P

r oy

“ h“"*‘.

S o
Scanne

R
m

-
—

o

[t

ned by Car

W,

A

_Scan

A a2

50 2

STARTING
MACHINE CODE
| ON THE

{ MSX MICROCOMPUTER

.; - Scanned by CamScanner
G

ISBN NO 07457-0132-9
COPYRIGHT (C) 1984 G. P. RIDLEY

ALL RIGHTS RESERVED

The Author wishes to thank Mike Shaw for his Contribugy,
text and programs. e

to th

g

No part of this book may be

reproduced by any means withg
writen permission of the aut

i
hor or the pPublisher, ® prio

The information in

correct, but Kuma
liable

this book ig Supplied in the belief that it
Computers Ltd. (the company) shall not be
in any circumstances whatever for any direct or indirect
loss or damage to pro suffered by the reader o
any other person as i

Publisheq by:~ Kuma Computers Ltd.,
12 Horseshoe Park,

Pangbourne,
Berks RG8 70w
Telex 849462 Tel 07357 4335

Scanned by CamScanner

Contents

—

Machine Code from Basic

Screen Addressing Program 2
Storing Screens 6
Z80 Instructions 10
Inside the Z80 chip 15
The Assembly Commands 29
Data Transfer Commands 31
Data Manipulation & Test Commands 41
Re-Routing Program Running 56
Input/Output Commands 61
System Controls 62
Using ZEN Assembler 64
Screen Messages 72
User Inputs 1 75
User Inputs 2 78
Saving Programs 83
MSX Routines 86
Table Construction 86
Hooks 95
Sprite Program 96
Loader Program 104
USR 110
ROM Routines 113
RAM Storage pointers 118
Bytesearcher 121
Byte Searcher Program , 123
APPENDIX 127
Hex to Opcode Table 127
Instructions Table 138
Hex to Dec conversion table 150
INDEX 151

Scanned by CamScanner

Introduction

This book has been written as an introduction to writing Machine

Code programs and routines using Assembler language on the MSX range
of home computers.

Not so many years ago machine code was the programmers first
language, but with the popularity of the home computer Basic has
become the common language which most micro users cut their teeth on
and machine code remains a somewhat grey area which most of us see
in program listings as a series of numbers within DATA statements
POKEd intoc high memory locations and then called by the USR command,
and are left without a clue as to what is happening.

Machine code programs, operate far quicker than those written_in
Basic and that is one reason for a Basic program to contain a
machine code routine in order to achieve greater speed, or it could

be used to modify Basic to do tasks it cannot normally do.

This book hopefully will make machine code clearer and more
understandable to the average user, one will not need a degree to

grasp what 1is happening, and computer jargon will be kept to
minimum levels.

Good Luck.

Scanned by CamScanner

1
Machine Code
from Basic

The Basic language is generally the simplest way of writing
programs, it is easy to follow and debugging a faulty program is
usually made quite easy with the editing facilities for altering
lines in a program, so why use machine code?

The main reason must be speed of execution, not purely based on
games programs such as space invaders or the like which would not be
worth playing if they were written in Basic, but more serious
applications which will be shown in the book. In order to grasp
some idea of the speed of a program written in assembler we will
compare the execution time with a similar program written in

Basic.:-

10 SCREENO:KEYOFF
20 WIDTH40:CLS

30 TIME=0

40 FOR X = 0 TO 959
50 PRINT"B";

60 NEXT

70 PRINT TIME

Now entering the function key 'F5' or by entering 'RUN' followed by
the 'RETURN' key one will see that the MSX took 151 time cycles (or
3.02 seconds if line 70 was altered to TIME/50) to fill the screen.,

Another method for displaying characters is to VPOKE directly to a
? specific location on the screen, In screen 0 mode the top left
position of the 40 column screen is 0000 hex, let us alter the above

program so that instead of printing one character after another

1
Scanned by CamScanner

BasicC pRINT statement W€ shall print ¢y
a .
using the cen aread of memory using the VPOKE g -
. tly to the sCr e Qter
girec ent. |
dd line 15:

15 2=&HO

i j d:-

And alter the following lines to rea

50 VPOKEZ+X,66
70 LOCATE,23:PRINT TIME

Once again Run the program.

so directly vPokeing to the screen is ng -
Note that the cursor remains in the same position whilst 4 :];er.
statement is carried out, therefore line 70 repositioned the curol(g
to screen line 23 by the LOCATE statement. If you find that ::r
yed slightly off-screen then enter in direct mod:

The time was 225,

10k' is displa

'WwIDTH37' and the
column display which is the condition the MSX wakes up in when fij
irst

'RETURN' key to clear the screen and return to 3
0 37

switched on.

Now if that program, although not the most interesting in the world
b : .
uilqglte effective as an example, is re-written in machine code and
calle = i

by the A=USR(0) function from Basic the dramatic increase in

speed will be instantly obvious.

Progra i
gram 1 Direct Screen Addressing from Basic

Ass
embly language instructions used:

LD HL,nnn
+ 10D LD BC,nnnn LD A,nn CALL nnnn RET

These j.n t i
S ructlons are detailed in Ch ®

Enter 'NEw!
W' and
RETURN' and input the program: -

2
Scanned by CamScanner

10 CLEAR 200,&H9FFF
20 FOR X = &HAQ00 TO &HAQOB

30 READ A:POKE X,A:NEXT

40 DATA 62,66,33,0,0,1,192,3,205,86,0,201

Enter 'FS' to run the program.
The screen will instantly display the 'Ok' message and one could be

excused in thinking that not much has just happened. But happen it
has in that now a machine code routine has been placed in memory,
starting at location A000 hex (40960 decimal), which will print the
entire screen with the letter 'B' in a fraction of the time taken

previously using normal Basic PRINT or VPOKE statements.
Enter 'NEW' and 'RETURN' and this program will fill the screen:-

10 DEF USR=&HA000:SCREENO
20 TIME=0

30 A=USR(0)

40 LOCATE,23:PRINT TIME

RUN the program.
Its speed is amazingly fast and time was printed as 1 or 2.

As will be seen in the next chapter Assembly language is made up of
several registers which we load with addresses and values, you can
also check the codes in the Appendix. If we disassembled the DATA
which was placed at A000 to AOOB it would look like this:-

1 AQ00 3E 42 LD A,42H

2 A002 21 00 00 LD HL,0000H
3 AQ05 01 CO0 03 LD BC,03COH
4 A008 CD 56 00 CALL 0056H
5 AQOB Cc9 RET

We POKEd the DATA into memory starting at address A000 hex which if
we convert to decimal gives us 40960, use the conversion chart in

the Appendix if you aren't sure. The first two items in the DATA

3
Scanned by CamScanner

line were 62,66 decimal. 62 converts to 3p hex h
1ch

to load the A register with the value of the next byt means
e

case was 66 (42 hex) in line 1 on the Previoyg Page whim1?QWN
. l]’] t

thi%

hex signifies Load the register pair HL with the foll'oo
address first, ip this Ow

The next three bytes were 33,0,0 which convert 5
r00

. in hex,

lnstanCe

in reverse order, low
the top left COrner

load HL with the address of
RAM) which is 0000 hex, therefore in thig particular o
order doesn't show us much as the address jg Zero byp Cagy iy,

will prove the point.

These were followed by 1,192,3 and the number]

with the following two bytes in low byte first' high) s khd%
Yte

The figure we want to load into BC is the amount of bytes %qm
w .

print to the screen. Screen 0 has a maximunp Size Capac,
c
locations, 24 lines by 40 columns, therefore 960 deCimal .

hex, which in reverse order becomes C0O 03 (line 3).

Next came 205,86,0. 205 converts to CD hex which translateS .
the address of the next two bytes which were ip reverse Onhra;ﬂa
The address of the routine we wish to call is 0056 hex fmenﬁm;;
we reverse them and convert to decimal these become 86,0,

NOTE The ROM section of memory contains many routines which cap g,

called upon to perform different functions, location (g5 hey

contains the instruction to jump to a routine which fills VRAM are
the A register. However befor

with the character contained in
that HL contains the st

calling the routine one must ensure
address, BC the number of bytes to fill and A the data. And ths
our program has already done in lines 1 to 3.
5 her;
The final number in the DATA line was 201 which convertstocgsm
GO5*
rd

the

just as one would use afte

. y
this routine ™"
e B

this command is RET for return,
routine in Basic, Remember that we went to
USR(0) statement which is a Call instruction just Like O Ut
GOSUB and to quit the routine we enter the RET Commamitore

4 Scanned by CamScanner

The USR statement can contain within the brackets an 'argument’ such
as an integer, string, single or double precision variable to pass
on for the machine code program to use. This is explained in
chapter 4, but for this example no data was required to be accessed

by our routine so a simple call was made with a dummy argument (0).

Now that routine although it executed in a fraction of the time it
took using Basic was not quick to program, and a lot of thought
would go into producing a simple output such as that. It is also
more complicated translating decimal values back to hex and then

translating them into assembly language Mnemonics and operands.

In later examples of machine code we will use an Assembler, Editor
called 'ZEN - 2Z80 Assembly Language Programming System for the MSX
Micro-Computer' which includes a disassembler. An Assembler/Editor
will do most of the dirty work for you and produce a printout such
as we have just seen, furthermore entering assembly language is made
childs-play, well almost, as they allow one to enter opcodes and
operands such as:- LD BC,03COH directly. After entering the listing
one selects the assemble option and the assembler will then
translate all the instructions into machine code automatically and
output a version known as Object code. This small piece of jargon
simply means assembled machine code ready to record on tape for

future loading.

It is virtually impossible to write machine code programs of any
size without an assembler, it will pick up any false statements just
like Basic does with the Syntax errors and it will allow one to run
the programs and use breakpoints to stop the running at certain
points so that one may check on the state of the registers etc.
This is most important as the programs run so fast it would be

difficult to make these checks without the facility.

5
Scanned by CamScanner

Program 2 Storing Screens

New Assembly language instructions used:-
LD DE,nnnn

area to be copied

Two other routines within ROM allow the screen
requireqd,

into other parts of memory for storage and recalled when

One may have a program which is menu driven in which options the

user can make are listed on screen. That complete screen diSplay
could be stored somewhere in RAM and when needed a A=USRn(()

instruction will immediately transpose that block of memory back tgq

the screen in a flash.
Enter 'NEW' and 'RETURN'

10 CLEAR200,&HDFFF
20 DEF USRO0=&HF000:DEF USR1=&HF010

30 FOR X = &HF000 TO &HF0OC

40 READ A:POKE X,A:NEXT

50 DATA 33,0,0,17,0,224,1,192,3,195,89,0,201
60 FOR X = &HF010 TO &HF01C

70 READ A:POKE X,A:NEXT

80 DATA 33,0,224,17,0,0,1,192,3,195,92,0,201

Now enter the 'F5' key or 'RUN' and 'RETURN'
Once again the 'Ok' message was displayed almost immediately, and

we now have this screen move routine in memory.

One does not need to write a separate program to demonstrate this
providing there is a fair amount of text Presently on the

routine,
if there isn't put something on the screen, anything.

screen,

t a line number) A=USRO(0) and 'RETURN'.

Enter in direct mode (withou
and the

The 'Ok' will be displayed instantly total displayed area
‘has been copied into memory Loraions B0V Lo ARk, hex, It has not
| dlsappeared off the screen it has been duplicated intg the other

. area. . 1f one was running a program the screen could ney be cleared

Scanned by CamScanner

and the program continue until one needed to bring back the previous
display.

Now clear the screen by entering the 'SHIFT' and 'HOME' keys and to
prove the point enter some characters onto the screen, it does not
matter if one gets 'Syntax error' printed just get something on the
screen.

Enter in direct mode A=USR1(0) and 'ENTER'
The screen will instantly change back to the previous display which
was saved when we entered A=USRO(0)

One could save more than one screen, providing they were moved to
separate areas of memory, the Screen 0 text screen can contain up to
960 bytes so one will need to adjust the program for different
storage areas. Here is the assembled listing, remember it was in 2

sections the first stores a screen:-

1 F000 21 00 00 LD HL, 0000
2 F003 11 00 EO LD DE,E000
3 F006 01 CO 03 LD BC,03C0
4 F009 CD 59 00 CALL 0059
5 FOOC C9 RET

and the second section recalls it to the display:-

F010 21 00 EO LD HL,E000

1

2 FO13 11 00 00 LD DE, 0000
3 FO16%701°C0-03 LD BC,03CO
4 F019:CD.5C Q0 CALL 005C
5 Fpig €8 RET

The ROM routines which control the copying are at 0059 and 005C hex
and as with the previous example certain registers need loading with
data before they are called. Whether storing or recalling a screen
of information registers HL require the source address. When

storing a screen in the Screen 0 mode we know that the source will

Scanned by CamScanner

be address gg

the dest;j L0r =0 in tine 1 HL is loaded with 0000 R
€sStinatjgp addresg) s :
; and 4 i rt address of
where jip RAM we Wish jt to be S loagdeq with the sta

with EQgg hex,

i lo
from, so in 1line 2 DE is adeq
move ang

(960 decimal) in line 3, if One
+ say lines 0 to 11, BC
f€ 4 is the call to the ROM

this ig followed by Rp
ogram.,

Li
. ut the Copying ang
line 5 which returns yg

T ip
to our Basjc pr

with only

t 00s5c, The
+ remains the same at 03co.

