|
®sanvo)

< \

S /

s

b

.

;\Msx BASIC / /
Gy

S

>

z,

c \ \ / ﬁ
>

PROGRAMMING

PREFACE

This manual has been made up to discuss the programming language called MSX
BASIC for the Sanyo Personal Computer. If falls into the following six chapters.
Please read carefully, together with the Operating Instructions, for your applications.
The Operating Instructions, an independent volume, gives in details how to use the
personal computer and peripheral units.

Note:

1) These programming manual may not be copied or published either in whole or in
part without permission of Sanyo.

2) These programming manual may be revised or changed with or without notice.

3) Sanyo assumes no liability whatsoever for any claim arising from the use of this
computer.

is the registered trademark of Microsoft Corp., U.S.A.

MSX-BASIC

PROGRAMMING
MANUAL

TABLE OF CONTENTS

n CHAPTER 1 HOW TO PROGRAM.................... 1
E CHAPTER 2 FUNCTIONS OF MSX-BASIC... 25

B CHAPTER 3 COMMANDS, FUNCTIONS

AND STATEMENTcccocvvvrruene 58
n CHAPTER 4 SAMPLE PROGRAM.................... 153
B CHAPTER 5 ERROR MESSAGES 157
B CHAPTER 8 APPENDIKES ..o 161

CHAPTER 1

HOW TO PROGRAM

L WHAT IS BABMG ...occviummmmsssssnsssnssscsanss 2
2. EXECUTION OF COMMANDccceuveuuee 2
3. DIRECT MODE V.S INDIRECT MODE 6
4. MODIFYING THE PROGRAMcccccceueueen 8
5. RESERVED WORDS OF BASIC 10
6. CONSTANTS AND VARIABLES..................... 1"
7. FUNDAMENTAL OPERATIONS IN
PRDGRAMMING s 15

The utilization of each MSX-BASIC command and function is explained in this
manual. Also, additional explanations and explanations that cover several groups of
commands are provided in chapter 4 with actual examples.

Please use this manual to learn MSX-BASIC or for actual MS X-BASIC programming.

1 WHAT IS BASIC ?

Computers run on a machine language which is a combination of 0 and 1. How-
ever the use of the machine language is difficult. A more simplified language,
called BASIC, or an acronym for Beginners All-purpose Symbolic Instruction
Code is used with this computer.

2 EXECUTION OF COMMAND

All commands are executed by typing RETURN key ([J]) after commands are
typed in with keys on the keyboard.

Taking PRINT command as an example, this subsection will explain the use of
the BASIC language to display alphanumeric characters on the screen. To begin
with, clear the screen by typing 'SHIFT| + [CLS HOME] .

2-1 DISPLAY OF ALPHANUMERIC CHARACTERS
ON THE SCREEN:

PRINT command is used to display alphanumeric characters on the screen after
the word PRINT. The alphanumeric characters desired to be displayed must be
enclosed in quotation marks (") at the beginning and the end of any string of
characters.

FRIHT "MZ¥ BRSIC" ——— 1o be followed by []]

PV " o -
M - E-Flf:- I L. appears as the result of the command
L k the completion of command execution
(]} the cursor appears

2-2 DISPLAY OF NUMERIC CHARACTERS
AND CALCULATIONS:

PRINT command can be substituted by ?. Thus, type:

?58+9-21 and ,and 501, which is the result

In BASIC, the asterisk (*) and the slash (/) are used to denote multiplication and
division, respectively. In MSX-BASIC, the following Arithmetic symbols are

used.

Arithmetic expression evaluations

lg"’z';it"c Semantics Example Priority order

* Addition (X+Y) — 1 X+Y 6

- Subtraction (X—Y) X-Y
. Multiplication (X x Y) XY 3

-/ Division (X+Y) X/Y

A Power (X2) X"2 1

- Changes a sign (—X) —X 2
\ Integer division 6.7\2.3 4

MOD EIMTS | rkersof Tnteger X MOD 10 5

Here are some particular symbals for your programming.

{period)

{minus)

{colon)

, (comma)

Used to input a line number for the current BASIC program.
A new line can be inserted or an error be corrected with the
screen editor in the current program. Practicable for LIST,
RENUM and other statements instead of a line number.
Example: LIST.

Used to specify a numeral value range. In LIST statement, for
example, a command can specify its related range of lines such
as n- thru m-line.

Example: LIST 100-200

Used for delimiting a multi-s.lalernenl.
Example: A=B+C: PRINT A

Used for delimiting two or more parameters or numeral values
in PRINT, INPUT, DATA and other statements.
Example: INPUT A, B, C

DATA 8, 64, 256

=

(semicolon)

(apostrophe)

(question
mark)

(quotation
mark)

(space)

Used for delimiting between numerical values or character
strings in PRINT statement, for example.
Example: PRINT AS; B$

Used in place of REM statement.
Example: ‘MUSIC

Used in place of PRINT statement.
Example: 75+3.14

Used to indicate a character string in specifying the string
constant by putting a mark before and after. A character string
contains up to 255 characters.

Example: PRINT “MSX"

Any blank spaces may be put in a statement to make the
program more readable. No space can be, however, given in
reserved words such as commands, statements, functions and
system functions. Note also that spaces in the string constant
have a meaning as characters.

Spaces in statements are ignored when executing a command,
but stored together when the line is transferred into the
memory program area. So the spaces too are retrieved from
the memory.

A string which contains Q characters is called a “null"’ string.
Before a string variable is set to a value in the program, it is
initialized to the null string. PRINTing a null string on the
terminal will cause no characters to be printed, and the cursor
will not be advanced to the next column.

Setting a string variable to the null string can be used to free
up the string space used by a non-null string variable.

2-3 RE-EXECUTION OF COMMANDS:

If required, commands can be_reexecuted by moving the cursor to the beginning
of the command and typing [_J| as follows

210808-2°5 (]
68
Ok

Bring the cursor over ? and type [, then the command is reentered and re-
executed.

A partial or total change of input is also possible. Move the cursor to the loca-
tion where any change is desired. If for instance 5 is desired to be replaced with
6, just type 6 over 5.

3 DIRECT MODE V.S.
INDIRECT MODE
3-1 DIRECT MODE:

1. Indirect mode command can be typed in for an immediate ex-
ecution as follows:

POR2H e Type in command and [] .

PAL 3 SO APINAT R SR T The result of executing command.
Ok
EF oo rinrcir nomie vinsiosvin s The cursor

None of these commands in direct mode is stored in memory and with the
clearance of the screen by typing[SHIFT]+[CLS HOME], all commands typed
in are completely erased.

2. Programming and its modifications:

Line numbers from 0 to 65529 can be programmed before executing com-
mands using BASIC.

Typing 10 PRINT “MSX’ [4] will only store this command in RAM of
computer but will not execute it.

Then type:

2@ PRINT “BASICY [
38 7 18%3-5 [

Then clear the screen.
Next type LIST [./| and the screen will display as follows:

list

18 PRINT "HMSK"
28 PRINT "BRSIC"
38 PRINT 16%8-5
Ok

Since the program is stored in RAM memory of the computer, the program once
cleared can be redisplayed time and time again, by listing, and modification of
any part of the program can be made at will.

3-2 INDIRECT MODE:

By typing RUN, the operation mode is changed from direct to indirect. If either
of the following applies, the operation mode is reverted back to direct from in-
direct:

1. If the execution of the program is interrupted by typing|CTRL]|+[STOP], or

2. If any error is contained in the program, in grammar, in calculation formula
(a division by 0, etc.), and so on, or

3. If the program is terminated by END command, or if the program has ex-
hausted the line numbers.

During the command execution, this computer will not accept any typing input,
unless especially so specified. Type RUN and .1 to display the following on the

screen:
RBUN s55 o5 Regay a8 5a 3 direct mode
MSH wem & vy & s execution of program
BASIC, # & sy 263 ditto
PB s e SR g S ditto
Ok = seswmws svmas as s back to direct mode
00 & soemms @ suenwess w8 o the cursor

-,

Note:

The computer operation is controlled by an LS| called CPU (Central Processing
Unit). The alphanumeric characters entered are memorized in the keyboard buf-
fer. The CPU controls such input memories for display on the screen, for pro-
gramming, and for execution of programs responding to the operator’s command
such as typing which will execute the program loaded in the computer. If
the command is preceded by line numbers, it is stored in memory for the in-
direct mode operation.

The RUN command which is entered in direct mode will execute the program
and upon completion of its execution, or if any error occurs, the operation
mode is reverted back to the direct mode.

CPU takes care of both the program stored in memory and the cursor position.

Thus by moving the cursor back and typing , the command once executed
can be executed again.

4 MODIFYING THE PROGRAM

It is almost impossible to make the perfect program at the first trial. Usually the so
called debugging process is required to correct errors in typing, in calculation for-
mula, etc.

4-1 ADDING A LINE:

The program is executed in sequence of the line numbers.

list

18 PRINT "MSK"
28 PRINT "BRSILC"
30 PRINT 18#%2-5
Ok

If additional command is required between |line numbers, for instance to insert
between the line numbers 20 and 30:

FRINT "18%3-5="3

Just type 26 ?“10+8-5="; [<J] and clear the screen ([SHIFT] + [CLS HOME))

and then type list again. The line 25 is now inserted between the lines 20 and 30.

4-2 REPLACING A LINE:

If MSX of the line 10 in the program shown in 4-1 above is desired to be replaced
with ABC, just type 10 PRINT “ABC"” Lj_| . In BASIC, if more than one inputs
bearing the same line number are entered by typing, the latest input prevails over
all prior inputs:

list

18 PRINT "REL"

20 PRINT “"BRSIC"

25 FREINT "10%8-5="3
38 PRINT 19#£-5

Ok

4-3 DELETING A LINE:

1. Any line can be deleted by just typing only the particular line number not
required and g] 2

2. Any particular range of lines can be deleted by the DELETE command as
follows:

DELETE -20[d - - Will delete up to line 20.
CELETE 28-25[d] - - will delete from line 20 to line 25.

{Programming titbits — TO ENTER SIMILAR COMMANDS
QUICKLY:

1. Enter the command: KEY 10, “PRINT"+CHR$(&H22) [.J] and type 10
key and PRINT’ command is entered at each touch of f10 key.

2. Entering command by changing line numbers is also possible.
After entering:
10 PRINT “M",
move the cursor to the letter "M’ and replace it with the letter ''S’* and then
the cursor to 10 and replace it with 20.

18 PRINT "i"
2@ PRINT “s*
38 PRINT "A&"

3. Exception to line deletion:
When auto command is used to generate line numbers automatically, and if
the line number already entered is entered again, the asterisk (=) appears after
that line number to show that the number previously entered is still valid.

—9—

5 RESERVED WORDS OF BASIC

The following are the fundamental reserved words necessary to start practicing
the programming based on BASIC.

5-1 RESERVED WORDS

1.

Generally speaking, entries into computer under direct mode are called com-
mands and under indirect mode, statements. However, a clear cut distinction
between commands and statements is not possible because some of the
entries can be made in both direct and indirect modes.

. Reserved words can be entered in upper or lower case characters or any com-

bination of upper or lower cases. For instance the PRINT command can be
entered as Print, PRint, or pRINT but P RINT (a space between characters)
will result in an error entry.

Reserved Words of BASIC

COMMANDS COMMANDS/STATEMENTS STATEMENTS FUNCTIONS

5-2

1

run print IF-THEN SQR()
list color FOR-NEXT INT()
ABS()

FUNCTIONS:

If given data to work on, functions will calculate or execute operations.
Functions are never used alone but in combination with other commands.

INT (3.14) I.:J] This command is used to obtain integer of the
number enclosed in the parentheses.

Typing the foregoing alone will result in the Syntax error message on the
screen. However, type PRINT INT (3.14) and the answer is 3 is given.

. Some of the functions are already defined by BASIC, such as ABS, INT, SIN,

COS, PEEK, etc. while others can be defined also by the user.

—=10=

3. The user defined functions are called DEF FN. The name of the DEF FN
can be further defined by a suffix which follows the FN, (for example,
FNA, FNB, FNC, etc.).

User defined function: (Example)

Calculation formula (Example)

Variables used

Function name —————
= ———
B =H

CEF F_HT-I i *B-B.-1

o

6 CONSTANTS AND VARIABLES:

There are two types of calculations, 1. a calculation using constants and 2. a
calculation using variables, as follows:

1. PRINT 10075
2. A=100:B=2:C=5:PRINT A-B"C

While the result of calculation is the same with 1. and 2., in the latter, values for
calculation can be changed.

16 INPUT R.B
28 PRINT A3 "#";B:
I8 PRINT "="3A+B
49 GOTO 18

Type run and will display ? on the screen. Type 45 [J‘ and 4+5=20 will
then be displayed and ? will reappear showing that computer is ready for next
assignment of command.

= L .

6-1 STRING CONSTANTS AND VARIABLES

In the following example, both constant and variable string characters are

included.
18 PRINT "“MSH" - - - 10 MSX is a fixed string constant.
':'C_i H¥=" E:F“:: c"..... 20 A$ is an string variable the constants
33 PREINT Af which can be changed.

String variables are expressed in two digits of alphanumeric characters, starting
with an alphabet followed by the dollar mark ($), for example:

gs.‘af‘cf-..--
AL$.B2$.CU3F. ...
Ai$(1),BE (13,44

MSX-BASIC reserved words (command names, function names, etc.) or a charac-
ter string that includes a reserved word cannot be used as a variable name.

Only the first two characters are significant (the 1st character must be an alpha-
betical character).

6-2 NUMERIC CONSTANTS AND VARIABLES:

Numeric constants and variables are simply called constants and variables in
general. In the following program, A is a variable while 5 is a constant.

19 INFUT A
28 PRINT R#3

Constants and variables take the form of Integer, Single Precision and Double
Precision.

1. Integers:

Any value in the range —32768 to 32767 which is suffixed with the percen-
tage symbol (%) is called an integer as follows:

3:18%:. s s 3 3168% 3168

Thus A% will mean an integer variable.
Thus, statements, A=5.14 A%=5.14, will result in A%=5.

i | =

2. Single Precision:

Real quantities suffixed with | mark are Single Precision numbers. Up to 6
digits are valid and the 7th digit and over are truncated at the 7th digit and
such numbers are expressed in 6 digits.

100!, 100.000 (displayed on the screen as 100)
12345678! 12345700
123.45678! 123.45700

A! (Single Precision Variables)

3. Double Precision:

Real quantities with 7 digits and over or real quantities suffixed with # mark
are called Double Precision numbers. Up to 14 digits are valid with the 15th
digit truncated.

3.14159265358979323# 3.1415926535898
314159265358979323# 3.1415926535898E +17
A# (Double Precision Variables)

Any number which is not suffixed with any of the marks, %, !, or #, is treated
as Double Precision Variables.

Type declaration
Declaration by a type Declaration by a DEF Type declared
declaration character statement
Add % DEFINT Integer type
Example: A% Example: DEFINT A
Add ! DEFSNG Single precision
Example: B! Example: DEFSNG B
Add # DEFDBL Double precision
Example: C# Example: DEFDBL C
Add $ DEFSTR String type
Example: D$ Example: DEFSTR D
When a different type of type declaration character is placed for the vari-
able name after the type declaration statement (DEFINT, etc.) was ex-
ecuted, the type declaration character has priority.

Type conversion of numeric constant:

When necessary MSX-BASIC will convert a numeric constant from one type to
another. The following rules and examples should be kept in mind.

Binary Octal Decimal Hexadecimal
expression expression expression expression

&B0 &01 1 &H1
10 2 2 2
1 3 3 3
100 4 4 4
101 5 5 b
110 6 6 6
11 7 7 7
1000 10 8 8
1001 1 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 G
1101 15 13 D
1110 16 14 E
1111 17 15 F
10000 20 16 10

The decimal number 13 is expressed in MSX-BASIC for each type as follows:
&B1101 &015 13 &HD

. .

7 FUNDAMENTAL OPERATIONS
IN PROGRAMMING:

The following descriptions are important for typing inputs and for understand-
ing the language used in programming.

7-1 AUTO COMMAND TO GENERATE LINE
NUMBERS AUTOMATICALLY.

1. Type AUTO [<the opening line number>] [, <incremental unit number>] :
If no numbers are filled within the brackets [], AUTO command will begin
with the line number 10, and will increase by the unit of 10 at each typing of
ol

2. To disengage AUTO mode, type [CTRL] + [STOP] or [CTRL] +[C]
O:CTRL + can be used to interrupt input commands, while typing [CTRL |+
S

[STOP| can stop both input and execution modes of operation.

7-2 INPUT DURING THE PROGRAM OPERATION

Any entry during execution mode will not be accepted by the computer, with

the exception of special commands, such as |[CTRL |+ |STOP]|, or when the pro-

gram includes special commands and statements as follows

1. INPUT command:

INPUT command if included in the program will stop execution of the ope-
ration to wait for input from the keyboard.

18 INFUT B

Z8 IF B»Z24 THEW GOTO 1@

380 CHF=STRING#CE, "a")

48 LOCATE 4,CSRELIN-1:FRINT C#
2@ G0TO 1@

This program will show ? after it is executed by typing RUN to wait for
keyboard input. Type numbers (integer) in the range 0—24, and @ mark will
be displayed on the screen in the exact number typed. INPUT CS$ will mean
that the execution of command will wait for an input of string variables.

—15—

2. INKEY$ command:

This command in the program will permit accepting key input during the pro-
gram operation.

10 replaces INKEY$ with string variables A$. 20 will assume that space
key is entered if in fact no key is pressed.

18 A$=INKEY$

28 A$="" THEN 28
38 PRINT A%

48 GOTO 18

7-3 JUMPING OUT OF THE NORMAL
PROGRAM SEQUENCE:

1. GOTO command:

This command is used to branch unconditionally out of the normal program
sequence to a specified line number.

If line number is an executable statement, that statement and those following
are executed. If it is a nonexecutable statement, execution proceeds at the
first executable statement encountered after line number.

2. GOSUB command:

This command is a subroutine which may be called any number of times in
a program, and a subroutine may be called from within another subroutine.
The RETURN statement in a subroutine causes BASIC to branch back to
the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement, should logic
dictate a return at different points in the subroutine.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main routine.

To prevent inadvertent entry into the subroutine, it may be preceded by a
STOP, END, or GOTO statement that directs program control around the
subroutine.

Otherwise, a "RETURN without GOSUB"' error message is issued and ex-
ecution is terminated.

B

Main routine Subroutine

GOsuB

Gosus

END RETURN

-

7-4 CONDITIONAL COMMAND:

1. IF <expression> THEN <statement(s)> or <line number>
[ELSE <statement(s)> or <line number>]

2. IF <expression> GOTO <line number>
[ELSE <statement(s)> or <line number>]

®To make a decision regarding program flow based on the result returned by
an expression.

o |f the result of <expression> is true (except zero), the THEN or GOTO
clause is executed. THEN may be followed by either a line number for
branching or one or more statements to be executed. GOTO is always fol-
lowed by a line number. If the result of <expression> is false (zero), the
THEN or GOTO clause is ignored and the ELSE clause, if present, is ex-
ecuted. Execution continues with the next executable statement.

s Example:

1:B=2 ... A=B is false (zero)
=2:B=2 ... A=Bis true (except zero)

®|F .. THEN ... ELSE statements may be nested. Nesting is limited only by
the length of the line, If the statement does not contain the same number of
ELSE and THEN clauses, each ELSE is matched with the closest unmatching
THEN.

®|fan IF ... THEN statement is followed by a line number in the direct mode,
an ""Undefined line" error results unless a statement with the specified line
number had previously been entered in the indirect mode.

=2 iy LS

3. ON <expression> GOTO <line number> [, <line number>]
ON <expression> GOSUB <line number> [, <line number>]

®To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated. The value of <expression> deter-
mines which line number in the list will be used for branching. For example,
if the value is three, the third line number in the list will be the destination of
the branch. (If the value is a noninteger, the fractional portion is disregarded.)

®|n the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine.

®|f the value of <expression> is zero or greater than the number of items in
the list (but less than or equal to 255), BASIC continues with the next ex-
ecutable statement. |f the value of <expression> is negative or greater than
255, an “illegal function call”" error occurs.

184 FRINT " INFUT AEBSOLUTE(Ho.> "
286 INFUT B

I8 HA=RABS(B-16)

44 IF A>3 THEHN 184@

S8 ON A GOTOD 7@,328.94@

28 PRINT "LESS THRHW 1&@":G0OTO Z@
f8 PRINT 18 T0 19":6070 28

g8 PRINT "2@ TO 23":G60TO0 28

93 PRINT "3@8 TO 33":G60TO 2@

148 PRINT "MGRE THAMW 33"

118 6GOTD 28

i

7-5 LOGICAL OR RELATIONAL OPERATOR:

®Conditional command, IF ... THEN, is called logical or relational operator.

® Relational operators are used to compare two values. The result of the com-
parison is either “true’ (—1) or “false’ (0). This result may then be used to
make a decision regarding program flow.

Logical expressions

Logical expressions perform logical operations between numeric type constants,

variables, and functions,

Logical operation Converts data to an integer considered as 16 bit binary,
and performs an operation for each corresponding bit.

Logical operation Logical operation result for each bit
X NOT X
NOT (negation) 1 0
0 1
X Y XANDY |
L% 1 1
AND (logical product) 1 0 0
0 1 0
0 0 0
X Y XO0RY
1 1 1
OR (logical sum) 1 0 1
0 1 1
0 0 0
X Y XXORY |
1 1 0
XOR (exclusive OF ¢ 1 0 1
0 1 1
0 0 0 ‘
X b & X EQVY
i | T]
EQV (exclusive OR negation) 1 0 0
0 1 0
0 0 1
X Y X IMPY |
i 1 R
IMP (Implication) 1 0 0
0 1 1
0 0 1

19—

Relational expressions

The value of two data are compared and the result is given as true (—1) or

false.

Relational Semantics Example
operator

= Equal X=Y, X$=Y$

< Smaller XY, X$<Y$

> Larger X>VY., X$<Y$
N Not equal XY, X$>LY$
<==< Smaller or equal X<L=Y, X$<=Y$

_>=, => Larger or equal X>=Y, X$>=Y$

7-6 CONDITIONAL LOOP COMMAND:

1. FOR ... NEXT command:

For <variable> = x toy [STEP 7]
NEXT [<variable>] [, <variable> . .]

Note:

<Variable> can be integer, single-precision or double-precision, where x, y, z,
are numeric expressions.

®To allow a series of instructions to be performed in a loop a given number of

items:

o<Variable> is used as a counter. The first numeric expression (x) is the
initial value of the counter. The second numeric expression (y) is the final
value of the counter. The program lines following the FOR statement are
executed until the NEXT statement is encountered. Then the counter is
incremented by the amount specified by STEP. A check is performed to see if
the value of the counter is now greater than the final value (y).
If it is not greater, BASIC branches back to the statement after the FOR
statement and the process is repeated. If it is greater, execution continues
with the statement following the NEXT statement. This isa FOR ... NEXT
loop. If STEP is not specified, the increment is assumed to be one.

o |f step is negative, the final value of the counter is set to be less than the
initial value. The counter is decremented each time through the loop, and
the loop is executed until the counter is less than the final value.

®The body of the loop is executed one time at least if the initial value of the
loop times the sign of the step exceeds the final value times the sign of the

step.

—20—

OFOR ... NEXT loop may be nested, that is, a FOR ... NEXT loop may be
placed within the context of another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before that for the outside
loop. If nested loops have the same end point, a single NEXT statement may
be used for all of them. Such nesting of FOR ... NEXT loops is limited only
by available memaory.

®The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a “NEXT
without FOR'' error message is issued and execution is terminated.

18 FOR H=&H4@ TO &HSF

28 PRINT CHR#C1D+CHR$CHI " "3
38 MNEXT H

48 FOR K=8H28 TO &HFF

98 PRINT CHR$<K);" "3

6B MEXT K

2. IF <expression> GOTO <statement(s)>; <line number> used as a
loop command:

A combination of IF ... GOTO command with variables can repeat the com-
mand within the specified line numbers. To use this command, the following
two alternatives are available. Both of these operations however are almost
identical.

Preceding IF Succeeding IF

| o

GOTO @

END
END

B,

®Preceding |F will determine whether to execute the program by IF command,
and if executed, GOTO statement will skip line numbers as programmed.

®Succeeding |F will skip line numbers by conditional GOTO statement based
on judgement made by |F statement, after once running the program.

®Example

14 M=1

20 IF N>15 GOTO 76

38 K=RHDC1)%38

48 Y=RHDC(1)%21

o8 LOCATE #,Y:IFRINT "a"
e8 M=H+1:G0T0 28

7B END

Note: Programming Tibits — Multiple statements

®|n each line number in the BASIC program, (not the line displayed on the
screen), program of upto 255 characters can be entered. The total line num-
bers can be reduced by packing as much information as possible per line
number.

®Command or statement within the line number can be segregated by colon (:).
The program is a sample of multiple statement:

g COLOR 15.1,1:5CREEN 3:FOR R=1 TO F6:X

1=-1+F*COS(RII¥Z=125-N11Y1=R*%SIN(RI:Y2=1

AB-Y1:C=RHD(-TIME)#12+2:PSET(X2,Y2),C:PS

ETCX1+125,Y1+41060, C2PLAY "N=R:":NERT R:F

OR ®=0 TO 127:%=191-255%X:LINEC(K,Y)-(255

=4 191-Y), RNDC(-TIME»#13+2, B:NEXT X:COLOR
15.4,71EHD

—22—

7-7 RENUM COMMAND (RENUMBERING
LINE NUMBERS):

®Since it is not infrequent that programs are modified and edited several times
before they are completed, sometimes renumbering the line numbers becomes
necessary as follows:

RENUM [[<new string line number>] [[<old string line number>]
[<increment>]]

o <npew string line number> is the first line number to be used in the new
sequence. The default is 10. <old string line number> is the line in the
current program where renumbering is to begin. The default is the first line
of the program. <increment> is the increment to be used in the new sequ-
ence. The default is 10.

®RENUM also changes all line number references following GOTO, GOSUB,
THEN, ELSE, ON .. GOTO, ON .. GOSUB and ERL statements to reflect
the new line numbers. |f a nonexistent line number appears after one of
these statements, the error message ‘Undefined line nnnn in mmmm' is
printed. The incorrect line number reference (nnnn) is not changed by
RENUM, but line number mmmm may be changed.

Note:

RENUM cannot be used to change the order of program lines (for example,
RENUM 15, 30 when the program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529. An “lllegal function call"
error will result.

—23—

7-8 REM (REMARK) — INSERTION OF
EXPLANATORY REMARKS:

® |nsertions of explanatory remarks on the program are helpful for long pro-
grams or to read programs prepared by others. The explanatory remarks can
be entered by typing REM, or apostrophe mark (') after line number. See line
number 20 and 50 of the sample given below:

18 REM samrple exrlanatory remarks
28 *to enter statement

I INFUT "RA+B...H":A

48 INPUT * ,....B"3B

59 ‘statement

&8 FRINT R:"+"3;B3;"="3H+E

78 END

®REM or (') cannot be used in a DATA statement as it would be considered
legal data.

