, the turbo R no longer has a cassette tape interface, so if you call "TAPION", "TAPIN",
"TAPIOF", "TAPOON", "TAPOUT", or "TAPOOF" that were in the previous BIOS, the carry flag will be
set and the program will return with an error. Also, "STMOTR" no longer exists, so if you call it, it will
return without doing anything.

In addition, the paddle and light pen BIOS were removed to allow new features to be added
without changing the capacity of the main ROM. When the BIOS "GTPDL" is called, the A register is
always set to O and the function returns. Similarly, when "GTPAD" or "NEWPAD" is called with a value
of 8 to 11in the A register to specify the light pen, the A register is always set to 0 and the function
returns.

The BIOS that was changed is the "ROM version ID" to know the version of MSX being used. This
can be found in the contents of address 002DH of the main ROM, and has been changed to O3H
in the case of turbo R. If you are developing a program for turbo R, first make sure that the value of this

address is O3H or higher. If it is not, run it as an MSX2 program, or display an error message and abort.

Note that programs that only work when the content of address 002DH is O3H will no longer
work when MSX is updated in the future, so they must be written to work on O3H or higher. In general,
when it comes to hardware and OS versions, you should program your software to work if it obtains a

value equal to or higher than the version number you require.

32

Chapter 1

MSX turbo R

Table 1.3: List of BIOS and BASIC changes in MSX turbo R

Added BIOS entries Added statement
CHGCPU 0180H CALL PCMREC
GETCPU 0183H CALL PCMPLAY
RENELY. 0186H CALL PAUSE
PCMREC 0189H "~ modified statement

Modified BIOS entries COPY
ROM version 1D 002DH deleted statement

‘Deleted BIOS Entries CLOAD
GTPDL OODEH CSAVE
TAPION OOE1H MOTOR
TAPIN OOE4H
TAPIOF OOE7H
TAPOON OOEAH
TAPOUT OOEDH
TAPOOF OOFOH
STMOTR OOF3H
GTPAD OODBH
NEWPAD SUB O1ADH

This has actually happened in the past, but due to incorrect checking of the MSX version, some MSX2
programs did not work on MSX2+, and some applications did not work when combined with MSX-JE

with learning function. To avoid this, please remember to make sure that the program works on O3H or

later.

As with the BIOS, some BASIC features have been added, changed, or removed in the turbo R. For

details, see Table 1.3 or the BASIC manual that came with your machine.

1.2.5 Notes on application development

In MSX turbo R, the R800 does not always operate with no waits. There are three waits when
accessing an external slot, two waits when accessing internal ROM, and one wait when the internal DRAM
causes a page break. Therefore, to speed up a program, you must work while thinking about how to

reduce these waits as much as possible. Here are three points to keep in mind for this purpose.

1.2 MSX turbo R How touse 33

The first is to transfer the program itself to RAM before executing it. Software provided on floppy disks
is not a problem because it will inevitably run in RAM, but you need to be careful with programs
provided on ROM cartridges in the slots. By transferring only the necessary parts to RAM before

executing them, it is possible to significantly increase the speed.

It is also important to code in a way that does not cause a page break. The R800 has a dedicated bus
that supports DRAM page access, so make the most of this function. Specifically, it is effective to program
memory access so that only the lower 8 bits of the address change, that is, in the range of 256 bytes

from ??00H to ??FFH.

By the way, a page break occurs when memory access is performed outside this range, in other

words, when the upper 8 bits of the address change.

As | mentioned briefly before, unlike MSX2+, turbo R does not know the exact execution time of

instructions at the program coding stage. The reason for this is that DRAM page breaks occur

unpredictably, and unlike Z80, DRAM refresh is performed asynchronously with instruction execution.

Also, when creating a program that will run on both turbo R and MSX2+, it is not recommended to
use a software loop for timing. Therefore, turbo R now has a new system timer that counts up every 3.911

microseconds. From now on, let's use this system timer for timing.

1.2.6 Example of program to switch CPU

Listing 1.2 is the source listing for “CHGCPU.COM” which switches CPU. When DOS2 is running in
turbo R,

CHGCPU O
In Z80 mode,
CHGCPU 1

The ROM mode of the R800 is

CHGCPU 2

34 Chapter1 MSX turbo R

The R800's DRAM mode is selected with these. The program gets the first character of the first parameter of
the command from address 5DH of the DOS work area (specifically the default FCB area),
sets the value of the A register accordingly, and calls the BIOS "CHGCPU" at address 180H of the main
ROM.
To make the program more practical, a process to check the DOS version number was added.