As we now have the facilit

1t &5 straightforwarg to
Screens.

Y to store and recall one screen display

modify the Program to cater for four

One only needs to alter various items in our

basic Program
which wrote this machine code routine into memory.

List the program and alter the following lines to read thus:-
20 DEF USR2=&HF020:DEF USR3=&HF030

30 FOR X = &HF020 TO &HF02C

60 FOR X = &HF030 TO &HF03C

And in line 50 alter the sixth number from 224 to 228
and line 80 alter the third number from 224 to 228

NOTE Care must be taken when modifying an existing line on screen.

énsure that you do

to the end of the

MSX will forget the characters
~shown on the next line and shorten the line so

In lines 50 and 80, which exceed one Screen line,
not press 'RETURN' until you have moved the cursor
éomplete program line otherwise the

Producing an error
 message. List the program before running it. '

S 8 Scannéd by CamScanner

After running the altered program.

one should have the facili
store another screen e facility to

display in memory, only this time we have

written the copying routine at F020 and the recall routine at F030

heX,. and the storing of this second screen commences at E400 hex.
Storing a second screen is achieved by entering:
A=USR2(0)

and to recall to the display:-
A=USR3(0)

If one requires three screens to be stored the following alterations
should be made:-

20 DEF USR4=&HF040:DEF USR5=&HF050
30 FOR X &HF040 TO &HFO04C
60 FOR X &HF050 TO &HFO05C

And in line 50 alter the sixth number from 228 to 232
and line 80 alter the third number from 228 to 232

Check the listing and run.

And these are the alterations for the fourth screen:-
20 DEF USR6=&HF060:DEF USR7=&HF070

30 FOR X = &HF060 TO &HF06C

60 FOR X = &HF070 TO &HFO07C

And in line 50 alter the sixth number from 232 to 236
and line 80 alter the third number from 232 to 236

Once again list and run the program. The routines are accessed by:-

A=USRO(0) stores- A=USR1(0) recalls

"

A=USR2(0) " " A=USR3(0) "
A=USR4(0) " " A=USR5(0) " .
A=USR6(0) " " A=USR7(0) " i

Scanned by CamScannep

2
Z80 Instructions

In this Chapter, we're going to take a broad look at the Way the

280 chip interprets the machine code numbers,
the way they are generally used,
Assembler instruction.

the Z80 Registers ang
and then at the different types of
You'll find a complete list of these mnemonj,
instructions in the Appendices - 1isted alphabetically ang
numerically by the first byte of their instruction code.
several books available which
greater depth

There are
explain each 280 instruction
r rather like an encyclopaedia and almost as large,
these are general references and do not show examples f
micros like the MSX range,

in
but
or specific
However if one requires more detaileg

information regarding the 280 instruction set then the

purchase
should prove worthwhile,

BASIC has well over 200 instructions - taking into account all the

subtle variations like 'IF-THEN GOSUB'

and 'IF THEN PRINT', z80
machine code has nearly 700

- but don't panic, many of them are
simply variations on a theme.

The difference, as you will have already

appreciated, is that one
BASIC instruction calls up

a host of machine code instructions

When you write in machine code you have to
generate those instructions yourself - although you can,

call up useful routines resident in

within the interpreter,

of course,

the ROM section of memory (as
indeed some of the demonstration programs in this book do).

Scanned by CamScanner
4N

1t is possible to write programs without having a full knowledge of
the entire instruction set - indeed many people do quite happily and
successfully, adding to their knowledge as they gain experience.

The same is true to some extent when programming in BASIC.

For example - how would you do a count of 1 to 1000 in BASIC?

probably: -

10 FOR I=1 TO 1000
20 NEXT
30 PRINT "ALL DONE"

Fine, but supposing you didn't know about FOR-NEXT loops? You'd
probably tackle it this way:-

10 A=0

20 A=A+1

30 IF A<1000 THEN 20
40 PRINT "ALL DONE"

But supposing you didn't know about IF-THEN constructions either.

You'd really have to put your thinking cap on:-

10 A=0

20 A=A+1

30 B=-1*(A<1000)-2*(A=1000)
40 ON B GOTO 20,50

50 PRINT "ALL DONE"

As you can see, the programs become longer - and take longer to run
. _ when the most suitable commands are not used. Knowing all the
commands at your disposal helps you to make your programs shorter
and/or faster running...and your life easier. Usually machine code

_* programs run fast enough even when written the-'long way round', but

11
Scanned by CamScanner

hen a very large qumber of repetitive actions are involved, such a4
whe

in a Chess Game

even a few microseconds knocked out of
a

program,
considerabl

loop can result in @ e time saving when the progranm is
running.
in this book have been written ¢4

the programs
the fastest or

and
e desired result.

Having said that,

principles, are not necessarily

demonstrate
shortest way of achieving th

What do all the numbers mean?

is all about numbers. A number cap

processing unit 1in your
of an instruction tq

Machine coding, as you know,
mean one of two things to the Z80 central

It can mean an instruction or part

computer.
piece of information to be worked op

do something. Or it can mean a

or used in some way. Fortunately, the 280 knows exactly which of

these the number represents (in a correctly written program), and

acts accordingly.

Take an instruction to load Register A with the value '7' (we'll be
discussing the Registers in more detail later). In Assembly
language mnemonics this instruction is written LD A,7 In machi
. % ine
code language, the instruction is represented by the two hex numb
o ' ers
07'. When the 280 sees the first of these it says "3E means I
must load the next number along into Register A" It take th
i ¢ | 5 S u e
» buts it into Register A, then looks to the numb ,
the next instruction So it wouldn't e T
. n i i
exanpie o be confused if it saw, for
, wo hex numbers '3E 3E' - thj j i
1s time it would load 3E

hex (62 decimal) in '
to its Register A
then 1
the second 3E for its next instructi;n ook to the number after

Note that each ingle
sing byt f i to
Yte of information can have a value from 0

FF hex (0 to 2 -
4 . 55 decimal). Let us tak .
etail, e a look at that in more

A byte consj
1sts ;
of 8 bits, each bit being a binary 0 or 1. 8o the

19
Scanned by CamScanner

pinary number 11001001 can be represented thus:-

Bit Nezx -7 6.5 4-3 2 19
Binary Value: 1 1 0 0 1 0 0 1

Wherever a '1' appears in the binary representation, raise 2 to the
power of the corresponding Bit Number, add the results together, and
you have the decimal value of the Binary number. Thus, using the
above example:-

2 to the power 7 = 128

2 to the power 6 = 64

2 to the power 3 = 8

2 to the power 0 = 1 (any no. to the power 0 = 1)
201

So the binary number 11001001 is 201 in decimal.

To convert a binary number to Hex, split the eight digits into two

groups of four (called 'nibbles'). Thus:-

Nibble 'bit' no.: 3210 3 219
Binary value: 13120 0 1001

Left side: 2A3' = 8 Right sides# 2%3+=:8
2A2 = 200 =1
12 g
Remembering that decimal 12 = C in hex, the hex value of binary

11001001 is C9.

Scanned by CamScanner13

How the 280 handles 2-Byte numbers

ons to the 280 tell it to operate not on one byte
_ pbut on two bytes. For example, an ASS@mbly
1,0 HL,49AFH' (the 'H' at the end tellg the
er). Two-byte numbers increase the

Many instructi
_ as in our 'LD A7

instruction might be

r that 49AF is a hex numb
esented from 0-255 to 0-65535 (0-Frpp

1 for addressing or pointing to the

Assemble
decimal values that can be repr

hex) - which 1is absolutely vita

memory locations in your computer.

In the instruction LD HL,49AFH, We want the High byte, 4? (hex) tq
go into the H Register, and the Low byte AF (hex) to go into the j
Register. The machine code instruction for loading H and g
Registers with 'direct' data is 21 hex. When the Z80 sees 21 hex g
an instruction, it takes the NEXT number and loads it into the
Register. That's right - the L Register. Then it takes the
following number and loads it into the H Register. So the machine
code for LD HL,49AFH looks like this:-

21 AF 49 (hex)

Note how, in actual machine code, the order of the two information

bytes is reversed. Now you know why.

When using an Assembler,
- the Assembler Sorts it
machine code by hand

you don't have to worry about this point

out for you. But if you are entering

+ a5 was shown in chapt
the Uﬂ)informatRNIbytes Aty esdl pLer <1« forget the order of

Needless to say, when

l] 13
oading any Register Pair with

I, data (we'll

tge Low byte always appears in the
igh byte. 1p Assembly language

normal way, and let the

You write the

L Scanned by CamScanner

= v

Inside the Z80 chip

The elements that go to make up a Z80 chip include an Arithmetic-
Logic-Unit, which performs all the (simple) arithmetical and logical

functions, a 'control box' which makes sure data is passed in,
decoded and acted on in the correct order, and a number of 8-bit
(one byte) and 16 bit (two-byte) Registers. Just to confuse vyou,

pairs of the one-byte Registers can also be used as two-byte
Registers.

The Program Counter

Let us look first at the Program Counter (PC) two-byte Register.
This holds the address of the NEXT instruction. It is automatically
up-dated every time a new instruction is executed. However, the
address it holds can be changed by, for example, a CALL instruction
(like GOSUB in BASIC).

In this case, the address in the Program Counter is put aside - on

the STACK - and the address CALLed is put in the-Program Counter in

its place. When the CALLed routine is done it meets a RET (RETURN)

command, which takes the two-byte number ON THE TOP OF THE STACK and

puts it back into the Program Counter. Execution then continues

from that address. If you use the Stack (and you will use iky, Lk
is important to remember that the next instruction address after a
RETurn is taken from the top of the STACK. Many a program has gone
wild because a number has been unwittingly left on the stack: on
the other hand, the fact that you know that the address of the next
(apparent) instruction is on the Stack can be useful when, for
example, transferring data to a subroutine,

A number of other instructions also affect the PC Register - jump
instructions (JP or JR) for example. But -for most instructions, the
length of the instruction (including any information data elements)
is added to the PC by the chip's control system, so that it knows

where to look for the next instruction.

Scanned by CamSc:an_ner115

The Stack pointer

te Register: the Stack Pointer (SP), keeps track
-byte

Another-two y instructions enable you, as wely

- an
tack - since W . P
the top of the S iy stack. The Stack area is within the RAM of
tou .
as the 280, LEsals set up by the ROM routines whe,

your computer - and an

you switch on.

, ¢ up your own address for the Stack but yq
u wish set up SACKWARDS in memory. and it uses ,
f it as a plle of plateS, you Cay
but you can't touch tp

You can if yoO
ember that the Stack runs

Think o
them off the top,

must rem
last-in, first-out system.
put plates on top or take

plates anywhere else in the pile.

that it ALWAYS accepts o

delivers two-bytes of data. So, if we put 11A0H, 22B0H and 33COH ¢
the Stack in that order, and the Stack Pointer is loaded with F09;

it will look like this:-

The other point about the Stack 1is

Address Contents
F08B co
F08C 33
F08D BO
FOBE 22
FO8F AQ
F090 11

The Stack Pointer in the 2Z80 will be pointin
of the 33C0H data. If another

-~ 1s put on the Stack, the
(decremented), the first
now pointed to by the s
address igs DECREMENTED aga
hex, is put on the Stack (

g to the last (low) byte

piece of two-byte data - say 4567H
. Stack Pointer is DECREASED by one
(high) byte 45 hex is put into the address
::Ck Pointer (F08A), the Stack pointer

’

and then the low b
te of
at F089). ¥ the data, 67

In our
byte (67 hex) is removed, the Stack

Scanned by CamScanner

SR e e]

pointer is INCREMENTED, the high order byte (45 hex) is removed and
the Stack Pointer INCREMENTED again. So now the Stack Pointer is
once again pointing to the low order byte of the 33C0 hex data.

The 8-Bit Registers

There are two sets of 8-bit Registers:-
A, F, B, C, D, E, H, L
and &' P B eV n B Y 3
(Notice the F and F' Registers have been put next to the respective
A Registers - that's because they are usually associated with the A

Registers, and they have a function all of their own).

only one set of these Registers can be used at a time. Why have two
sets? So that you can 'stop' in the middle of one operation, switch
to the alternate set, carry out an intermediate operation, then
switch back and continue with the original operation. There are

several ways of passing data between one set and the other.
Registers B and C, Registers D and E, and Registers H and L are also

used as Register pairs to hold two-byte data. In a few commands,

Registers A and F are also treated as a pair.

The A Register

The A Register is the Accumulator. It's where Almost All of
the Action takes place. It is like Grand Central Station and in any
program of consequence, it is kept extremely busy. Practically all
comparisons, single-byte adding and subtracting instructions, and

many special ‘'transfer' and 'load' instructions demand use of the A

Register. God bless its cotton socks.

The B and C Registers

Several commands use the B Register or the B and C Registers

‘together as a Byte Counter. (BC = Byte Counter - easy to remember).

Scanned by CamSc:anner17

!

lways bé

d which must 2
A Assembly command, |
ke for example UﬁeDJNThls instruction says ' becrement ~whatever
Ta - |
1umed by Iﬁbel B by 1, and if it is NOT zero as a resultﬁ
. d in Rengter Label' . It's like a FOR-NEX7

value 18 hel

symp £O the - B repe '
junp in BASIC. 4ith the numbe e eeessing - wimies ulth the mas)
e hes 2€I0r

' When B re2® = ecrement and Jump on Nop
register B (Note the mnemonic pgNz = D

; o

instructlon.
Zero) .