)

CHAPTER 2

FUNCTIONS OF MSX-BASIC

1. SCREEN CONFIGURATIONccccvniinnnnne 26
2. STEP SPECIFICATION .cocuneanssssnsssninsssassnin 29
3. HOW TO USE THE SPRITE PATTERN 30
4. MUSIC PERFORMANCEccccocannnenneee. 36
5. FILE PROCESSINGcccisaiivinnnisnsavsunonsns 42
8. INIERRUPTS :..iciiiinniminmnunssitmusaasiiing 50
7. MACHINE LANGUAGE SUBROUTINES 56

—25—

1 SCREEN CONFIGURATION
1-1 SCREEN CONFIGURATION

The display screen configuration for MSX-BASIC is as shown below.

Foreground

1
S

prite plane (32 planes from 0 to 31)

1. Text mode and graphic mode

The text mode displays characters (alphanumeric characters), and the graphic
mode displays graphics (dots, lines, circles, etc.). MSX-BASIC includes two
text modes and two graphic modes that are selected by a SCREEN statement:

The modes selected by a SCREEN statement are as follows.

SCREEN Sprite s
statermient Mode plane Characteristics

SCREEN O 40 characters max. Can't be | Width per character is 6
horizontal, 24 used dots. Since the width of
lines vertical. a part of graphic char-

acters is 8 dots, they
cannot be completely
s | displayed.

SCREEN 1 32 characters max. Can be | Width per character is 8
horizontal, 24 used dots. Since most char-
lines vertical. acters use only 6 dots,

the display characters
are read more easily
compared to SCREEN
0. 1
SCREEN 2 [| 256 x 192 dots high Can be | Graphics are drawn
)] resolution mode used with 1 dot units.
3 4 Graphic | — - —

SCREEN 3 256 x 192 dots Can be | Graphics are drawn

multi color mode used with block units of 4 x
J | 4 dots.)

~ D=

The foreground, background, and border area are used in any mode. With
characters or graphics displayed in the foreground, only color can be changed
for the background and border area.

Also, the sprite planes can be used in addition to the above in modes other
than the SCREEN O mode. A sprite plane is a plane on which a dynamic
picture can be displayed by using freely defined sprite patterns which will
be explained in the “How to use the sprite pattern’’ section.

Color specification

A COLOR statement specifys the colors of the foreground, background, and
border area.

COLOR foreground color, background color, border area color

Both characters and graphics are displayed with the color specified for the
foreground color, unless specifically specified.

Also, in the SCREEN 0 mode, the color of the border area is always the
same as that of the background.

1-2 HIGH RESOLUTION GRAPHICS...
SCREEN 2 MODE

Graphics can be drawn with the following commands in a graphic mode.

PSET..PRESET" i & e waw o5 s a Marks a dot or erases it.

LINE =« o sne s sso scoonens 5 3 Draws a straight line or square.
CIRCLE Draws a circle.

PAINT i =0 soives o o5 o6 5% 3 Colors

DRAW: o on sanms s saemish s d Draws arbitrary graphics.

When these commands are used, screen coordinates are set to specify the screen
location.

wWwN-=O

191

0123 I 255 In the high resolution graphic mode,

the location and color can be speci-

fied for each dot with 256 dots ar-

ranged vertically and 192 arranged

horizontally as shown in the above
figure.
However, if each specified color is

/3

restricted to 8 horizontal dots, only

1 color can be specified, and the

color specified last is valid.

=y by

18 SCREEN 2
20 LINE (9,58)-(14,508),15
38 LINE (12.48)-(12.68),1
48 GOTO 48

(12, 40) In the above program, with hori-
zontal block coordinates from 8 to
(0. 50) (9, 50) 15, although the color was specified
as white, the straight line drawn by
line 20 is displayed as black because
the black line drawn next overlaps
this line.

(12, 60) The specification of white becomes
valid when the LINE statement in
line 20 is changed as follows.

-

r—

1 block 1 block

LINE ¢(&.56)-(135,35@)

This allows a maximum horizontal line to be drawn in the block of 8
dots.

1-3 MULTI COLOR GRAPHICS...
SCREEN 3 MODE

Graphics can also be drawn in the SCREEN 3 mode by using a graphic command
such as a PSET or LINE statement. Also, the location can be specified by utiliz-
ing 0—255 horizontal and 0—191 vertical coordinates. The unit for drawing
graphics isa 4 x 4 dot block.

012345678910111213141

PSET(12,4),1
FSET(14,5),1
FSETC(15,7)51

NOOS WN=O

—28-

For example, since the above statements specify 1 dot in the same block, the
part of the B part of the above figure is colored black by using any of them.

LINEC17,5)-¢(138,11@)

This program draws a rough line to connect blocks that include (17.5) and (130,
110), or in other words to connect Fig. A and Fig. B.

16 19

Fig. A

128 131

108
Fig. B

m

STEP SPECIFICATION

To specify coordinates (X, Y), the STEP (X, Y) specification can be performed
by CIRCLE, LINE, PAINT, PSET, PRESET, and PUT SPRITE commands.

When these graphic commands are executed, the dot specified last is memorized
by MSX-BASIC. After this, when STEP (X,Y) is specified next, the location of
(X, Y) is determined on a new coordinate system with a dot specified last as the
origin (0, 0). However, if STEP is omitted, the location can always be specified
on the ordinary coordinate system using the extreme top left of the screen as the

origin.

= Example 1

10 SCREEN 2
20 PSET (358,586)

48 GOTO 48

33 LINE STEPCe@,-4B81>-C158,108)

60
(50, 50)

(150, 100)

In this program, the coordinates
(50, 50) specified when the PSET
statement was executed are memo-
rized in line 20 then the program
advances to line 30. Since STEP (60,
—40) is used as a specification for the
LINE statement starting point, the
new starting point is a location that
is 60 toward X and —40 toward Y

with (50, 50) as a new origin.

—29-—-

® Example 2

18 SCEEEN 2

28 FOR I=38 TC 248 STEP 20
38 LINE (128,1@3-0(1.138)
40 CIRCLE STEP(9.28).28
o8 CLs

gk NEXT 1

In this program, although the
LINE statement end point co-
ordinates in line 30 are changed
by the repetition of a FOR-
NEXT loop, the center of the
circle is specified by STEP
(0, 20) in the CIRCLE statement
of line 40, and the center of the
] circle is always determined to be
e 5 a certain distance from the

STEP (0, 20) origin which is the end point of

a straight line.

3 HOW TO USE THE SPRITE
PATTERN

In MSX-BASIC, a pattern (called a sprite pattern) with a freely defined format is
displayed as one of 32 sprite planes and can be moved.

3-1 SPRITE PATTERNS

A sprite pattern consists of 8 x 8 or 16 x 16 dots for which two different sizes
(magnified or unmagnified) can be selected. The magnified size is twice as big as
the unmagnified size bath horizontally and vertically.

—30—

8 x 8 dots unmagnified

T 1111
16 x 16 dots unmagnified

I i
-
8 x 8 dots magnified
00) 1
=l

16 x 16 dots magnified

The size of a sprite pattern is Paramateri Sprite size

determined by a SCREEN | 0 | 8 x 8 dots unmagnified

statement. The 2nd parameter 8 x 8 dots magnified

1
3 [| 16 agnif
of a SCREEN statement selects t ; | 16 x 16 dots unmagnified

16 x 16 dots magnified
the sprite size

SCREEN 2.2

This statement specifies that a 16 x 16 unmagnified sprite is used in the high
resolution graphic mode. The sprite size displayed on all sprite planes remains
constant once the sprite size is specified by a SCREEN statement.

3-2 SPRITE PATTERN DEFINITION

When an 8 x 8 dot pattern is defined, the pattern is first
separated by 8 lines horizontally. For example, an arrow
pattern is defined as shown in the following figure.

—31—

When this pattern is separated into 8 horizontal lines, it is divided into small
patterns that consist of 8 dots.

HER __EEN
mE BN
- REhes
el St e

HEE __EEN

CLT 7]
HEE BN

Next the pattern in each line is arranged with 1 used to mark a dot and O used
to indicate an unmarked dot which results in a binary number. For example,
the top line is 00011000, and the next line is 00111100.

[(TTM 111 => [ofofo[1]To]o]o]
(TN] > [eei[[T Tolo]

The binary numerals realized as mentioned above are converted to
hexadecimal (or decimal).

For the top line,
00011000 (binary) = 18 (hexadecimal) or 24 (decimal).

For the second line,
00111100 (binary) = 3C (hexadecimal) or 60 (decimal).

It is easier for the user who is unaccustomed to convert binary
to hexadecimal to divide the 8 dot pattern into 4 dots on the
left and 4 dots on the right to convert to one hexadecimal
digit (0—F) by referring to the following table

3

Pattern Hexadecimal Pattern Hexadecimal
CLIT] 0 mEn 8
Crrm 1 Hm 9
(I 2 NN A
1. 3 N B
[T 4) Cc
[Hn 5 Il n D
[. 6 N £
. 7 SRR F

With the (][Il [1] pattern, left 4 dots is [| |l and right 4 dots
W]

Therefore, they are converted to hexadecimal 18 based on the above table.

The character, for which hexadecimal (or decimal) is the character code, is
obtained by using the CHR$ function. The definition of the sprite pattern
explained above is arranged as follows.

18 -+ CHR$(&H18)
3C -+ CHRS$(&H3C)
7€ - CHRS$(&H7E)

Pattern to be defined FF— CHR$(&HFF)
18 -+ CHR$(&H18)
18 - CHR$(&H18)
18 - CHR$(&H18)

18 - CHR$(&H18)

In regard to the 8 x 8 dot sprite pattern, the character data obtained as shown
above is added sequentially from t1.2 top and is assigned to the SPRITES variable
as a character string which defines the sprite pattern. For the arrow pattern in
the above example, it is defined as follows.

SPRITEFC1)=CHR$ &H18)+CHR$(&HIC)+CHR$ (&H
FEI+CHR$CEHFFO+CHR$(EHIB)+CHR$(EH18) +CHR
$CEHIB)+CHR$ (EH18)

—33—

The number of the defined sprite pattern is 1 and is indicated by the numeral 1
inside the parentheses of SPRITES (1).

A 16 x 16 dot sprite pattern can be defined with the same procedure. However,
a 16 x 16 dot sprite pattern is considered to be a collection of four 8 x 8 dot
sprite patterns, and these four patterns are defined after putting them together
in the sequence shown below.

Fag

%

8 1 3

16
AT=CHRS C&HO) +CHFS (&HA) + CHRS (&H1 8) +CHRS (&HZC)
+ CHRS (&HAC) +CHRS (&H1 8) + CHRS(&HB4) +CHRS (XH22)
ES=CHRS (&H!IA) +CHRS(&HOS) + CHRS (&HBF) +
CHRS (&HOF) + CHRE (&HB7) + CHRS (&HB7) + CHRS (&HA 3)
L CHRS (4HED)
CE=CHRS (2HEC) + CHRS (&H1 E) +CHRS (LH33) +
CHRS(&H3Z) +CHRS (&HIE) + CHRS (&H2C) +CHRE (&H28)

| +CHRS (XHSC)

' De=CHRS (&HS2) + CHRE (&HAB) +CHRE (&HFB) +
CHRS(&HF) +CHRS (&HED » + CHRS (&HEQ) + CHRS L LHCH)
+ CHRS (&HC8)

| SPRITES(2)=AB+E24CS+Ds]

3-3 NUMBER OF SPRITE PATTERNS THAT CAN
BE DEFINED

The numbers of 8 x 8 dot sprite patterns are from 0 to 255, and those of 16x16
dot sprite patterns are from O to 63. In other words, up to 256 8x8 dot sprite
patterns can be defined, and up to 64 16x16 dot sprite patterns can be defined.
(However, this is sometimes restricted depending on the memory capacity.)

3-4 SPRITE PATTERN DISPLAY

A PUT SPRITE statement is used to display a defined sprite pattern on a sprite
plane.

PUT SPRITE sprite plane number, (X-coordinate, Y-coordinate), color code,
sprite pattern number

To display a sprite pattern defined by the above at location (120, 80) of sprite
plane O with green (color code 2), the program is as follows.

BA

PUT SPRITE 8.,0126.88),2,1

The specified display location is a dot on the left top of the sprite pattern frame.
The X, Y-coordinates are specified using a coordinate system with (0, —1) on
the graphic screen as the origin (0, 0).

(120, 80)
L— Sprite plane 0

Sprite pattern 1

PUT SPRITE 0, (120, 80), 2,1

SPRITE PATTERN DISPLAY RULES

®Only one sprite pattern can be displayed on one sprite plane.

®When sprite patterns overlap on different sprite planes, the sprite pattern on

the sprite plane at the back (larger number) is hidden by the sprite pattern in
front.

®When five or more sprite patterns are arranged horizontally , up to four sprite

patterns with a higher priority (on sprite planes with smaller numbers) are
displayed.

®When the display location specification is omitted, it is considered that the
location has been specified by a previous graphic instruction.

®When the color code is omitted, it is considered that the foreground color has
been specified.

®When a sprite pattern number is omitted, it is considered that the same
number as the sprite plane number has been specified.

3-5 TO MOVE A SPRITE PATTERN

To move a sprite pattern, replace the X and Y-coordinates of the display loca-
tion specified by a PUT SPRITE statement with a variable, then execute the
PUT SPRITE statement repeatedly by changing the value of the variable. Since
the previous sprite pattern on a sprite plane disappears when a PUT SPRITE
statement has been executed once, it is unnecessary to erase it in a program.

=35—

Also, since a pattern can be moved in 1 dot units, the movement is smooth.

In the following program, 8 UFO-shaped sprite pattern files about on the screen
by changing its direction.

18 SCREEN 2

78 SPRITE$(A)=CHRE${&H3IC)>+CHR${EH7E»+CHRE$
CEHE1) +CHR$CEHEL) +CHR$CEHFF) +CHR$ (EHTE >+
CHEE(EHZ24 s +CHR$CEHZ)

38 A=190:%¥=189

48 S=INT{(RERNHD(1 »#*8B)——— Determines the movement distance.
S8 D=INTCRHDC1 242

&8 IF D=8 THEH UZ=@a:U4=-{

7 F D=1 THEN UX=1:U%=8 . I

Sg %F E'_:é THEN Ue=@:Uy=1 Determines the direction,
93 IF D=3 THEN UX=-1:U%¥=@

1848 FOR I=8 TO S

118 FPUT SPRITE B, (X,%¥»,1,0

120 H=X+UK:i¥Y=Y+UY ;
130 IF X>240 OR ¥<B THEN Ux=-yy [Movmtmeseite
148 IF Y>17S OR %<8 THEN UY¥=-UY¥

158 NERXT 1

168 GOTO 44

4 MUSIC PERFORMANCE

MSX-BASIC is provided with two music performance commands which are
PLAY and SOUND. PLAY is a command that performs as specified by a sub-
command using the LS| that controls pitch, rhythm, and timbre. Sound is out-
put by writing several different data items into the LS| register. Specified data
can be written directly to the LSI register by a SOUND statement. Therefore, a
program that directly controls the sound with a SOUND statement can be

prepared by knowing the function of the LS| sound register and the data to be
written in.

4-1 CONTROL OF VOLUME VARIATIONS WITH A
PLAY STATEMENT

Although the utilization of the PLAY statement is covered in the Chapter 3
PLAY section, the S subcommand and M subcommand can be explained as fol-
lows.

—36—

PLAY "CDEFG" -------------=-- ®

FLAY "mNQSSCDEFG" --------- (2)(Each _ is a subcommand.)

Execute (D) first and @) next in BASIC, and compare these two statements which
have the same timbre.

When you execute

PLAY "S8M9GBCDEFG"

it sounds as if a piano is being continuously played at high speed.

Sn — Subcommand that selects the volume variation pattern.
Mn — Subcommand that determines the cycle of the pattern selected by Sn.

The initial values of Sn and Mn are S13 and M255 respectively. A different
timbre can be generated by changing the value of n for Sn and Mn.

Pattern and cycle combinations

There are 8 patterns that can be selected by the S subcommand as shown in the
table on page117. The cycle becomes shorter as the value of n is minimized by
the M subcommand. (In other words, the pattern repetition number in a certain
period of time becomes larger.)

This can be proved by executing the following statement.

PLAY "SSHS@BCUEFG"

Let’s listen to the following two statements and compare them.

PLAY "SBM980CDEFG"
FLAY "SE@M206C0DEFG"

Now the difference in the patterns specified by the S subcommand is clear.
However, if the value of n becomes too large in the M subcommand, the cycle
becomes too long. Therefore, sometimes the difference is not clear.

FLAY "S8MEABBCDEFG"
PLAY "S18MEBBBCDEFR"
When these two statements are executed, they both sound the same because the

pattern was stretched horizontally (period) too long, and when the scale Is
played, the matching parts of different patterns are only used.

=37

-

e
\ Pattern S8 -
S8MB000 \/ ! P

'

1

A |

Part actually played

\

S10M6000 ot

Part actually played

Since the length of the part actually played in the above figures is changed by
the L subcommand specification, many enjoyable music performance programs
can be prepared by skillfully selecting the right combinations.

4-2 SOUND AND NOISE WITH A SOUND
STATEMENT

SOUND is a command that generates arbitrary sound or noise by writing data to
a sound LSI register called a PSG (Programmable Sound Generator). The PSG is
provided with 3 channels that generate sound (with a certain frequency). Noise
can also be applied to all these channels. So the generation of triple chords and
noise is possible. The PSG is provided with 16 registers which have different

functions.
Register No. Function
O.T? Determines the frequency of channel A.
2,3 Determines the frequency of channel B.
4,5 Determines the frequency of channel C.
6 Determines the noise frequency.
i 7 “Selects a channel.
8 Determines the volume of channel A.
9 | Determines the volume of channel B.
10 | Determines the volume of channel C.
11.12 : 4Rl5e§fnin&s the cycle of the volume (Registers 14 and 15 have no
e variation pattem. relationship with the musical
| 13 | Selects the volume variation pattern. performance.)

g

Sound frequency determination

The frequencies generated by the 3 different channels are determined by using 6
registers from O to 5. Data written in a register can be obtained with the follow-
ing expression.

1789772.5 (Hz)
16 x (output frequency (Hz))

= 256 x (register 1, 3,5 data)+(register 0, 2, 4 data)

For example, when 300 Hz sound is to be generated from channel A, the fol-
lowing expression is realized.

1789772.5

=373 = 1+11
163300 > 256x1+117

Therefore, write 117 to register 0, and 1 to register 1.
The actual statements are as follows.

SOUND 8,117
SOUND 1.1

In the case of channel B, since register 2 and 3 are used instead of register 0 and
1, the statements are as follows.

SOUMD 2,117
SOUHD 3,51

Noise frequency determination

Date from 0 to 31 can be written in register 6 which determines the noise (zoo
sound) frequency. The following relational expression is realized between the
data and frequency.

17897725 (Hz)
16 x noise frequency (Hz)

Data value =

For example, when data 15 is written to register 6,

17897725
T 16 x 7457

Therefore, the noise frequency is about 7457 Hz.

—30—

Channel specification

The channel used is determined by the data written in register 7.

Noise Sound
Channel Channel Channel Channel Channel Channel
C B A (6 B A
32 16 8 4 2 1

Add the numeric values that correspond to the channel used based on the above
table and subtract the result from 255 to obtain the data to be written.

For example, when sound is only to be generated from channels A and B, and
sound and noise from channel C, the following expression is realized in which
216 is the data to be written.

63 -(32+4+2+1)=24

Sound generation after volume determination

Write data that determines the volume of channels A, B, and C to register 8, 9,
and 10 respectively. Data from O to 15 can be written with 15 as the maximum
volume.

The conditions required to generate sound are as mentioned above.
The following program generates three different sound pitches from channel A,
B,and C.

18 S0UND 8,47 l

20 SOUND T Channel A frequency as 200 Hz.

-

;g ggll:::g g:é4a Channel B frequency as 800 Hz.

<@ SOUND 4,36 anne requency a z

G GBS 5 | SO roaBReeRt

?E' SUUND 7 56 Specifies the sound output from channels
28 SOUHD 2,9 A.B,and C.

36 SUUND 9 16 Determines the volume of each channel and
188 SOUND 18,11 eneratds the Saund.

When the volume of each channel is changed in lines 80, 90, and 100 in this

program, the sound output from each channel can be distinguished.

Also, when the program is executed once, the sound keeps generating.

Press the|CTR L]key and[STOP|key simultaneously to stop this.

—-40—

Add:

85 SCOUND &€,31 (Determines the noise frequency.)

to this program and modify line 70 as follows.

. o = (Outputs sound and noise from channel A
78 SOUND 7,48 and sound from channel B and C.)

Now sound mixed with noise is generated.

Sound effect generation by volume variation patterns

Functions that are the same as the S subcommand and M subcommand of a
PLAY statement can be performed with a SOUND statement. Volume variation
patterns are determined by data written to register 13, which is the same as the
n specification of a PLAY statement S subcommand (Sn).

See the table on page117 for then values of corresponding patterns.

The cycle of a volume variation pattern is determined by data written to register
11 and 12 for which the following expression is realized.

1789772.5 (Hz)
256 x cycle (Hz)

=256 x (data in register 12) + (data in register 11).

For example, when the cycle is set as 10 Hz, write 187 to register 11 and 2 to
register 12 based on the following expression.

1789772.5

=699 =256 x 2 + 187

2566 x 10 °
Set 16 as the volume of the channel in which the pattern specified above is to be
used. For example, when the volume variation is to be applied to channel C, the
statement is as follows.

SOUND 18,16

Many different sound effects can be generated by applying the volume variation
pattern mentioned above to the noise, and by mixing the sound (tone) with a
very high frequency and sound with a low frequency to generate a metallic
sound or humming.

The following program generates the sound of a steam locomotive by peri-
odically changing the noise volume.

="

18 FOR I=6 TO 13
28 RERD J
S8 SOUND T.J

4@ HEAT 1

S8 DATA 31 -------------- Noise frequency

=83 DATH ? """"""""" Generates noise with channel A, B, and C.
u-"@ DFIT Fl 1 6) l 6 ? 1 6"“‘" Changes the volume of channel A, B, and C.
28 DATA 71,2 -—-------- Volume variation cycle 12 Hz.

298 DATA 14 --——--------- Volume variation pattern 14.

5 FILE PROCESSING
5-1 FILES AND FILE DEVICES

Sometimes program data provided in a program as a package is exchanged be-
tween a computer and equipment connected to a computer.

For example, lets consider that you keep a diary. There are several bookshelves
in your room and a notebook entitled “diary’” is on one of the book shelves.
When you read your diary or write in it, first you got to the bookshelf of the
subject and remove the notebook entitled “diary”’.

When this is applied to a computer, you are the computer and the contents of
the diary is a program or data. The notebook where the program or data is rec-
orded is called a file as far as computer terminology is concerned. The “diary"’
title on the notebook is the name given to a file and is a file name. The book-
shelves are equivalent to connected equipment. |f the wrong equipment is
specified, the subject file cannot be found.

MSX-BASIC commands have been prepared to allow a file to be exchanged
between a computer and four different kinds of connected equipment. The
four different kinds of equipment are called basic file divices. The relationship
between a basic file device and a computer is as shown in the following figure.
There are two different file devices with one that only provides output to a file
and another that provides both input and output based on the computer.

—42_

® Text mode screen
® Graphic mode screen
|

]

| Output

Computer

Output I Input/output

® Cassette
tape recarder

® Printer

File Input/Output with a file can only be performed with a cassette tape re-
corder among the basic file devices of MSX-BASIC as shown in the above figure.
Also, the screen of the monitor TV includes a text mode screen and a graphic
mode screen.

Device names

When file exchantes are made with each file device in MSX-BASIC, a command
is provided that specifies the file device used. At that time, the device name
determined by MSX-BASIC is used.

File device Device name
~ Cassette tape recorder CAS:
Text mode screen CRT:
Graphic mode screen GRP:
Printer LPT:

File name

A file must have a name with a character string that has up to 6 characters
starting with an alphabetical character. If 7 or more characters are specified, the
7th character and after are ignored.

Although a file name can be omitted, it is recommended that a file name be used
to distinguish one file from another when cassette tape Input/Output is per-
formed.

5-2 PROGRAM FILES

The following commands save a BASIC program to file, load it from a file, or
combine them.

CSAVE, CLOAD .. it e s sissims 54 i Cassette tape recorder dedicated.
SAVE, LOAD, BSAVE, BLOAD, MERGE . . Device can be specified.
When a program in memory is saved on cassette tape, execute:
CSAVE "PROG1"”
—
File name
or SAVE " CAS: PROG1"
e e "

Device name File name

However, a program is saved with an intermediate language format when CSAVE
is used, and with an ASCII format when SAVE is used.

A program saved by CSAVE can be loaded by using a CLOAD statement by
specifying the same file name. Also, a program saved by a SAVE statement is
loaded by a LOAD statement. Besides this, a program can be combined with
another program that exists in memory by using a MERGE statement. However,
this cannot be performed for a program saved by a CSAVE statement.

Since LOAD and MERGE statements are used to input a program from a file,
only CAS: can be specified for a basic device. Also, if a SAVE statement is
executed for the CRT: the result is the same as LIST execution. If a SAVE
statement is executed for LPT:, the result is the same as LLIST execution.

5-3 DATA FILES

When data to be processed in a BASIC program is exchanged with a device, the
concept of a file is utilized.

The following commands are used for data file Input/Output.

OPEN Opens a file.

PRINT# & 3 o
PRINT# USING utputs data to a file.
INPUT# .
LINE INPUT#. Inputs data from a file.

CLOSE Closes a file.

—44—

5-4 CASSETTE TAPE FILE OPERATION

Output to a file (Write-in)

File data output procedures are roughly as follows.
1. Open a file with an OPEN statement.

2. Write data to the file with a PRINT# statement.
3. Close the file with a CLOSE statement.

The format of an OPEN statement is as follows when data is output.
OPEN "device name [file name]” FOR OUTPUT AS [#] file number

When this is executed, the set up of data output to a specified device with a
specified file name is completed for a file. When file Input/Output is performed,
the computer inputs or outputs data after storing it. The area prepared in mem-
ory for storing data is called a buffer. Up to 16 buffers can be prepared in MSX-
BASIC. The file number specified by an OPEN statement is a buffer that is used
from among 16 buffers, in which only 1 is specified initially.

After a file is opened by an OPEN statement, data is actually output by a
PRINT# statement.

PRINT# file number, expression [separator expression] --------
The same file number as that specified by the OPEN statement is specified.
When data is output to a file with a PRINT# statement, a return code (&HOD)

and a line feed code (&HOA) are automatically written next to data. When the
data is read, these two codes indicate the punctuation of data.

o

When the data is string type, insert ', between each data if several data are out-
put with one PRINT# statement.