Specifically, it first checks that the content of address 2DH in the main ROM is O3H or higher, meaning

it is turbo R, and then uses the DOS system call 6FH to check that the DOS kernel version number is 2 or

higher.

list 1.2 (CHGCPU.Z80)

.280
RDSLT EQU O000CH ; inter slot read
CALSLT EQU O001CH ; inter slot call
EXPTBL EQU QECCIH ; slot # of main ROM
H
1d a, (EXPTBL) ;
1d hl, 2dh ; address to read
call RDSLT ; read version
cp 3
gr nc, TURBOR
1d de,MSG_NOTR
1d c 9 « . STROUT
call 5
st 0 ; return to DOS
TURBOR :
1d C ;6fh : _DOSVER
call 5 :
s | a,b ; version of DOS kernel
cp 2
= ¢ ,NOTBOS2 i
1d, a,d ; version of MSXDOS.SYS
cp 2
I c,NOTDOS2
1d a, (005ch+1) ; command parameter
sub £ ; 0:Z280, 1:R800R0OM, 2:R800RAM
ret C ; abort if parameter < ’0’
cp 3
ret nc ; abort if ’3’ <= parameter
or 80h set change-LED flag
1d ix, 180k ; address of CHGCPU
1d iy, (EXPTBL-1) ; slot of main ROM
call CALSLT ¢ inter-slot call
rst 0] ; return to DOS
y
NOTDOS2:
1d de,MSG_NOTDOS2

1d €39 ¥ _STROUT

1.2 MSX turbo R Howtouse 35

call 5

TSk 0] ; return to DOS
MSG_NOTR:

DB 'not MSX turbo~R>, 0dh, Oahk, %’
MSG NOTDOS2:

DB ’not MSX-DOS 2’, Odh, Oah, ’$’

END

Similarly, the following Listing 1.3 is the source listing for "GAMEBOOT.COM", which tricks MSX2
programs into running in R800 mode. This program is used to start programs on other disks when DOS2 is

started and R800 is selected. In other words, it is used to forcibly run programs (such as games) that do not

include the DOS2 system in RBOO mode.

To briefly explain the program, it first displays a message on the screen and waits for the disk to be
swapped. Then it reads the boot sector of the swapped disk and executes it. The environment is the
same as when the boot sector is called the second time in the normal way: page 1is DOS ROM, the other

pages are RAM, and the carry flag is set.

In addition, the DOS work area (address F323H) for storing the pointer to the error handling program

is set in the HL register, and the address (address F368H) of the program that switches page 1
from RAM to DOS ROM is set in the DE register.

36

Chapter 1

MSX turbo R

list 1.3 (GAMEBOOT.Z80)

.2z80
LEpnan equ O1lh
_strout equ 09k
_setdta equ lah
_rdabs equ 21
dos equ 0005h
enaslt equ 0024h
notfirst equ 0£340h
master equ 0£348h
1d sp, (6)
il | de, prompt ;, print prompt message
1d c,_strout
call dos
1d G coniln ; walt for key in
call dos
1d de, 0cO00h ; read boot sector at 0cOOOh
1d c,_setdta
call dos
1d de, O ; logical sector O
1d 1s 0 ; drive A:
1d o P ;, read 1 sector
1d c,_rdabs
call dos
lid h,40h
1d a, (master)
call enaslt
1d hl,0£323h
1d de,0f368h
Xor a
1d (notfiwet) ,a
sef
jP OcOleh
prompt:
db ’Insert game disk in drive A:,’,0dh,Oah
db 'and press any key $’

end

1.3 How to use PCM to its limits 37

1.3 How to use PCM to its limits

A new feature added to turbo R is PCM. It is human nature to want to get the most out of this feature.

Here, we will introduce how to use PCM, from BASIC to machine language and special uses that utilize

horizontal scan line interrupts.

1.3.1 Basics: How to use in BASIC

Let's start by looking at some basic things using BASIC.

In the first place, PCM converts audio input from a microphone or other device into digital data and stores it in memory.
It stores the information in a file and allows you to play it back at will.