Registers B and C as a pair
of large O small chunks of
another extremely quickly,

in this way is held in the

'L,DIR') use
transfer
to

similar commands (e.g.

- permitting for example the
e area in the computer

data from on
to be transferred

The number of bytes
Register pair BC.

Apart from these special uses, these two Registers can be used

together or independently for your own requirements.

The D and E Registers

These too can be used independently, but are used together by some

780 instructions to define a DEstination address. For example, the

DEstination address of a block transfer of data (the 'LDIR'
again) is taken from Register pair DE:
there, of course.

command
you have to put the address

The H and L Registers

instructions,

- so don' taken f
on't forget to put it ¢ rom the content

. These L ‘
Registers are used as a pair fo]
o . r quite
the 'LDIR' command, for exa
ransferred ig

a number of 280
mple, the start address

You'11 1. S of HL Registers
find that there are quite

u to use th
e .
HL Registers to 'point' to

Scanned by CamScanner |

titions required peing held iﬁ

T

The F or 'Flag' Register

This is a very important Register indeed.

Unlike the other 8-bit
Registers,

You cannot load data into it in the
purpose is to hold Flag

operation undertaken,

normal way. Its

logic and arithmetic

and for some other instructions, to
status. The important point

'tested' to provide,

results of any

'flag' a
is that some of the Flags can be
for example,

conditional jumps, calls or
returns.

NOTE THAT WHILE MOST OF THE INSTRUCTIONS AFFECT SOME OR ALL OF THE

FLAGS, FLAGS REMAIN IN A CURRENT STATE UNTIL AFFECTED BY A

SUBSEQUENT INSTRUCTION. This means the state of a Flag can be

tested several instructions after the instruction that affected it
- but do be sure that the intermediate instructions do not affect
the Flag in question. This feature can help to reduce the amount of

coding needed. For example, all but two of the 'load'
do not affect the Flags at all.

instructions
So if one of two subroutines are to
be called, depending on the status of a particular Flag, and if both

subroutines require the same 'load' at their start, then the 'load'
can be done before the conditional test is made.

Certain bits of the Flag Register are allocated to specific
functions, as follows:-

Bit Number: =7 65 =4 =3 2910
Function: S8 2 - H - P/VN C
Testable: * * * *

The 'Testable' line indicates which of the Flags you can test in one
way or another using the instructions available. Now we'll look at

the functions of each one-bit flag.

19
Scanned by CamScanner

nificant pit 1in the
: [}

including 'shiIts’. whe

L& 'repeats’ the valye of

" e most sig
The Smgjﬂﬁiﬂﬂ»flég v the value of th

gic operations
ter,

L] r opea t S
arithme

This Flag tic or 1o _

result of an into the A Regls
: s transfeffed -

a byte i

byte.

i+ of that

¢+ significant ik & : sed to ing;
the mos ’ " significant) is u dlca
e moS

te
ment' notation, for exap

Bl
: bit o)
This means the binary Numy,

le
'two's comP . ;
ticular condition. In . gt later in this chapter),
e ich is
f whic

In many instances.

a
: ssion ©
{a brief discu number -
GN of the 128 to +128.
cepeamenie LIS 55 long but represent from L this
bits ’

EGa

' ' ual to a Ty
SET O(Tq'f the number is POSITIVE. Bit - B
1 ' i

: L]
a role when a program 1S ‘“communjq,
such as a Printer. The s Flag o

ers

are only 7 11') if the number ig y
it 7 is

instance, Bl

and 'RESET' (equal to

data byte can also play

with input/output devices,

a byte to be tested.

nables
Bit 7 of such

b of Assembly commands allow the S Flag to be tes
A number

L} L}] .
dding a 'P' (is it Positive?), or an 'M' (is it NEGATIVE?
a in
command JP (Jump), for example, can be turned

ted,

By

‘nte a conprq,
] .
jump by the addition of P - ' JP P,Label’. This testg the g

and if it IS positive (i.e., equal to zero) as a result

by
The
ONM
Flag,

. . Some
previous action, then the jump will occur.

Otherwise Processhq

continues with the next instruction.

The Z or Zero Flag

This Flag is wused to indicate whether or not the
arithmetic operation is zero,
succeeds.

reSU.lt of an

or whether ' '
Or not g comparlson'tﬁt

When a result is Zero or

d Comparison test Succeeds,
set toa '1"',

. the 2 Flagis
it is reset toa 'g',

Otherwise,

The Z Flag can be tested b

Y adding
Non-Zero?)

t ‘' (is it Zero?) or 'Nz' (isit
O certain Assembly commands. For example, 'RET !

ero : o i
) Provides a4 conditional return from a subroutine:

! Scanned by CamScanner

The s
Decir
affe

sign

Fing

Flag

The
(is
exec
C€ong
Car

|

a previous operation has left the z Flag set to '1', a RETurn will

be made. Otherwise Processing will continue with the next

you don't have to worry too much about
the actual value of the Z Flag bit - the 280 looks at it

E accordingly on your behalf),

instruction. (As you can see,

and acts

The H or Half-Carry Flag

i This Flag is wused by the computer during Binary Coded Decimal

arithmetic operations, to indicate whether or not there's been a

cagry Lrom bilt 3 to,. bit. 4. It cannot be used in any conditional

tests.

. The P/V or Parity Overflow Flag

% This Flag has three functions. Some instructions set or reset it
§ according to whether the byte of a result has an even number of '1's

| (Parity Even = Flag set to "1"), or an odd number (Parity 0dd = Flag
.~ reset to "0").

The second use of the P/V Flag is to indicate, during Binary Coded
Decimal operations, whether or not Bit 7 (the 'Sign' Bit) has been
affected by an overflow from Bit 6, thus accidentally changing the
sign of the result,.

Finally, during block transfer instructions, such as 'LDIR', this

Flag is used to detect whether the counter has reached zero.

The Flag can be tested by adding 'PO' (is the Parity 0d4d4?) or 'PE'
(is the Parity Even?) to commands used to transfer program
execution, For example, a CALL command can be turned into a
conditional CALL if the Parity Flag is indicating 'odd', by writing
'CALL PO,Label' instead of the unconditional command 'CALL Label'.

Scanned by CamScang@ér

The N _OF gubtract Fla |

used DY the 280 during its own Binary coded Decimais
is ;
: and cannot be tested.

The C or Carr ’Flad e i pirst, it is used to indicate whethet

This Flag sulted in a 'borrow'.

i g re o
t an addition or subtractlon ha a

or no i1 48 set to nqn, Otherwise it is resg

borro¥ hes oc.:curedr :zison commands (e.g. CP B - which compareé thy
to "0". smce. COmPB sith the contents of Register A) are'aChleVEd
contents of.Reglsteremcted Register £rom Register A (and dlscarding
B theC‘ery Flag can indicate whether tl.le selectgy
the‘ristl;;; at}\:tlue greater than that in Register A (wl.uc;lepzoiuces
:ei:irj), or has a value equal to or less than that 1n Re€JiSter,

(which produces a No Carry). Very useful.

The second use of the Carry Flag is in many of the rotate and shify
instructions - which move data along the byte one way OT the othg

in a particular manner. For these instructions,

the Carry Flag i
used as a 'ninth' Bit. For

example, the RRA Assembly commang
(Rotate Right the Accumulator - Register A), moves Bit 0 of Register
A into the Carry Flag, moves whatever was in the Carry Flag into Bit
7 of Register A, moves what was in Bit 7 to Bit 6 - and so on. Thus,

this particular command effectively rotates the information held by
the bits round one and includes the Carry Flag in the process.

With logical commands AND,
'0' (No Carry).

OR, XOR, the Carry Flag is always set to
the

. . AND A and OR A will leave Register A intact, since
Register is being ANDed or ORed with itself
I

whilst XOR A not
only clears the Carry Flag but also clears Register A
14
elf.

b , . ' gt as there can
€ no “exclusive' bits if it is being XORed with its

Th
ad;tflag can be tested to produce d
e o comman
of 'C (Carry) or 'y (No Carry) to the ¢ ds e
be turn i EF)
ol 'ed Into a CALL if the carry Flag is set, by
el' insteaq of 'CALL Label. '

conditional
CALL commang can

writing 'carpp 2,

22

Scanned by CamScanner

WP 2 B ey S F ARSIy P e
i L

gow the Commands affect the Flags
How LIS

rThe following Table shows how the Flags are affected by various

Commands not listed - e.g. 'PUSH' and most 'LD'
please note that, where

Command has not been

types of Command.
commands - do not affect the Flags at all.

the 'Register' element of the

unnecessary,
included in the Table: thus the OR command could be OR A, OR B, OR C
and so on - all having the same effect on the Flags. Only those
Flags that can be tested have been included.
FLAGS
G Z P/V S
COMMAND
ADD A,ADC,SUB,SBC,
CcP,NEG 4 Fi ?V ?
AND, OR, XOR 0 2 2P ?
INC,DEC - 7 g 2
ADD RR,CCF ? - N 5
RLA,RLCA,RRA,RRCA ? = " -
RL,RLC,RR,RRC,
SLA,SRA,SRL,DAA ? ? 2P ?
SCF 1 - - -
IN = Z 2P 74
INI,IND,OUTI,OUTD - ?
INIR,INDR,OTIR,OTDR - 1
LDI,LDD | = ?
LDIR,LDDR - 0
cpI,CPIR,CPD,CPDR - ? ? ?
LD A,I; LD A,Rj - 4 IFE 7
BIT - ?
23

Scanned by CamScanner

¢ the ©
REY: cgul
s ® ﬁﬂﬁﬁﬂdﬁ on the i . resu1t
£ L " 3 ‘
rd pepends © the e gt
rij pepend on over 10
; Flag reset to zero
v ‘ et 1 retalned
1 ;:“: unaffected: previous gtate
s o -flop | i
. rupt £11P ; jnformation
- yrine o T Ehe Flags contaln 1rrelevant .
pblanks,

where there are
tests available for JumP , CALL,Jum

the conditional
RETurn commands:
result is zero, act.

the result is Not Zero,
act.

T summarise

pelative and
2 - If

NZ = 1f

act.

there's a Carry.

c = If
NC = If there's No carry, act.
po = If Parity 1is odd, act.
PE = If Parity is even, act.
'positive (s=0), act.

If the Sign Flag is

If the Sign Flag shows a minus (s=1), act.

P

The Index Registers IX and IY

W
e now come to two very valuable 16-bit Registers in the 28
e 0, the

I e 9 1 i

set' of Index Registers:
the A to F Register sets.

their contents are accessible to both ﬁ

The 'load' instruction comma

(indeed must, even if it' nd? related to these Registe n

enables, for examgl;f ;:ts "t S displacementvajue. ?ST;?S

the Register Iy or: . a tabl?s to be very easily set up, using

displacement to point t bt potntiitg.gSipaaeieadlizessy and the
| 0 the particular place required in the table.

ATl €Xample : .
pl will hel ing we .dec]dr
P to expla}in thissa Suppos' ide to h a
_ ave

Scanned by CamScanner

rable of information that contains a number of names, addresses and

telephone numbers. We allocate, say, 20 bytes to cover the name
data, 60 pytes to cover the address data, 12 bytes to cover the

telephone number data.
our Table will then consist of a series of chunks, cach 92 bytes

(20+460+12). We know that the telephone data for any name

long

pegins at the 80th byte from the start of the name. 1f we 'point'

the IX Register to the start of the name in the Table, we know that
This saves counting out the

the Telephone data will start at IX+80.

to get to the correct address. A typical program might look

bytes
1ike this:-

LD B, 11
LD IX,NAME3
LD DE,BUFFER

GETTEL:LD A,(IX+80)
LD (DE),A
INC IX
INC DE
DJNZ GETTEL
Next operation

The first instruction sets up Register B as a counter.

The second instruction loads up the IX Register with the 2-byte
address we require - that for NAME3.

up Registers DE to point to a BUFFER

instruction loads
the Telephone number - possibly for

The next

area, Wwhere we want to hold

printing out.

start of a little loop which will collect the

We collect one byte,
increment the value

he next address along),
B reaches zero.

We then come to the
bytes of data from the Table.
‘the value in the 1X Registers,
Registers (i.e mOVE both to point to t
collect another byte and so on until our 'counter’,

then increment
in the DE
then

| 25
~ Scanned by CamScanner

wl

gimilarly. DD (DE)
n the Register

Note that LD A,(IX+80) means load Register A

be found at the address pointed to by I1x+80. ;
i

means load the data byte in a into the address held

palir DE.
The IY Register can, of course, be used in a similar way. As weh
as 'loads', the Index Registers can be used for ADD, INC, RLC, By
and SET commands - INC (IX+80), for example, means go to the addre
Sy

pointed to by IX+80, and whatever byte is stored there,

add
it et

How big can the displacement value be? Glad you asked - because th
g

displacement value is treated as a signed number. That means jt

Can
be 7 bits long, with the Most Significant Bit representing the sig
of the value. So, to answer your question, the displacement valyg
can be anything from -128 to +127, '0' being treated as a POsitjy,

value.

The I and R Registers

Two more 8-bit Rregisters exist in the 280 which can be accesseq
by commands. These are 'I', which stands for the Interrupt-Page
Register, and 'R', which is the Memory-Refresh Register.