For example, make a statement as follows:
PRINT#1, AS$; ",”; B$
The comma also indicates the punctuation and the data A$ and B$ are handled
as two separate data when they are input form the file.
When the data is numeric type, each data is automatically punctuated.

After data is output, the file is closed by a CLOSE statement.

CLOSE (#] file number

—45—

After this, since the relationship between the file number and the file is released,
another file can be opened with the same file number.

® Program example

18 DIM A$CL, 30

£8 OPEN “"CRAS:DATA" FOF OUTFUT RS #1
38 FOR I=8 TO 1

46 FOR J=68 TO 3

28 READ A${I.J)

68 FRINT #1,R$CI,J03","3

78 NEXT J

28 NEXKT 1

90 CLOSE #1

1848 DATA JAFAM, EMGLAND, FRANCE.U.5.A
118 DATA TOKYD,LONDON.PARIS, NEW YORK

When this program is executed, the string type data “JAPAN", Comma (,),
“ENGLAND" and so forth are sequentially written to cassette tape. The data is
actually written as follows.

JAFAN, EMGLAND, FRANCE, U, S. A, TOKYD, LONDON
FRRIS. HEW YORK,

In line 60, a comma is inserted between data which indicates the punctuation
of data so that the data can be distinguished from other data when data is in-
put by an INPUT# statement.

File input (Read-out)

The procedure for data input from a file is as follows.

1. Open a file with an OPEN statement.

2. Read out data from the file with an INPUT# statement or LINE INPUT#
statement (Assigns input data to a.vanable).

3. Close the file with a CLOSE statement,

The format of an OPEN statement when data is input from a file is as follows.

OPEN “device name [file name] " FOR INPUT AS [#] file number

The set up for data input from a file is prepared by this. Only file No. 1 can be
specified initially.

After a file is opened, data is read-out by an INPUT# statement.
Data that is read-out when an INPUT# statement is used is as shown in the
following table.

. V;ffror numeric type data For string type data]

Space, return code, line lgnored Ignored

feed code before data. . - 2

Punctuation for data, or Space, comma, return Comma, return code,

when data is punctuated. code, line feed code line feed code. For
25_5_qh§racter input. N

When data is inside ** " Iterns inside " '" are
input as one data.

Also, a LINE INPUT# statement is only used for character data read-out in
which input is performed with a return code as only punctuation for data.

After data input has been terminated, the file is closed by a CLOSE statement to
separate the relationship between the file number and file.

® Program example

19 DIN A$cL, 3D

2B OPEM "CAS:DATR" FOR IHFUT RS #1
38 FOR I=8 TO 1

48 FOF J=6 TO 3

S0 INFUT #1.R%CI..J2

el NEAT I

78 NEXT 1

28 CLOSE #1

96 FOR J=8 TO3

1808 FRINT A$CE, Tr.AECL, 0D
118 HEXT I

=y

This program is used to read-out a file on cassette tape, named “DATA", pre-
pared in the previous program (lines 20 — 80) and to display the content on the
screen (lines 90 — 110). In line 50, data is continuously assigned to the A$
(1, J) array variable.

18 OFEN "CAS:DATA" FR INFUT AS #1
29 INFUT #1.A%

I8 PRINT R¥

48 GOTO 28

What happens if the file called "DATA" is input by using the program above?
JAPAN, ENGLAND .. .are continuously assigned to the A$ character variable
and are displayed on the screen. However, after the last data, NEW YORK, has
been input, the program tries to input continuously data. When this occurs
although the file has ended, an " Input past end'’ error occurs. To prevent this,
the EOF function is used.

1a OPEN "CAS:DATR" FOR INFUT AS #1
15 IF EOFC1)=-1 THEN GOTO Séa

28 IMFUT #1.A%

3@ PRINT R$

48 5070 1S5

S8 CLOSE #1

The EOF (file number) function gives — 1 when the last file data has been read
out. In this program, if data remains or not is checked every time data is input
when this function is used.

5-5 DISPLAYING CHARACTERS ON THE
GRAPHIC SCREEN

When SCREEN 2 or SCREEN 3 is specified by a SCREEN statement, the screen
enters the graphic mode which does not allow characters to be displayed by a
PRINT statement.

To display characters on the graphic mode screen, a method is used in which the

graphic mode screen is considered to be a file device and characters to be dis-
played are output as a file data.

=48

18 SCEEEN 2

28 0OFEN "GRP:" FOE OUTPUT RS #1
38 PRINT #1,"How do vou do?"

48 GOTO 48

When this program is executed, the screen is converted to the graphic mode and
“"How do you do?" is displayed.

Execute one of the graphic instructions just before to specify the display loca-
tion. After this, the location specified by the instruction last (256 horizontal,
192 vertical dots) is the top left corner of an 8 x 6 dot frame that holds the first
character of the output character string.

18 SCREEH 2

76 OFEH "GRP:" FOR QUTFUT RS #1
3@ PRESET (1w@8,358)>

48 PRINT #1,"How do wou do?"

58 GOYD Sa

In this program, the location (100, 50) used by the PRESET instruction in line
30 is the top left corner of the character string output in line 40.

5-6 NUMBER OF FILES OPENED ONCE

Only one file can be specified when MSX-BASIC is initialized. In other words,
only one file can be opened in one program at one time. When two or more files
are to be opened at the same time, the number of lines are previously specified
by:

MAXFILES=5

Based on this, 5 files with file numbers from 1 to 5 can be simultaneously
opened. The maximum value that can be specified is 15.

Also, since file O is dedicated to CSAVE, CLOAD, CLOAD?, SAVE and LOAD,
when:

MAXFILES=@

is executed, only CSAVE, CLOAD, CLOAD?, SAVE and LOAD commands can
be used after this.

—49-

6 INTERRUPTS

An interrupt, used to suspend program flow that began during program ex-
ecution, is caused by the occurrence of a specific external condition, and is used
to perform other processing. The processing program executed when an inter-
rupt occurs is called an interrupt processing program or an interrupt processing
routine.

Another concept similar to an interrupt is a subroutine. However, a subroutine is
only executed when a GOSUB statement is executed in MSX-BASIC. In other
words, the execution of a subroutine is previously determined internally in a
program.

On the other hand, an interrupt processing routine is executed by an external
condition (for example, when the F1 key is pressed).

After execution of an interrupt processing routine has been terminated, the
execution of the main program is normally resumed the same as for a sub-
routine.

6-1 MSX-BASIC INTERRUPTS

MSX-BASIC is provided with several commands to transfer control to an inter-
rupt processing routine when an interrupt occurs. An interrupt can be used in
the following cases. When an interrupt is used, its utilization is first declared by a
command, and the starting line number of the interrupt processing routine is

specified.

An interrupt can be used when: Interrupt declaration command
| A function key is pressed. ON KEY GOSUB line number

A space bar, orriovstick tFigger button ON STRIG GOSUB line number

is pressed.

+ [STOPJis pressed. ON STOP GOSUB line number
| Spritesoverlap ON SPRITE GOSUB line number

A certain period of time mrpassed. ON INTERVAL = interval a

o | GOSUB line number .)

For example,

OM KEY GOSLE 1266

is a statement that declares when a function key is pressed, it is transferred to
the routine from line 1000.

6-2 INTERRUPT UTILIZATION

An interrupt cannot actually be applied by only declaring an ON — GOSUB
statement. A command that validates the interrupt used must be executed next,
For example, to the interrupt that occurs when the key is pressed, execute:

EEYC1s ON
There are five commands that validate interrupts as follows.
Command i/alid interrupt
KE_((fuqqion key number) ON Integqgt by a function key.
STRIG (quj{igk nﬁumber) ON Interrupt by a space bar, joystick.
STOP ON Interrupt by |CTRL] + |STOP|keys.
SPRITE ON Interrupt by a sprite overlap.
) INTERVAL ON Interrupt with a certain spacing.

® Program example

1@ 0N KEY GOSUE 168
Z6 KEY(1) OH

38 SCREEN 2 N o
49 LINE (5@,50)-(288,158),,6
S8 GOTO 4@

168 ’ SUBROUTINE

BEEP:LCLS

FOR I=16 TO 96 STEP 18 y
CIRCLE (12,1883, 1 e
HEXT 1
CLS
RETURN 48

[P S

DR B R

A

In this program, when the[F1] key is pressed, it is set so that a transfer is made to
a subroutine from line 110 in line 10 and 20.

When this program is executed, a rectangle is continuously displayed by line 40
and 50 of the main program. However, when thekey is pressed, an interrupt
occurs to provide a specified transfer to line 100. As a result, the rectangle dis-
appears with a beep sound (BEEP: CLS), and 9 circles are continuously drawn,
After the last circle has been drawn, the screen is cleared and a return is made to
line 40 again.

—=hl—

'—'- Interrupt processing routine

Main program Beep

F1
D‘---’

6-3 INVALIDATING AN INTERRUPT

Lets add the following line to the program above.

165 KEYC(1> OFF

Execute the program. When is pressed the first time, an interrupt occurs.
However, it does not occur after this even when the key is pressed.

The reason for this is that when the interrupt processing routine was first ex-
ecuted,

KEY(1) OFF

on line 105 was executed which invalidates the key interrupt.

6-4 INTERRUPT HOLD

When execution is transferred to an interrupt processing routine by an interrupt,
an interrupt hold state occurs. In this state, when an interrupt is applied again,
an interrupt does not occur and a return is made to the main program by a
RETURN statement for which an —ON statement automatically occurs, the
main program is not executed and a transfer is made to an interrupt processing
routine soon.

In other words, during the interrupt hold state, a return is not made to the start
line of interrupt processing routine when an interrupt is applied but the inter-
rupt application is memorized and an interrupt occurs after coming out of the
processing routine once,

—52—

In regard to the program on page 52, when the [F1] key is pressed, 9 circles are
drawn by an interrupt. However, an interrupt does not occur if the key is
pressed before the |ast circle is drawn. Then, after the last circle has been drawn,
a return is made to the main program. However, an interrupt occurs due to the
second pression of the key and a rectangle is not drawn, but circles are
drawn again.

|—= Interrupt processing routine
Main program

Beep
The key is pressed
during the interrupt
> -] ——— e e e e
processing routine.
Returns to the main program once. |
|——-—|merrupt processing routine
Interrupt occurs soon. Beep
—' 2 ————

6-5 VALIDATING AN INTERRUPT DURING AN
INTERRUPT PROCESSING ROUTINE

To further validate an interrupt during the interrupt processing routine, insert a
command such as KEY(1) ON. As a result, the interrupt processing routine can
be executed from the beginning by applying an interrupt during the interrupt
processing routine.

® Program example

18 Od EEY G050 1686

28 EENCLY OH

I3 SCREEEM 2

48 LIME (SR, S8-0288,1582,,E
SR OGUOTO 49

168 SUBROUTINE

1@ EEEF:CLS

1268 FGR I=19 TO 98 STEP 1@
138 CIRCLE (128.108),1

148 NEXT 1

1580 CLS

168 RETURH 4@

—53—

This is the same as the previous program except that the command, KEY (1) ON,
is inserted in line 105.

As a result, when the F1 key is pressed again while the circles are being conti-
nuously drawn by an interrupt, an interrupt occurs immediately in which the
interrupt processing routine from line 100 is executed from the beginning.

Interrupt
I—D Interrupt processing routine processing
routine
Main program Beep Beep

[F1] [F1]
= - —

6-6 HOLDING INTERRUPT IN A PROGRAM

To enter the hold state again after validating the interrupt with an — ON state-
ment during the interrupt processing routine, insert a — STOP statement,

® Program example

18
oG
10
413
50

19@,

0N KEY BOSUE 168

KEvi(1) OM

SCREEN 2

LINE (58,3@)-<208,156),,F

GOTO 46

’5u5R0uTIHE
v '4§¢

This program is the same as the previous one. However, in this program, when
the value of | becomes 50, KEY (1) STOP is executed in line 135. As a result, an
key interrupt occurs immediately during interrupt processing execution if it
occurs before the bth circle is drawn. However, an interrupt hold occurs after
the 5th circle is drawn and an interrupt does not occur immediately when the
key is pressed.

—54—

|——> Interrupt processing routine boo— Interrupt processing
routine
Main program Beep Beep

]
—_— o |- —_—
A

Press the [F1] key before the 5th circle is drawn.

|—> Interrupt processing routine
Main program Beep Press the key after the 5th circle is drawn.

m—— o

Returns to the main program once.

0

Interrupt occurs
here.
———eee > ————

6-7 SPRITE OVERLAP INTERRUPT EXAMPLE

When two or more sprite patterns overlap by 1 dot, an interrupt can be gene-
rated by an ON SPRITE GOSUB statemment and SPRITE ON.

In the following program, UFOs fly from left and right and a beep sound occurs
when the UFOs overlap.

18 SCREENH 2
28 SPRITE$(@)=CHRECEHIC) +CHRECEHTE Y +0HRE
(EHE1D+LHR$CEH31 2+ CHRS CEHFF) +CHRS (RHPE) +
-Hka”H 41+ CHREFCEHYZ)

0N SFRITE SOSLE 13a
SPRITE OH

FOE ¥=8 TO 255

FUT SPRITE 8.Ck,18@),1
FUT SPRITE 1,(255-x,1@
HE®T ¥

END

SPRITE OFF

EEEF

SFRITE GH

RETURH

~
!

9.8
Ar,10,8

et e O WSO RN B0 2 o £ O N P
D I SR ot IO s B o B o Ao M)

S5 S0

—55—

7 MACHINE LANGUAGE
SUBROUTINES

With MSX-BASIC, a program can be written by using the machine language of
Z-80A (the MSX personal computer CPU) to which control is transferred from
BASIC, and the execution result of the machine language program can be given
to a variable defined by BASIC.

7-1 MACHINE LANGUAGE SUBROUTINE
STARTING ADDRESS DEFINITION

First secure an area where the machine language subroutine is written by using a
CLEAR statement. Then define the starting address of the subroutine by using a
DEFUSR statement.

DEFUSR N = Starting address

N is an integer from O to 9. The starting address of 10 subroutines can be de-
fined as a USR function.

CLERE 288, %
DEFUSRE1=EHEAGM

With these statements, a machine language subroutine from address &HEQOO is
defined as a USR 1 function

7-2 MACHINE LANGUAGE SUBROUTINE
EXECUTION

Variable = USR N(1)

The defined machine language subroutine is executed by executing the above
statement. When the machine language subroutine has been executed, the value
of the execution result is given to a variable, and the BASIC program is also
continuously executed

When execution is transferred to a machine language subroutine, the value of "
specified as a USR function parameter is given to a subroutine.

A=USELCTD

—56—

The value of variable | is stored at the following memory location by the above
statement, and at the same time, data that indicates the type is entered to
register A depending on the type of |. The starting address of the area where the
value of | is stored is entered to the HL register.

T of | Data input HL register address Address where the value of
ype to A register* indication I is stored.
Integer type 2 &HF7F8-&HF7F9
f‘y"g;""’“’c"m" 4 &HF7F6 &HF7F6-&HFTF9
Double-precision
i 8 &HF7F6-&HFTFD

*The same data is input to the &HF663 memory address.

When | is a string type variable, the above mentioned is as follows.

Data input Data input g 3
| to A register to DE register String descripter
3 String 1st byte: Length of character string
descripter 2nd and 3rd bytes: Starting address of the area
starting where the character string is
| address stored.

When execution of the machine language subroutine has been terminated, the
value of the result is given to variable X by setting the register and memory
during termination.

&HFB663
Result value type | memory | DE register HL register RBS:(;L::;BQG
address

Integer type 2 &HF7F6 &HF7F8—-&HF7F9

Single-precision 4 &HF7F6 &HF7F6-&HF7F9

type

Double-precision 8 &HF7F6 &HF7F6-&HF7FD

type §

String type 3 String Area start address
descripter indicated by the
starting 2nd and 3rd string
address descripter byte.

7-3 MACHINE LANGUAGE PREPARATION

A machine language subroutine is written to memory by using a POKE state-

ment.
A return from a machine language subroutine to the BASIC program is ac-
complished with a RET instruction.

—57~

CHAPTER 3
COMMANDS, FUNCTIONS AND STATEMENTS

1. SYSTEM CONTROL AND SYSTEM VARIABLES

BASEuunn. B4 LOAD v sessines s 102
BLOAD .o s wwnsis i 65 [OEARE: cons vucmv i « 103
2195, 7¢ S —— 66 LPOS e s ia s 104
T 66 LPRINTco..o... 104
CLOAD: ve-wn m sunns 5 69 LPRINTUSING 104
CLODADY: =5ns ou sovny an 70 MERGE wous cvvenes v 105
CONT .ot 72 MOTOR svis voess i a5 107
CSAVEvvun... 22 BEW.. ..o iiaanenies 108
END o oov e 81 RUN ..o 135
REY . . ocvnie sonmmmas e 94 SAVE ..., 135
KEVYLIST oo misanns s 95 STOPoovvvunn.. 141
KEY ' ON vinum swamsan e 95 TIMEcoivvn. 146

OFF VARPTR 148
B -7 W 101 L7t 149
LLIST .o 102 WIRIEH o mmrermsmrasm 152

AUTO 63 KEY(nN)ON 96
CLEARen... 69 OFF
BATA: i comosmromsses 74 STOP
B) I 1] - S —— 76 T S 98
DELETE: v wosmnan 76 ON ERROR GOTO 108
DIM: i sovnmmms sacermans 7 ONGOSUB: : . casess v 109
ERASE : i vannasm 82 ON-GOTO oo snvs 110
ERROR & oo sans 83 ON INTERVAL GOSUB
FOR-NEXT 8 0 meinene s 110
GOSUB-RETURN 86 ON KEY-GOSUB i i it
BOTLY: o coinsse it smens 88 ONSPRITEGOSUB 112
IF-THEN ON STOP GOSUB 112
ELSE 89 ON STRIG GOSUB 113
INTERVALON 94 PEEK . wnssie snimmeons sns 116
OFF POKE: . i wsmms ocime aps 121
STOP READ c.oies sosimmesse s 129

—58—

RENUM - ooovonnn 131 OFF
RESTORE 132 STOP
RESUME 132 SWAP ...l 144
SPRITE ON .o o coisiv 140 TROFF 146
OFF TRON ..o 147
STOP BBR oiiinn nn iy sincs 147 WA
STOPON ..o 142 WAIT ..o 152 I
OFF
STOP C
D
FUNCTION AND STRING CONTROL E
BBS oo arsiemmavess 62 1,113 of - S 93 F
ASC . \iiiiiiinns, 62 INT G
AN, o nreseain 63 LEETS wouvmm s 96
BINS oo, 65 LEN ..., 97 M
COBL v oo, B 106 i eisincs 103 i
CHRS .o, 67 MID$ (FUNCTION) 106
CINT e s o i B MIBE o aas: o v K
COS .« 72 OCTS$ oo, 108 R
CSNG . .oeernennnn.. 73 POS ..o 121
CSRLIN « oo, 73 RIGHTS 133 U
DEE BN w0 «vmcis v0s sonte sin 74 RND.......ooooooiii, 133 [N
DEFINT oo, 75 SGN ..o, 137
SNG SIN . oo 138 R,
DBL SPACES o cvuns oo b 139 5
STR SPC .o 139
= | g TR o 140 A
ERR .o e ewiosie srmne o B2 STRS. .. e 143 B
EXP oo 83 STRINGS 144
FIX oo 84 TAB 125 U
FRE oo 86 TAN ..., 145 ¥
HEXS oo, 89 VALoooiiiii. 148
'}
W
SOUND CONTROL
1 64 PLAY (FUNCTION) 120
PLAY oo, 116 SOUNDoovvernnn. 138

5. GRAPHIC AND SPRITE

BIRELE .. vaavseavms 68
BES. o ovinwnamaivanss 71
BOLOR s svasveng 71
DA ioassanis vaies 77
LINE . oonasioninnsine 99
BNV (s it smov mniae s 115
PRI, s i-miosciin Eaiiiinoe 120
FRERET vovin o sdiivin 4 122

PRING v snn s 122
PRINTUSING o5 124
] T A 128
PHT SPRITE oo iiis 128
BCREEN . oseiinanien 136
S TVEEE W o o m s iniscnsnionn 140
NPEEIC o 5qmmuamsy i 151
MPRIRE oo v mi 152

SPEN s v seanins 113
Y 5o vaiins i nsiiiiegs 114
PAD 5 e dve diemein i 114
POL 3 coommlnvnes s 116
PIINIESE oo i sl @i o 127
PRINT # USING 127
T L6 R — 141
7 o L E——— 142

6. FILE AND I/0 CONTROL
BLOBE , . v s 70
BOF oo suiwsun haniasns 81
INEEY § oveonnmiinins 90
WP o srmpis i it 91
INPUL s 0 o bimanrig 91
[RBUTR |3 sooshesivn:ws vy 92
NPT & s omansss 93
LINE INPUT . 5.ons 05 100
LINE INPUT #. v o sius 100
MAXFILES s v s 105

—60-

In this chapter, MSX-BASIC commands and functions are explained
in an alphabetical sequence.

INTRODUCTORY REMARKS

In regard to a function, [Function| is written in front of the function name.
g

Command, function name
PSET| (point set) I

Puts a dot on the graphic screen.

Function

[0 FORMAT

[PSET [STEP] (X-coordinate, Y-coordinate) [, color]]¢ ——Format

X-coordinate, - - - '
Y <coordinate Cond.| |Numerical constants, variables, array variables and their

expressions from —32768 to 32767.

1

Input condition

Color |Cond, lmeger\s from 0 to 15.
Omit [Current foreground color |e——— When input is omitted

) FUNCTION AND UTILIZATION

Supplementary\ command and function explanations, and execution examples in which
commands and functions are utilized.

Input item omission
An input item inside [] in the FORMAT section can be omitted.

Example

For SCREEN [Model, [Sprite size], [Key click switch], [Baud rate] , [Printer type] . when
only the mode and sprite size are specified, it is as follows.

C
st REEN 2:3 L':'Items; after this, including commas, can be omitted.
When only the printer type is specified, it is as follows.
SCREEM :..:.1
tCommas cannot be omitted.

Input item omission

Example
DATA Constant [, Constant]
As many constants as desired can be repeated after DATA within the input range per line.

—61—

IS ABS (absolute) I

Gives the absolute value for numeric data.

[J FORMAT

ABS(X)
X _and_ Numeric constants, variables, array variables, and their expressions

Given value Numeric type

[J FUNCTION AND UTILIZATION
Gives X when X 2 0 and —X when X < 0.
EXECUTION EXAMPLE

P@IHT AESCZ)

“

FEINT RES(Z-18>

ASC {ascl) SRR

Gives the character code for the first character of string data.

[J FORMAT
ASCI(XS$)
X$ [_Zjund] String constants, variables, array variables, and their expressions
Given value Single-precision integers, decimal expressions
[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE
PRINT ASC("d")
188« - Character code of 'd"’
FEINT RSC{"data">

188« -

)
s

~ Character code of “d"’

—62—

ATN (arc tangent) I

Gives the arc tangent value for numeric data.

[0 FORMAT
ATN(X)

X Cond.| Numeric constants, variables, array variables, and their expressions.

Given value: Numeric type
[J FUNCTION AND UTILIZATION

The ATN function gives a floating-point type numeric value which indicates an angle in which
the value of the trigpnometric function, tan, is X. Its unit is a radian. To obtain the result in
degree units, multiply 180/x

EXECUTION EXAMPLE

FEINT ATHCL2
. TSSE?SIE 33':’?43 «—Unit is radians

BBUER AU T R O R TR

Line numbers are automatically generated from a specified line number with a
specified increment.

[J FORMAT
AUTO [starting line number] [, increment]
Starting line number [C()FE An integer from 0 to 65529
|"071[||l | 0. However if “, increment’’ is omitted, it is 10.

Increment IC”“‘L] Integers from 1 to 65529
[QmirJ 10

[J FUNCTION AND UTILIZATION

Used to eliminate the keying in of line numbers while entering a program

e When a program statement exists for a generated line number, ** ¢'* appears on the right of
the line number. To modify this program statement, move the cursor to * *'* then input a
new statement after deleting ** ' with a space. When no modification is required, press

RETURNJ.

® To stop automatic line number generation, press while pressing |CTRL| or press @
while pressing I_C—Tm
EXECUTION EXAMPLE
AUTO 188,58
188 PRINT"12345"
156

ak#®
2

ona

~Indicates that line number 150 exists

—63—

(R ot (hose) IR AR

Used to read and write a VDP table base address

[J FORMAT
BASE(N)
BASE (N)= expression

N Cond.| Integers from O to 19
Expression rCE)_nq;! Integers from O to 65535

[J FUNCTION AND UTILIZATION

Used to read or rewrite a VDP table base address in memory
BASE(N) corresponds with the base addresses shown in the table below depending on the
value of N.

Value of N Table

40 characters x 24 lines text mode pattern name table.
40 characters x 24 lines text mode pattern generator table,

0

2

5 32 characters x 24 lines text mode pattern name table

6 32 characters x 24 lines text mode color table.

7 32 characters x 24 characters text mode pattern generator table
8 32 characters x 24 characters text mode sprite attribute table,
9 32 characters x 24 characters text mode sprite pattern table.

10 High resolution graphic mode pattern name table.

1M High resolution graphic mode color table.

12 High resolution graphic mode pattern generator table.
13 High resolution graphic mode sprite attribute table.
14 High resolution graphic mode sprite pattern table.

15 Multi color mode pattern name table.

17 Multi color mode pattern generator table.

18 Multi color mode sprite attribute table.

19 Multi color mode sprite pattern table.

N=1, 3, 4, 16 are not used
Precautions

The register contents and the table base address of the TMS9929A, which is the screen display
LS|, can be directly modified by using a BASE variable and a VDP variable. However, ade-
quate knowledge of the TMS9929A is required to perform this. If the base address is care-
lessly rewritten, a normal screen display can not be performed. Therefore, precautions shall be
taken

BN BEEP (beep) I

A beep is sounded.

[0 FORMAT
BEEP

[J FUNCTION AND UTILIZATION

EXECUTION EXAMPLE
This program generates a beep sound 10 times

FOR I=8 TO 9 continuously.
BEEF
MEXT 1

IR BINS (binary dollar) EEEEE— T

Gives a binary expression of numeric data as string type data.

[FORMAT

BINS(X)

X Cond.! Numeric constants, variables, array variables, and their expressions from
—-32768 to 65535. For a negative number, it has the same value as if its
value was added to 65536.

Given value: String type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT BIN$C18G)
11868164

FRINT BIM$(-327e8)

I BLOAD (binary load) I

Loads a machine language program, or loads and executes it

[J FORMAT
BLOAD “device name [file name] " [, R] [, offset]
Device name | Cond| CAS Cassette tape

File name Cond| String within 6 characters. If 7 or more characters are specified,
the 7th character and after and ignored.
OL”)E Loads the file which was found first

R option C}mx!] Load only

Offset é()nd Integers
Omit| 0

—65—

[J FUNCTION AND UTILIZATION

Loads a machine language program saved by a BSAVE statement at an address between the

starting address and an end address specified by a BSAVE staterment. If offset is specified, the

value is added to the starting address and end address.

e |f R is specified, the program is executed after load termination. At that time, the ex-
ecution start address is an address specified by a BSAVE statement

B BSAVE (binary save) I

Saves the content within a specified memory range with binary

[0 FORMAT
BSAVE “device name [file name] *, starting address, end address, [execution start address]
Device name [“Srmgi CAS: . . . Cassette tape

File name [Qr)r‘dﬁ‘ String within 6 characters. If 7 or more characters are specified,
the seventh character and after are ignored.