In turbo R, PCM data is stored in either main RAM or video RAM. There are four sampling rates to
choose from: 15.75 kHz, 7.875 kHz, 5.25 kHz, and 3.9375 kHz. The higher the value, the higher the
quality of the sampling.

To use PCM from BASIC, there are two commands you need to remember. Instructions on how to
use them are listed below, so please refer to them. Basically, you can record and play PCM just by
executing these commands. However, you need to be very careful when setting the start and end
addresses where the data will be stored.

First of all, you must reserve memory space for PCM data with the BASIC "CLEAR" command,
otherwise the program will definitely go out of control. For example, if you want to use addresses

COOOH to DOOOH for PCM data,

CLEAR 200, &HCO000

For now, let's put a simple sample program in List 1.4.
I've prepared this for you, so you can enter it and have a play around with it.
Of course, if you use video RAM for PCM data, you can put the data at any address, so you don't

need to worry about the start and end addresses. Also, with video RAM, you can see the PCM data. First,

SCREEN 8

If you set the screen mode like this and then record PCM, the data will be displayed on the screen in a row,
which might be interesting.

If you pay attention to the above, you can record and play back the basic PCM. You can also change
the playback sampling rate to play back at four different speeds. However, the problem occurs when
playing back PCM. The turbo R is completely occupied with that, so unfortunately you can't do anything
while playing back PCM.

38 Chapter1 MSX turbo R

list 1.4 (PCM1.BAS)

10 CLEAR100,&H9000
20 PRINT "It's time for a new start." ;

30 A$=INPUT$(1) :PRINT

40 _PCMREC (@&H9000,&HCFFF,0)
50 PRINT " Restart.";

60 A$=INPUT$(1) :PRINT

70 _PCMPLAY (Q&H9000,&HCFFF,0)
80 GOTO 20

1.3.2 PCM related BASIC instructions

CALL PCMREC

Format

e Record to main RAM or video RAM.
CALL PCMREC(@start address, end address, sampling rate [, [trigger level],

compression switch [, S])

e Recording to an array variable.

CALL PCMREC(Array variable name, [Length], Sampling rate [, [Trigger level], Compression

switch])
Setting the sampling rate
—. The trigger level sets the input level when recording
SeaRliec v sampling rate begins. The value can be from 0 to 127. Recording will
0 15.7500KHz begin when the input level reaches or exceeds this value,
1 7.8750KHz and will begin immediately if this is O or omitted. The
2 5.2500KHz compression switch is set to 1to compress silent parts,
3 3.9375KHz and O or omitted to not compress.

CALL PCMPLAY

Format

e Playback from main RAM or video RAM
CALL PCMPLAY(@start address, end address, sampling rate [, S])

e Playback from array variables
CALL PCPLAY(Array variable name, [length], sampling rate)

1.3 How to use PCM to its limits 39

For both PCMREC and PCMPLAY, if the mode is not high-speed, it will
temporarily switch to high-speed mode before execution, and will return to the
original state when it is finished. Also, if 15.75KHz is specified in the ROM mode
of the R800, an error will occur.

If the STOP key is pressed during recording or playback, program
execution will be interrupted. In the PCM data format, normal data is from 1to
255, with O being special. The following byte outputs level O (127) the

number of times specified.

1.3.3 Play BEEP sounds via PCM!

You know that when you press the "CTRL" and "STOP" keys simultaneously while executing a
BASIC program to interrupt the program, a "beep" sound is emitted. The same "beep" sound is emitted
when you display a list with the "LIST" command and stop the program with "CTRL +
(STOP)". You can change the sound by using the "SET BEEP" command in BASIC, but none of the
four sounds available are particularly impactful.

So, what happens if you play this BEEP sound with PCM? If you set it to some funny dialogue, the
MSX will talk at every opportunity, which might be pretty loud and fun.

So, if you run the program in Listing 1.5, you will be able to play the BEEP sound on the PCM. Of

course, this is only for turbo R. It's not a very long program, so please try your best to type it in.

This program is stored in page 1 of the main RAM (addresses 4000H to 60FFH), so after
executing the program, you can use the "CLEAR" command to set the upper limit of the user area above

address BOOOH. However, you cannot use memory disks, so be careful not to accidentally use "CALL

MEMINI". Also, when using the BASIC "BEEP" command,

PRINT CHR$(7)

If you do not use it instead, the BEEP sound will not be PCM.