The I register is used in a special interrupt mode of operation to
which the Z80 can be set (by command), and it stores the high-byte
of an address that will be called in the event of an 'interrupt'
process. The low-byte is generated by the device generating the
'interrupt’'.

Let us briefly examine the concept of an interrupt.

When you write
a program, providing all is well,

it will run the way you want it
to, branching to subroutines

scheduled. However, some input/output devices dema
while your program is running quite happily

The 'video ispla
Processor' (VDP) in your MSX ig one of thesge Display

'devices’,

Scanned by CamScanner

an interrupt signal is sent by the device to the Z80. It says 'Hang
on, I need attention'. Your ‘'main' program stops while the
interrupt request is attended to - in the case of the VDP it is to
1refresh' the screen display - and then control is passed back to
the main program, to continue where it left off (see footnote).
The programmer can call on the interrupt process himself, and
| jndeed, you'll find a ‘'hook' at address FD9A and FDIF which is
. accessed 50 times a second. A Hook is 5 bytes in RAM which are
L initialised to Returns (they contain code C9 for RETurn) and the
? user can utilise these 5 bytes to do a CALL nnnn to his own

interrupt routine and return to the main program.

There are three interrupt modes, called up by the commands IM 0, IM
1, and IM 2 In Interrupt Mode 0 - which is the mode your machine
is in when you switch on - the external device must provide the

1
? instructions for what it wants the 280 to do when it makes an
|
f
|
:

interrupt request.

In Interrupt Mode 1 (which is the mode the ROM places the 280 within
microseconds of you switching on), when an interrupt request occurs
an automatic jump is made by the 280 to memory address 38 hex. The
current location of any program running at the time is, of course,
temporarily stored so that after the interrupt routine is complete,
§ a return can be made to the original program. This interrupt mode

always calls to address 38 hex. On the MSX, 38 hex provides a jump

to the Hardware Interrupt routines at address 0C3C hex.

Footnote

Users who require further informa
'Behind the Screens of MSX Home Computers' by Mike Shaw,
on of the VDP and the way it is

tion on the VDP should refer to the

- publication
which examines in detail the operati

used in the MSX.

Scanned by CamScannery7

E—
5

cpat it ST
2 oxcePt ~ _ypplied by
d operates in a 51m11arm i 7 ne,’] Of cha |
The thM mo 128 addresses (insted conteﬂt :
.ng to on€ of the o the callin,
il gevice 1im conjunction wi pyte £r0 3
calling Jress
:hester Note that bit o of the ad
egl
ro.
device 15 always 2€
.de the 2-b
inted t plus the next addressr prov? . Yte
ooy P . ' routineé;, to which control 1S then
address of the interrupt handling
passed.
ensure that an interrupt

necessary to

specific process:
this - but for heaven's sake

that part of your program ig

ams it may be
a Dissable Interrupt

remember tq

In some progr
does not occur during a

command (DI) lets you do
Enable Interrupts (EI) again when

complete.

Finally the Ref 'R’ i : is] '
j ok ' resh 'R' Register: this 1s provided to refresh
ynamic memories automatically. You can use this as a kind
'softw ! i o
o afe c':lock , but since its values run only from 0 t f
ima i
» it's not exactly the most useful Register availab °
vailable.

Scanned by CamScanner

TR T RN R RS

THE ASSEMBLY COMMANDS

There are a number of ways to classify the many Assembly commands
you have at your disposal. We are going to herd them together under
five headings to cover instructions which:

Transfer data from one place to another
Manipulate and test the data in some way

Re-route program running sequence
Handle input/output devices
. System controls

(6, B - VR S
L]

Before we go into the commands, it may be useful to spend a few
brief moments looking at the way a command is carried out by the
ZBO -

Every instruction is executed in three phases. In Phase 1, the
instruction is fetched from the correct place in the program. The
Program Counter tells the Z80 where to 1look (we dealt with this
earlier). The first - perhaps only - byte of the instruction is
then placed in a Register the Z80 keeps all to itself (called,
believe it or not, the Instruction Register). In Phase 2, the
instruction is decoded by the Z80 - that is, it sets up the cycle of
operations for the third phase, which is to actually execute the

instruction.

Each phase operates within finite steps, called clock cycles or T-
States. The cycles themselves operate in 'machine cycles' - called
'M Cycles'. The shortest machine cycle lasts three clock cycles.
Now as each cycle means a discrete unit of time, the more cycles an
instruction needs for its fetching, decoding and execution, the
longer it takes to execute. Pretty obvious really.

“Scanned by CamScannezrg

=y

y speakingd the more bytes theraz

; il

' his 315s genera

ne point ot all t . R t
The i n jpstruction: the longerl it takes to execute owever, t,
are to 8 - . |
v emplexity’ ©f the {nstruction also plays a P y o som,
T et o s of the same byte length. P,

or than otherl
Register pair pp

rake lond
while DEC A, also,

e instruction to Decrement

g T-States:
4 T-States. DEC & i,

econd if the clock j

Lnstructicns
the one-byt
1 machine cycle,
takes 1 machine cycle,

miserable micros
ss at 3.58 MHz on

exanple,
ppc BC - takes

one byte instructi
States - or one€

on,
faster by 2 b 1o
the MSX.

at 2 MHz. or even le

*running’
this discussion on maching

achine coding,
cope with: it i

to m
should be quite
his book to disc

t becomes important on
most machine

the newcomer
enough to

uss the actual
ly when one has gaineg

code programs run

For
cycles and T-States
pbeyond the scope of t
since tha

As mentioned before,
y fine pruning.

speed of every

instruction,

experience.
quite fast enough without an

The 'Brackets’ Convention

finally get down to the commands, there is one

Before we
tly clear about - and that is the use

'convention' you must be perfec

of 'brackets' within a command.

we want the address
If we

An address can be referred to in two ways. If
itself, it is written in the normal way - 1234H, for example

wish to
refer to the CONTENTS of the address, then the address is

placed in brackets.

the Low byte i i
goes into Register L (34 hex), and the High byte goes

into Register H (12 hex)

The command 'L

D HL

Mhom, . %5 -Hhie neXtever byte you find there, put it in Register L.
address - 1235 hex - and put the byte you find:

30

7otk

Scanneo!__ by CamScanner .

T *

there into Register H'.

(Look back a few pages to refresh your
memory on how the 280 requires addresses to be stored). So if

addresses 1234H and 1235H hold bytes 89 hex and 67 hex respectively,
then HL will be left holding the value 6789 hex after this command.

Similarly, take the command 'LD A, (HL)'.
address pointed to by Registers HL,

This means 'go to the
and put the byte you find there
HL Registers had been 'set up' to hold
1234H, then whatever byte is at that address (in our example above,

it was 89 hex) is loaded into Register A. If HL Registers had been
'set up' to hold 6789H, as in the second example above, then
whatever byte is at the address 6789H gets loaded into Register A.

into Register A", If the

:
% Note that the command 'LD A,HL' cannot exist, since you will be
|

trying to load two bytes of data into a one-byte store. Even an MSX
computer can't do that.

1. Data transfer commands

In this section, we will be looking at all the different ways you
can shift one or more bytes of data from one place in memory to
another - and that includes shifting data around the Registers

LT T W DU RN N

themselves. For convenience, it also includes the 'creation' of new
data - that is, loading a Register with a specific value rather than
a value to be found elsewhere in RAM. What we won't include in this

T N N T SN o ey g

section are the commands which read or write to input or output

devices.

You may think this an obvious point to make, but we'll make it
nonetheless: data remains in an address or Register wuntil it is

'overwritten'. Thus, if we say 'Load Register A from Register B (LD
_ A,B) then both Registers A and B will be holding the data that was

T R Ty T O U P PN vemauer

in B, and the data that was in A will be lost.

Scanned by CamScanner

The g-Bit Load Grou
achieved by a straightforward P
: Oqq

i sfers are
all g-bit tran d
truction which takes the followingd format:
ins
LD destlnation,source
; p B.D -~ which means load
Thus a typical example might be ' th
into Register B.

The following tabl

A B
Load Dest.
A X X
B X X
C X X
D x X
E XX
H x X
L xX
(HL) x x
(BC) X
(DE) X
(IX+d) x x
(IY+d) x x
(nn) x

e shows the 8-bit load commands available: -

Source of the load

H L (HL) (BC) (DE) (IX+d) (1Y+d) (nn) n

CDE
XXXXXX X X X X X X
xxxxxx X X X
XXXXX)(X X %
xxxxxx X X x
X X X X X
X X X %
X X X X X X
X x X
X X
X X X X % x «
X X X X X
X
X X X
X

tion
SOource'
€ . The x's denotf

Scanned by CamScanner

ading across the top line, you can have as valid commands: LD

go ré€
LD A,B; LD A,C; and so on. Notice that no command 1is

A,A7
available to load Register D from the address pointed to by Register

pair BC (i.e. there's no LD D,(BC) command). Sad - but no problem.

in the Table, 'nn' means a two-byte number, which could represent an
address. You'll notice that only Register A can be loaded from the
contents of a specific address (top line - LD A,(nn)). Also, at the
end of the Table, you'll see only Register A can be loaded into a

specified address. Let's discuss the ramifications of this.

1f you want to load a specific address with a data byte, Yyou can
cither do it by first placing the data byte in Register & [LE- 2L
jsn't already there), then do a '"L,D (nn),A' command (nn being the
required address). Or - take a look at the horizontal line for
'"(HL)'. If HL is loaded with the desired address - i.e. LD HL,nn
(we'll come to that command later on), then data from any of the
Registers A,B,C,D,E and yes, even H and L can be loaded into the

desired address - using the LD (HL), 'register' command.

If you study the Table, you'll see that the same applies 'in
reverse' - that is, you can locad any of the Registers (including H
~ and L.) from the address pointed to by the HL Registers (vertical
: column (HL)). Thus, you can write LD C,(HL) - meaning load

Register C with the contents of the address pointed to by HL. Easy

isn't it, when you know how.

Now let's 1look at another aspect of this Table - that 'n'
. the right hand side. As you've probably already guessed, 'n' stands
:% for a data byte - any value from 0 to FF hex or 255 decimal.

column o

. Notice, now, how you can load a specific byte of data into the
| address pointed to by HL - the LD (HL),n command,

% You may wonder, looking at the table, how you can load for example
. the contents of Register D into an address pointed to by Register
pair BC - that is, how do you cope without a command LD (BC),D.
Well, good Register management, in the first place. But that isn't

Scanned by CamScann&3

ibl so you'll have to transfer the data in D tq
always feasible.

(having first 1saved' A somewhere,
A, D; then simply use LD (BC) ,A.

Four commands missing from the Table

but will not be required for a while are:-

LD A,I (load A from the Interrupt Register)
LD A,R (load A from the Refresh Register)
LD I,A (Load Interrupt Register from A)

LD R,A (load Refresh Register from A)

The 16-bit Load group

DN G

if you want to keep it), using‘L{

which were discussed earli%ﬁ

The basic format for 16-bit (two-byte) data loads is essentialh_

the same as that for 8-bit loads, namely:-
LD destination, source

There are however some important exceptions, which we will come to

in a moment. Since we are talking about two-byte loads, either the

source or the destination must, of course, be a Register pair.

The following Table shows the commands available within the format
'LD destination,source':- |

Source of the load

BC DE HL SP IX IY nn (nn)
Load Dest.

BC
DE
HL
SP X < x
IX
Iy

- - -
®oOoM X M X X

£

34

Scanned by CamScanner E _

e jook a very busy Table, does it?
example - directly
say, Register DE,

It would appear that you
load Register pair BC from the

Appearances are correct: there is no

But as we shall see, this isn't really a problem.

In the Table, 'nn' of course represents two bytes of data - which

cou
operati®

1a be an address, or simply

a number for some arithmetical

n - while '{nn)' represents the CONTENTS of address 'nn'.

probably the most important things to notice about this table are

the

apsence of the A Register in a pairing, and the fact that the

stack pointer Register, SP, can be loaded from the contents of

Reglster

pair HL, or the two-byte Registers IX or IY, or with an

jmmediate address -'nn', or from the contents of a specific address
_ "{nn)"'. So there are several ways to set up the Stack Pointer
_ or even to change it during a program (as long as you know what

you're doing).

The reverse isn't true, however: as far as load - LD - commands are
concerned, the SP address can only be loaded into '(nn)' - to save

its value.

Now, what about

the other ways we have to transfer two bytes of

data, and what about the poor old A Register? What the Table could

have shown is an extra column and an extra row headed (SP) - that
is, for example, a LD (SP),BC command, or a LD BC,(SP) command.
These functions are possible - but they are not invoked by this type

of command.

Let's see what LD (SP),BC means. '(SP)' means the contents of the

address 'named'
the stack. so

Pair BC onto the
Register pair BC

both instances,

'updateq after

in the Stack Pointer Register. That's the top of
'LD (SP),Bé' means - 'put the contents of Register
Stack'. Similarly, 'LD BC,(SP)' means - 'load
from the contents at the top of the Stack'. In

the address held in the Stack Pointer Register is
the transfer of each byte (see the earlier

d .
1scussion on the Stack Pointer).

Scanned by CamScannegs |

S

There is @
n the stack,

to put the contents of a Register
s own

command all of it nand to take two bytes off. The

and another com

pair © 4 POP, respectivelY-

PUSH an
commands are
: isters you can PUSH ang
ister pairs and two-byte Regls
Reg
These are the

POP: -
AF,BC,DE,HL,IX,IY
| i i n the Stack, you
the contents of Register pair DE o |
Thus, to store e i o

to
can write PUSH DE. And to get the data at the

DE, you can write POP DE.