[W(“)lnl(Null string

Starting address, end address
N
[.C,(”,L('L Integers
E xecution start address
lCnnd] Integers from —32768 to 65535
[(jnut__l Considered as a starting address.

[J FUNCTION AND UTILIZATION

Saves the content within a memory range from a starting address to an end address with

binary code which is used for saving machine language.

e |f an execution start address is specified, execution starts from the address specified when
the machine language program was loaded by a BLOAD statement with an R option. If
omitted, the starting address is considered as an execution start address

EXECUTION EXAMPLE Sreen |,

L

ESRAVE"CRSIFPROGY g » GHEG®E, EHESGE, GHE1 G4

WA 0 ol SRR

Executes an extended command

(] FORMAT AND FUNCTION

CALL extended command [(argument, argument. . .}]

Argument [Cund,l Integer constants, variables, array variables, and their expressions
~ Character constants, variables, array variables, and their expres
sions

When an extended command is provided by a ROM cartridge etc., it can be executed by a
CALL statement
e —(underline) can be utilized instead of a character CALL.

—66—

CDBL (convert to double precision) |l

Converts numeric data to double precision data.

[J FORMAT
CDBL(X)
X Cond.| Numeric constants, variables, array variables, or their expressions
Given value Double precision numeric type

[J FUNCTION AND UTILIZATION

Given numerical data is internally treated as double precision data by the CDBL function

CHRS$ (character dollar) I

Gives the character of a specified character code.

] FORMAT
CHRS$(X) s
X [Cundj Numeric constants, variables, array variables, and their expressions
T from O to 255.
Given value String type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT CHR$C1E6 See the character code table (page 165).
b

CINT (convert to integer) NN

Converts numeric data to integer type data

[J FORMAT
CINTI(X)
X ~Cnnd] Numerical constants, variables, array variables, and their expres
sions from —32768 and less than 32768
Given'value Integer type

[J FUNCTION AND UTILIZATION

When numeric data X is an integer value, it is maintained as it is. When it is a floating point
type value, it is converted to an integer value by omitting values below the decimal point
It differs from the INT function in that the INT function gives the whole number out of X
while CINT converts X to an integer in which the internal processing is different

BT

EXECUTION EXAMPLE
FRINT CIMT{9-/2)
4
FEINT CIMTC124208+%55)
Over flaw

o R R TR
I CIRCLE (circle)

Draws a circle, oval, a part of a circular arc or a fan shape on the foreground in the
graphic mode.

[0 FORMAT
CIRCLE [STEP] (central coordinate), radius, [color], [start angle], [end angle], [aspect
ratio]
Central X-coordinate, Numerical constans, variables, array variables, their
central Y coordinate expressions from —-32768 to 32767.
Radius Cond.| Numerical constans, variables, array variables, their
expressions from —32768 to 32767
Color Cond. Integers from O to 15.
Current foreground color
Start angle Cond.| From —2m to 2n {unit is radians).
[Omit | ©
End angle Cond.| From —2m to 2n (unit is radians)
Omit | 2n
Aspect ratio Cond.| Positive numerical constants, variables, array variables,
their expressions. |f the aspect ratio is omitted, an oval is
drawn
[Omi] 1

[FUNCTION AND UTILIZATION

Draws a circle with a specified radius and with specified coardinates as its center. When a
start angle and end angle are specified, only a part of a circular arc is drawn. A fan shape can
be drawn by placing — {minus) for the start angle and end angle. An oval can be drawn with
an aspect ratio by specifying the power of the vertical radius for the horizontal radius.

* See page 29 for STEP specifications

EXECUTION EXAMPLE

10 CLS

28 SCREEN 2

I8 CIRCLE {5@759)’3@p:!s4
40 CIRCLE STEP(70,7@),38;5;.5.25
S8 G0TO0 5@

—68—

SEEEE CLE A0 cean DA ERS UGS TENEE

Initializes all variables and sets the size of the character area and the highest
memory address used in BASIC. Also, closes all open files, if any.

[J FORMAT
CLEAR [size of character area] [, highest address]

Size of character area Numeric constants, variables, array variables, their expres-
s1ons

t Current set value (initial state is 200). However, the

character area size cannot be independently omitted

o)
3

g |

Highest address ond.,| Numerical constants, variables, array variables, their
expressions
mit Current set value.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

o

All variables are initialized by this statement. Also, the
size of the character string area is set to 400 bytes and the
highest address of the BASIC program area is set to 55296

B CLOAD (cassette load) [N

L.oads an MSX-BASIC program from cassette tape.

[J FORMAT
CLOAD [*“file name™]
File name [Cond| String within 6 characters. If 7 or more characters are

specified, the seventh character and after are ignored
Omit Loads the first program file found

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

o =i T Loads the program with the PROG1 file name from
CLOAD"FROGT cassette tape to memory

e When an error occurs during load, rewind the tape to reload it.

—69—

B CLOAD? (cassette load verify) NN

Compares a program saved on cassette tape with one in memory.

[0 FORMAT
CLOAD? [“file name”’]

File name (C(nndJ String within 6 characters. If 7 or more characters are
— specified, the seventh character and after are ignored.
mrm!] Compares the first program file found with one in
) memory

[J FUNCTION AND UTILIZATION

A command that checks if a program is correctly saved or not. When it is executed, the

program in memory is compared with a program saved on cassette tape with a specified file

name.

e After comparison shows that the programs match, OK is displayed and input wait occurs,
When they do not match, “'Device 1/O error” is displayed and input wait occurs

o |f the file name is omitted or CLOAD? "' is input, the first program file found on a
tape is compared with the program in memory. (LJ means a space.)

EXECUTION EXAMPLE

CLOAD?"PROGL"

PR O b (closo) R S S

Closes a flle which was opened by an OPEN statement.

[0 FORMAT
CLOSE([#] [file number] [, file number]. ...
File number ‘Cun(l] 1 g file number g numeral specified by MAXFILES =

statement
LOmit Closes all the files.

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

MAXFILES=3

SCREEN 2

OPEN "GRP:"FOR OUTPUT AS #1-————Opensfile1
OFPEN "GRP:"FOR QUTPUT RS #2+——Opensfile2
OFEN "GRP:"FOR QUTFUT RS #3 Opens file 3
FRINT #1,"ABC"

PRINT #2,"DEF"

e
U AR Moo |

AN

|

2 EROU o B o Y

4 PRINT #2,"GHI"
A CLOSE = Closed all the files
A8 GOTO 184

iy R e s S, Y R I e TS

- 90

I CLS (clear screen) NN

Erases all displays on the screen

[J FORMAT
CLS

e |n the graphic mode, the background color is changed by executing CLS after specifying it
with a COLOR statement,

HENEE o000 ol NN

Specifies the color of the foreground, background, and border area

[J FORMAT
COLOR [foreground color], [background color], [border color]
Foreground color, background color, border color
‘—COTUL Integers from O to 15. (See the color table below.)

N Y |
Omit Current color
® Color code table

Code| Color Code Color _|Code| Color Code Color
O | Transparent 4 | Dark blue 8 |Medium red 12 | Dark green
1 |[Black 5 | Light blue 9 | Light red 13 | Magenta
2 |Mediumgreen| 6 | Dark red 10 | Dark yellow 14 | Gray

| 3 | Light green 7 Sky blue 11 | Light yellow 15 | White

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

COLOR &~ - Only the foreground color (character color in text mode, and
graphics color in graphic mode) is changed.

I ULUR y L Only the background color is changed
COLUOR 5 5 1 1<—0nly the border area color is changed

COLOR 15, 4.4 «—Initialized
® See page 26 for the screen configuration.

® |n the graphic mode, the background color is not changed by only specifying the back-
ground color with a COLOR statement but is changed only after executing CLS

=7

BEEEE CcoNT (continue) SRR ISR

Restarts a program

[J FORMAT
CONT
[J FUNCTION AND UTILIZATION
Restarts a program that was interrupted by {CTP.'L_Z + :’kSTF)Pr or by a STOP statement in a

program. When a CONT statement is executed, execution starts from the statement next to

the interrupted statement. However, if an interrupt occurred during the execution of an

INPUT statement, execution starts from the beginning of the statement

COS (cosine) (R G R

Gives the value of the cosine for numeric data

] FORMAT
COS(X)
X Cm\d—f Nunmr»g~ type constants, variables, array variables, their
expressions. (Unit is radians.)
Given value Floating-point type constants from —1 to 1

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

To give X in degree units, use the formula COS (X » #/180)

I CSAVE (cassette save) NN

Saves an MSX-BASIC program file on cassette tape

[0 FORMAT
CSAVE ““file name’’ [, baud rate]
File name ,Euncﬂ String within 6 characters. |If 7 or more characters are
specified, the seventh character and after are ignored
Baud rate [an@ 1 (1200 baud) or 2 (2400 baud)

Omit | 1 (1200 baud)

o T e

(J FUNCTION AND UTILIZATION

Although up to 6 characters can be used for a file name, a numeral cannot be used at the
beginning. As for the baud rate, when 1 is specified, the baud rate is 1200 baud, and when 2 is
specified, it is 2400 baud

EXECUTION EXAMPLE
o ” Saves a BASIC program in memory to cassette tape with a
CSAVE "PROGL" file name “PROG1"".

IEEEREN CSNG (convert to single precision) I

Converts numeric data to single precision data.

[J FORMAT
CSNG(X) R
X |7CU”_(11 J Numeric type constants, variables, array variables, their expressions
Given value Single-precision type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 PRINT SQRC3>
28 PRINT CSHGCSRQRC3I
RUN
1.732858808756088
1.73285

CSRLIN (cursor line) I

Gives the Y-coordinate of the cursor location.

[0 FORMAT
CSRLIN

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 CLS

28 INPUT A%

38 PRINT R#$;

48 CL=CSRLIN

S8 LOCATE @,CL+3:PRINT "END"

The character data displayed by line 30 occupies only one line or plural lines depending its
length. However, the Y-coordinate (vertical location) of the cursor after display is input to
variable CL and "END" is displayed with a value which is greater than CL by 3 as-the Y-
coordinate. Therefore "END” is displayed 3-lines below notwithstanding the A$ data length

=y o

AR O T (o) MR

Gives data read by a READ statement.

[J FORMAT
DATA constant [, constant]
Constant [C(»l}«ﬂ Numeric or string type

[J FUNCTION AND UTILIZATION

o When data items are arranged in one DATA statement, they are punctuated by a comma (,)

e |f data in a DATA statement sequentially matches variables in a READ statement, it can be
located anywhere for a READ statement and as many DATA statements as desired can be
utilized

o When string type data includes a comma (,) or colon (), or when a space is inserted in front
and at the back, it is placed inside quotation marks (*')

EXECUTION EXAMPLE

) =

- I AN
ARV U U o I

29,191

T N fa G B

._
=

[

(=2 e w)
-

P]
)
=

I DEF FN (define function) NN

Defines a user function

[J FORMAT
DEF FN function name [(parameter [, parameter])] = expression.
Function name (Cnn(!—] Numeric type, string type variables (Type is in accord
with the expression,)
Parameter [‘gmuﬂ Up to 9 variables
E xpression [,Qi”,"“_] Numeric type, string type constants, variables, array

variables, their expressions

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE
18 DEF FHRACK
2 E=FHA{4; 2]
S8 PRINT B

F LI

hoc g
|

VIS CERFZ2HY 4T D (K=Y

- <
RAURLMURLMCU

In line 10, the function FNA(X,Y) is defined as the following expression. In line 20, 4 and 2
are given as values for the X and Y parameter, then the function is called. The result, 7, is
assigned to variable B

AR

I DEFINT (define integer) N
DEFSNG (define single precision)

DEFDBL (define double precision)
DEFSTR (define string)

Defines the correspondence of the first character of the variable name and the

variable type

(INT: Integer type, SNG: Single precision, DBL: Double precision, STR: String
type.)
[J FORMAT

DEFINT character [— character]
DEFSNG character [— character]
DEFDBL character [— character]
DEFSTR character [— character]

Character lACnnr.i

O

DEFINT R-C

One alphabetical character

FUNCTION AND UTILIZATION

As a result,
integer type.

all the variables, starting with characters A-C, are

Priority of type declaration characters (%, !, £, $)

After

EXECUTION EXAMPLE

28 A=1.23456789
38 ABC=1.234567
48 E# 1,23¢ E-?E=
el C! . 2345678¢
e FFIHT H3 l:IE'I:
FLH

1 1 1.234567

DEFINT A-C———

WO 0

declaring DEFINT A, A becomes a double-precision variable by declaring A# later

-~ Variables from A to C are integer type
| Variables A, ABC become integer type

-.:.‘ !) by line 10
S T ~Double-precision type by placing #

“Single-precision type by placing !

'I‘
E:3

—75—

I DEFUSR (define user) [N

Specifies a starting address when a machine language subroutine to be called by a
USR function,

[J FORMAT
DEFUSR [X] = starting address.
X {Cond | Integers from O to 9
[OmTl 1‘ 0
Starting address [Cpnd_J Numeric type constants, variables, their expressions from

0 to 65535
[J FUNCTION AND UTILIZATION

EXECUTION EXAMPLE A | o b : hich
% P - s a result, a machine language subroutine which starts
DEFUSR1=&HEBBB {om address &HE0DO is defined as USR1

® The starting address can be redefined as many times as required in one program without
changing the value of user number (X)
(See page 56 for Machine Language Subroutines)

I DELETE (delete) I

Erases a specified line in a program

[J FORMAT
DELETE [line number] [— line number)
Line number [Cond J Integers from O to 65529,

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

DELETE 4@’ Erases line 40
[lELETE ':Ej-4l:1 - Erases lines from 20 to 40
DELETE -5

DELETE " Erases a line displayed last by a LIST statement
or a line that was interrupted due to an error

- Erases lines from the starting line to line 50

-
!

e When only one line is to be erased, input the line number only and press | RETURN]

- 0—

I D'M (dimension) I

Declares the name of an array variable, data type, size and dimension

[J FORMAT
DIM variable name (maximum value of a subscript [, maximum value of a subscript] ...) [,
variable name (),]
Variable Lc,‘flfd_l Numeric or string type
Maximum value of ~ [Cond.| Integer type constants, variables, array variables, and their
a subscript expressions over 0
Maximum dimension 255 dimension.
[J FUNCTION AND UTILIZATION

EXECUTION EXAMPLE
DIM AC1S) - _Sets up an area of 16 numeric type array variables from A(O) to
R A(15) in memory. The initial value of variables is O

GIM B$i2,3) _Sets up an area of 12 variables as shown below (string type). The
/ L LD/ : :
initial value of variables is a null-string

B$(0,0) B$(1,0) B$(2,0)
B$(0, 1) BS$(1,1) BS$(2, 1)
B$(0, 2) B$(1,2) P$(2,2l
B$(0, 3) B$(1,3) B$(2, 3)
To define a plural number of array variables by one DIM statement
v T I R P A - ¢+ =~ __ Each variable is punctuated with a
DIM AC22,B$C(4,2)2,C¢3,3) comma.

Multi-dimensional array variables
Multidimensional array variables are generated by specifying 2 Maximum values or more
for subscript

DIM =¢ LAY e 3 dimension
DIM statement omission

When an array variable is utilized without declaring a DIM statement, the maximum value of
the subscript is considered to be 10

WL o AW Lo R

Draws graphics on the graphic screen as specified in graphic subcommands.

[J FORMAT
DRAW subcommand

Subcommand Cnmq Character string (constants) inside “ ““ or string type
— wvariables in which a character string is assigned. Capitals
or small characters

gl —

Subcommands

Command Condition Semantics
Sn 0< n< 256 Specifies the number of dofs for
(scale) - 1 unit when a line is drawn.
1/4 dot with n=1.
Initialization is S4.
Al
An 0<n<3 Rotates coordinate system by | 52 .« x
(angle) step of 90° for a standard co-
ordinate axis (0°). v)4
Initialization is AQ.
A2 v
Y
va- A3 Ix
Cn 0<ng 15 Specifies a color for a line drawn
(color) by a color code.
Initialization is C15.
Mx,y 0< x<255 | Draws a line from a current point | 10,01 X
{move) 0<y <191 to an absolute location (x, y). Currant Paint
\lx‘)
v
h:l'.b(, i)y 0<x < 255 Shifts horizontally +xfrom a cur- M+30, —60
move rent point and Xy vertically. The]
0Ly 191 | ynit for x, y is the number of 'g0
dots specified by the S subcom- 1
mand. -
Currant point 30
Un Draws a line toward a negative E X
(up) direction on the Y axis from a
current point to another point
by an n distance. The unit of
n is the number of dots specified n
by the S subcommand.
(1 if omitted.) . CuraL ot
Dn Draws a line toward a positive 4 &
(down) direction on the Y-axis from a
current point to another point Comen galm
by an n distance. The unit for
n is the number of dots specified "
by the S subcommand.
(1 if omitted.) v

_78—

Rn
(right)

Draws a line in a positive direc-
tion on the X axis from the cur-
rent point to another point by an
n distance. The unit of n is the
number of dots specified by the
S subcommand.

(1 if omitted.)

X
—
n
[——

Current
point

Ln
(left)

Draws a line in a negative direc-
tion on the X-axis from the cur-
rent point to another point by
an n distance. The unit of n is
the number of dots specified by
the S subcommand.

(1 if omitted.)

X
—_ .
n
P

Current
point

Draws a line in a positive direc-
tion on the X-axis and in a
negative direction on the Y-
axis from the current point to
another point by an n distance.
The unit of n is the number of
dots specified by the S subcom-
mand. (1 if omitted.)

Fn

Draws a line in a positive direc-
tion on the X-axis and in a
positive direction on the Y-axis
from a current point to another
point by an n distance. The unit
of n is the number of dots speci,
fied by the S subcommand.

(1 if omitted.)

|

|

Currant
point

o

Current n
point

&

Gn

Draws a line in a negative direc-
tion on the X-axis and in a
positive direction on the Y-axis
from a current point to another
point by an n distance. The unit
of n is the number of dots speci-
fied by the S subcommand.

(1 if omitted).

|

N Current
point

N

Draws a line in a negative direc-
tion on the X-axis and in a
negative direction on the Y-
axis from a current point to
another point by an n distance,
The unit of n is the number of
dots specified by the S subcomma
nd. (1 if omitted.)

X
P —4

n
Current
point
n

[] FUNCTION AND UTILIZATION

The current location is always stored with a command to draw a line except Sn, An, Cn.

For example,

CREAL

"Mig@, 1za"

_79-—

by the message above, when a line is drawn from a certain point to another point (100, 120),
then this point becomes the current point. Then, when a command to draw a line is made
again, a line is drawn from this current point to a specified point.

One of the following two commands can be placed in front of a command to draw a line.

8.5 Although the current point is shifted, a line is not drawn. (Example: BMO, 0)
N Although a line is drawn, the current point is not shifted. {Example: NU30, 30, NR30,
30)

To express a subcommand with a variable

A$="EM18@G, 158USBESBFSAD5AL 160"
DRAW A%

In this example, a subcommand is assigned once to a string type variable A$,then AS$ is speci-
fied as a subcommand in a DRAW statement.

To express a part of a subcommand with a variable (X variable;)
o | | m When a subcommand assigned to a string type
A¥= U23R28028L20 variable is used inside " " of a DRAW state-
DEAL "BMSA,SAXAE: " ment, add X before and ";" after that. In this
. example, a subcommand assigned to A$ is used
DRAW "BM158, 108XA$: " [iwe DRAW statements. =

To express n in a subcommand with a variable (=variable;)

n which expresses the shift distance, angle and color code with each subcommand can be a
constant or a variable in 3 DRAW statement. When it is expressed with a variable, add =
before and ", after that.

=40
DRAW “L=y3 "
IS the same as

DRAW "U4a"
EXECUTION EXAMPLE

18 SCREEN 2 Graphic mode when a DRAW statement |s used.
2@ DRAW "BM125,1@E"<-—1o (125, 100) without drawing anything.
38 FOR I=4 TO 248 STEP 12 _

48 DRAY *3=13BURDZL2UZRBD" 1-— [y fomn s
@ NEXT '

6@ GOTO &8

—

I END (end)

Terminates program execution to enter a command wait state and closes all the
opened files,

[J FORMAT
END

[J FUNCTION AND UTILIZATION
The END statement is used in the last line of the main program when a subroutine is written
after a main program to prevent a subroutine from being executed again after the main prog-
ram |s terminated. It can be used as many times as desired in one program such as when a
program execution result is branched into some result, it can be used at the end of each
branch.

e A RUN or GOTO statement is used to execute it again. It cannot be resumed by a CONT
statement.

198 GOSUB 1008

. In this program, if an END statement does not exist

198 in line 200, the subroutine from line 1000 is entered

2838 END without a GOSUB statement after returning from a
subroutine and executing line 190, and an occurs.

188 *SUEROUTINE

1188 RETURM

EOF (end of file) N

When the last data of a file has been read, —1 is given, otherwise O is given.

[J FORMAT

EOF (file number)

File number [VCundj 1 < file number < numeral specified by MAXFILES=

statement

Given value: Integer type (—1 or 0)

[J FUNCTION AND UTILIZATION

When the last data is read while data is
being read from the file whose file

IF EOFC1Y THEM CLOSE #1 number is 1, a file is closed by the above

statement

~ifT.

RS £ ASE (erace) RN OSES S RIAR

Erases an array variable,

[J FORMAT

ERASE array variable name [, array variable name]

[J FUNCTION AND UTILIZATION

= yIM AC1ARD $(d, I In this example, array variables A and BS,
18 DIM AC188),B%(4,3. declared in line 10, are erased in line 100
. After this, the memory area can be used for

another purpose. Also, an array variable

with the same name can be redefined by a

1‘:“:1 EEIF‘E'E }:l L] E:f DIM statement.

ERL (error line) I

Gives the line number of a line where an error occurred

[J FORMAT
ERL

Given value Numeric type

(] FUNCTION AND UTILIZATION

When no error has occurred, 0 is given. When an error results from a direct command, 65535
is given, Is used by combining it with an ON ERROR statement or an ERROR statement

FRE oo, TR SRR

Gives the error number of an error that occurred

[J FORMAT
ERR
Given value Integer type

[J FUNCTION AND UTILIZATION

Can be used for error processing in @ program by combining it with an ERROR statement or
ERL function

® When no error occurs, O is given
EXECUTION EXAMPLE
FRINT 1@-&
Division by zero
PEINT EER
11

82

| OR (0o DGR ERRReN

Simulates an error of a specified error number or defines an error number.

[J FORMAT
ERROR error number
Error number Numeric type constants, variables, array variables, their

expressions from 0 to 255.

[0 FUNCTION AND UTILIZATION

ERROR 1

Generates a NEXT without FOR error. (Stops program execution.)

User definition of error number
If A< 0 THEN ERROR 250

When a negative numeral is assigned to variable A based on the above, error 260 occurs. (Since
error numbers up to 59 are defined in MSX-BASIC, numbers larger than those shall be used.)

EXECUTION EXAMPLE

When a negative m_uneral is input in the following program, a message is displayed that indi-
cates a positive numeral is required, and program execution continues.

14
ped o)
I
48
S48
(35
7a
}

L L
S

aF
1aa

ON ERROR GOTO 2@

FOR I=1 TO 18

INFUT A

IF A<B@ THEH ERROR 25@
SUM=SLUM+A

NEXT 1

PRINT SUM

END

IF ERE=258 THEN PRINT "Input
ositive number.":RESUME 38
PRINT “Error!"

EXP (exponential) N

Gives eX which is the natural exponential function of X.

[J FORMAT
EXP(X)
X Numeric type constants, variables, array variables, their
expressions below 145.06286085862
Given value Floating-point type

ee (2.7182818284588) is the base of a natural logarithm.

83—

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT EXPC18@)
2.6881171418087E+43

FIX (fix) I

Gives the integer of numeric data.

[0 FORMAT
FIX(X)
X @ Numeric type constant, variables, array variables, their expres-
ions.
Given value lilﬁmsenc type

[0 FUNCTION AND UTILIZATION

Gives the value of numeric data X in which the figure below the decimal point is truncated
EXECUTION EXAMPLE

PRINT FIXCIISFIKC(-3)3FIR(3.58)3FI

nl=3.98)

3 =3 3 =3

I FOR-NEXT (for-next) I

Repeats program execution between a FOR statement and a corresponding
NEXT statement.

[J FORMAT

FOR variable = initial value TO end value [STEP increment]

NEXT [variable]

Variable [Efmd Numeric type. FOR statement varrmables shall be the same
as those in the NEXT statement
Initial value, end value Numeric type constants, variables, and their expressions.

Increment Cond Numeric type constants, variables, their expressions
Omit 1

[J FUNCTION AND UTILIZATION
A program between a FOR statement and a NEXT statement is repeatedly executed while
the value of the variable specified in the FOR statement is increased from an initial value
to an end value. The value of the variable is increased by a specified amount each time pro-
gram execution is terminated
® Although the variable in the NEXT statement can be omitted, the correspondence between
FOR and NEXT can be easily understood in a program list if it is written.

—84—

EXECUTION EXAMPLE

10 FOR I=18 TO 50 STEP 1@
28 PRINT "I=";I
38 NEXT 1

This program is executed as follows.

|« 10 Assign 10 [initial valuel to variable |

Execution transfers to the statement|

1> 80 after the NEXT statement

No

Exacutes statements betwwen the FOR
and NEXT statements

[t 110] 1010 wariave

Multi-loop "
A FOR — NEXT loop can be placed inside a FOR — NEXT loop. In this case, the inner loop
must be completely included inside the outer loop. A different variable is used for each loop.

18 FOR I=1 TO S
28 FOR J=1 TO I
I8 PRINT "%"3 Inner loop }— Outer loop
43 NERXT J

58 PRINT

68 NEXT I

RUN

*

*#

Hok ok
Fokok ok
LR EE 2

Several FOR statements can be terminated by one NEXT statement. In this case, the variable
name cannot be omitted in the NEXT statement. Variables are arranged sequentially with the
inner loop first by punctuating them with commas.

FOR I=8 TO 1@
FOR J=@ TO S

NEXT .1

8B

O M

FRE e R R S

Gives the number of bytes in an unused area of memory which can be used in
MSX-BASIC.

[J FORMAT
FRE(X)
FRE(* ")
X @mﬂ Arbitrary numeric value.
Given value Integer type

[J FUNCTION AND UTILIZATION

FRINT FRE:"@" ::._D.splays the number of bytes in an unused area of
memaory.