Explain how to use the program.

1 PCM BEEP set
After this, the BEEP sound will be PCM. Once you execute this command, the setting will remain valid until

the power is turned off. You can also change the CLEAR statement setting.

2 PCM BEEP reset

BEEP Returns the sound to its original state. Be sure to execute this command when you change

to DOS or DOS2 with “CALL SYSTEM”.

40 Chapter1 MSX turbo R

3 PCM data playback

Plays the currently set PCM data. Use it for confirmation.

4 PCM data recording
Record PCM data at 15.75 kilohertz. When recording, memory from addresses BOOOH to CFFFH is

used.

5 PCM data LOAD
Reads PCM data saved in BSAVE format with the extension “.PCM".

6 PCM data SAVE

The PCM data recorded using “PCM Data Recording” is written to a disc.

0 END
End the program. You can also use CTRL + STOP.

A simple message will be displayed on the screen for your reference.

ist 1.5 (PCM2.BAS)

10 SCREENO:WIDTH40:DEFINT A-Z

20 CLEAR100, &HBOOO

30 DEFUSR=&HD80O0 :DEFUSR1=&HD806 : DEFUSR2=&HD803

40 FOR I=&HD80OO TO &HD87F

50 READ A$:POKE I,VAL("&H"+A$) :NEXT

100 PRINT

110 PRINT"1) PCM BEEP set"

120 PRINT"2) PCM BEEP reset"

130 PRINT"3) PCM DATA playback"

140 PRINT"4) PCM DATA recording "

150 PRINT"5) PCM DATA LOAD"

160 PRINT"6) PCM DATA SAVE"

170 PRINT"O) END"

180 PRINT"HIT 0-6 KE¥=":

190 A$=INPUT$(1) : I=ASC(A$)-ASC("0")+1

200 IF I>0 AND I8 THEN ELSE190

210 ON I GOTO 230,240,310,220,340,390,430

220 PRINTCHR$(7);:GOTO 190

230 GOSUB 470:END

240 GOSUB 470:I=USR1(0) :I=USR(0)

250 PRINT"PCM BEEP can be used."

260 PRINT"When using DOS or DOS2, please reset PCM BEEP"
270 PRINT"PCM BEEP / Nearing data pagel (4100H to 60FFH)."
280 PRINT"The CLEAR command can be set to above BOOOH without any issue,
but commands related to memory disks, such as CALL MEMINI, cannot be
executed.”

_1.3 How to use PCM to its limits 41

290 PRINT"Now, to execute the BEEP command, please use PRINT CHRS(7)."
300 END

310 GOSUB 470:POKE &HFDA4,&HC9

320 PRINT"PCM BEEP has been reset."

330 GOTO 100

340 GOSUB 470

350 PRINT"Starting PCM recording. (HIT ANY KEY!)";

360 A$=INPUT$(1) : PRINT: _PCMREC (@&HB00O,&HCFFF,0) : I=USR(0)
370 PRINT"Recording completed.™

380 GOTO 100

390 GOSUB 470

400 PRINT"PCM data LOAD"

410 INPUT" FILE NAME (8 characters)=";A$

420 BLOAD A$+".PCM":I=USR(O) :GOTO 100

430 GOSUB 470

440 PRINT"PCM data SAVE"

450 INPUT" FILE NAME (8 characters)=";A$

460 I=USR2(0) :BSAVE A$+".PCM",&HBOOO,&HCFFF:GOTO 100
470 PRINT CHR$(I+47):PRINT:PRINT:RETURN

480 DATA C3,4D,D8,C3,5F,D8,CD,6D

490 DATA bB8,384#42,F3,32,2K,D8 ;21

500 DATA 2E,D8,11,00,40,01 ,068,01

510 DATA EB,BO,CD,76,D8,21,29,D8

520 DATA 11,A4,FD,01,05,00,ED,BO

530 DATA C9,F7,00,00,40,C9,FE, 07

540 DATA CO0,01,00,20,21,00,41,3E

550 DATA 03,DB3,A5,F3,DB, A4 ,D6,01

560 DATA 38,FA,¥E,D3,A4,23;0B,79

570 DATA BO,20,F1,FB,C9,CD,6D,D8

580 DATA 21,00,B0s11,00,41 .8®1,00

1.3.4 Advanced level: PCM in machine language!

The easiest way to use PCM in machine language is to use the BIOS. The settings for sampling rate,

trigger level, etc. are almost the same as those in BASIC, so there should be no problem.