You noticed, didn't you - Register pair AF can be PUSHed and POPed

to and from the Stack. That's so you can conveniently put aside
what may be important data in both or either the A Register and the
Flag Register.

Now, what about that poser we set earlier - loading BC from DE, for
example. How do we do that? There are two ways. One, you can PUSH
DE, then POP BC - that puts DE's data on the Stack, then reads it
off into BC. Method two - use the two single-byte load commands, LD

B,D; LD C,E. Both methods work, both methods

are exactly two
instruction bytes long,

both methods are used quite

_ extensively.
But, the PUSH and POP methog makes the 2780 look 'beyond' itself and
into RAM area . to execute the commangs - whereas the LD

Register,Register method doesn't,
.method is faster (by 16 T-States,
put the two byte data that's
-~ 1into @ Register pair,
Stack, Notice,
the Registers.

So the 1p Register,Register
as it happens),

in one of the Index Regi
then yoy have ng option byt
r You do not Specify the
IX, not PUSH IX+d.

If you want to
sters IX or IY
though to go via the

it's pusy 'diSplacement' with

Scanned by CamScanner

rhere are some more commands that enable You to shift two bytes of

jata from one place to another,

they are:-

They are called 'Exchanges', Here

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX DE,HL
EX AF,AF'
EXX

An Exchange is different from a load, in that the contents of both
places designated are 'swapped'. Thus, the first three commands
swap the contents at the top of the Stack with the respective
Register named - HL,IX or 1Y.

For example, when a subroutine is called (through a CALL command)
the address of the next instruction after the CALL is put on the
Stack. That's the address that will be put back into the Program
counter when a RETurn is made from the subroutine. But supposing we
choose to put after the CALL command not the next instruction, but
an item or items of data that we wish to pass into the subroutine.
In the subroutine, we do an EX (SP),HL command. So now what was in
HL is on the top of the Stack, and what was on the top of the Stack
- the address of where our data is - is in HL. We can pick up the
data now by doing, for example, a 'LD A, (HL)' command. Now - and
this is important - we increment HL so that it points (or 'bumps')
over the information byte(s) to the address of the next instruction,
and then do another EX (SP),HL. The correct address for the next
instruction when we RETurn is now in the right place ready to be
picked up by the Program Counter, and we've passed data into the

subroutine for processing. That's by no means the only way to pass

data into a subroutine, but it is a useful way.

The EX DE,HL command is invaluable when doing arithmetical

Operations, or when you want to exchange a DEstination address in DE

and a source address in HL.

37
Scanned by CamScanner

contents of the three Register pairg
the second Register set

the AF Registers - they

anges the

The EXX command exch
counterparts in

and HL with their
But not, you'll notice,
The information contained in the

merely 'held in abeyance', sq
onto data without

BC,DE
- Bc', DE' and HL'.

have their own command EX AF,AF'.

second Register set is not worked on,
temporarily holding

r using the Stack. However, you'l]l
cond set is used quite extensively to
so if you unwittingly wipe out
you could have some

you have another way of
setting up storage addresses O
find in some computers, the se
handle interrupt routines and so on,
or leave 'strange' data in the second set,

peculiar things happening.

Scanned by CamScanner

The Blo

to be transferred from one place in

c

A

we

ck Transfer Group

now come to the commands which enable

ommands and their functions are:-

LDI

LDIR

LDD

LDDR

11 of these

commands

Load (DE)
Increment

Decrement

Load (DE)
Increment

Decrement

from (HL)
DE and HL
BC

from (HL)
DE and HL
BC

Repeat until BC = 0

Load (DE)
Decrement
Decrement

Load (DE)
Decrement

Decrement

from (HL)
DE and HL
BC

from (HL)
DE and HL
BC

Repeat until BC = 0

transfer

RAM memory to another.

any number of data bytes

These

the data byte found at the address

pointed to by the Register pair HL, to the address pointed to by the
After each data the value held in
(Obviously, these three Register
block transfer command

Register pair DE. transfer

Register pair BC is decremented.
Pairs must therefore be 'primed' before the
is invoked).

In the case of the LDI and LDIR commands, DE and HL are incremented

after eath transfer, while for the LDD and LDDR commands they are
decremented after each transfer. Thus HL and DE are always left
Pointing to the correct addresses for the next data byte transfer.

Scanned by CamScanner
29

of data continuesg

sfer
nds the tran |
" ' ocessing continues with the

LDDR com
nd h point PT

with the L € at whic
i1 BC pecomes zexroy
untl

command'
next h the next

cessing continues wit

pro
s to be taken

enables other action
_ though you must remember not tqg

DE,HL, OT BC Registers (unless that is all
the DE,BL, LDI and LDD commands set the P/y

D commands.
with t b
command after each

pefore the next tr

the values in

ansfer of data

'upset' e

part of your cunning program) . tTBC b e The following progran
i decremen : i

Flag to zero if they sta bytes that have their most significant

11': the program assumes that
jon and Source 'start'
number of bytes

will transfer only those d
1get' - that is, equal to

en set up with the Destinat
to count the maximum
s equal to B R

bit (Bit 7)
pE and HL have be 7
and that BC is set

addresses, . '
, and transferred if Bit 7 i

to be examined

NEXT:LD A, (HL) :Get 'next' byte

BIT 7,A ;Test top bit

JR NZ ,MOVE :Byte wanted - shift it

INC HL ;Byte unwanted - increment HL

DEC BC ; and decrement the counter BC
TEST:LD A,B ;Check if BC is zero

OR C ;by ORing B with C

JR NZ,NEXT ;Do it again if BC not zero
JR DONE +BC is zero - so finish
MOVE:LDI +Move the byte

JP PE,NEXT ;Do again if BC not zero
DONE:Your next command

I
nstead of the 'gp PE,NEXT'

relative jump back to the
BC has reached

command after the LDI, one could .dO a

'TEST' i
point - JrR 7g '
= zero after = e
| onstrate the use of the gp P
| cannot do 3 Relativye J
ore about thisg
r

checks if
But we wanted to
et e incidentally, one

' 9 for parity. But
S 'BIT 7,A',INC and DEC later.

being decremented.

E command
. Not
ump (JR Labe]) =

and the other command

40
o Scanned by CamScanner

Jou Y ask why do we need both LpIg
o

v w LDDR comm
v i e a
e ne er |O er rlt d ndS.

It is so
data we want to shift,

ghat ¥

quppose £OF example we want to shift a data block of 1001H bytes
¢rom g000H to BS?OHT If we use the LDIR command with HL pointing to
§000H and DE pointing to 8500H, the first byte will be transferred

grom 8000 to 8500H - overwriting data within the block of 1001H
pytes we're going to transfer,

In this instance, we would wuse the

LDDR command - and set the HL
jster to point to the END of

Reg the block we wish to shift (i.e.
9000H) , and DE to the END of the destination area (i.e. 9500H). So

now, by the time DE has been decremented to 9000H, we've already
shifted the data from there, so it's o.k. to overwrite it.

2 Data manipulation & test commands

The 8-Bit Arithmetic and Logic Group

The simplest arithmetical operation that can be done on a single
byte is to add one to it (INC) or deduct one from it (DEC). These
operations can be performed on the following Registers and addresses

pointed to by Registers:-

A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)
The 2, P/V and S Flags are affected as a result of the operation.
The rest of the operations in this section ALL operate on Register
A: the OTHER data byte source - even if that is Register A as well,
must be specified. The following sources can be used for the

A, B, C, D, H, L, (HL), (IX+d), (IY+d), n

Scanned by CamScanner
41

i F 4 value.
ecific
represents a SPpP
’ of course
The 'n

] are: -
The commands available
DD A; ADC A; SUB; SBC; AND; OR; XOR; CP
A ’

We will examine each command:-

the
A Register, leaving If the result
and A hplgg the
'ADD 3,3
l1!

exceeds FF hex (255 decimal),
result minus 256, Thus,

With FF hex in Register A
result in a holding "1

and the Carry Flag set to

woulg
1 4

ADC A (examples

- ADC A, B;
This jg

ADC A,(HL);
€Xactly the

same
contents of the Carry Register
also addegq to Register A, Thus jf the
Register A holds 21 hex, 'ADC A2
because the Operation dig
would be reset to zero.

ADC a,?2)
as the app command,

€xcept that the
before the

OPeration Commences are

Carry Fla
results in A

not require a

g is set and
holding 24 hex

'carry‘, the Carry Flag

SUB (examples - SUB B;

Note that Register A
i.e.

SUB, (HL); sup 2)
is not
Subtract the contents of
Specified data from Register A

As with 'ADD', the Flags are 4

42 Scanned by CamScanner

s - SBC B; SBC (HL); SBC 2)

¢ C (example

;;ﬁlar to the SUB command, except that the contents of the Carry
a9 are also subtracted from Register A.

Fa

AND(examples - AND A; AND (HL); AND OFH)

;;; performs 2 logic AND function between the A Register and the
specified data byte, leaving the result in Register A.

'compare the two bytes, bit by bit. If both bits are

g' means
corresponding bit of the result will be a '1'.

then the
Iol l.

'ANDin

a 1
otherwise it's

thus, with 0A7H in Register A, 'AND OFH' produces:-
10100111 (A7 hex, 167 decimal)
00001111 (OF hex, 15 decimal)

Result = 00000111 (7)

'mask' - that is, to

This technique is often used to provide a
The 'masking' data

that are not wanted.

eliminate parts of a byte
- covers that part of the data byte we

. in the above example 'OFH'

want to keep.

ANDing always resets the Carry Flag to zero. Thus AND A will reset

the Carry Flag to zero, and leave Register A as it was before the

operation: this comman
Flag without upsetting Register A.

d can therefore be used to clear the Carry

OR (examples - OR A, OR (HL), OR 80H)
This performs a logic OR function on

Tesult in the A Register.

the A Register, leaving the

pit by bit. If either or

] »
ORing' means 'test the two data bytes,
in the result will

both bits are a '1', then the corresponding bit

be
a "', Otherwise it's a '0"' '

Scanned by CamScaer

s:-
80H produce
Thus with 1B hex in Register A, OR

imal)
00011011 (1BH, 27 decim

‘mal)
10000000 (B0H, 128 dec%mal)
ma
Result = 10011011 (9BH, 155 decl

. te: 1if A for exa
This can be a useful way to add in bits to a.?i Ol e Mplg
holds a value between 0 and 9, OR 30H wi Ascy,
code for that number.

OR always clears the carry Flag, and affects the other Flagg

according to the result, Thus, OR A leaves Register a unchangegq, but
clears the Carry Flagqg.

XOR (examples - XOR A, XOR (HL), XOR OFH)
This performs a logic

XOR function on the A Register,
result in the 2 Register

leaving the

'XORing' means 'compare the two data bytes bit by bit,
'1' and the other is a '0!

will be set to gz e L
A holds 14H, then XOR 1

If one is a
the result
« Thus if Register

+ then the Ccorresponding bit of
Otherwise it will be 'g'

7H Produces: -

00010100 (141, 20 decimal)

00010111 (17H, 23 decimal)
Result = 00000011 (3)

XOR always resets the Carry Flag, and
according to the result. XOR A must always Tesult in Register A
becoming zero - thus this is a useful commang to clear Register 3

and the Carry Flag to zero: the Zero Flag wil) be set to '’
- meaning the value of Register A is zero,

affects the other Flags

Scanhed by CamScanner

s - cp B, CP (HL), CP 9)

o (example R specified data byte f
= . subtrac Tom the value held j
hi$ AND DISCARDS THE RESULT: S

ter A ¢ thus, only the Flags are
ged? 3 by the command.

c
afte

i reater tha i ' -

i rest byte is g D that in Registe® A, then the Carry
;1a9' gill be sets
e rest byte is the same as that in Register A, then the Zero
; .
ag will De set-

i the test byte is equal to or less than that in Register A, then

he CArTY Flag is reset.

The Sign Flag and the P/V Flags will be set or reset according.fo

the value in Register A.

The 16-Bit Arithmetic & Logic Group

As with the 8-bit Group, the simplest commands in this Group are
INC and DEC. These commands can be used to increment or decrement

Register pairs:-
BC, DE, HL
and the 16-bit Registers:-

sp, IX, IY

"ote however that, unlike the 8-bit INC and DEC, for the 16-bit

Versions, the Flags are completely unaffected.

The ; nds available
follo“’lng Table shows the ADD, ADC and SBC comma

,(lndiCated by *the “x'g) 2=

Scanned by CamScanyzer

This with
pair BC DE HL SP IX 1Y

ADD HL x x x X

ADD IX * X B &
ADD IY X X X N
ADC HL X X x

SBC HL X x X

Note that the SUB

command is not available - the carry Flag g
always involved on

a subtract operation.
Carry Flag involved - in case

command first to clear it.

If you don't want the

it may be set to '1', use an og ,

The ADD, ADC and SBC functions are the sa

me as those for the 8-bit
commands except,

of course, here they are Operating on 16-bits,

The 8-Bit Shifts and Rotates

Ormation, shifting
or rotating itsg contents

'to the left' 'to the right',

The byte operated on can be 1R &~

A, B, C, D, E, H, L, (HL), (IX+4), (IY+q)

The commands available are as follows:

-

RLC (Examples - RLC B; RLC (HL))

This moves the contents of bit 0 to bit 1, bit 1 to bit 2 angd so on.