F. F. I ”T FF-E Fnny Displays the number of bytes in an unused part of a char
" ol d acter string area in memory,

SRR 05U BB U n RN

(go to subroutine-return)

Transfers execution to a specified subroutine
The RETURN statement indicates the end of the subroutine in which execution
is returned to a location next to GOSUB or to a specified line number

[J FORMAT
GOSUB line number

RETURN [line number]
Line number [C‘lﬂ Integers from O to 65529

[()vml] When omitted in a RETURN statement, it is the line
number next to the GOSUB statement.

— 86—

[J FUNCTION AND UTILIZATION

100 GOSUE 1880

N Main routine
2B8 GOSUR 1686 .
" 100 ? 1i\;l;rout|ne
388 GOSUB 1860 W0
' T_TLﬂEEnoo
o 0 &====23
1888 ° SUBROUTINE .

Calls one subroutine by a plural number of

1188 ;?E TURH GOSUB statements.

188 G0SUE 1684

Main routine Subroutine 1

288 GOSUE Zooa

100 «——*|1000

1088 * SUBROUTINE 1 T
: ‘ 200 ‘?' 2000
1188 RETURN | s

g

A plural number of subroutines are placed
in one prograrm.

2888 ' SUBROUTINE

2186 RETURN

BT

o

s
m
—
[an]
[
D)

1688 * SUEROUTIHE 1

Main routine

185@ |3|:|5|JB 2‘3‘38 Subroutine 1
100 1000
’ "'—L Subroutine 2
1050 2000
1188 RETUEN = ’
. 2100
Irlr : \ y I alles another subroutine from one subroutine
':. U ‘_1 L : 5 I..' E‘ R I:I U T I N E A: E:GI(’)F?UIB sll'm’ur:ujml m‘un?uliei:nq } B '

2188 RETURN

GOSUB statement multiplexing performance depends on the existing memory

EERE OO (o) R

Transfers program execution to a specified line number.

[J FORMAT
GOTO line number
Line number LCund} Integers from 0 to 65529

[J FUNCTION AND UTILIZATION

Program execution is transferred to a line specified by a GOTO statement.
® When executed in the direct command mode, execution starts from a specified line.

—88—

HEX$ (hexadecimal dollar)

Gives hexadecimal expression of numeric data as string type data.

[J FORMAT
HEXS$(X)

X Numeric type canstants, variables, array variables, their
expressions from —32768 to 65535. In the case of nega
tive numerals, their value is the same as if it is added to
65536

Given value String type

[J FUNCTION AND UTILIZATION

FEINT HEX$(1@8>
&4
FRINT HEX$(-32768)

PRINT HEX$(255)
FF

B \F-THEN-ELSE (if-then-else) [

Branches execution according to the values of an expression.

[J FORMAT
IF expression THEN statement [ELSE] statement]

E xpression [Cond, A relational expression for which the result becomes a
numeric expression, logical expression, or arithmetic
expression.

ELSE statement To the statement after THEN if the expression value is

true, and to the next line if it is false

[J FUNCTION AND UTILIZATION

If the value of an expression is true (except 0), the statement after THEN is executed and if

the value of an expression is false (0), the statement after ELSE is executed. Then execution

is transferred to the next line.

e When the ELSE statement is omitted, the statement after THEN is executed if the expres
sion value is true. If it is false, the statement after THEN is ignored and execution is trans-
ferred to the next line

®Inthe IF — THEN GOTO format, THEN or GOTO can be omitted

IF A=0 THEN 30

IF A=0 GOTO 30 Same meaning.

—890—

The statement or line number comes after THEN.,
The line number comes after GOTO.

® When the GOTO statement comes after ELSE, GOTO can be omitted.
®When a plural number of statements are written after THEN or ELSE, they are executed
sequentially with the left statement first. Statements shall be punctuated with a colon ()

EXECUTION EXAMPLE

18 INFUT R

28 IF A>=8 THEN PRINT "RBS="3H E
LSE PRINT "ABS="3-A

28 GOTO 1@

— Input value of A —_—

Yes (true)

Display character “*ABS="
and value of A

No [false)

Display character “"ABS="'
snd value of —A

IF — THEN statement multiplexing

IF — THEN can be continued after THEN or ELSE. Multiplexing can be performed within the
range of one line.

INKEY$ (inkey dollar) I

Gives the character of a depressed key, and a null string if no key is pressed

[J FORMAT
INKEYS
Given value String type.
[] FUNCTION AND UTILIZATION
When keys other than ETRE + "STOﬂF’], gHIFT‘, and| CTRL |are pressed, their character is

given as data. |f no key is pressed, a null string is given.

EXECUTION EXAMPLE

CLS

PRINT "Press any key."

}i§=}I¥L'E‘"I:$THEH G070 3‘3] Repeats until a key is pressed.
FEINT K#;

GOTO 28

When any key is pressed, the character is assigned to variable K$ and displayed on the screen
in line 50.

—

DU R A R R

DL B CR P

80—

B e MR R

Reads data of a specified 1/O port

[0 FORMAT
INP(port number)

Port number 1C‘m(1 ‘ Numeric type constants, variables, array variables, their
expressions from 0 to 255

] FUNCTION AND UTILIZATION
Inputs and gives data from a specified 1/0 port.
See page 164 for 1/0 port allocations

R -0 Oop) RS SRR

Inputs the value of a variable from the keyboard

[0 FORMAT
INPUT [“prompt statement’’;] variable [, variable] [, variable]
Variable {Cnn(l | Numeric type, string type, their array variables
“Prompt statement” lC.m(I'I Comment statement for data input

I()HIIT l Displays only ?" without a prompt statement.

] FUNCTION AND UTILIZATION

Input's data from a keyboard and assigns it to a variable. At that time, the space before the

data is ignored

e For an INPUT statement of a numeric type variable, the space in the middle of data is also
ignored

e When a comma is input, it is considered to be punctuation for data, and the items betore the
comma are considered to be one data assigned to a variable while the comma is not assigned

eWhen a prompt statement is written, it is displayed on the screen when data input is re-
quested. If a prompt staterment is omitted, only ""?"" is displayed

® The number of variables must be 1n accord with the data
EXECUTION EXAMPLE

18 INPUT nl
EEI_IH J =

When the prompt statement is omitted

(%
L)

INFUT "RA=' ﬂl

'|_|“ [—When the prompt statement is used
~

D A

INPUT "R AHD B "3R.E | .
Since the input data is less than the
number of variables, the missing data

FIN[' E‘ > 7 is requested by ??

. e
—'—A.

A -
-
ol

I

.

-91-—

18 INPUT "AR'AND B "3A,B Display when more data is input than

R] |N the number of variables.

(Residual data is ignored.)
A AND B ? 1,2,3,4
PExtra 1anored

INPUTS$ (input dollar)

1. Inputs a specified number of characters from the keyboard.
2. Inputs a specified number of characters from a file

[J FORMAT

1. INPUTS(X)
2. INPUTS(X, [#] file number)

X |£ond Numeric type constants from variables, array variables,
their expressions from 1 to 255,

File number Cond.| 1 g file number g numeral specified by MAXFILES=
statement.

Given value String type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 X$=INFUT$(S)
28 PRINT X%

When line 10 is executed, keyboard input wait occurs. After 5 characters are input_, they are
assigned to variable X$. Characters are not displayed on the screen during keyboard input

1@ OPEN "CAS:TEST" FOR INPUT RS #1
28 X¥=INPUT$CSO,%1)
38 CLOSE
In this program, 50 characters are input from a file saved on cassette tape and are assigned to

string variable X$. Then the file is closed

Range of X"

During initial status, if X is outside a range from 1 to 200, an error occurs. When the size of
the character area is set to more than 255 by a CLEAR statement, a value from 1 to 255 can
be selected

—92—

B INPUT # (input number) I

Reads data from a file opened by an OPEN statement, and assigns it to a variable

[J FORMAT
INPUT# file number, variable [, variable]
File number Cond.| 1 < file number < numeral specified by MAXFILES=
statement.
Variable Cond.| Numeric type or string type, their array variables.

[J FUNCTION AND UTILIZATION
Reads data from a file, If the data is numeric, the space, the return code, and the line feed
code before the data are ignored.
If the data is string type, the data from the first character to the character before the space,
comma, return code, and line feed code is read as one data. If the characters are inside " '
only these characters are read as data.

EXECUTION EXAMPLE
10 OPEN "CAS:TEST" FOR INPUT RS #1——Opensafilefor
2@ IF EOFC1) THEN GOTO S@ ' ‘
30 INPUT #1sASSPRINT A$-——[mondeis asionsito erisbiens
48 GOTO 28 : o
S8 CLOSE #1

(See page 42 for File processing.)

INSTR (in string) I

Retrieves a specified character string from among character strings and gives its

location.
[J FORMAT
INSTR([N,] XS, Y$)
N -Cund Numeric type constants, variables, array variables, their
expressions from 0 to 255.
:
X%, Y$ String type constants, variables, array variables, their
expressions.
Given value: Integer type.

[J FUNCTION AND UTILIZATION

Gives the number of a character from the left where Y$ starts in an X$ character string as
numeric data. When N is specified, retrieval starts from Nth character of the X$.

EXECUTION EXAMPLE
PRINT INSTRC3,"WHAT IS THIS?"," IS";
6

® When the N value is larger than the length of X$ or X$ is a null string, or if Y$ cannot be
found, O is given.

83—

INT (integer SRR R

Gives the maximum integer value smaller than given numeric data.

[J FORMAT
INT (X)
X Cond.| Numeric type constants, variables array variables, their
expressions
Given value Numeric type.

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT INTC3)3INTC(-3>3INT(3.58)3 INT(-3,5&)
3 =3 3 =4

B INTERVAL ON (interval on)
INTERVAL OFF (interval off)
INTERVAL STOP (interval stop)

Validates, invalidates, or holds an interrupt with a built-in timer

[0 FORMAT

INTERVAL ON — Interrupt valid.
INTERVAL OFF — Interrupt invalid.
INTERVAL STOP -~ Interrupt hold.

[J FUNCTION AND UTILIZATION
A command that actually validates (INTERVAL ON), invalidates (INTERVAL OFF), or
holds (INTERVAL STOP) an interrupt after declaring an interrupt with a built-in timer by
using ON INTERVAL GOTO

(See page 50 for Interrupts.)

I < () R

Defines a character string for a function key

[0 FORMAT

KEY function key number, character string
Function key number [Cond 1 Integers from 1 to 10,

Character string ’\Cund? String within 15 characters

.V

[J FUNCTION AND UTILIZATION
When characters are defined for a function key, a defined character string is entered by just
pressing a function key.
® Function keys from 1 to 5 correspond to [F1| — | F5/, while_ numbers from 6 to 10 cor-
respond to the pressing of each function key while pressing the [SHIFT| key.

e When the reset button is pressed or the power is turned off, the function key definitions are
erased and initialized.

e A code other than that for a character (such as return code) can be defined by using the
CHRS$ function.

EXECUTION EXAMPLE
KEY 1,"JAPAN" —

Defines ""JAPAN" for E‘

KEY 2,"CLS"+CHR$(1.3) —Defines CLS[RETURN] for [F2]

B KEY LIST (key list) I

Displays the content of the function keys.

[J FORMAT
KEY LIST

[J FUNCTION AND UTILIZATION
When this command is executed, the character string content defined for each function key
is displayed.

EXECUTION EXAMPLE
KEY - An example of the Initial state. It is found that “‘color
BN LIST 15, 4, 4" is defined for the function key 6 (or the
calaor key pressed together with the [SHIFT] key)

auto
aoto
list
Fun
color 15.4,4
cload"
cont
list.
run

I KEY ON, KEY OFF (key on, key off) Il

Displays or erases the content of a function key

[0 FORMAT
KEY ON or KEY OFF

—95_

[0 FUNCTION AND UTILIZATION

Initially the character strings defined for each function key are displayed with 5 characters on
the last line of the screen. Execute KEY OFF to erase this display.

e Characters can be output on this line with a PRINT statement after using KEY OFF to erase
the display.

e Execute KEY ON to output this display.

B KEY (n) ON (key (n) on) I
KEY (n) OFF (key (n) off)
KEY (n) STOP (key (n) stop)

Validates, invalidates or holds a function key interrrupt

0 FORMAT AND FUNCTION

KEY. (function key number) ON — Interrupt valid.
KEY (function key number) OFF — Interrupt invalid.
KEY (function key number) STOP — Interrupt hold.

Function key number Constants, variables, array variables, their expressions
from1to5

] FUNCTION AND UTILIZATION

Specifies a function key used for an interrupt with a function key number.

KEYC{1Y OM ———validates an[F1] key interrupt.
KEY{(2) OFF— Invalidates an L@ key interrupt.
}:: E "|'| ':: -_'l] E; T |:| F' —Holds an ES] key interrupt

(See page 50 Interrupts.)

LEFTS (left dollar)

Gives an arbitray number of characters taken from the left of string data as string
data,

[0 FORMAT
LEFTS(XS, N)
X$ C()ndl String type constants, variables, array variables, their
expressions
N Cond.| Numeric type constants, variables, array variables, their

expressions from 0 to 255,
Given value: String type.

—96—

O FUNCTION AND UTILIZATION
PRINT LEFT$("MSX-BARSIC",3)

MSH

Ok

PRINT LEFT$("MSX-BASIC",3.8)

MSH —— If N is not an integer,

0k gumbers below the
Ofﬁiltrl'\:(‘l"pmm are

FPRINT LEFT$C"MSX-BRSIC".@)

If N is O, a null string is
given,

0k

LEN (length) I

Gives the number of characters (length) of character data as numeric data.

J FORMAT
LEN(XS$)
X$ m String type constants, variables, array variables, their
expressions
Given value Integer type.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT LENS"CHRISTHARS")

3

i the space is counted as 1 character

® Also, when a character string includes the CHR$ function, it is counted as one character

.y

FRINT LEMC"THE END") }*When a character string includes a space,

SRR - - R R e

Assigns data for a variable.

] FORMAT
[LET] variable = X
Variable Cor\d.‘ Numeric type, character type variables, array variables.
X [mj | Numeric type, character type constants, variables, array
. ~ variables, their expressions.
) FUNCTION AND UTILIZATION

Assigns a value on the right to the left
® For string type constants, they are enclosed inside quotation (') marks
® LET can be omitted

e When a certain type of numeric data is assigned to another type of numeric variable, the
numeric data is converted to that type of variable.

EXECUTION EXAMPLE
LET M=N+1———ncreases the value of N by 1.

A%=45.6:FRINT A%

. —_Since numeric type data was assigned to a string type
Ture mismatch variable, an error occurs

—98—

S e ine) PSRRI E T R

Draws a straight line or square on the foreground in the graphic mode.

[J FORMAT
LINE [[STEP] (starting point coordinates)] - [STEP]
|
(end point coordinates), [color] “' g::] f
Starting point Numeric type constants, variables, array variables, their

expressions from —32768 to 32767.

coordinates
- Last location specified by the last graphic instruction.

End point Numeric type constants, variables, array variables, their
coordinates expressions from —32768 to 32767.
Color Integers from O to 15
Current foreground color.
B, BF Draws a straight line

[J FUNCTION AND UTILIZATION
Draws a straight line that connects starting point and end point coordinates (when B, BF is
omitted)
e When ""B" is specified, draws a square with a straight line that connects two specified points
as a diagonal.
e When "BF" is specified, draws a square with a straight line that connects two specified
points as a diagonal, and colors the surrounding area

e See page 29 for STEP specifications.
EXECUTION EXAMPLE
18 CLS
28 SCEEEMW 2
38 LINE <e@,eB)~-01848,188x,1,
48 LINE STEP(-18,-18>-(1268,168).8 ,BF
98 GOTO Sa

()

—

o

—99—

B LINE INPUT (line input) I

Gives a string with up to 254 characters by keyboard input as a string type vari-
able.

O] FORMAT
LINE INPUT ["’prompt statement”;] variable
“prompt statement”’ [Cond.| Comrment statement for data input.
ré@ Displays only "?" without a prompt statement.
variable @ String type variables, array variables.
[J FUNCTION AND UTILIZATION

A return code is only considered as data punctuation, and assigns a keyboard input character
string to a variable. When a comma is included in a character string, it is assigned as part of the
character string.

EXECUTION EXAMPLE
10 CLS
28 LINE IWFUT "HAME,FPHONE? ":H$
38 PRINT HN#
RUN
HAME ., PHONE? JACK.B88-11-22
JACK.B8-11-22

B LINE INPUT# (line input number) IR

Reads a string with up to 254 characters from a file, and assigns it to a character
type variable

[0 FORMAT
LINE INPUT # file number, variable
File number Cond.| 1 < file number < numeral specified by MAXFILES=
statement,
Variable Iioncﬂ String type variables, array variables,

[J FUNCTION AND UTILIZATION

Reads string type data from a file. However, a space, comma, and line feed code are not
considered as punctuation for data, which differs from the INPUT# statement, and the
character string that includes these items is assigned to a variable as character string data. Only
the return code is considered to be punctuation for data.

EXECUTION EXAMPLE
18 OPEN “"CRS:DATA" FOR INPUT RS &1
28 IF EOF¢1» THEN GOTO &8
38 LINE IHWPUT #1.RA%

A FRINT R#%

28 GOTO 2@

8 CLOSE #1:EMD

When a file has been prepared by the following procedure with a file name called DATA.

—100—

PRINT #1."RBC":",";"DEF"
PRINT #1,"GHI JKL":
PRINT #1.,"MNO"

PRINT #1,"PQR"

and when this data is read by the above program and displayed on the screen, it is found that
it was read as 3 string type data as follows.

AEBC, DEF
GHI JEKLMNO
POR

SR T (o oo RE R R

Displays a currently stored program list.

[J FORMAT
LIST [starting line number] [—] [end line number]

Starting line number Integers from O to 65529,
Smallest line number.

End line number Integers from O to 65529,
Largest line number.

) FUNCTION AND UTILIZATION

Press [’sj'g?ﬂ to temporarily stop the screen display. Press [STOP| again to resume it again.
Press and [STOP] to suspend it.
EXECUTION EXAMPLE

L I 'E-T ——Displays all lines.
L I ST 4U Displays line 40.
LIST 28-48 ————Displays lines from line 20 to line 40
LIST -58 Displays lines from the starting line to line 50.
L I E- T :@- Displays lines from line 30 to the end line
The last line displayed by a LIST statement or
L I ‘E.T e s a line with execution interrupted by an error is
displayed

-101—

B LLIST (line printer list out) IIEGEGEGE

Prints a currently stored program list with a printer.

0 FORMAT
LLIST [Starting line number] [~] [end line number]

Starting line number | Cond.| Integers from O to 65529.

Omit Smallest line number,

End line number Cond.| Integers from 0 to 65529.
Omit | Largest line number.

0 FUNCTION AND UTILIZATION

Specification is the same as that for a LIST statement. A list is not displayed on the screen
during the execution of an LLIST statement.

e |f an LLIST statement is executed when a printer is not connected or when a printer is nat
operational, the computer stops without accepting keyboard input. If this occurs, input is
accepted by pressing the [CTRL] and [STOP)] key at the same time.

SRR 000 oad) R R S

Loads a BASIC program file into memaory from a specified device.

J FORMAT
LOAD ““device name [file name] **
Device name CAS: . .. Cassette tape.
File name String within 6 characters, If 7 or more characters are

specified, the 7th character and after are ignored.
Omit Loads the file found first.

[J FUNCTION AND UTILIZATION

When CAS: is specified as a device name, a program saved by an ASCI| format on a cassette
tape by SAVE “CAS: file name" is loaded.

EXECUTION EXAMPLE

LOAD "CAS:FROG:S"

-t de

—-102—

B L OCATE (locate) I

Moves the cursor to a specified location

[J FORMAT
LOCATE [X-coordinate], [Y-coordinate], [cursor switch]

X<coordinate [Cf,md‘ Numeric constants, variables, array variables, their expres-
sions from O to 39

[Omit | ©

Y-coordinate Cond,l Numeric constants, variables, array variables, their expres-
___ sions from O to 24.
[Omit] 0
Cursor switch]Cm\d. 0 . .. Cursor is not displayed.
—__1...Cursor isdisplayed.
F()mit J 1

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE
18 CLS
28 LOCATE 12,18
I8 PRINT "

”_’—’—/—f—\
(0, 0} 12

LOG (natural logarithm)

Gives the value of a natural logarithm (Log e).

[J FORMAT
LOG(X)
X LCopd] Numeric constants, variables, array variables, their expres-
sions larger than 0.
Given value Numeric type.

—103—-

[0 FUNCTION AND UTILIZATION
The LOG function gives the value of a natural logarithm in which the base is e
(2.7182818284588).

e The value of a logarithm Logab (b > 0), in which a is the base that is a positive numeral
a 1), can be obtained by LOG(b)/LOG(a).

EXECUTION EXAMPLE

FRINT LOGC1@)
2,382585092994

LPOS (line printer position) I NN

Gives the print head location in the printer buffer

[0 FORMAT
LPOS(X)
X An arbitrary numeral (dummy argument).
Given value: Integer type.

00 FUNCTION AND UTILIZATION
Gives the location of a character currently being printed out to the printer in the line printer
buffer memory. (Start=0)

B LPRINT (line print) I

Outputs the value of an expression to the printer

O FORMAT
LPRINT [expression] [separater] [expression] [separater] [expression}-
Expression Numeric and string constants, variables, array variables,

their expressions

Line feeds

Separater ,or;
[J FUNCTION AND UTILIZATION

An LPRINT statement outputs data to a printer while a PRINT statement outputs data to the
screen. See PRINT for details.

B LPRINT USING (line print using) [N

Outputs data to a printer in a specified format.

O FORMAT
LPRINT USING format symbol; expression [expression]
Expression String and numeric constants, variables, array variables,

their expressions.

=104~

[0 FUNCTION AND UTILIZATION

LPRINT USING outputs data to a printer in a specified format while PRINT USING outputs
data to the screen in a specified format. See PRINT USING for details such as those for
format symbols.

B MAXFILES (maxfiles) I

Declares the number of files that can be simultaneously opened in one program

[J FORMAT
MAXFILES = expression
Expression Numeric type constants, variables, array variables, their

expressions from O to 15.

[J FUNCTION AND UTILIZATION

Declares the number of files that can be simultaneously opened in one program. Opening
files simultaneously means to open a file and open another file before closing the former.

EXECUTION EXAMPLE
18 MAXFILES=3
28 OPEN "GRP:"FOR OUTPUT RS #1
38 OREN "CRT:"FOR OQOUTPUT AS #2
48 OPEN "LPT1"FOR OUTPUT RS #3

1868 CLOSE

Since 3 was selected as the number of files that can be opened in line 10, 3 files can be
opened in line 20 and after

When the number of files is not specified by a MAXFILES = statement, only one file can be
opened at one time.

e |f a large value is unnecessarily declared, the user area becomes smaller.

BN VERGE (merge) I

Loads a program saved by an ASCI| format, and merges it with a program in
memory

[0 FORMAT

MERGE “‘device name [file name] "’

Device name CAS: . . . Cassette tape.

File name Cond.| String within 6 characters. If 7 or more characters are
specified, the 7th character and after are ignored.

Merges the first file found.

—-105—-

[J FUNCTION AND UTILIZATION

Only CAS: can be specified as a device name. Loads a program saved on cassette tape in an
ASCII format by a SAVE statement. The existing program in memory, maintained as it is, is
merged with the program loaded by a MERGE statement.

® |f the line numbers of the program loaded by a MERGE statement are the same as that ot
an existing program in memory, the line numbers of the program newly loaded by a
ME RGE statement are maintained.

EXECUTION EXAMPLE
MERGE "CAS:PROG3"

MID$ (middle dollar) [N

Fetches and gives a part of character data.

[J FORMAT
MIDS(X$, M [, N]
X$ [Condv String type constants, variables, array variables, their
expressions.
M Numeric type constants variables, array variables, their

expressions from 1 to 255.

N Cond.| Numeric constants, variables, array variables, their expres-
sions from 1 to 255.

Gives all characters after the Mth character

Given value: String type.
[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT MID$C"JAPAMUKFREANCE" 6,22
114

PRINT MID$(" JAPANUKFRANCE" 6, 2.6
UE

value, figures below
the decimal point are

} If N is not an integer
omitted.

PRINT MID$<"JAPAHUK",E, 4)}_ ,I\;“f: cch:;:cl:::‘ do not exist after the

all characters after
UK the Mth character are given.

PRINT MID$C"JAPAMUK",12,5)

When the value of M is larger
— than the length of X$ or when

PRINT NID$ ¢ "JFIF‘RHUK" .- a\‘. N is 0, a null string is given.

—106—

B VID$ = Y$ (middle dollar) I

Replaces a part of a character string with another character string.

[J FORMAT
MIDS$(XS$, M[, N]) = Y$
X$,Y$ C()r_wd.l String type constants, variables, array variables, their
expressions.
M Numeric type constants, variables, array variables, their
g expressions from 1 to 255,
N Cond.| Numeric type constants, variables, array variables, their

expressions from 1 to 255,
Omit Mth character and after in X$ are replaced by Y$.

0 FUNCTION AND UTILIZATION

Replaces the Mth character and after from the left in the X$ character string with the char-
acters from the beginning to the Nth character in Y$. However, the length of X$ is not
changed after execution

EXECUTION EXAMPLE

18 K$="RAECDEFG"
28 Y$="QRSTUUI
38 MID$CKS, 4,
4@ PRINT K¢
FUHN

RECCRFG

B VOTOR (motor) I LV

Turns the motor of the cassette tape recorder on and off.

[J FORMAT

MOTOR [{ggF}]

[J FUNCTION AND UTILIZATION
Connect the computer TAPE terminal to the remote control terminal of a cassette tape
recorder and place the recorder in a playback or record mode. Tape operation starts with
MOTOR ON and stops with MOTOR OFF
When only MOTOR is executed, if it is ON, It is switched to OFF, and if it is OFF, it is
switched to ON.

-107-

RN W (ne) RRERTRE AT TR R

Erases a BASIC program in memory and clears variables.

O FORMAT
NEW
[0 FUNCTION AND UTILIZATION

NEW is executed before entering a new program to erase all previous programs and enter a

command wait state.

eWhen a machine language program exists in memory, it is maintained even if NEW is ex-
ecuted.

OCT$ (octonary dollar) G

Gives an octal expression of numeric data as string type data.

[J FORMAT
OCTS$(X)

X Cond.] Numeric type constants, variables, array variables, their
expressions from —32768 to 65535. If it is a negative

numeral, it is the same as a value in which the value is
added to 65536

Given value: String type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT OCT$(18@)

144
PRINT OCT$(65536-32768)
106060

I ON ERROR GOTO (on error go to) |G

When an error occurs, execution is transferred to a specified line number

[0 FORMAT
ON ERROR GOTO line number
Line number Cond.] Integers from O to 65529.

[0 FUNCTION AND UTILIZATION
Used to prevent an execution interruption caused by an error that occured during program
execution. When an error occurs after ON ERROR GOTO is declared, execution is trans-
ferred to a specified line number. (Also, when an error results from a direct command, ex-
ecution is transferred to a specified line number.)