Since this is an advanced topic, we will introduce two programs that can record and play PCM
without using the BIOS.

When using the BIOS, you can only choose from four sampling rates: 15.75 kHz, 7.875 kHz, 5.25 kHz,
and 3.9375 kHz. This is because the BIOS uses a counter whose value changes every 63.5 microseconds,
so you cannot set more than four sampling rates. The program introduced here replaces this counter with

a system timer whose value changes every 3.911 microseconds.

First, let's explain how to use the recording program. The HL register is set to the top address of the
memory that stores the PCM data, and the BC register is set to the size of the data to be recorded. The E

register is set to the number of counts to wait in the system timer. 16 is roughly equivalent to 15.75 kHz.

42 Chapter1 MSX turbo R

The playback program is the same. Set the start address of the PCM data to be played in the HL register,

the size of the data in the BC register, and the wait count in the E register.

In the middle of the list of PCM recording programs,

OEDH,70H

There is a strange thing called

- CHL), £¢)

This is an instruction unique to the R800 that reads a value from the port of the C register and reflects

it only in the flags.

Regardless of the principles of the program, try using it. By changing the value of the E register, you

can enjoy changing the sound in various ways.

list 1.6 (PCMREC.MAC)

PMDAC EQU OA4H
PMCNT EQU OA4H
PMCNTL EQU OASH
PMSTAT EQU OAS5H

SYSTML EQU OE6H ; system timer port
REC:

LD A,00001100B

OUT (PMCNTL) , A : A/D MODE

DI

XOR A

OUT (SYSTML) ,A ; reset timer
REC1 :

IN A, (SYSTML)

CP E

SR G, REG] ; wailt

XOR A

QUT (SYSTML), A : reset timer

PUSH BC

LD A,00011100B

OUT (PMCNTL) ,A ; DATA HOLD

LD A, 80H

LD C,PMSTAT

OUT (PMDAC) ,A ; BIT CONVERT

1.3 How to use PCM to its limits

43

RECADO:

RECAD1:

RECAD2:

RECADS3:

RECAD4:

RECADS:

RECADG6:

RECADT7:

DEFB
JE
AND

OR

OUT
DEFB
JP
AND

OR

OUT
DEFB
JP
AND

OR

OUT
DEFB
JIR
AND

OR

OUT
DEFB
JF
AND

OR

gyt
DEFB
JP
AND

OR

OUT
DEFB
JP
AND

OR
OUT
DEFB
JP
AND

OR

OEDH, 70H
M,RECADO
01111111B

01000000B

(PMDAC) , A
OEDH, 70H
M,RECAD1
10111111B

00100000B

(PMDAC) ,A
OEDH, 70H
M,RECAD2
11e111 118

00010000B

(PMDAC) , A
OEDH, 70H
M,RECAD3
11101111B

00001000B

(PMDAC) , A
OEDH, 70H
M,RECAD4
111101118

00000100B

(PMDAC) ,A
OEDH, 70H
M,RECADS
11111011B

00000010B

(PMDAC) ,A
OEDH, 70H
M,RECAD6
11111101B

00000001B
(PMDAC) ,A
OEDH, 70H
M,RECAD7
11111110B

00000000B

¥ IN (HL),(C)

44

Chapter 1

MSX turbo R

list

PMDAC
PMCNT
PMCNTL
PMSTAT
SYSTML

PLAY:

PLAY1]

LD
LD
OUT

POP
INC
DEC
LD
OR
JR

LD
1108y
EI
RET

END

(HL) ,A

A,00001100B

(PMCNTL) ,A

BC

HL

BC

A,C

B
NZ,REC1

A,00000011B

(PMCNTL) ,A

; end of data 7
; next data

;D/A MODE

1.7 (PCMPLAY.MAC)