BiE G, The data is thus
reflecting Bit .7, Note, for

.RLCA ig .2

Bit 7 is moved into the Carry Flag AND into
ROTATED Left, with the

Carry Flag
Register

A the command can be written R

LC A or RLCA:
different command,

| e Scanned by CamScanner

es - RRC Bj RRC (HL))

c (exampl ontents of bit 7 to pi
B moves the C © D1t 6, bit 6 to bit ;5 and so on

-5 3 i 1 ’
ohi Contents of bit 0 are moved into the Carry Flag AND bit 7 The
Tnea s thus ROTATED Right, with the Carry Flag reflecting bit 0
gat cor Register A, the command can be written RRC A of RRCA: RRCA
yote shorter faster version of the two,
. the
is

) . HL

RL (examples Bl Bp & 55§
-

 noves the contents of bit 0 to bit 1, bit 1 to bit 2 and so on
l L

Th ved into the Carry Flag,

jt 718 M and the Carry Flag contents are

sed into bit 0. Thus nine bits are involved in a ROTATE Left
o . \ *
at for the A Register this command can be written RLA instead

yote P
RLA being a shorter, faster command.

of RL Ay

w (examples RR Bj RR (HL))

Ris noves the contents of the Carry Flag into bit 7, bit 7 into bit
6 and SO on. Bit 0 is moved into the Carry Flag. Thus nine bits
are involved in a ROTATE Right. For the A Register, the command can
pe written RRA instead of RR A, RRA being the shorter and faster of

the two commands.

SLA (examples - SLA B; SLA (HL))

This moves bit 0 into bit 1, bit 1 into bit 2, and so on. Bit 7 is
moved into the Carry Flag. A '0' is placed in bit 0. Thus the data
is SHIFTED left.

% (examples - SRA B; SRA (HL))

™is moves bit 7 into bit 6, bit 6 into bit 5 and so on. Bit 0 is
"ved into the Carry Flag. Bit 7 is ‘'refilled' with its original
"lue (this j5 for 'signed' arithmetic' operations, to preserve the

81 : " _—
‘M bit 7). Thus the data is SHIFTED right, arithmetically.

Scanned by CamSggnner

N1

Rginconen v tudmnte g

SRL (examples - SRL Bj SRL (HL))
it 7 to bit 6, bit 6 to bit 5 and so on.

10' is placed in bit 7. Thus the dataga iy

This moves b Bit 0 is MOveq
into the carry Flag, and a

SHIFTED right.

Decimal Arithmetic Rotates

We now come to two very special rotate functions, used whep
handling Binary Coded Decimal Arithmetic. Both commands operate
between Register A, and the data byte in the address pointed to by
the Register pair HL (i.e. '(HL)'). They are: -

RLD

This command puts the bottom nibble (lower four bytes) of the 3
Register into the bottom nibble of (HL), the bottom nibble of (HL)

into the top nibble of (HL), and the top nibble of (HL) into the

lower nibble of Register A, The nibbles are thus rotated. The top

nibble of Register A is unaffected by the operation

This d
oes the same as RLD, but in the other directio
N

bottom nibble of Reaj
gister A is moved to 2
top nibble of (HL) 18 moved b the top nibble

bottom nibble of (HL)

2,48 Scanned by' CamScanner

one wants to test a specifjc

1 Ofte]tl tea '1'" or a 'o', E in a data byte, to
Q thef it's qnally it can be '
whe SpECifiC bit to a RN very useful to
566 Je to set a r OF reset it to 'q¢ Th
e abs you t0 do this. . e 280
Jo¥
al
- pasic command words available are: -
hr
The
BIT b,1: Test bit 'b' at location '1°
GET b,1: Set bit 'b' at location '1' t¢ a "y
RES b,1: Reset bit 'b' at location '1' tq -
e bit p' can, of course, be any bit from 0 to 7. (Remember that

7 is the most significant, and bit 0 is the least significant).
bi

- Jocation '1' can be any of the following:-

A, B, C, D, E, H, L, (HL), (IX+d), (IY+d)

mus there are three basic commands, each of which can operate on

one of eight bits in ten different locations - a total of 240

commands in all. Typical examples of the three basic commands are

now given.

8IT 3,B

Mis tests whether bit 3 of Register B is a '0' or a
', the Zero Flag is set to a 'l1' so that a subsequent test for

lero would succeed. Thus, in this program segment:

"1', If it is a

BIT 3,B
JP Z,WASZERO

pelled 'WASZERO' if BIT

aJUﬂlP wi
i1l be m roqram segment la :
ade to the prog sing continues with the

f Reg;
ey “gister B ig '0'. oOtherwise, Proces
tCOmmand.

Scanned by CamScggner

- specifically set or reset b}: BIp
L]

o gero Flad lthe Parityloverflow Flag 'P/V may

and

ontain is irrelevapnt
ion they €
mation

¢ whilst tB

L]
Note tha e (18P Flag 'S

py the operation - j;
or may not be affecte e unaffected ¥
ple. The
and untesta

p l Y -

SET 7, (HL)

address pointed t,
d makes bit 7 of the data byte at the
This command ma

|1 1 .
by the HL Register pair equal to a

= —— s pointed to b

This ::ommand operates on the data byte at the addl.‘e? p - ol ¥
i i - S 1

the IX Register PLUS 3, resetting its bit 5 to-a "0 u he

1
IX Register holds '8000H', then the data byte at address '8003g'
will have its bit 5 turned into a '0'.

These bit manipulation functions can prove invaluable in some types
of program. To give Jjust one broad example, in an Adventure game

one data byte may be used to indicate the possible exits from
given location - a '0' meaning 'no exit' .

possible'. Bit 7 could represent North,
four bits

a
and a '1' meaning 'exit
bit 6 East and so on, with
'left over' to represent say 'up'
Possible ways out,

» 'down' and two other
then simply

Checking whether or not an exit is possible is

| it: changing the
exit is simply a matter of 'SETting or R . |

P |
Scanned by CamScanner

Pecifical) .
e @ i i . Y on Register
M he Carry Flag in Register F. Thege ap¢ ,. follows:
n ‘-

;0

2 0
i ommand

g 5 8 very special c a for use yhen performing Binary Codegd

- i _ .
ﬂl. 1arithmet1c (BCD). In BCD, a four-bijt nibble is useqd to store
Wﬂagﬂﬁal digit: thus one byte can store two decimal digits (this
oné 4 to as 'packed BED') . The values

i referre

11" to '15¢ decimal
11 be represented within one nibble:
a

however, for BCD we only

can B decimal digit per nibble, and so the binary representations
"’aHEH, tg "15" decimal are meaningless ang not wanted,

of

. us look at two examples. First, we will add '22° decimal to
Le

q3vdaﬂmal. The program to do this in Binary Coded decimal could

be:-

LD A,22H;22H
ADD A,43H;43H

[}

0010 0010 binary,'22' in BCD
0100 0011 binary,'43' in BCD

is you can see, adding the binary values would yield 0110 0101
-which in BCD is '65'. Just what we wanted, so there's no problem.
Now let us look at what happens if we add '26' decimal to '17'
decimal, Using the program segment as before, the binary
epresentation for this would be:-

0010 0110 (26H)
0001 0111 (17H)

W if ye a4q these, we get

0011 1101 (3DH)

l i i ber . r

. sult in
°n in the program above, it Decimal Adjusts any re

Scanned by CamScagqer

WSy & T .
{
{
1

'
'pAA' command w°“lq‘

irst examples ehe h cond
- se e
thus, P nd dandy- put in the , *8Mply
e @ ith the lower nibble, So

one wrong ¥ ' '

1t accordingly. In t
0 0011 - vgo '
43H|

0 nO?hlnq' ings have 9
that th9 wrond (depend

resu
. A holding 010
this specific instance .

1

adjust the

In
. Correct- .
is or 6 to the lower nibble, by

4ading a furth

qufficient t° know that it makes ¢
8

es thi

achiev
y about

t.
jon't wort tha
correct adj ustment.

is that to sort things out the DAA:

know however,
what you should '

- fter a DAA command a .
command makes US€ of the Flags - SO a § 11 the
Flags are affected in some way.

CPL
whatever value is held in the A Registe,,'

This command 'complements'

that is, every '0' becomes a '1', and every

if the A Register held the binary value '00101100"', after a ¢
PL

command it would hold the binary value '11010011°'.

1" b T g
econes a '0', Thus,

This i ' '
is is called the 'one's complement' of the number, and is
:presentmg positive and negative values For exampl iy
1 . . e t "
nary 1is represented by '00000101'. On the other hand : T
and '-5' can p
¢

discussion on Flags)

o ' ' Noti
presenting a minus value (See al .
” also the

The 'testable
Fla
95 are not affecteqd,
NEG
In thig
Command
ze ’ the C
: ro, ang the resultln Ontents of Reglster A
alled the tyqig com 19 value is storeq back are subtracted fror
Plement! 1n Regj
of the gister A. This i
Number * 1% -
92

Scanned by CamScanner

epresentation,
lement r
' comp

) e represent
two ‘one's complement' - 1.e. in the Usual ; o

10 in © ' , _ S1gned blnary way

ustas g 7 showing the sign (0=9051tiver1=negative) N {

. . . €gative

xch b* ever are represented as thge 'one's comple '

Ji 1s how ' . fE BE Horm o Plement' va]ye PLUS

W™ the two's complement of '_g1 ;o 11111017

b Thu *

oné

o to all this bother? Two's Complement p

Hm’gr for the computer to handle,
je
eas’

00000011 (+3)
11111011 (-5)

these (since we are representing tphe
dind

ad we get:-

'minus"
c

as -5 in two's
11111110

pit 7 tells us the answer is negative,
Heré:

lement of 1111110, therefore, we get 00000010 (t
Cmﬂ;ber is the one's complement of 1111110
eme ‘ .

r) Thus, the value is '2',
1).

Taking the two's
wo's complement,

» Which is 0000001, plus

and the Sign is negative. Answer, -2.
Just what the doctor ordered.

The Z80 command NEG, then, obtains the two's complement of a value

in Register A and leaves it in Register A, thus saving the bother of
doing a one's complement (CPL) and adding 1 (ADD A,1).
very scant description of the principles behind
complement arithmetic,

This is a
one's and two's

but it should be enough to give the newcomer
to machine coding an idea of what it's all about.

Note that all the Flags may be affected by NEG command.

cer

i i the
This command 'complements' the Carry Flag in the F Register. If

Carry Flag is '0', then CCF makes it a '1'. If the Carry Flag is
"', CCF makes it *QF,

1
{
§
)
)
b
v
i
§

53
Scanned by CamScanner

(g (i.e- Set Cap

TS RO PR > S ARSI ROR,

to @ Ty i
rry Flad e
C
he |
sCF g make : %
=" comndl _ that is, tO fflealr
e he Carry ELEA i1l do th;
19" ‘reset’ © anp A and OF r o Fl)
' onmand oned eforer or A clears the carry Flag .
crere 1% g ment else. X 10! - and consequentl t
Howe Ve ! s makes 1€ Flag (wh y’f
1t 1 : 4 - sign Whigy ¢
cout AfEE s Regi te bly affects the ch]
wit pbut al cled poSSl ders might see that a i
the obseé d be to set it flrs
180 Sets . emember . Carry Flag woul b t t |
ceflects bit 7 clear the . this takes two ytes of |
a . bu
alternative way gt 18 (CCF) so it's not much good as |
(scF), then comp s OR A takes one.
‘ where

54 |
Scanned by CamScanner

P TS RN £ IRV A B AR K B T

K COMPARISONS

pLOC
The last 'manipulation and test.
1plock comparisons', In many comma"ds

hunk of data to be
C

that in Register A,

eex N
respects thege amineq are the

disc are gims
Searcheqd' g fing)
a

Like the blOCk
to set up the Registerg first. HL with
pe searched, BC with the Number o by: Start

es
g for,

LS they need you

to be

to

the area
gith the data byte we're lookin

Te:s.
CPI Incre“ﬁﬂlt HL

Decrement RC

CPD Decrement HL

Decrement BC

CPIR Increment HI,
Decrement BC

Continue until BC=0 or A=(HL)

CPDR Decrement HL
Decrement BC

Continue until BC=0 or A=(HL)

As with the block transfers, the CPI and CPD commands enable other

; : match
operations to be undertaken within the 'search loop’. Whenpa;v 2
is found, the Zero Flag is set. When BC reaches zero, the g
is found,

becomes 0 (Reset).

is found.
until BC reaches zero, or a match 1
i ointing
' ir HL will be P
o h is found, of course, Register pal
en a match 1s ,

i block.
to the matching byte in the data

55

Scanned by CamScanner

]

nni
ting progra™ e
the commands which let you change the 'batt

oW come ins structions - the commands which emulatg “q

' our PF of course 'RETURN' I
clj‘r of Y |GOSUBlS‘ in BASIC d n maCh Q
-gﬁﬂ“s'and have MOre scope- Ny
odind nowever’ ou ;
~0d 1 !
+.mps_and pelative Ju
Jum

: gruction can be emulated by 2@ JumP (JP)
BASIC vgoTo' 1N or .|
e A straight Jump 18 like a straight GOTO. A
gelative Jump (JR) - The |
format faE=
jp Label or JP address

label You have given at
q,

esenting the
Languagde program, OF which p, |
ag

of course repr
Assembly

ar point in Your
vate.