-108—-

EXECUTION EXAMPLE
18 ON ERROR GOTO '188

28 INPUT R

38 B=SQR{A) END statement that distinguishes a main
48 PRINT "SQR(AY=":B r routine from the error processing routine.
58 END

188 IF ERR=5 AMD ERL=38 THEN PRIN ___Error processing
T "Input a pPositive number.” routine.

118 RESUME 26

To invalidate an ON ERROR GOTO statement
Execute ON ERROR GOTO 0.

I ON-GOSUB (on-go to subroutine) [N

Branches program execution to subroutines that start with specified line numbers
depending on the value of the expression.

[J FORMAT
ON expression GOSUB line number [, line number] . ..
Expression Numeric type variables, array variables, their expressions
from O to 2565.
Line number Integers from 0 to 65529,

) FUNCTION AND UTILIZATION
188 ON X GOSUE 584,688,760

In this program, if the value of X is 1, execution branches to a subroutine from line number
500, and if the value of X is 2, execution branches to a subroutine from line 600, and if it is
3, execution branches to a subroutine from line 700.

A return to the main program is accomplished by a RETURN statement.

Expression value and execution result

When the expression value is not an integer . . . Figures below the decimal point are omitted.
When the expression value is O or larger than the number of the line number specified by
GOSUB . .. Transferred to a statement next to the ON — GOSUB statement.

When the expression value is negative or larger than 255 . . . An error occurs.

-109—-

I ON-GOTO (on-go to) NG

Branches program execution to line numbers that depend on the value of an
expression.

[J FORMAT
ON expression GOTO line number [, line number] . ..
Expression Cond.]| Numeric type variables, array variables, their expressions.
Line number [Cond.] Integers from O to 65529.

[J FUNCTION AND UTILIZATION
188 ON ¥ GOTO 128,138,180

In this program, if the value of X is 1, it branches to line 120, if it is 2, it branches to line 130,
and if it is 3, it branches to line 180

Expression value and execution result

When the expression value is not an integer . . . Figures below the decimal point are omitted.
When expression value is O or larger than the number of line numbers specified by GOTO . . .
Transferred to a statement next to the ON — GOTO statement.

When the expression value is negative or larger than 255 . . . An error occurs.

B oN INTERVAL cosus I
(on interval go to subroutine)

Declares a subroutine to which program branches when an interrupt is caused by
a built-in timer.

0 FORMAT
ON INTERVAL = Interval time GOSUB line number
Interval time Numeric type constants, variables, array variables, their
expressions from —-32768 to 65535 and other than 0
Line number Cond.| Integers from O to 65529.

[J FUNCTION AND UTILIZATION
A statement that declares a subroutine starting line number to which program branches when
an interrupt is caused by a built-in timer with a certain interval. The interrupt spacing is about
(interval time x 1/50) second. In other words, when the interval time is specified as 50, an
interrupt occurs approximately every (See page 50 for Interrupts)

-110-

EXECUTION EXAMPLE

18 ON INTERUAL=58 GOSUE 184
28 INTERVAL ON
38 SCREEN 2,1

48 SPRITE$C1)=CHR$(ZH18)+CHR$(&H3 C)+CHRS

(&HEE)+CHR$CEHDB)+CHR$CEHE7?) +CHR$ (ZHTE) +
CHR$CEHZ24)+CHR$(EH42)

28 GOTO 56

188 X=INTC(RNDC1#2563Y=INTCRNDC1 %132
118 C=INT{RNDC1)%14)+2

1206 PUT SPRITE 1,(X>Y¥),Cs1

138 RETUEN 58

In this program, an interrupt occurs with about 1 second spacing provided by lines 10 and 20,
and each time interrupt occurs, the execution is transferred to a subroutine from line 100,

After a UFO shaped sprite pattern is displayed by this subroutine, a return to line 50 occurs
caused by RETURN 50,

e When the interval time is set to a negative numeral, it is equal to a numeral in which the
specified interval time is added to 65536.

I ON KEY GosuB I

(on key go to subroutine)

Declares a subroutine to which program branches when an interrupt is applied by
a function key.

[0 FORMAT
ON KEY GOSUB line number [, line number] . ..
Line number Integers from O to 65529.

[J FUNCTION AND UTILIZATION

A statement that declares the starting line number of a subroutine to which program branches
when an interrupt is applied by a function key. Up to 5 line numbers can be specified after
GOSUB by punctuating them to sequentially correspond to[F1], [F2], etc.

EXECUTION EXAMPLE

18 ON KEY GOSUE 1086,Z2688
20 KEYC1)> ON:KEYC3)> ON

When is pressed, execution is transferred to a subroutine from line 1000, and when[F3

is pressed, it is transferred to the subroutine from line 2000 based on the above two lines of
the program

A return from the subroutine is made by a RETURN statement (See page 50 for Interrupts)

-111-

-ON SPRITE GOSUB (on sprite go to subroutine)-

Declares a subroutine to which program branches when an interrupt occurs due to
a sprite overlap.

0 FORMAT
ON SPRITE GOSUB line number

Line number Integers from O to 65529,
[J FUNCTION AND UTILIZATION

A statement that declares the starting line number of a subroutine to which program branches
when an interrupt occurs due to an overlap of sprite patterns.

EXECUTION EXAMPLE
18 ON SPRITE GOSUE 1088
28 SPRITE ON

When a sprite overlap occur:, execution is transferred to a subroutine from line 1000 based on
the above two lines. A return is made from a subroutine by a RETURN statement,

_ ON STOP GOSUB (on stop go to subroutine)-

Declares a subroutine to which program branches when a &TRLJ +[STOP] key
interrupt occurs.

[J FORMAT
ON STOP GOSUB line number

Line number Integers from O to 65529
[J FUNCTION AND UTILIZATION

A staternent that declares the starting line number of a subroutine to which program branches

when a [CTRL] +[STOP] key interrupt occurs.
EXECUTION EXAMPLE
18 0N STOP GOSUE 1886
28 STOP OM

Execution_is transferred to a subroutine from line 1000 by simultaneously pressingICTBL_
and [STOP| based on the above two lines. A return from the subroutine is made by a RE-
TURN statement. (See page 50 Interrupts.)

Precautions
It is necessary for a program to be terminated somehow when a subroutine is executed. The

only way to terminate the following program is to press the [B,ES_E,ﬂ button.
16 ON STOP GOSUE 188
20 STOP ON
38 PRINT "MAIN ROUTIHE"
48 GOTO 48
188 PRINT "CTRL+STOP EXECUTED"
118 RETURN 38

-112-

I ON STRIG GOSUB (20 shick tiager)

Declares a subroutine to which program branches when an interrupt is caused by
the space bar or the trigger button of a joy stick.

[0 FORMAT
ON STRIG GOSUB line number [, line number] ...
Line number Integers from O to 65529.

[J FUNCTION AND UTILIZATION
A statement that declares the starting line number of a subroutine to which program branches
when an interrupt occurs by the pressing of the space bar or joy stick trigger button. Up to
five line numbers can be specified after GOSUB by punctuating them with commas.

On STRIG GOSUB line No. 1 ,lineNo. 2 ,line No. 3, lineNo. 4 ,lineNo. 5.

LineNo. 1 Branches when the space bar is pressed.
LIng N 2 vt Joy stick 1, Trigger button 1.
LINBNO.:3 o ocvvie e Joy stick 2, Trigger button 1.
LineNo. 4 Joy stick 1, Trigger button 2.
LinaNo.B o soo Joy stick 2, Trigger button 2.

EXECUTION EXAMPLE

16 ON STRIG GOSUB 18@6,2086,3000

20 STRIGCA) ON:STRIG(1) OH:STRIGCZ) ON
When the space bar is pressed, execution is transferred to a subroutine from line 1000, and
when trigger button 1 of joystick 1 is pressed, execution is transferred to a subroutine from

line 2000. Also, when trigger button 1 of joystick 2 is pressed, execution is transferred to a

subroutine from line 3000.) :
Return from a subroutine is accomplished with a RETURN statement. (See page 50 for Inter-

rupts.)

R Cvr N (opeo) | BIREBGIETR RRE

Opens a file and specifies a mode

[J FORMAT
OPEN “device name [file name]” FOR mode AS [#] file number.

Device name Cond.] CAS: Cassette tape
CRT:. ... Text mode screen
GRP: Graphic mode screen
LPT: Printer
File name String within 6 characters. If 7 or more characters are
specified, the 7th character and after are ignored
Null-string
Mode Cond.] OUTPUT... Write.
INPUT . . . Read.
File number |Cond. 1 £ file number < numeral specified by MAXFILES =
) statement

[J] FUNCTION AND UTILIZATION
An OPEN statement opens a file with a specified file number to perform file |/O for a speci-
fied device. Since CRT:, GRP:,and LPT: of the devices that can be specified are dedicated to
write-in, only OUTPUT can be specified as a mode. On the other hand, since write-in and
read-out can be performed with CAS:, OUTPUT and INPUT can be specified,

—-113-

e When write-in is performed with a file name, read-out can be performed by specifying the
same file name.

e The file number should be equal to or less than the numeral that indicates the maximum
number of files which can be opened, as specified by MAXFILES = statement,

EXECUTION EXAMPLE
18 SCREEN 2
28 OPEN "GRP:" FOR OUTPUT RS #1
38 PSET (1268,98)
48 PRINT #1.,"RAEBC"
58 GOTO SA4

This is a program that outputs characters on the screen in the graphic mode (SCREEN 2)
(See page 42 for File Processing)

TR O o RN TR

Outputs 1 byte data to a specified 1/0O port.

[J FORMAT
OUT port number, expression
Port number, fCTﬁvl’i' Numeric type constants, variables, array variables, their
expression — expressions from 0 to 255

[J FUNCTION AND UTILIZATION

This is a command that outputs data directly to an 1/0 port. See page 164 for 1/O port assign-
ments

v R S TR

Provides the status of the touch pad

[0 FORMAT
PADI(N))
N IC\md] Integers from O to 7
Given value Numeric type

[J FUNCTION AND UTILIZATION
Provides various data from a touch pad by an N value. When N is 0, 1, 2, or 3, the status of
the touch pad connected to controller terminal A is provided. When is 4, 5, 6, or 7, the status
of the touch pad connected to controller terminal B is given

Value of N Semantics for a given value
0or4 0: Not touched
—1: Is touched
lorb X coordinate of a touched location,
2o0r6 Y coordinate of a touched location.
3or7 0: Switch is not pressed.
B —1: Switch is pressed

-114-

SRS P AN (i) RN

Colors an area surrounded by a border line.

[J FORMAT
PAINT[STEP] (X-coordinate, Y -coordinate), [display color], [border line color]
X-<coordinate @(ﬂ Numeric type constant, variables, array variables, their
expressions from 0 to 255,
Y -coordinate Concﬂ Numeric type constants, variables, array variables, their

expressions from O to 191,
Display color, border Integers from O to 15.

line color
Current foreground color
[J FUNCTION AND UTILIZATION

Colors an area with a display color inside a border line with a specified color including the
location specified by X, Y coordinates.

e |f the border line is not completely closed, the entire screen is colored.

e In the SCREEN 2 (high resolution) mode, if the display color is not the same as the border
line color, the entire screen is colored.

® See page 29 for STEP specifications.
EXECUTION EXAMPLE

18
26

36 In SCREEN 2, the same color
2 — must be specified for the display
4@ color and border line color.

em

ok

16

e

:G | _In SCREEN 3, different colors
A can be specified for the display
4 (% color and border line color

4

o

o =
. _(70,70)
If a

}— Dark
Wea' yellow
i Medium red

-115-

POL (paddic) S e e, f A

Gives the value from a paddle.

[0 FORMAT PDL(N)
PDL(N)
N Qpnd.l Integers from 1 to 12.
Given value Numeric type from O to 256.

[J FUNCTION AND UTILIZATION

Gives the value obtained from a paddle as numeric type data. When N is an odd number,
data is provided from the paddle connected to controller terminal A, and when N is an even
number, data is provided from the paddle connected to controller terminal B

PEEK (peek) I

Gives the content of a specified memory address.

[J FORMAT
PEEK (address)
A aric e C iables, array variables, their
Address Cond.] Numeric type constants, variables, 5
L 4 expressions from —32768 to 65535. In the case of nega-
tive numerals, their value is the same as if it is added to
65536
Given value Numeric type decimal format.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

Assigns the content of memory address 50000 to
variable M

B 2 (ploy) NS S TR

Generates a sound according to a subcommand specification

[J FORMAT
PLAY subcommand

Subcommand Cund] Character string (constant) inside * ', or a string type
variable which is assigned a character string. Capitals or
small characters.

—-116—

Subcommands

Command

Condition

Semantics

Tn
(tempo)

Integers of
32< n< 255

Specifies the speed of music. The value of n indicates the
counting of a quarter note for one minute. The initial
setting is T120.

On
loctave)

Integers of
1<n<s8

Specifies one of 8 octaves. When 04 is specified, music
within the range shown below is performed.

===

The octave becomes lower as the value of n becomes
smaller and becomes higher as the value of n becomes
larger.

The initial value is O4.

Sn
(shape)

08ng15

Specifies the volume variation pattern from among the
following patterns.

$=0,1,2,3,9
magnitude|
I\

$=4,5,6,7,15

The initial setting is S1.

The generation of many different sounds is determined by
a combination of the S subcommand and the M sub-
command.

Mn
(modulation)

1< n< 65535

Determines the cycle of the pattern specified by the S
subcommand. The cycle becomes long as the value of n
is increased.

The initial setting is M255.

-117-

Ln 1€<n<64 Indicates the length of sound.
(length)
L1 L2 L4 L8 L16 L32 L64
S I T I
Initial setting is L4,
Nn 0<n<96 | Specifies a musical note.
(note)
N36 is O4CE NO is a rest.
The chromatic scale increases as n Is Increased by 1.
A-G 1€<n<64 Specifies the musical note within a specified octave.
(An — Gn
C#D# FHGH AR
ctpt Frgtat
D"E” G A B
CDEFGAB
lor +) and — are used for a semitone.
The sound length can be specified by n. (C4 is the same as
L4C.) When omitted, it is the length specified by Ln.
n 1< n<64 Specifies a rest,
(rest)
R1 R2 R4 R8 R16 R32 R64
° Express a dot.
The length is extended to 1.5 times by placing it by one.
C4.=J. R8.= Y.
vn 0<ng15 Specifies the volume. The volume increases as n becomes
(volume) larger. The inital setting is VB.

-118-

CJ FUNCTION AND UTILIZATION
FLAY "T8B03L4CDEFG2.RABO4CDCZ."

Based on the above statement, the sound is played according to the following notes.

pd-

cansilanns

To express a subcommand with a variable

M$="T2A03L4CDEFG2.RABO4CDC2, "
FLAY M$

A subcommand is assigned to a string type variable, M$, once, then M$ is specified in a
PLAY statement as a subcommand.

To express a part of a subcommand with a variable (X variable;)

18 M$="CDEFG2.R"
28 PLAY "D4L4KM$;GAGRGZ.R"
38 PLAY "XM$;RABOSCDCZ2."

When a subcommand assigned to a string type variable is used in ** * of a play statement, add
X before and ; after. In the example above, a subcommand assigned to M$ is used in two
PLAY statements.

To express n in a subcommand with a variable (=variable;)

n which is specified in each subcommand can be a constant or a variable in a PLAY statement,
When expressed as a variable, = is added before and ; after.

18 FOR I=1 TO 8
28 PLAY "0O=I;CEG"
38 MEXRT 1

This program plays 8 octave music from PLAY “"O1CEG" to PLAY "“OBCEG".

Performance of chords
Up to 3 commands can be simultaneously played such as PLAY A$, B$, C$

18 Ag=" 04500360 452R4 " This program plays the following notes.

28 B$="04EFDGIR4" .
30 C$="04GABOSCIRE" % |
40 PLAY A$.B$,0$ ==

-119-

PEAY {phy) R e

Checks if music is being played or not.

[0 FORMAT
PLAY(N)
N Integers from O to 3.
Given value: Numeric type.

[J FUNCTION AND UTILIZATION
Three different sounds can be simultaneously played in a PLAY statement.
In the case of PLAY AS$, BS, C$;
the sound of subcommand A$ is output from Channel 1, the sound of B$ is output from
Channel 2, and the sound of C$ is output from Channel 3.
The PLAY function checks if data is in the music data buffer of Channel 1 when N =1, the
same for Channel 2 when N = 2, and the same for Channel 3 when N = 3, When data is in the
buffer, —1 is given, and when there is no data, O is given. When N =0, the OR (logical sum) of
the buffer status (0 or 1) of all channels is given. In other words, if ane of them is =1, =1 is
given.

IS POINT (point) I

Gives the color code of a point at a specified location in the graphics screen.

[0 FORMAT
POINT(X, Y)

Xy Numeric type constants, variables, array variables, their
expressions from —32767 to 32767.

Given value: Numeric type (=1 is given when a specified location is
outside the display area.)

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 SCREEN 3-

26 FOR I=1 TO 256

38 K=INTC(RHDC1>%*253)

48 Y=INTC(RNDC1)%191)

90 PSET (¥X.Y).1

6@ NEXT I

7@ FOR Y=@ TO 191 STEP 4
80 FOR ¥=@ TO 255 STEP 4
98 C=POINTCX,Y)

1880 IF C=4 THEN PSET (X,Y),13
118 NEXT ¥,V

126 GOTO 128

The color code for the location (X, Y) is assigned to variable C in line 90, and changed into
white in line 100 if C is 4 (dark blue).

-120-

R P OXE (poko) MERESETTERIORE SRR

Writes data to a specified memory address.

[J FORMAT
POKE address, expression

Address Cond.] Numeric type constants, variables, array variables, their
expressions from —32768 to 65535.

E xpression Cond.| Numeric type constants, variables, array variables, their
expressions from 0 to 255.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FOKE S8888, 255 Writes 255 as data to memory 50000.

FOKE &HDBAS®,SHAS - Writes A8 as data to memory address DOOOw .

IEZEXE POS (position) I

Gives the X-coordinate of the cursor position.

] FORMAT
POS(X)
X An arbitray numeric value (dummy argument)
Given value: Integer type

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 THFUT A%
28 PRINT A$:.X=POSCX)
38 IF ®»=5 THEW CL%
4@ PRINT:GOTO 18
The value of the cursor X-coordinate is given to the variable X based on line 20, X=POS(X).

As a result, the screen is cleared by inputting a string with 5 characters or more than 5 char-
acters for A$.

-121-

B PRESET (point reset) NG

Marks or erases a dot on the screen in the graphic mode.

(=]

FORMAT
PRESETI[STEP] (X-coordinate, Y-coordinate) [, color]
X, Y-coordinate Numeric type constants, variables, array variables, their
expressions from —32768 to 32767
Color Cond.| Integers from O to 15.
Current background color.
FUNCTION AND UTILIZATION

When executed with color omitted, a dot is marked with the same color as the background
color. As a result, if something is drawn at a specified location with a color other than the
background color, it looks as if a point at the same location was only erased.

® When a color is specified, it functions exactly the same as when a color is specified by PSET.
® See page 29 for STEP specifications.
® See PSET for a program example.

VOO - (00 BRI g

Displays numeric data or character data on the text screen.

a

P

FORMAT

PRINT expression [separator] [expression] [separator] [expression] ...

Expression Numeric type or string type constants, variables, array
variables, their expressions.

Separator Comma (,) or semicolon (;).

FUNCTION AND UTILIZATION

Expression (data) writing method

Numeric type constants, numeric type and string type variables are written as they are, and
string type constants are written inside quotation marks (**)

Separator function

When data is punctuated with a comma (,), spaces by a 14 digit tab function is inserted
between the data, and when it is punctuated with a semicolon (;), it is followed by the next
data.

If a separator is not written at the end, line feed is performed after the data display. If a
separator is written at the end, data of the next PRINT statement continues on the same
line without a line feed.

Numeric data and signs

In regard to signs that indicate positive or negative, '+’ is omitted while “—*' is displayed as it
is. (If a **;" separator is used when positive numeric data is displayed, two spaces are inserted

between data to provide space for a sign.

-122-

Omitted format
The same result can be obtained by inputting “?** instead of PRINT.

EXECUTION EXAMPLE

16 A$="RAEC":E$="DEF"
28 PRINT R$3E$

38 PRINT R$.B%

48 PRINT

38 PRINT "MSK"

&8 PRINT +58,-5@

/8 ?"PERSONAL COMPUTER"

RUN
AECDEF Result of line 20.
ABLC D E F————— Result of line 30.
Result of line 40.
MSH Result of line 50.
b1 -50 Result of line 60.

PERSONAL COMPUTER

Result of line 70.

-123-

B PRINT USING (print using) N

Outputs data to the screen in a specified format.

00 FORMAT

PRINT USING format symbol; expression [expression] ...

E xpression

String type and numeric type constants, variables, array
variables, their expressions.

[J FUNCTION AND UTILIZATION
The value of an expression is displayed in a format specified by a format symbol.
Format symbols for character type data

Symbol E xpression format and E xecution example
7 i Outputs the first 1 character.
FRINT USING "'"3"United","Hation"
UN
NN Outputs n+ 2 characters. When data is smaller than n + 2 characters,
- inserts spaces for the residual characters.
TPEE L PRINT USING "\ \";"ABCDEF","GHI"
» " JKLMN"
ABCDGHI JELM
& Qutputs all character strings.
18 A$="North":E$="South"
28 PRINT USING "& Pole "3A$.E$
RUH
North Pole South Fole

—-124-

Format symbols for numeric type data

Symbol Expression format and Execution example
e T3 Writes # by the number of numeral digits to be displayed. Decimal

point is *'."",
PRINT USING "POINT:###.#"3123.4
POINT:123.4

eWhen the number of integer digits is less than the specified # number,
data is displayed with right justification, and if it is more, “%"’ is added
before the data.
18 FRINT USING "####":12
28 PRINT USING “####"312345
RUN

12

%12345

e When the number of digits in a fraction of numeric data is smaller than
the specified # number, "0 is added, and when it is larger, it is
rounded to the nearest whole number.
19 PRINT USING "##.##":25.3
28 PRINT USING "##.##"325,345
RUN
2958
25.35

The “+" sign of numeric data is ignored and the "=’ sign is counted as

one digit.
18 PRINT USING "###":+123
28 PRINT USING "###"3-123
RUHN
125
=123

g “+" is added if it is a positive numeral, and *'—" is added if it is a negative

numeral before or after the numeric data.

18 PRINT USING "+####"3123,-123
28 PRINT USING "####+"3123,-123
RUN

$125 ~123%

123+ 123-

*—'" is added after negative numeric data.

FRINT USING "###-"3123,-123
123 1235~

—125—

1 The space before numeric data is filled with “*"'. One “%* in the format
expresses one digit.
18 PRINT USING "#+H#####"3123
280 PRINT USING "#xHH#H##8"3-123
RUN
kkkk=-123
e Adds "“£" before numeric data. One “£" in the format is couted as one
digit.
18 PRINT USING "££8#4"31234
280 PRINT USING “"+££###"3-1234
RUN
£1274
-£1234
T T Adds ““£'" just before the numeric data, and space before that is filled
with v
PRINT USING "++£H##.##"312,34
4k £12,34
e When this is specified somewhere before the decimal point, it is dis-
’ played by the insertion of commas between each 3 digits to the left
of the decimal point.
FEINT USTHGE “# HR##84.#8"312345,67
12,345.67
“AAAN' Displays numéric data by floating point type.

“AAAAN" corresponds to the digits for exponent part.

PRINT USING "##.##~~"""3224,56
2.35E+02

-126—

B PRINT# (print number) [N

Writes data to a file opened by an OPEN statement.

[J FORMAT
PRINT # file number, expression
File number lCond, 1 £ file number < numeral specified by MAXFILES=
statement
Expression [Qpnd String type and numeric type constants, variables, array

variables, their expressions.
[FUNCTION AND UTILIZATION
Outputs data to a file opened by an OPEN statement,
EXECUTION EXAMPLE

18 OPEN "CRS:DATAR" FOR OUTPUT RS #1 ——Opemsafie
8 FOR I=0 TO 4

(=
MY

EEARD A$
FEINT #1.A$:","; Writes data to a file
HEXT 1
CLOSE #1
CATH TOEND, LOHDOM, FARTS PEEING
» HEW YORE
This is a program which sequentially writes data written in line 70 to cassette tape with a file

name “DATA"
(See page 42 for File Processing.)

L
Y

"
|

e QLR | I R I
Dol

s
DOl

B PRINT# USING (print number using) Il

Writes data to a file opened by an OPEN statement in a specified format.

[J FORMAT
PRINT 3 file number USING format symbol; expression
File number |C<)@ 1 < file number < numeral specified by MAXFILES=
statement
Expression |§<»r@ String type and numeric type constants, variables, array

variables, their expressions.

[J] FUNCTION AND UTILIZATION
This format can be specified when data is output to a file. See PRINT USING for a format
symbol.

-127-

R PSET (point set) I

Marks a dot on a graphic mode screen.

[0 FORMAT
PSET[STEP] (X-coordinate, Y-coordinate) [, color]
X, Y coordinates IC‘,’,DFQ Numeric type constants, variables, array variables, their
— expressions from —32768 to 32767.
Color [Cr)nd_] Integers from 0 to 15.

I:QLT‘LIL Current foreground color,

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

SCREEN 2

—
=

- P-144

28 FOR X=@ TO 255

38 PSET(N+1, 1080)——— Drawsadot.

48 PRESET (i, 188)—— Erases the dot drawn before
o8 MEAT K

See page 29 for STEP specifications.

B PUT SPRITE (put sprite) I

Displays a specified sprite pattern at an arbitray location on a specified sprite
plane.

[0 FORMAT

PUT SPIRITE sprite plane number [[STEP] (X-coordinate, Y-coordinate)], [color], [sprite
number

Sprite plane number ICnnd] Integers from 0 to 31
X-coordinate {CHIMJ Numeric type constants, variables, array variables, their
expressions from —32 to 255.

Y coordinate [Cvmd] Numeric type constants, variables, array variables, their
expressions from —32 to 191
STEP (X-coordinate, Y-coordinate)

f()mu}] Previous location specified by the last graphic instruction

Color [an(ﬂ Integers from O to 15.
[F).rv'lii] Current foreground color.

Sprite number [Cond] For 8 x 8 dots, it is from 0 to 255.
For 16 x 16 dots, it is from O to 63.
[()nnl J Same as the sprite plane number.

—-128-

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 SCREEN 2 ;

20 SFRITE$C1)=CHR$C(EH18)+CHR$ (&H3

CO+CHR$CEHEE) +CHR$ (EHDEB) +CHR$ (&HE

TI+CHR$C(EHTPE)+CHR$(EHZ24) +CHR$ (&H4 20

30 ®=@:Y¥=8:DX=1:DY=1

4@ PUT SPRITE @8, (¥,Y),5,1

98 X=xR+D¥iY=Y+DY

60 IF X>25900FR #X<B THEN DX=-DX

7O IF ¥>190 OR ¥<@ THEHW DY=-DV¥

28 GOTO 4@
A UFO shape is defined in line 20 as a sprite pattern assigned to sprite number 1. The sprite
pattern is displayed on the screen by a PUT SPRITE statement in line 40. The sprite plane
number is 0. Since the display color is omitted, it is the same as the foreground color that

was set. The UFO pattern appears to fly around the screen because the X, Y values that
specify the display location are changed.