EQU
EQU
EQU
EQU
EQU

LD
OUT
DI
XOR
OUT

IN
CP
JR
XOR
OUT

LD
0UT
INC
DEC
LD
OR
JR
EI
RET

END

OA4H
OA4H
OASH

OASH
OE6H

A,00000011B

(PMCNTL) ,A

A
(SYSTML) ,A

A, (SYSTML)
E

C,PLAY1

A
(SYSTML) ,A

A, (HL)
(PMDAC) , A
HL

BC

j e

B
NZ,PLAY1

; system timier port

; D/A MODE

; reset timer

; wait

; reset timer

; play 1 byte

; end of data ?
; next data

1.3 How to use PCM to its limits

45

Table 1.4: 1/0 Ports for PCM

street address | Bit7 Bit6 | Bit5 | Bit4 Bit3 | Bit2 | Bitl Bit0
0A5H Write | 0 0 0 SMPL [SEL [FILT [MUTE | ADDA
0A5H Read | COMP | 0 0 SMPL | SEL | FILT | MUTE | BUFF
0A4H Write | DA7 DA6 | DA5 | DA4 s | =B DAL DAO
0A4H Read | O 0 0 0 0 0 @] EiLn

e ADDA (BUFF): Buffer mode

Specifies the output of the D/A converter.

Set this to O (double buffer) for D/A,
and 1 (single buffer) for A/D. Note that
the output is set to double buffer when reset.

MUTE: Muting control
Turns system-wide sound output on or off.

O: Audio output off (at reset)
1: Audio output on

FILT: Selection of sample-and-hold circuit input
signal

Select whether the signal input to the
sample-and-hold circuit during A/D conversion is
the filter output signal or the reference signal. O
is the reference signal, 1is the filter output
signal. Reset is O.

SEL: Filter input signal selection
Select whether the signal input to the low pass
filter is the output signal of the D/A converter

or the output signal of the microphone amplifier. O

is the D/A converter output signal, 1is the
microphone amplifier output signal sound.

SMPL: Sample and hold signal Select
whether to sample or hold the input signal.

O: Sample (at reset)
1:Hold

COMP: Comparator output signal. Compares the
sample and hold output signal with the D/A
converter output signal.

O: D/A output > Sample hold output

1: D/A output < sample hold output

DA7~DAO: D/A output data
When playing PCM data, you can play PCM

sound by outputting the prepared data here. The
data format is absolute binary, with 127
corresponding to level O.

CT1, CTO: Counterdata

It counts up every 63.5 microseconds. During D/A
conversion, it is synchronized with the count
up and the data written to address OA4H is
repeatedly output. Also, writing data to OA4H
clears the counter.

o

=
o
i,

Pk] r..._,i.umu.. - < : ¢ t.ﬂ& ¢ : =
Rzt S R s amse
o, g o e PO TS W L
.h.».ﬂmv..m.,..h%r R R TP SaE 57 ety #Mﬂwﬁwﬂwmw x.ﬂrm...w

._
A
e .__.mc.

48 chapter2 SLOT

This chapter is a re-edited version of the articles "MSX2+ Technical Exploration” from the
February 1989 and March 1989 issues of MSX Magazine, and "Technical Analysis”

from the November 1990 issue.

2.1 Whatis a slot?

The hole for inserting the cartridge into the MSX is called the “cartridge slot.” But the slot also serves the
function of managing the MSX's memory. In this chapter, we will explain the most important and

complex of the slots.

2.1.1 How is the CPU and memory connected?

The most important components of a computer are the CPU and memory. CPU is an abbreviation for
Central Processing Unit, and is the device that manages the entire computer and performs
calculations. Memory, on the other hand, is a pad-like device that stores the information that the CPU
handles.

As you may know, the information handled by computers is represented as "binary numbers"
combining the numbers 0 and 1. One digit of this binary number is called a "bit" and eight
digits are called a "byte." Also, since expressing binary numbers as is in program lists etc. would
result in too many digits, "hexadecimal numbers" are often used, which represent 4-bit binary numbers
using the letters 0-9 and A-F.

Make no mistake, in the computer world, the unit "kilo" (K) means 1024 times, not 1000
times. For example, 64 kilobytes of memory means 64 x 1024 = 65536 bytes of memory, which is

also 65536 x 8 = 524288 bits.

To manage these memories, many microcomputers assign numbers to each byte of memory. These
numbers are called "locations” or "addresses.” In mac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>