rLabel’
part1cu1
been defined by an EQ
t is, any of the Flags can
be

e conditional - tha
The format for thj
s

Jumps can also b
de if the test succeeds.

tested, and the Jump ma

is:-
Jp cc,Label or Jp cc,address
where cc represents an
y of the Flag conditions th
at can be t
ested

flag is
e not set (non zero condition) - as a re 1t
ration - then conti - o @ |
> € | previ
. e processing from the address 1lab -
abelled

Relative jum
ps need a litt
le explaini
ining,

are shorter tha ‘
n i : Th i
straight jumps. eir instruction codes

is relative to The add
the c ress th
urrent address, and is ey provide a jump to
glVEH by ad
1splacemem_

value: con
. sequently th
instruct e actual
ion code itself, If address doesn't fi
none of gure in the
the '

addresses within tm;

56
Scanned by CamScanner

;
¥
4
£
{

s T u——

e T e o gy e Y

'mentioneq' 4
in€ itself are ; derCtly' the Toutine can p
gEL0= memory. It is thyg calleg
r© here 1in
W

e locategd
a
» rogrammers write smal) Subrout

'r8110catablet

routine,
nes (to do g i fj i
Pecifijc functlons)
Hﬂﬂ rellocatable form, so téat they €an a4q the Toutines to any
0@ program they are preparing. ,;, they neeq thep 1s the 'start:
mdor £ the routine - which jg done by a labe]
‘nt
in
pO
nat for a relative jump jigs_
for
the
JR Label Or JR sc,Labe]
1sc' represents a conditiona] test, Unlike Jumps, which can
Jhere ny of the Flags, only the Zero ang c
t a
tes

arry Flags can be testegq

- loe, 2, NZ, C or NC.
r @ . '
fiﬂwt write, for example 'gRr M,LABEL",
ca

conditional relative jump So you

elative jump can be made
2

forwards Or backwards. The
The lacement value is in two's complement, and is added to the
1sP . _ ' .
> gram Counter plus 2. If “you work it out, you'll find that
pPro

ive jumps can be made to addresses within
relatiVv

-126 and +129 bytes

he address of the first byte of the
the

of

'"JR' instruction:
tely, the Assembler calculates the displacement va
fortuna r

lue for you
generating the machine code.
when

special Jumps

j i i coding,
re four more kinds of jump you can do in machine ‘ tie
a . .
e f these enable you to jump to an address specified in
Three ©

Registers. They are: -

JP (HL)
JP (IX)
JP (IY)

and the 1d
y y i ¥ tables'. One cou
're extremely useful when using Jum? ‘
I le have a data table of items, each item being three bytes
for example hav

57

Scanned by CamScanner

o

first byte of each item woulq pg the 'mepy Selecy :
long. T:eo bytes would be the address (ip the orgder Low bYte. Qm‘i
w i &
fhe next ember) of the 'action' routine for
byte, rem

that meny item_
ched (jumping QVErqmv
ound) untj; an thy

, selectors' through the table are Sear
menut o bytes of the item where no match jg f
next tw

found.

With HL pointing to the matching byte, it

is then 4 Simple mag,
: of the action 4 o
to: INC HL (so it points to the Low Byte Gt & ddress); N:
E/{HL) - pick up the low byte in E; INC gL . Polint to the Hig Wy
' . 3 . }
of the action address); LD D,(HL) - pick it UP; EX DE,jr, _ b b
address into HL; JP (HL) - ang go.
This procedure is just one of the many, many ways jp which on cay
Pick up the address of a requireqg routine. 1It'g also g fairly cthE
way, but it demonstrates a point.
The fourth kind of jump emulates to Some extent the 'FOR*NEXT' lmm{
in BASIC. It is a type of Relative Jump,

and has the format:‘

DJINZ Label

At the beginning
Command ;g met,
4 result

* SO th

is not Zero as

a Relative Jump
bytes

if it

Scanned by CamScanner
58

=
A'CALL' command is just like

'Gosyp:

and, it can be unconditional
u

com

CALL Label or CALL adg
Tesg

¢ conditionalz-
0

CALL €c,Labe] or c

ALL ¢ adqg
raddregg

~ e’ reépresenting ope of the

Flag t
nditional Jump commang., ests,
o

Just as for the

When 2 CALL command is met, tpq Program countey

conmand 1S put on the Stack, ready for when 4 RETurn . i, next
' lewi ade -
discussed this when TeViewing tpe Registers of the g0 : we
. ou
therefore ensure that the Stack stil] has must

the RETurn addre)
top' when the RETurn is Mmade (it Ss 'on

S utter disaster if yoyu don't),

Restore

Pecial cal) commang,

stands for ReSTore, The format is:

called RgT _ which

RST a

where '3 stands for one of the following:-

00H, o8H, 10H, 18H, 20H, 28H, 30H or 38H,

Whmmthe RST commang
Put gp the sta
the Specifieq

is encountered, the Program Counter address is

ck (just as in a CALL command),

and a jump is made to
address.

The point about this instruction is that it
18 only one by

te long,

and provides an extremely fast jump.

59
Scanned by CamScanner

you'll notice though that all the addresses concerned lie withy
i n

ROM area. so, for example, RST 00H gives you a cold start

pressing rreset', if your MSX has one.

!
Q\

The other ad i

. addresseg Proy,.

jumps to specific routines used by MSX Basic,

k&
getting . %

character in a Basic line of text, for slot management ekt
’

outputting to a currently operative device, and so on. f(’r
Returns
These RETurn control from a subroutine, just like 'RETURN| ‘
1n
BASIC. The format is:-

RET or RET cc

where 'cc' is one of the Flag tests, as for the jump (JP) ang ey
commands.

There are two special Return commands. The first is RETI (return
from an interrupt), which must always be preceded by an EI (Enab),

TERRHRE] (SO, The second is RETN, which provides a retury
from a non-maskable interrupt, and resets the Z80's interrupt Flag

to the condition it held before the non-maskable interrupt was made

- Scanned by CamScanner

ut/output coOmmands

i jnP

are @ number of °°mmands
to peripheral devijceg, I Mailay),

N m
ck transfer Commangs, iy ¢ tany Ways ne oriﬂputs
a
k

her®
uts
plo

]) 3 t
th® raﬂsmltted either aUtomatiCally ey e"able y ese are like

; lock
pé functions. These particular Or wlthi S of
0

T
tP

Input commands
OIJtput Comma
INI X nds
U
INIR TI

IND
INDR

che input commands,
r

i dresseq b
0 : : "€ ad ;
F nr ad', and the informatiop 1S loadeg into th ¥ Register
pair Th € addr ;
b~ by Register HL. en Registe €SS pointeq

to pair HL incremented (INI, INIR) or

pegiste’

the output commands, the Procedure jg reversed -
For s of the address pointed to by HL ig output to t
addressed by Register ¢,

that is, the

h =
Cmment € peripheral

B being decremente

ice
gevic ted or decremented after each transfer.
n

d and HL
increme

input or output commands ending with 'R',

the procedure
por the

. - 0.
continues apace until B

' h input and output commands are available. These are:-
Four other

E Input commands Output commands

W & Ep oUT (p),A

1 15 i) ouT (C),x
r,

byte of data read from the

: : i a i
&I a,(p) loads Register A with s the data byte in A

tput
. ouT (p).,A OU
1 Peripheral Port 'p'. Similarly,

to the port lpl .

61
Scanned by CamScanner

d OUT (C),r do the same king of thing,
IN r,(C) an

€Xcept the 5

s o Qp
ed by the ¢ Register, ang the Specifijeqg Reg. Ot
: i dress
device is ad

i
Stsb
'r' can be any of:-

A' B' C' D' E' HIL

5. System controls

System'.
=k i i do noth
This Means, quite simply, No OPeration, That 1s, do no ing Carry
On with the next command you fing, It's useful when Writing program
in Assembly language, tgq Provide a suitaple Spot for 5 BreakDOint'
Since jt takes time to 'execute’ it can alse be useq to Provige
Very short (a very, very short) delay.
HALT
This shytg down the OPeration of the zg completely, untjj] an
interrupt is Teceiveqg Or a 'reget' performed.
DIIEI

Scanner
62 Scanned by Cam

t, nﬁ,
Qs %
4
D‘Qlt_’x
“‘ - COMMANDS (Pseudo Ops)
¢ using 2P Assembler, you'll find other commands are available
In are essential for writing in Assembly Language. These are
¢ i
'hid py the Assembler to tell it what to do - reserve data space,
useemble at a specific address and so on. They do not 'translate'
s :
asto 280 instruction codes, and will not normally appear in a
in
1,55assemb18d listing. Please refer to the manual for your
i embler for details of these commands.
pAsse
280 1
ity
1s, 4 e
Vhep .
'ot fOI 2 12;
’ be used .
mpletel'i: :
1;;{’:"‘
d{es'
w

Scanned by CamScaffer

A

D

-

]

3
Using ZEN Assembler

rThis chapter will deal

programs using an Assembler/editor program such as zp,

machine code
1 MSX home computers.

which is widely available for al

Any differences
assemblers should be mi
already know the methods of en

some of this chapter obviously could pe skipped, as we will start |

from loading the assembler and describe some of the errors which cap
e made by first time users. The first program we wil)
prints the alphabet along one screen line, which is not
put it is nice and short and will demonstrate hoy

too easily b
enter simply
very exciting,

lines are entered.

The ROM section of memory (addresses between 0000 and 8000 hex)

within the MSX not only contains the Basic Interpreter but routines |
for carrying out tasks for what are simply termed as housekeeping'

jobs, as were used in chapter 1. These routines take care of tasks
such as printing a character on screen, printing a new line
accessing the clock, using the PSG chip, reading a program fro'
tape, verifying and saving of programs etc., and obviously the .
made full use of when running any program, Basic or machine cozeazz

" it is far simpler to form a m
essage to be printed £
rom within your

program and then simply call ¢t
he ROM routin
e to get that mess
age

printed on :
the screen than writing a routi)
1 your program to do

the same job.

ZEN loads into RAM at A000 hex this i
is

enter CLEAR200 why one i i
+&HIFFF before BLOAD"ZEN" s instructed to

'R is entered.

64
Scanned by CamScanner

I T D

___-_

with getting started on writing your Own.

on entering programs between ZEN and othe,

nimal as the principles are the same. If Youé
tering lines into an assembler theni

On completion th
e screen will
display:
ZEN >

Enter exactl ¢
column (NOTY:TH:pa;j:P;:cluded, all entries under the TO E
the wid OF 82k dine ::D COPUMN) followed by the 'RETURN' ke:T::
been entered delibera;el €r€ 18 an error in the program which has
calls or jumps to addre Y and we will alter it later. Remember any
eRE Pioe: (58 el sses between 0000H and 8000H are to routi
ction, and their functions will be described o

TO
DISPLAYED ENTER
ZEN > E
L LOOP:EQU O0A003H
2 CALL 0849H
3 LD A,"A"
4 NEXT : CALLOOA2H
> INC A
6 cp "z"+1
7 JR NZ,NEXT
8 LD A,ODH
9 CALL 00A2H
10 LD A,OAH
1 CALL 00A2H
12 JP LOOP
13 END
14 .
ZEN >
At the end of 2 program one must enter 'END' on a separate line, and
to cease entering and move back to command level a full stop must be
entered on a separate line too.

e what has been entered.

Now we will analys

65

B o TP T 10" Lot st 1 R AT P e o
B A

Scanned by CamScanner

the program was an equate line and this simply tellg th
Q

Line 1 of
'LOOP' equates to A003H which jg th
Q

assembler that the Label
address we wish to jump to at the end of the program as one can
Sq

don't need to Specify
A

in line 9 we have entered JP LOOP, we
assembler has noted which address Lo
Op

address to jump to as the
equals. One reason for these equates is that if we wished to al

the address at some future stage we would not need to list the Whter
program and alter each line which contained this address, all to1e
is required is to change the first line to the different addresshat
the assembler will do the work for us. This address is the wmw
entry point to the ZEN Assembler, when this short progjrn
need to tell the computer where to jump tOe::

to be as good a place at this stage, W
e

start
finishes running we

the mainloop of ZEN seems
don't want the program running off wildly into memory.

NOTE Whenever a hex number begins with a letter (A-F) as
4 n

this case, it must be prefixed with a zero as is shown in line 4

otherwise the Assembler could confuse it for a label which alwayg

start with an alpha letter. Secondly a colon must be entereg

between the label and the letters EQU.

2 calls a ROM routine at address 0849H which simply clears the

Line
This is similar to a GOSUB ip

screen and returns to our
basic but in this case the

program needs to do is call it.

program.
subroutine is already in ROM and all our

Line 3 loads the A register with the value of the letter 'A'. ZEN
is quite versatile in that it allows entries within gquotes and it
simply converts this to the Hex equivalent value of the letter, in
fact this line would have the same meaning if we entered LD A,41H
it would be assembled and loaded into memory by ZEN

which is how
41Hex is the hexadecimal ASCII value for the letter 'A', or

entered LD A,65 which is the decimal ASCII value of
and so omitting the suffix H which signifies to ZEN

anyway.
we could have

the letter 'A'
that the value is decimal and ZEN must convert it to Hex.