— —

L IRERENEREE o et e s

Reads data specified in a data statement.

] FORMAT
READ variable [, variable] [, variable] . ..
Variable ,Cg)vr_ld. Numeric type or string type.

[FUNCTION AND UTILIZATION

Reads data in a sequence starting from the first data in the DATA statement that has the
smallest number in a program, and assigns them sequentially to variables in the READ state-
ment.

e When a plural number of numeric type or string type variables are arranged in one READ
statement, they are punctuated with a comma (,).

® The variable type must be in accord with the corresponding data

16 RERD R EB.C,0$.E¥$
28 PRINT HA,EB.C.D%.E%$
1848 DATA S,168, 28, RABC, 2Y2

—-129-

e When a plural number of READ statements exist in a program, the 2nd READ statement
starts reading from data that is next to data read by a previous READ statement.

eWhen a RESTORE statement is executed, the READ statement readout exetuted next
returns to the smallest DATA statement after the line number specified by the RESTORE
statement.

EXECUTION EXAMPLE
18 RERD A,EB.C

28 RERAD D$.ES$

38 PRIMT RIBSCiD$SES

16 DATA 1@,26,38,ABC, DEF
FLHN

18 28 I8 REBCDEF

B - oo SRR R

Inserts a comment statement in a program.

0 FORMAT

REM comment statement

[0 FUNCTION AND UTILIZATION

A REM statement is used to insert a comment staternent so that a program list can be easily
read

EXECUTION EXAMPLE

v Yoef] A1 T Although a REM statement is displayed
1 ‘:1 RE IJ MUS I I:' Bl when a program is listed, it is skipped during
3 PLRY "TegL EGEC1L" program execution
16 *MUSIC A single quotation mark {') can be used in-
20 PLAY "TEBCEGEC1" stosdof REM.
18 PRINT "MS:E"iREM outrut ‘
28 FPRINT "PERSOHMAL COMPUTER"™ *0ut
Fut . |
Pl:'“ Although a colon (:) is required when
M= REM is added after another statement, it

F. E Ff :_:_; I:I H FIL ':: |:| M F. U T EE. can be omitted by using ** " "

—130-

B RENUM (renumber) I

Renumbers the lines of a program.

[0 FORMAT
RENUM [new starting line number] , [old starting line number], [incr t)
New starting line Cond.| Integers from O to 65529.
number [_C_)Tn_—] 10
Old starting line [EQnd Integers from O to 65529.
I [Omit] Smallest line number before execution.
Increment @r}d:] Integers from O to 656529,

[Omit] 10
[0 FUNCTION AND UTILIZATION

Used to renumber lines after a program correction

® The line number jumped to in a GOTO or GOSUB statement can be correctly renumbered
by executing a RENUM statement. However, If the specified line number jumped to in a
GOTO statement, etc. does not exist when RENUM is executed, the line number jumped
to ina GOTO statement is not changed and an error occurs.

EXECUTION EXAMPLE

F‘EH |_| M— - Renumbers all lines from line 10 with an increment of 10
=T) =4 Renumbers all lines to the line numbers beginning
REHWUM 188, ., 188 with line 100, having an increment of 100.
A=A RIS T ____Renumbers all lines to the line numbers beginning
F"EHU” 1 al% with line 100, having an increment of 10,
f - (A Renumbers the line 38 and after to (hﬁ_ line
RENUM 188,38, 26 numbers beginning with line 100, having an incre-
ment of 20
LIST — -Executes LIST

15 FOR I=8 TO 1@
28 H=A+1

23 PRIMT A

33 NEKT 1

Ok

REHLM - - Executes RENUM.
Ok

L1S) Executes LIST again.
18 FOR I=8 TO 18

28 A=A+1

38 PRINT A

48 NERT 1

-131-

I RESTORE (restore) I

Specifies a DATA statement read by a READ statement.

0 FORMAT
RESTORE [line number)
Line number Cond.| Integers from O to 65529.

Omit DATA statement with the smallest line number
[0 FUNCTION AND UTILIZATION

A RESTORE statement is used when the same data has to be read a plural number of times.
When a RESTORE statement is executed, the next READ statement starts reading data from

the DATA statement with the smallest |ine number after the line number specified by the
RESTORE statement.

EXECUTION EXAMPLE

18 READ R.B.C
28 RERD D.E,F
38 RESTORE 11@
48 RERD G,H.I
28 PRINT A:B:C:D:
188 DATA 18,28, 32a
116 DATA 4

run

18 24

A

5
2
=

on
o
(a8
)
oY

A

B RESUME (resume) I

Returns execution to a main program after execution of the error processing

routine
[0 FORMAT
(2 |
RESUME l line number‘
NEXT
Line number C(md,' Integers from 0 to 65529

Line where an error occured.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

=101 - Yt=3017 Returns to s statement where an-
RESUME & - RESLIME error occurred
RES IUME 1 Ay — ———Returns to line 100

(See the program example in ON ERROR GOTO.)
—-132—

RIGHTS (right dollar) I

Gives an arbitrary number of characters taken from the right of string data as
string data

[J FORMAT
RIGHTS(XS, N)
X$ {Cond.| String type constants, variables, array variables, their
expressions.
N Cond.| Numeric type constants, variables, array variables, their
expressions from 0 to 255.
Given value String type.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT RIGHT#<"I LOUE TOKYO",S5)
TOEYD

When N is not an
FRINT RIGHT$<"I LOVE TOENYO",S5.3 .,l}imeger value, figures

OEY D below the decimal point
TOKYD are omitted.

When N is 0, a null
string is given:

PRINT RIGHT$("I LOUE TOKYOQ", T“:L
|:| l

RND (random) I

Gives a random positive number less than 1 (including 0).

[J FORMAT
RND(X)
X [C«)nd: Numeric type constants, variables, array variables, their
expressions.
Given value Numeric type

[J FUNCTION AND UTILIZATION
When X is larger than 0
Random numbers are always generated in the same sequence.
18 FOR N=1 TO 1@
28 PRINT RNDi12
f MEXT H
LIN

N

13'_4!

—-133-

. 5952194399423
. 1BE5R628A5A158
.765976517722823
. S7756392935958
. 73474759503923
L18426812909758
L3ITETSITRORS223
. 94954151651558
LB3ITIIS56599423
L47041117641358

When X is negative
Generates a series that corresponds to the value of X, and after that generates random num-
bers with this series.

18 PRINT RHD(-1)
28 FOR H=1 TO 18
38 PRINT ENDC{H>
48 HEXT H
RN
L H4383220420221
CB9E24BE8 16692
< 21B69655852301
CIERTSITIEINGSAY
4777S124336521
C34EI14TEE4E36
L123711848816681
CBIVTVTITB174233
«331578EB175541
. 835389696666
CEIOBZE41326221
When X is 0
Gives the same value as that generated before,

18 PRINT RHDOLD

23 FRIMT EHDo 9

38 PRIHT EHDC-1)
4B FRIWT RHLOCEAD

fL

L59521943994623

—-134-

AR G U L) R R R

Executes a program from a specified line.

0 FORMAT
RUN [line number]
Line number Cond.[Integers from O to 65529.

Qmilj Executes from the starting line
[0 FUNCTION AND UTILIZATION

When RUN is executed, a program is executed after all variables are undefined (numeric
variables are set to O, and string variables are set to null strings). After program execution has
been terminated, a command wait status occurs.

® Press [»S*TOP to temporarily stop program execution. Execution is resumed by pressing it

again e
Press [CTRL| and LSTOﬂ to interrupt a program. In this case, it can be resumed by a CONT
command.

R O G IR R TR R

Saves a BASIC program on a specified device

[J FORMAT
SAVE “device name [file name]
Device name LEQ@ CAS: Cassette tape
CRT:. ... Text mode screen
GRP: Graphic mode screen
LPT: .« .. » Printer
File name [Conrd String within 6 characters. If 7 or more characters are

specified, the 7th character and after are ignored.

Omit Null string
[J FUNCTION AND UTILIZATION
When CAS: is specified as a device name, a BASIC program in memory is saved on cassette
tape in an ASCI| format,
EXECUTION EXAMPLE
SAUE"CAS: PROGZ"

® A program to be merged with a program in memory by a MERGE statement must be saved
with an ASCII format.

-135—-

I SCREEN (screen) NN

Sets the screen display mode, sprite size, key sound or no key sound, and the
cassette interface baud rate, and also selects the type of printer.

[0 FORMAT
SCREEN [mode], [sprite size], [key click switch], [baud rate], [printer type]
Mode 0,1,20r3.
Current mode.
Sprite size Cond.] 0,1,20r3.
Current size.
Key click switch 0 or integers from 1 to 255.
Current state.
Baud rate 10r2
Current baud rate.
Printer type Integers from 0 or 1 to 255.
Current printer type.
Modes
Specified value Mode
0 40 characters x 24 lines Text mode
1 32 characters x 24 lines Text mode
2 High resolution graphic mode
3 Multi-color mode
Sprite size
Specified value Size
0 8 x 8 dot unmagnified
1 8 x 8 dot magnified
2 16 x 16 dot unmagnified
3 16 x 16 dot magnified
Key click switch
Specified value Key depression sound
0 No
Other than 0. * Yes

*Range from 1 to 255.

Baud rate
Specified value Baud rate*
1 1200 baud
2 2400 baud

*Cassette interface baud rate.

—-136—

Printer type

Specified value Printer
0 MSX printer**
Other than 0* Non MSX printer***

* Range from 1 to 255.

** A printer compatible with MSX personal computers with graphic characters.
*** For non MSX printers, graphic characters are converted to spaces.

Initial value specification and omission

When a specification is omitted, the presently selected mode is maintained. The initial state

is as follows.
Mode .40 characters x 24 lines text mode
Sprite size : 8 x B dot unmagnified
Key click switch : Key click sound
Baud rate : 1200 baud
Printer type . MSX printer

EXECUTION EXAMPLE

18 SCREEMN B, 1—— 40 character x 24 line text mode, no key
click sound. (WIDTH 37,24)

18 SCREEN » s » 2———Baud rate is selected as 2400 baud.

18 SCREEN 23— High resolution graphic mode, Sprite is 16
~ x 16 dot magnified

i® SCREEN 2

26 FOR 1=0 TO 255

38 PSET (I,194)

48 NEXT 1

S8 GOTO Sa@

When program execution has been terminated, the screen returns to the text mode (SCREEN
0 or 1). As a result, when the graphic mode is to be maintained, program execution is as

shown in line 50 of the above program. Press [CTRL] and [STOP] at the same time to stop ex-
ecution.

SO g S R SR R

Gives 1 when numeric data is positive, 0 when it is 0, and —1 when it is negative.

[0 FORMAT
SGN(X)
X |Cpnd. Numeric type constants, variables, array variables, their
expressions,
Given value: Integer type.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 THFPUT A
28 IF SGHYAM=-1 THEN FRINT "Hesative"
38 GOTO 14

""Negative™ is displayed in line 20 only when the value assigned to A is negative.

-137-

S s R S R ST

Gives the sine value for numeric data.

[0 FORMAT
SIN(X)
X [Eond] Numeric type constants, variables, array variables, their
expressions. (Unit: Radian)
Given value: Floating point type constants from —1 to 1

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FRINT SINC3.14-3)
. 86D73983949239
FRINT SINT
. 86575983949239

e To give X in degree units, use the formula SIN (X #7/180).

I SOUND (sound)

Generates sound effects by writing data directly to the PSG (Programmable Sound
Generator) register

[0 FORMAT
SOUND register number, expression
Register number @@ Integers from O to 13.
Expression @g@ Constants, variables, array variables, their expressions

within the determined range for each register.
PSG register functions and the write data range

Register No. Function Data range

0 0 -
Channel A frequency 259

1 0-15

2 0 — 255
Channel B frequenc

3 o ' 0-15

4 0 — 255
Channel C frequenc - —

5 R 0-15

6 Noise frequency 0-31

7 Selects a channel for tone and noise 0 —63

generation.
8 Channel A volume 0-15
M T Volume variation

9 - Channel B volume | sccurswhen 16

10 Channel C volume selected.

1 L 0 — 2556

— \/olume variation pattern frequency }—————— —

12 0 - 255

13 Volume variation pattern selection 0-14

-138-

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 SOUND @.36 } Sets the Channel A f 10 400 H
g —— Sets the Channe requency to z.
28 SO0UND 1.1

I8 SOUND 7,62 ————Selectsa Channel A tone.

48 SOUND 8,8 2 Selects the Channel A volume,

When this program is executed, a 400 Hz sound is continuously output.
Press [CTRL]+[STOP] to stop this.

SPACES (space dollar) I

Gives an arbitrary number of spaces as string data.

[J FORMAT
SPACES(N)
N ’éond;[Numeric type constants, variables, array variables, their
expressions from O to 255,
Given value: String type.

[J] FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT SPRCE$(S)>:"HBC"
HEC
T 15 spaces

e When N is not an integer value, figures below the decimal point are omitted.

BT S R

Outputs an arbitrary number of spaces.

[J FORMAT
SPC(N)
N Cond.| Numeric type constants, variables, array variables, their
expressions from 0 to 2565.
Given value String type.

[J] FUNCTION AND UTILIZATION
The SPC function can only be used in PRINT and LPRINT statements.
EXECUTION EXAMPLE

FRINT "REC":SPACE$#<183:"DEF"
HEC DEF
N~ _ Y—

10 spaces

e When N is not an integer value, the decimal point are omitted.

—-139—-

SO o iaTe ON ERRTRES RN

SPRITE OFF
SPRITE STOP

Validates, invalidates, or holds an interrupt caused by a sprite overlap.

0 FORMAT

SPRITE ON — Interrupt valid
SPRITE OFF — Interrupt invalid
SPRITE STOP — Interrupt hold

[0 FUNCTION AND UTILIZATION

A command used to actually validate, (SPRITE ON), invalidate (SPRITE OFF), or hold
(SPRITE STOP) an interrupt after an interrupt caused by sprite overlap is declared by an ON
SPRITE GOSUB statement.

(See chapter 2.)

B sPRITES (sprite dollar) NN

Defines sprite pattern data

0 FORMAT
SPRITES(sprite number)
Sprite number Cond.] When 8 x 8 dots — Integers from O to 255.

When 16 x 16 dots — Integers from O to 63
[J FUNCTION AND UTILIZATION

When the sprite pattern is defined for the SPRITES variable, it is maintained as a specified
sprite number pattern. See chapter 2.

SQR (square root) I

B Gives the square root value of numeric data

[0 FORMAT
SQR(X)
X Cond. | Numeric type constants, variables, array variables, their
" expressions over 0.
Given value: Numeric type

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT SQRC186)
1a

~140-

STICH (shoi) gt o M I

Gives the direction of cursor keys and joy sticks.

[0 FORMAT
STICK(N)

1
8 Up 2
N Cond.| 0,1 or 2. Left up Right up

Given value: Integer type. \

[J FUNCTION AND UTILIZATION 7 0 3
Gives the direction of cursor keys when N=0, Left Center Right
that for joystick 1 when N=1 and that for
joystick 2 when N=2. The range of given
values that indicate the direction is from O to frd 6
8. When no cursor key is pressed, or when Leftdown 5
joysticks are centered, O is given. Down

EXECUTION EXAMPLE

4
Right down

1@ CLS

20 X=14

33 LOCATE ¥,1@:PRINT * “;

48 D=5STICKC@)

s@ IF D=8 THEN LOCATE ¥,1@:PRINT "#"

6@ IF D=3 THEN A1 IF K228 THEN X=28
73 IF D=7 THEH RX=K-1:IF X<{8 THEN X=8
8@ LOCATE X, 18:PRINT "#";

9@ GOTO 38

A program that moves "+’ to the left and right on the screen by using the left and right
cursor keys. The value given to variable D in line 40 depends on whether a cursor key is

pressed or not. The X-coordinate, in which ""«" is displayed by a given value, is modified in
line 50, 60, and 70.

B 0 o)) PRGNS SRR

Interrupts program execution.

[J FORMAT
sTOP

[J FUNCTION AND UTILIZATION

When a STOP statement is executed, program execution is interrupted.

e When a direct mode CONT statement is executed, execution restarts from the statement
after the interrupted statement.

—141—

IR STOP ON (stop on) I

STOP OFF (stop off)
STOP STOP (stop stop)

Validates, invalidates or holds an interrupt by the LCTHD + [gTOﬁl key.

[J FORMAT

STOP ON — Interrupt valid
STOP OFF — Interrupt invalid
STOP STOP — Interrupt hold

[0 FUNCTION AND UTILIZATION
Commands that actually validate (STOP ON), invalidate (STOP OFF), or hold (STOP STOP)
an interrupt after declaring an interrupt by [CTRL] + [STOP] using an ON STOP GOSUB

statement. (See page 50 for Interrupts)

STRIG (stick trigger) NN

Gives —1 when the space bar or a joystick trigger button is depressed, and O when
they are not depressed

(] FORMAT
STRIG(N)
N [Eqnd Integers from0O to 4
Given value Integer type

[J FUNCTION AND UTILIZATION
Gives the space bar status when N=0, joystick 1 trigger button status when N=1, N=3, and the
joystick 2 trigger button status when N=2, N=4. The given value is O when they are not
depressed and —1 when they are depressed.

EXECUTION EXAMPLE
18 CLS
20 COLOR ,C,C
38 IF STRIGC@>=@ THEN GOTO 2@
48 C=C+1:IF C>15 THEN C=8
28 G070 2@

A program that changes the color of the screen every time the space bar is depressed

—-142—-

B STRIG ON (stick trigger on) I
STRIG OFF (stick trigger off)

STRIG STOP (stick trigger stop)

Validates, invalidates or holds an interrupt by the sapce bar or a joystick trigger
button.

[0 FORMAT

STRIG(n) ON — Interrupt valid
STRIG(n) OFF — Interrupt invalid
STRIG(n) STOP — Interrupt hold

Numeric type constants, variables, array variables, their

expressions from 0 to 4.

[J FUNCTION AND UTILIZATION

Specifies the space bar, joystick 1 or 2 trigger buttons used for an interrupt by “n’’. The line
number of the corresponding subroutine must be specified by an ON STRIG GOSUB state-

ment.
Value of n Specifies
0 Space bar
1 Joystick 1 trigger button 1
2 Joystick 2 trigger button 1
3 Joystick 1 trigger button 2
4 Joystick 2 trigger button 2

STRIGCAY ON Validates a space bar interrupt.
STRIGC 12 OFF—invalidates a joystick 1 trigger button 1 interrupt.

STRIG(2) STOP-Holds a joystick 2 trigger button 1 interrupt

(See page 50 for Interrupts.)

STRS (convert to string) I——— E3

Converts numeric type data to string type data

[J FORMAT
STRS$(X)
X IC(md Numeric type constants, variables, array variables, their
expressions
Given value: String type

(J FUNCTION AND UTILIZATION

Whe_en numeric data is negative, the first character of the given string data is —. When it is 0 or
positive, the first character of given string data is a space.

—143-

EXECUTION EXAMPLE

19 ¥=1680:Y=200
26 .-.$ -TF:’$(.‘«’. Ve
28 PRINT x+V

48 PRINT X$+Y%
RN

a8

168 260

X$ Y$

STRINGS (string dollar) NG

Gives the character of a given character code or the starting character of a given
character string continuously by an arbitrary number as string data.

[J FORMAT

STRINGS(N, J)
STRINGS(N, X$)

N Cond. l

3 Cond.
|Cond

X$

Given value:

Numeric type constants, variables, array variables, their
expressions from 0 to 255

An arbitrary character code (See the Character Code
Table on page165.)

String type constants, variables, array variables, their

expressions

String type.

[0 FUNCTION AND UTILIZATION

EXECUTION EXAMPLE

PRINT STRIHG$C1
FFFFFFFFFF

PRINT STRING$(S
AARAR

A,

TAY

» "ABC")

B v o) SRS

Exchanges the value of two variables

[J FORMAT
SWAP variable, variable

variable

Numeric type or string type variables, array variables.

The two variables must have the same type.

—144—

0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

18 A=3:B=5

28 SWAP A.B

I8 PRINT "A="3A
48 FRINT "BE="3B
RIUH

R= 95

E= 3

OB v R R BT

Moves the cursor from the beginning of a line to the right by the number of
specified characters.

[0 FORMAT
TABI(N)
N Cond.| Numeric type constants, variables, array variables, their

expressions from O to 255.

0 FUNCTION AND UTILIZATION

The TAB function can only be used in PRINT and LPRINT statements. When N is O, it is on
the extreme left, and when it is a value in which 1 is subtracted from the number of char-
acters on one line, it is on the extreme right.

EXECUTION EXAMPLE
FRINT TRECS): "AAR"
AAA
i 0
5 spaces

TAN (tangent)

Gives the tangent value for numeric data.

O FORMAT
TAN(X)
X Eond. Numeric type constants, variables, array variables, their
expressions. (Unit: radians)
Given value Floating point type constant.

—145—

[0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

FREINT TAN(3.14.-3)
1.72992922009
FRINT TAHCEO+3,14-128)

1 —"-”'J.'i'“"'“q‘al_":.‘

® To give X in degree units, use the formula TAN (X*#7/180).

B 0) SRR R

Holds the value of a built-in timer.

[0 FORMAT

TIME
TIME=Expression

Exprassion [Cfondv Constants, variables, array variables, their expressions
from O to 65535.

[J FUNCTION AND UTILIZATION

In regard to this variable, the value of a built-in timer is held during BASIC activation with the
value advanced by 1 about every 1/50 second in a range from O to 65535. When 65535 is
reached, it becomes O again.

The value of the variable can be rewritten with a LET statement. When the CPU is in an
interrupt prohibition state (such as during cassette tape 1/0), this timer is stopped. When the
power is off, it does not operate.

EXECUTION EXAMPLE
19 CLS:TIME=8
28 LOCATE 12,8 PRIHMT IHTC(TIME~SA)
I8 50TO 28

This program continuously displays the integer of the value, in which the value of TIME is
divided by 50 after making the TIME variable value become 0 once. The numeral is advanced
by 1 about every second.

B TROFF (trace off)

Releases TRON to stop the display of executed line numbers.

[0 FORMAT
TROFF

[J FUNCTION AND UTILIZATION

When a TROFF statement is executed in a direct or indirect mode during TRON statement
execution, the display of a line number is released

—146-

AR 1 ON (1ace on) ARSI

Displays executed line numbers.

[0 FORMAT
TRON

[J FUNCTION AND UTILIZATION
When a TRON statement is executed once by a direct or indirect mode, the line number
executed after that is displayed on the text mode screen inside []. It is used for program

debug (correction), etc.
e When the screen in placed in a graphic mode by a SCREEN statement, the line number is

not displayed
EXECUTION EXAMPLE

189 TROH
20 FOR I=8 TO 3

I8 A=I+1:FRINT A
48 NEXT I
58 TROFF

RN
(20]038] 1
(4810381 2
(4810381 3
(48]1(30] 4
(4810581

LER L) B IR R T R

Gives the result obtained after the execution of a machine language routine that
starts from an address defined by a DEFUSR statement.

[0 FORMAT
USR [X] (1)

X Cond.| Integers fromO to 9.
Omit 0

| Numeric type or string type constants, variables, array
variables

Given value Depends on the user function

[J FUNCTION AND UTILIZATION

X is a user program number. The number specified by DEFUSRH is used. | is a variable or
constant that indicates the value to be transferred from BASIC to a subroutine

EXECUTION EXAMPLE
CEFUSEB=E&HERAA
AEUSEECT)

Based on these statements, the subroutine after the address &HEQOO is executed with the
resultant value given to BASIC. (See page 56 for Machine language subroutines.)

—-147—

[

VAL (volue) BEEESSHERERRNR SIS L

Givesistring data as/numeric data. |

0 FORMAT
VAL(XS)
X$ _@nd_] String type constants, variables, array variables, their
expressions that express numerals.
Given value: Numeric type.

[J FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

PRINT UALC{"3")

FRINT URLC" T

l The space before string type data is ignored

VARPTR (variable pointer) I

Gives the starting address in memory where data assigned to a specific variable
is stored.

[0 FORMAT
VARPTRIvariable)

variable [C‘Qnd“] Numeric type and string type variables, array variables.

[J FUNCTION AND UTILIZATION
Gives the decimal starting address in memory where a value assigned to a variable is stored.
The given value ranges from —32768 to 32767. If it is negative, the actual address is one in
which the value is added to 65536. The VARPTR function is used when an address in memo-
ry with data is transferred to a machine language subroutine for example

EXECUTION EXAMPLE

18 MAXFILES=S

728 A=UAEFTRC#1)

I8 FRINT HEX$CR?

46 A%=195

S8 K=UARPTRCAXD

EQ ME=HEX$(RI'FRINT H$
78 EHND

RIUN

EEaS

SAAD

This program checks the address in memory where the value assigned to a variable (A%) is
stored, and displays it after converting it to hexadecimal.

Before calling the VARPTR, it is necessary to substitute numerical values for all the variables
used in the program concerned

—148—

B VDP (video display processor) IR

Used to read and write the VDP register content.

[0 FORMAT
VDP (register number)
VDP (register number) = expression

Register number Integers from O to 8.

Expression Constants, variables, array variables, their expressions
from O to 255.

[0 FUNCTION AND UTILIZATION

Used as a function to read the register content of the TMS9929A (VDP), the video display
LSI of the MSX personal computer, or as a variable to write data directly to the register.

VDP registers
Followings are the bit assignment of the VDP registers.

Register 0
MSB 7 6 5 a 3 2 1 0 LSB
0 0 0 0 0 0 M3 EV
l_ExternaI video signal
(input if 1)
Mode selection bit 3
Register 1
MSB 7 6 5 4 3 2 1 0 LSB
4/16K [BLANK| IE M1 M2 0 SIZE | MAG
[—— LSprita magnification
(magnification if 1)
Sprite size (8 x 8 if 0)
Mode selection bit 1, 2
Interrupt output specification
Screen display ON/OFF (display if 1)
4K /16K byte memory selection (4K if 1)
Register 2 MSB 7 6 5 4 3 2 1 0 LSB
Pattern name table
o 0 0 0 base address
MSB LSB
Pattern name table
base address IABIA'!]AIIIAIO‘[A‘)IAS |A7|A6|AS]A4IA3IA2]A1|A0I

400H 0O OO 1" 0O0OODOOUOOOODO

—149—

Register 3 MSB 7 6 5 4 3 2 1 0 LSB

I I [
Col?r table lbase addlress

MSB LSB

Color table address lABIAnIAu[A ole [AaJAleel AlAJf3lA2|A' IA°I
780H0 0 0 1 1 1 0 000

Rogister 4 \ica 5 6 5 4 3 2 1 0 LSB
Pattern generator
0 0 0 0 2 base address
o MSB LSB
attern generator
table address |A|3|A12|A11|Aml A9]ABIA7|A6]ASIA4|A3IAz]A'LAd
80OHO O 1 0 0O O OO OO O OO
Register 5
MSB 7 6 5 4 3 2 1 0 LSB
| 1 I T
0 Sprite attribute table base address
1] 1
MSB LSB
Sprite attribute
table address IAIJIAnIAnIAmIA‘)]AslAvlAsIAs]AalAslAzlAllel
00H'0 000 1 1 1710 000 @ 0 0 0
Register 6
MSB 7 6 5 4 3 2 1 0 LSB
T T
0 0 0 0 0 Sprite generator table
1 1

MSB) LSB

Sprite generator
table address |A13lA12]An|Alo|A9[A8|A7|A6IAS|A4|AJIA2|AIIA0|
0000OH 0O 0 0 0 0 O 0 O © g 0 0

—150—

Register 7
MSB 7 6 5 4 3 2 1 0 LSB

T I | I
Text collor e Text color "0 /back drop color
1 1 !

16 color codes from OH to FH.

Register 8
MSB 7 6 5 4 3 2 1 0 LSB

| |
F 5S (& bth sprite No.
1 1

L——5th sprite No.

Overlap flag

L 5th sprite

Interrupt flag

Register 8 is a read-out dedicated status register while the other registers are write-in de-
dicated.

Precautions

To accomplish screen operation with a VDP variable and by rewriting the’ VDP register value,
adequate knowledge of the TMSQ929A is necessary. If the VDP register is carelessly rewritten,
the screen display is not correctly performed. Therefore, precautions shall be taken to avoid

this.

VPEEK (video RAM peek) [N

Reads data in the video RAM.

0 FORMAT
VPEEK (address)

Address Integers from O to 16383.

[0 FUNCTION AND UTILIZATION

Gives data written at a specified video RAM address.
Since the base address of each table can be found by the BASE function, use the BASE
function to check the video RAM address when the VPEEK function is used.

—-161—

)
W

B VPOKE (video RAM poke) N

Writes 1 byte data to video RAM.

[0 FORMAT
VPOKE address, expression

Address Integers from O to 16383,

Expression Cond.| Numeric type constants, variables, array variables, their
expressions from 0 to 2565.

[J FUNCTION AND UTILIZATION

Writes arbitrary data to a specified video RAM address. In regard to the video} RAM address
fmap, since the base address of each table can be found with the BASE function, check the
video RAM address with the BASE function when a VPOKE statement is used.

R 0 o VRS

Waits until the 1/0O port input reaches a certain value.

0O FORMAT

WAIT port number, expression 1 [, expression 2]
Port number expression 1, expression 2

Numeric type constants, variables, array variables, their
expressions from 0 to 2565.

[0 FUNCTION AND UTILIZATION

When a WAIT statement is executed, data is input from a specified 1/0 port and XOR (ex-
clusive OR) with the value of expression 2 is given, then AND (logical product) of the result
and the value of expression 1 is given. If the value obtained as explained abowe is 0, data from
the 1/O port is continuously input and if it has a value other than 0, an advancement is made
to the next line number. If expression 2 is omitted, its value is considered to be 0.

TN v 10TH (wodth) T

Specifies the number of characters per line in the text mode.

0 FORMAT
WIDTH(number of characters)

Number of characters | Cond.| Integers from 1 to 40 in the Screen O text mode.
Integers from 1 to 32 in the SCREEN 1 text mode.

0 FUNCTION AND UTILIZATION
EXECUTION EXAMPLE

SCREEN 8
WIDTH 48

In the SCREEN 0 text mode, 40 characters are set per line.

—-152—-

CHAPTER 4

SAMPLE PROGRAM
SAMPLE 1 sunsaismvmisunissinssonsssmsainsimmies 154
SAMPLE .2 .o s 155

—163—

SAMPLE 1

A display color adjustment program is made using the SPRITE function and COLOR
statements.

18 7 #*%% COLOR #%:%

280 COLOR 15:1,1:5CREENZ2.2

38 OPEN "GRFP:" FOR QUTPUT RAS#1

48 FOR S=1 TO 2:A%=""

58 FOR P=1 TO 32:READ D%

£@ A$=A$+CHRFCUALC"EH"+D%))i NERT

70 SPRITE$(S)=A$:NEXT

86 FOR K=15 TO 2 STEP -1:VY=K#11+13

98 FOR X=18 T0O ?5+K#S5 STEF 2

188 PUT SPRITE K, {X:Y),K»1

118 PUT SPRITE K+15, (X+3,%-162,K,2

120 LINEC(R=4,¥Y+3)-(XK-2,Y+12),K,BF:NEXT
136 READ D$:PSET(X+38.Y-13),1:PRINT#1.0%
140 S=50+K+2:PLAY"USN=53 32" 1 NERT

158 DRAW"BMIS, 1S ":PRINT#1,"Transparent"
168 DRAW"BMIS, 26" :FRINT#1,"Black"

178 DEAW"BMZ7,B8":FRINT#1,"FPress RETURHN K
ed,."

128 IF INKEY$<{>CHR${13> THEHN 128

198 COLOR 15,4, 7:END

288 DATA 1,2,4,0,17,13,21,23,47,4C,F8
218 DATA CA,0,0,8,0,3F,7E.FC,F2,FB,EB
228 DATA CO,89,0,06,0,0,0,0,0,98

238 DATA 68.68,0,8,8,8,68,8,1,2,4,93,13,27
248 DATA 4F,9F,9,08.8,8,18,28,4C,9E, 3F
258 DRTAR FE.FC,.F2,FB,EB,CH, 89

268 DATA White,Grav,Masenta.Dark Green
278 DATA Lisht Yellow,Dark Yellow.Liaht

Red

280 [DATA Medium Red,Sky Blue,Dark Red:Li
aht Blue

298 DATA Dark Blues,Lisht Green,Medium Gr
een

—154—

SAMPLE 2

Eight measures of Chopin's “Grande Valse Brillante’' are played using the PLAY
statement. Here the measure-by-measure music data are prepared in the DATA state-
ments, and are read out successively by the READ statements for triple-<chordal
performance.

18 CLS:FRINT"WALTZ"
2@ RERD RA$.B$.C#%

38 IF A$="" THEM END
48 FPLAY R$,E$.C#

S8 GOTO 24

78 TDHTH

DATA W13, 018,018

DATA 04L4B-05DSE-SF

A DATH RROSL4D

CATH REFR

DATH O4L4B-0SE-SFE6

DATA RROSL4E-

CRTA RER

CATA D4L4B-05F2G8A-

DATH RROSL4F

DATH REFR

DATA O5L16B-4B-3REEB-R48E-R4E
DATA O5L16GY4GERSGR4BGR4E
280 DATA O5L16D-4D-8RED-R420-R48
218 DATAR D3L4B-06CB0OSE-SA-
228 DATA O5SL2GE

238 DATA 0OSLZD-C4

248 DATA OSL4A-B-3A-8G6

258 DATA 0D5LZC-04E-4

268 DATH RRER

278 DATA OSL4GA-8G8F

228 DATA D4L2E-R-4

298 DATA RRR

388 DATRA OSL4FGEFSE-

318 DATA D4L2A-54

328 DATA RRR

338 DATAR "

348 DATA ""

338 DHTR "

=J T N e L B3 30T NS

—_ e e 0 O
oSS S D 0SS

—
Y
=

—165—

—156—

CHAPTER 5

1. ERROR MESSAGES

—-157-

1. ERROR MESSAGES

When an error occurs, program execution is stopped, a command wait status occurs,
and an error message is displayed. The cause of an error is concisely displayed as an
error message. Error messages and actual examples of error causes are explained
below. The numerals inside parentheses are error numbers,

Bad file name (56)

* File name is improper
e A device name that cannot be specified by an OPEN, SAVE or LOAD statement, was specified.

Bad file number (52)

* A file number was used that exceeds the range specified by a MAXFILES = statement.
o PRINT # statement execution was attempted with an unopened file number.

Can’t CONTINUE (17)

* After an interruption, program was attemped to be restarted after modification.
¢ A program does not exist.
e A CONT statement was used in a program

Device 1/0 error (19)

* Load prevented due to cassette tape or tape recorder.
* Improper tape recorder level.

e Command interrupted before load completion.

e |/O unit error.

Direct statement in file (57)

* A statement in an ASCI| program being loaded does not have a line number.
e An attempt was made to load a file other than that of a BASIC program (such as a data file).

Division by zero (11)

® Execution of division by zero was attempted.
e Execution of division by an undefined variable was attempted.

File already open (54)

* An attempt was made to reopen an opened file.

File not open (59)
e Execution of a PRINT# or INPUT# etc. statement was attempted by using a file number that
was not opened by an OPEN statement.

lllegal direct (12)
e Execution of a statement that can only be used in a program, such as a DEF FN statement, was
attempted by a direct command.

lllegal function call (5)

* A wrong value was used in a command.
* Value of a function is outside the tolerance range.

Input past end (55)

e Although all file data was read, read was attempted again.
* A file does not contain data.

-168—

Internal error (51)
* BASIC interpreter is abnormal.

Line buffer overflow (25)

e Input line buffer is full.

Internal error (51)
e BASIC interpreter is abnormal.

Line buffer overflow (25)

e Input line buffer is full.

Missing operand (24)

e No parameter exists after a command.
e Required parameters are incomplete.

NEXT without FOR (1)

e An executed NE XT statement has no corresponding FOR statement,
e Execution was transferred by a GOTO statement to somewhere inside a FOR — NEXT loop.

NO RESUME (21)

® An error processing routine has no RESUME statement. (An error processing routine must end
with END, RESUME, or ON ERROR GOTO 0.)

Out of DATA (4)

¢ During READ statement execution, either no data or insufficient data exists.

Out of memory (7)

* Program too long.

* Too many variables used.

e Array too large.

e The multi-structure of a FOR — NEXT or GOSUB — RETURN staternent is too long.

Out of string space (14)

e Character area is exceeded.
e The character area specified by a CLEAR statement is too small.

Overflow (6)
e Numeric type data or an arithmetic result exceeds the range that can be handled.
e An address parameter is outside a specified range.

RESUME without error (22)

¢ A RESUME statement has no corresponding ON ERROR statement.

e A transfer to an error processing routine by a GOTO statement.

e Since no END statement exists at the end of a main routing, an error processing routine is con-
tinuously executed.

RETURN without GOSUB (3)

e A RETURN statement has no corresponding GOSUB statement.

e Transfer to a subroutine by a GOTO statement.

. Since no END statement exists at the end of a main routine, a subroutine was continuously
executed.

—159—

Redimensioned array (10)

» An attemnpt was made to define overlapping arrays with the same name.
* Array variables were used without being defined by a DIM statement, then they were defined.

String formula too complex (16)
» A one line character expression is too complicated,

String too long (15)
® A character variable was assigned a value that exceeded 255 characters.

Subscript out of range (9)

e A subscript was used that exceeded the size declared by a DIM statement.
* A subscript exceeding 11 was used for an array variable not declared by a DIM statement.

Syntax error (2)
* An input statement is not in accordance with MSX-BASIC grammar.

Type mismatch (13)

* The types of the left and right sides of LET, INPUT and READ statement are different.
¢ A logical operation was attempted to string type data.

e The type of data specified by a function is a mismatch.

Undefined line number (8)

¢ A non existing line number was specified in a GOTO, GOSUB, or RESUME statement.
* At RENUM statement execution, a non existing line number was specified with a GOTO
statement etc.

Undefined user function (18)
*« An attempt was made to use a user function not defined by a DEFFN statement.

Unprintable error (23, 26-49, 60-255)

* An error occurred that has no error number.
* An error occurred because the number of an unprintable error was specified in an ERROR
statement.

Verify error (20)

* The program on cassette tape is different from the program in memory.

~160—

CHAPTER 6

APPENDIXES

1. MEMORY MAPoooiemenierereseeeesenesesesnans 162
2. 1/0 PORT ALLOCATIONcoourmrrrerrrreennns 164
3. CHARACTERScooveveeeeesesssaesennsesenaens 165
4. KEY FUNCTIONScoovevereeeereennn. 168

-161-

1. MEMORY MAP

&HO0000

&H8000

&HC000

&HF380

&HFFFF

MSX-BASIC
ROM

User
area 2

User
area 1

System area

When 16 K
byte RAM
is installed

See the Operating Instructions for the RAM capacity.

—-162—

When 32K,
64K byte
RAM is
installed

USER AREA CONFIGURATION

&HB000
(&HCO000)

Program area

Variable area

Array variable
area

Free area

Stack area

Character string
area

File control
block

&HF37F

Program area
A program is stored with line numbers.

Variable area
Stores numeric type data and pointers for string type data.

Array variable area
Stores array variable data. Stores the pointer for the character stringarea if it is a string type.

Free area
Unused area. The size can be known with the FRE function.

Stack area
The stack area is used to save a return address.

Character string area
Stores a character string included in a string type variable or array variable.
The size can be specified with a CLEAR statement.

File control block
Used during file Input/Output.

—-163—

2. 1/0 PORT ALLOCATION

Utilization Port No. Application
RS-232-C &H80 Data read-out/write-in
Mode set (during write-in)
Shel Status (during read-out)
Printer Strobe (during write-in)
Sioe Status (during read-out)
&H91 Data write-in
VDP &H98 Data read-out/write-in with video RAM.
&H99 Command, .address s'et (during write-in)
Status (during read-in)
PSG &HAO Address latch (write-in)
&HA1 Data write-in
&HA2 Data write-out
[PPI &HAS Data read-out/write-in for port A
| ‘ (Memory slot select) use.
| &HA9 Data read-out/write-in for port B
‘ (key borad scan) use. 7
| &HAA Data read-out/write-in for port C
(cassette).
| &HAB Mode set (write-in)

® |/O addresses from &HOO to &H7F are not used. Addresses other than the above
addresses of the address among &HB80 to &HFF are reserved for system use.

—164—

3. CHARACTERS

CHARACTERS HANDLED BY MXS-BASIC

The characters shown in the following character code table can be displayed.

Hexa- 00 - 1F 20— 3F 40 — 5F 60 — 7F
decimal
code code | character |code | character |code| character |code | character
0 0 (null) 32 (space) 64 @ 96 :
1 1 @) 33 ! 65 A 97 a
2 2 @ 34 " 66 B 98 b
3 3 $ |3 # 67 c Q| ¢
4 4 * 36 $ 68 D 100 d
L. B 5 k3 37 % 69 E 101 e
R 1 6 & 38 & 70 F 102 f
7 7 . 39 . 71 G 103 g
8 | 8] H |4 { 72 H 104 h
9 9 (0] 41) 73 I 105 i
A |10 0] 42 * 74 J 106 i
B 1 o 43 + 75 K 107 k
B 12 Q 44 , 76 L 1108 I
D |13 b |45 - 77 M 109 m
[E 14 2 |46 . 78 N 110 n
F 15 o | a7 o 79 0 1M1 o
0 |16 + 48 0 80 P 112 p
1 17 -L 49 1 81 a 113 q
2 |18 - 50 2 82 R 114 r
3 |19 - 51 3 83 S 115 s
| 4 2| F 52 4 84 T 116 t
| 6 21 + 53 5 85 U 117 u
6 22 | 54 6 86 Vv 118 v
7 23 — 55 7 87 W 119 w
8 24 r 56 8 88 X 120 X
9 25 - 57 9 89 Y 121 y
A |26 = 58 : 90 z 122 z
B 27 =t 59 : 91 [{123 {
o] 28 X 60 & 92 \ 124 '
D 29 7 61 = a3] 125 }
E 30 \ 62 > 94 - 126 ~
[F |3 + |63 ? 95 - 127 tlank)

—165—

Hexa- 80 — 9F AO — BF CO — DF EO — FF
decimal
code code| character |code| chracter |code| character (code| character
0 128 ¢ 160 8 192 - 224 a
1 129 i 161 i 193 .~ 225 B
2 130 é 162 6 194 m 22 3
3 131 3 163 P 195|] ™ 227 =
4 132 a 164 " 196 B 228 z
5 133 a 165 N 197 W {759 o
6 134 a 166 a 198] 230 H
7 135 G 167 ° 199 - 231 Y
8 136 ¢ 168 ¢ 200 232)
9 137 é 169 - 201 233 0
A 138 ¢ 170 - 202 234 Q
B 139 i 171 Y% 203 7, 235 d
g 140 i 172 % 204 g\ 236 o0
D 141 i 173 i 205 237 @
E 142 A 174 | < 206 a 238 €
P 143 A 175 > [207] P 239 N
0 144 g 176 A 208 d |20 =
1 145 = [177] s 209 X [oar]|
2 146 y 3 178 i 210 M 242 =
3 147 6 179 i 211 . 243 <
a4 148 6 180 0 212 . 244 r
S 149 o 181 o 213 - 245 J
6 150 a 182 © 214 n 246 +
7 151 o 183 G 215 %= [247] =
8 152 y 184 7 216 A 248 o
| 9 [3] o 185 i 17| ¢ |249]| °
A 154 0 186 % 218 w 250 B
B 155 ¢ 187 ~ 219 i) 251 B
| C |186 £ 188 ° 220 - 252 n
| D [187 ¥ 189 % 221 B 253 .
E 158 Pt 190 L 222 [| 254 [|
F 159 f 191 § 223 - 55

Characters whose character code consists of 2 bytes

Characters of codes 1 to 31 (decimal) in the above table have 2-byte
character codes. Their codes in the table should be preceded by the code
1 and the codes listed in the table should be added by 64 (decimal).

Input/output of character codes
Input from the keyboard
Normal characters 1-byte code is input.
Example: Code 65 (decimal) for the
character “A"
2-byte code characters 1 and the other code are input.
Example: Code 1 and 67 for the

character “ 9"
Output using CHR$ function

Normal characters 1-byte code is used as a parameter.
Example: CHR$ (66) for the character “B"

2-byte code characters 2 CHRS$ functions are used, of which the
first one is CHR$(1), and the following
one is a CHR$ function using the
above listed code as a parameter.
Example: CHR$(1); CHR$(68) for the

character “¢"

—-167-

4.CTRL| KEY FUNCTIONS

In addition to the edit key, MSX-BASIC is provided with special functions just by pressing

the |CTRL[key simultaneously with another key.

Key pressed

Function

(cTRL]+(8]

Moves the cursor to the beginning of a word (character group punc-
tuated by a space). When the cursor is at the beginning of a word, it is

moved to the beginning of the word just before.

AL+ ([

Releases the input wait state or automatic line number generation by

the AUTO command to return to the command wait state.

[cTrL]+[E]

Provides erasure from the cursor location to the last line.

+[F] Moves the cursor to the beginning of the next word.
;@ Gene;;n;s a beep sound.

; Sa;ne as 1hekey. :
[cTRL]+[1] Same as the [TAB] key.

+ Movesit;e—cursor 1 line below.

[CTACI+[(K] | Some ss (FOME).
[[CTRO+[L] | Same as[SHIFT] + [FOME).

+@ Same as ;he key.

[cTRU+[N]

Moves the cursor to a location next to the last character in a line.

+[E] Same as the[@kay.

+[U] Erases all the characters on a line.

_ +[x] Same as [SELECT). Undefined in MSX-BASIC.
W+ Same as (3] cursor kes;. 7

(Gl

Same as [ESC|. Undefined in MSX-BASIC.

[cTRL]+(1]
[CTRL]+[*]

[cTRU]+[]

Same as E=> cursor key.

Same as @ cursor key.

Same as @ cursor key.

-168—

INDEX

A
ABS (absolute) 62
BND - e vovsans s 19
Apostrophe (') 4
Arithmetic operator 3
Array variable 77
Array variable area 163
ASC (Amell) . e s 62
ATN (Arc tangent) 63
AUTO 63
B
Background 26
BASE 64
BEEP ..o pamacin s 64
BINS (binary dollar) 65
Binary expression 14
BLOAD (binary load) 65
Borderarea... ;v s 26
BSAVE (binary save) 66
C
CALL :aoniasm avmmesn s 66
CDBL (convert to double

precision) 67
Channel 137
(5 | S —— 67
Character stringarea...... 163
Charactercode 165
CINT (convert to

R v cus 67
CIRCLE snain sosanns vans 68
CLEAR :vas: snaavmn awi 69
CLOAD/CLOAD?

(cassette load) 69, 70

CLOSEcovvvnn. 70
CLS (clear screen) 71
Colon(:) 3
COLOR .ovias ivviiom o 71
Coloricode . ..ovisaiiviis avevvva 71
commail;) s vanwves s 3
Command i cacsii saiats 10
Constant:..: cvinans s 1
CONT (continue) 72
COS (cosine) 72
CSAVE (cassette save) 72
CSNG (convert to single
BeBlOn) ».anans v 73
CSRLIN (cursor line) 73
D
DATA o sonniss G 74
Decimal expression 14
DEFFN (define function)
.................... 74
DEFINT (define integer) .
.................... 7
DEFSNG (define single
precision) . uesvens v 75
DEFDBL (define double
PYBCIBIBN] oiivwsin s 75
DEFSTR (define string)
.................... 75
DEFUSR (defineuser) ... 76
BELETE ... i s 76
Devicename 43
DIM (dimension) ¥ 47/
Directmode 6
Double precision 13
5] 7.1 A — 77

-169—-

END. e ssismommssanis 81
EOF (end of file) 81
EQV (equivalence) 19
ERASE ..o comeais asmns 82
ERL (errorline) 82
ERR (error) 82
ERROR ... sivieans seos 83
Error message ... civivse 158
Errornumber: .o i s 158
EXP (exponential) 83
F
File e b sonmmamsns 42
Ele NAME i i 43
BUX i 84
FOR~:NEXT .ueviantes v 84
Foreground. . :.iensess s 26
FRE(WeB) .::uuiieninss 86
FIOOArea: & . .vciiviein s sis oo 163
BEUNCLION ..o e siaimis i i 10
G
GOSUB-RETURN (go to
subrutine ...return) 86
GOTO vsms oo oammmiosess o 88
Graphic mode. . .. wivaios i 26
H

Hexadecimal expression ... 14
HEX$ (hexadecimal dollar)

High resolution graphic ... 27

|
IF..THEN..ELSE .i.:wqu 89
| €] 0 T 89
IMP: s sserarme dem ittt 19
[nairect Modeo seeipieionn 7
INKEYS® 5o onnindvans 90
1T [—— 91
INPUT o canmnismiansismi 91
INPURTAE s sanusisai 93
ENRUE S - vears s ssenion s 92
INSTR (instring) 93
INT (integer) 94
INteger .- nivw e o 12
INEORTLIPE o veisssanie 50
INTERVAL ON/OFF/STOP
.................... 94
N DO < cuvivas ity 164
K
S T T e 94
KEY. LIST. civwuccamemens 95
KEY DN/OFE: . ovcui 95
KEY (n) ON/OFF/STOP
.................... 96
L
LEFT S saassasvinanei 96
LEN (length) 97
BT = v deminms cn ettt 98
EINE: o covmiincnsmeots 99
LING: 2w sdisior s ihsthuminian 8
EINE:INPUT .oooisitionsi 100
LINEINPUT: # e cemnies 100
Linenumber ceciune 6
EIST s anssovasnsasnes 101
LLIST (line printer list out)
.................... 102

—-170-

LOAD caoaiasaviisnis 102
LOCATE oo ciniveisiis 103
LOG (natural logarithm) .. 103
Logical operation 19
LPOS (line printer position)

.................... 104
LPRINT (line print) 104
LPRINT'USING . cvaveians s 104
M
MAXFEILES 2o soves o 105
Memorymap 162
MERGE 105
MID$ (Function...middle

dollar) 106
MIDS$ (statement) 107
MU $=) oo onwmens 3
MOD (modulus) 3
MOTOR : .onans sovssas 107
MSX-BASIC o v v 2
Multi color graphic 28
Multiple statement 22
N
NEW woision vy s 108
Noise frequency sz 137
NOT i vmenmes s tes 19
Nullstring 4
Numeric constant 12
Numeric variable 12
(0]
OCT $ (octonary dollar)

.................... 108
Octal expression 14
ON ERROR GOTO 108
ON GOSUB: i s 109

ONGOTD ..o cvmanss v 110

ON INTERVAL GOSUB .. 110
ON KEY GOSUB 111
ON SPRITE GOSUB 112
ONSTOPGOSUB 112
ON STRIGGOSUB 113
OREN ivicames vawmmas 113
OR &5 o sy wos 19
OUIT . v e s 114
P

o L 114
PRINT s anessmsesives 115
PEL (patddla) =005 i 116
PEEK sorinsn susaims o9 116
Parlod |) = o svvanss &35 3
PLAY (statement) 116
PLAY (Function) 120
POINT .vivie v vimmminmme sins 120
0] 121
POS (PORIBIONY: v somesns s 121
PRESET (point reset) 122
PRINT s o siveogs s 122
PRINT USING: v cinwa v 124
BRINT - oy v sty ot 127
PRINT # USING 127
Programarea 163
PSET (pointset) 128
PUTSPRITE: 5o s 128
PO « o wnsnvmesmise 38
Q

Questionmark 4
R

READ! wvuwna ssssmsnseis 129
Relational operator 19

-171-

REM (remark)
RENUM (renumber)
Reserved word
RESTORE
RESUME

RIGHT $

RND (random)
RUN som s asues

S

SAVE
SCREEN
Screen configulation.
Semicolon (;)
SGN (sign)
SIN (sine)
Single precision
SOUND

.................

...........

.............
..............
.........

...............

SPC (space)
SPRITE ON/OFF/STOP

....................

SPRITE $
Sprite pattern
Sprite pattern definition
Sprite plane
Sprite 8ize.. . cimennig
SQR (square root)
SLACK BFBR o on.oie e o0 0iaaie 5:6
Statement ove s o
STICK
STOP
STOP ON/OFF/STOP
STRIG (stick trigger).
STRING ON/OFF/STOP

..............

...........

............

................

.................

String variable 12
STRING B i sivaivn 144
STR $ (convert to string)
.................... 143
OWAP o nsnsaaveiias 144
Subrotiting i ssive s s 86
T
B i s e o s 145
TAN (tangent) 145
Textmode ; . ci-wise e s 26
VINE. st codimdioduiams 146
TRON (traceon): 147
TROFF (trace off) 146
Type declaration 13
Type conversion of numeric
CONSEANE . icrds i vimianzs.e 14
)
USR-(User) ... comuint v 147
USBrarea. :seeiiisotseinas 162
Y
VAL AVBIUB) ovuisiviwrisive 148
Varable: . uusasaraaiais 11
Variablearea:.: .. 163
Variablename 12
VARPTR (variable pointer)
.................... 148
VDP (video display
PrOCasSOr) . -us cire s 149
Volume variation 117
VPEEK (video RAM peek)
.................... 151
VPOKE (video RAM poke)
.................... 152

-172—

-173-

D SANYO

Printed in Japan 3P02813 b (Y3BA)