- ~Scanned by CamScanner

el

label NEXT as we will jump back here to continue

£ine Coletters' 1t is followed after the colon by CALL to 00A2H
Pfﬂ1 ce again 1is @ subroutine in ROM which prints the ASCII
ahi€ Zurrently stored in register A, and returns to our prograf.
alu€

‘ncrements register A so the first time round after printing
giné ° creen Wwe want it to increase its value by 1, so it will
5 oD t‘:‘: ;’rom 41H to 42H, the letter 'B'.
jncre?

compares the value of register A to see if it has reached Z +

pine q if it hasn't line 7 tests and jumps back to NEXT to do it all
n . . .

1,2 once again it is easier to enter line 6 as "2"+1 but when it
-

292" gsembled this will be automatically altered to the ASCII Hex
as

lue of Z2 plus 1 making 5B hex.
va

the relative jump and here one can see the advantage of

pine 7 is
lines a label for one does not need to calculate the number

jving
Gbetes to jump back as the assembler does it for us. Furthermore
0

e could add extra lines between 4 and 7 which will obviously alter
of bytes to jump back over without the need to adjust

the assembler will adjust the relative jump

on
the amount

anything else as
automatically providing the jump does not exceed -126 or +129.

Line 8 is only reached when register A equals Z+1, when the alphabet
ompleted, then line 8 loads register A with the ASCII code for a
which returns the cursor to the left most position

is ¢
carriage return,
on the line, and line 9 calls 00AZ2H again to print it.

NOTE ASCII codes below 20 hex are control characters, for
positioning the cursor etc., and can be used with a call to 00A2

as was done with the alphabet.

Line 10 loads A with the ASCII code for a line feed (0A) as not only
do we require the cursor to return to the left of the screen we also
¥ant it to move down to the next line, so a further call is made to

0 ; ;
0A2 in line 11 to carry out the task.

Scanned by CamScanner
a7

Line 12 puts us back under the control of 2%EN when the Progry,,
finishes with a jump to Loop (AQ03H).

The next task is to find out if we have entered the Progry
m

correctly, some bright sparks may have noticed some errors already
r

some of the more common types of error messages at this early stg
Je,

Enter 'A' and 'RETURN', this tells ZEN we wish to assemble ¢
program. he

as one will get errors when entering and it is better to dis

The screen will prompt for an 'OPTION' which will determine if "
wish to assemble to a printer by entering 'P', or 'E' fOrae
external device, or by entering 'V' for video to Print on screen u£
assembled version, or if we just enter the 'RETURN' key on its owy
it will be assembled internally only stopping at a line which
contains any errors, which is the fastest option. So after the
'OPTION' prompt enter 'RETURN'.

The screen will display:-

ORG &
2 START:CALL 0849H
ZEN»>

which simply means we did not enter the origin of the program, which
is where in memory we want it to reside. This is obviously a major
omission as the assembler must know where to place the program.

Enter 'T' followed by 'RETURN' and the first line of the progran
will be displayed. 'T' is the target line you wish to be displayed,
entering 'T4' would display line 4, whereas just entering 'T' on its

own moves up to the first line.

Entering 'E', as we did to begin entering the program, will let us
enter extra program lines from the current line, which after
entering 'T' will be line 1, and as we enter these extra lines all
the lines already in the program will simply shift up a line, the
existing line 1 will remain intact but will now become line 2 etc.

We should also enter a line to determine where we wish the prograr &

68
—Scanned by CamScanner

Jram, wh
51y a m;;
granm,

e prog
displaf
|Tl on]'.

¢+ thisg does not need to be

eéss, but ¢4 keep thisg Program as

Me place,
TO
DISPLAYED ENTER
ZEN > E
1 ORG OE0QO0OH
2 Loap OEO00OQOH
3 -

Entering 'T' ang '"RETURN'
1 ORG 0EOQOH

ZEN?

will display line 1:-

Now entering 'P16' ang 'RETURN'

will list the Program from line 1
through to the end of the

Program which is always displayed as
"EOF'. If one entered 'pg’ only the first g lines woul

so if the whole Program is to bpe listed ensure
followed by a value equal to, or larger than,

d be listegq,
You enter 'p!

the last line number,
Notice that the original lines in memory have been moved up 2 lines,

Once again enter 'A' ang '"RETURN' followed by 'RETURN' in response
to 'OPTION' Prompt to see if our program is correct and will

assemble. If one entered the pProgram as shown it should stop ang
display:-
HUH?
6 NEXT:CALLOOA2H
ZEN >

Faced yith this error one must look at the line and discover the
Mistake because the prompt 'HUH?' does not tell us much, only t?is
will happen many times when writing your own programs. T?e Hine
looks O.K. but the fault lies in the basic fact that we did not

69

— Scanned t))/ CamScanner
___Jl!!ﬂ!!!..--_-‘_

en CALL and the address.

enter a space becwe
the 1line will Dbe displayed with the

Enter 'N' and '‘RETURN' and

cursor to the right of the line of characters:-

6 NEXT:CALLOOAZH
Simply delete the characters from the right,
as the cursor keys are inoperative under ZEN, untj)

first zero after CALL and enter a Space

by using the 'pg.

backspace key
the cursor is over the
followed by 00A2H and 'RETURN'.

The line should now look like this:-

6 NEXT:CALL 00AZH

Entering 'A' followed by 'RETURN' twice should result in no error
message this time and the 'ZEN' prompt should be displayed almost
immediately on the next line, which tells us that it assembled 0.k,

and is loaded into memory.
Enter 'GE000H' followed by '"RETURN' and the screen will display:-

BKPT >

this is asking us to enter a breakpoint in the program, for if one
is testing certain parts of a lengthy program it can be halted at a
specified address in memory, and control will pass back to ZEN.
This can be very useful as machine code programs run so quickly that
it is very hard to keep track of them.

In this case we do not want to enter a breakpoint, so in response to
the 'BKPT' prompt enter the 'RETURN' key.

The screen should clear and this display should appear:-

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
ZEN>

Don't expe
pect too much from your first machine code progra
m,

ri i

this was

all the bugs it se
ems a good time t
the screen to se © assemble the program onto
e what has happened. Enter 'A' and 'RETuiN'g o ¥
and this §

70

Scanned by CamScanner

TR I AL R R B e e ol

g code, but now we have X

if g

0 Iy
y the

1se {;

f

R

time when prompteg for ‘'oprION' enter 'v' and 'RETURN' and the
result should pe as follows:-

PAGE 1
ORG 0E000H
LOAD 0E000H
LOOP: EQU 0a003g
E000 CD4908 CALL 0849H
E003 3E41 LD A,"a"
E005 CDA200 NEXT: CALL 00a2H
E008 3C INC A
E009 FESB CP "Z"4+1
EOOB 20F8 JR NZ,NEXT
EOOD 3EOD LD A,ODH
EOOF CDA200 CALL 00A2H
E012 3E0A LD A,0AH
E014 CDA200 CALL 00A2H
E017 C303A0 Jp LOOP
END
ZEN>

In the above program, due to its simplicity, we did not document the
functions of any lines but in a longer Program it will be essential
to describe certain parts of the pPrograms. Comments can be included
in any line by simply entering a semi-colon followed by the comment,
To add a comment to line 3 enter 'T3' and 'RETURN' followed by 'N'
and 'RETURN' and line 3 should be displayed with the cursor to the

right of the characters:-
3 LOOP:EQU 0A000H

add the following: -
;JUMP ON END and 'RETURN'

This 1line when listed will now show the comments after the semi -

Scanned by CamScanner

colon which
achieving,

th 1ine
wi No 1instructions just a semi-colon followed
the comments, these Will be used on subsequent listings for clar
i
If one has a Printer the assembled listing to 'P' for X
show

the comment fields
of the Paper, but

assembling to the 'v!
37 column SCreen,

Alterations and Additions

If one followed andg understood the i

nstructions ang how they wWorkeq
try the following:-

Alter the program to print the alphabet from
Change line 5 to LD B, "N

line 7 to DEC A
line 8 to Cp "A"-1

Z down to a.

This will initially 1load register A with letter 2 and instead of
incrementing in line 7 it will decrement, so the first time roung
the value in register A will reduce to the letter Y and so on. Line
8 checks if has reached A-1 and if not loops back to print again.

SCREEN MESSAGES

ill almost certainly require messages and inputs to be printed
w . »]

one n and as this test program is short it is ideal for
ree

Ond ;C‘ ;uite simply. The first line after the Clear screen call

modifying ' ' " 5 will get
. ter 'T5' and 'RETURN' and ine

is 1line 5, so eéen

displayed:-

5 LD A,"Z"
ZEN>

- ... Scanned by CamScanner

F= 3

Entering 'E' and 'RETURN'

will now enable one t
o add lines to the
program, and move the existing lines up in memory

TO
[)_]*Z_SPLAY ED ENTER

5 LD HL,MESGI i

6 CALL 6678H f

7 . ‘
2EN »

These new instructions are thus:-

LD HL,MESG1 loads register pair HL with the address in memory of the
start of a screen message which will have the 1label MESG1 assigned
to it. CALL 6678H is a ROM routine which prints, at the cursors
current position on screen, the message which starts at the address

stored in HL. The message, as you will see below, also contains any

control characters to move the cursor which can be entered before or
after the quotes containing the string. Furthermore the message

must terminate with the NOP code (0) which is used as the 'End of

string' marker.

The next job is to enter MESGI into our program. List the program
on screen to discover the last line number, as it is here we will
place the string of characters in our message. END should appear as

line 17, so enter 'T17' and 'RETURN' followed by 'E' and 'RETURN'

TO
DISPLAYED ENTER

17 MESG1 :DB"TEST" ,0DH, 0AH, 0
18 ;
ZEN>

I1f your message was longer than can fit onto one line then finish

the first 1line of the message by adding the closing gquotes and
e on the following line making sure it commences

Scanned
ed by CamScan%?r

continue the messag

1,0' at the end of message.
t must be assembled again, making

s
to the screen it Wil;ue

wr and only enter
program i

'DB
order to run the
when

assembling

with
printed in full to the right of
th

pt in.
message

In
no bugs have cI€

seen that long
however the bytes rep

n the le
the display would actually cut off aft
&

s are not

screen, resenting that message are entereg i
memory as will be seen O ft of the screen. If the MESG1 lhf
was entered as shown above &

the comma following '"ODH'
program can be entered as "GEOOOH'.
printed on the

Running the
the screen clears and 'TEST' gets
in reverse order, on the folloy;
n

that
and the alphabet gets

line. One could have enter
to print further down the screen.

It will be da
. €n
first 1ine

printed,
ed additional codes for line feeds 'qay,

as we shall alter it further

Ensure your program lists as below,

1 ORG OE000H
2 LOAD 0EO000H
3 LOOP:EQU OAO000H;JUMP ON END

4 CALL 0849H
5 LD HL,MESGI

6 CALL 6678H

7 Lb A,"2"

8 NEXT:CALL 00A2H

9 DEC A

‘Io CP "A""T
11 JR NZ,NEXT

12 LD A,ODH
13 CALL 00AZ2H
14 LD A,0AH
15 CALL 00A2H
16 JP LOOP
17 MESG1:DB"TEST",0DH, 0AH, 0
18 END
EQOF

Scanned by CamScanner

74

USER_INPUTS 1

in order for the
alpha
il B i ;gMb:t to be printed several times A
to be pressed before hét will stop the program and w;it foroutli(ne
continuing and can be utilised ol
quite simply.

Alter line 17 .

ek B by entering 'T17' and 'RETURN' foll —
o alt) owe N'

delete back wit:r et With the cursor to the right o: the l?::

the Backspace key to the start of the string and

alter the line to the following:-

17 MESG1:DB"INPUT 1to9",0AH,O0DH,0

need
to change the program to accept an input from the

We also
Enter 'T7' and 'RETURN' followed by 'E'

keyboard between 1 and 9.
and RETURN'.

TO
DISPLAYED ENTER

TIMES :CALL 009FH

7
8 CP 31H
9 JR C,TIMES
10 CP 3AH
11 JR NC,TIMES
12 SUB 30H
13 LD B,A
14 .
ZEN?>

A label must be added to the current line 14
to loop back. Alter it to read: -

14 START:LD A,"2"

as it will be required

75

Scanned by CamScanner —

[X

- . St it

— e

R st S P iee TP Y S Sl
. EN

Moy R Bl A SESeReb . ., B
S ,m..,,,mwwm‘www

calls a routine within ROM (009FH) wh o
halts the Program and waits for a key to be pressed. Once g3 key
Pressed the subroutine returns to

of the key stored in register a,

As we only require keys

1 to 9 to be accepted the

Contentg Ofé
register A must be checked, and 1ine 8 checks that the key presSed;
¥as equal to or greater than 31§, which is the ASCII cod
number 1

(check with the AscrIr
(temporarily) 31H

ASCII code than 31H

code table),
from the a register and if i

the carry flag will be set,

hence line ¢
© line 7,

relative jump back t for the Processor

key to be pPressed, if there Wwas such a carry.
Subsequently the program must now check for a
Line 10 compares for 3AH,
€qual the colon '.!

higher key than
which in the ASCII table wi

which is one higher than 9,
ine

g
11 be Seen t,
Line 11

7 if after subtracting 3AH from registe,
A the carry flag ijs not set then the ke

Y Pressed must have
equal to or higher than 3AH, which means the key was higher inp
ASCII table than 9 and we must Jump back ang wait for another key

iS a
relative Jump back to 1

beep

Assuming that a

contains 3 number

between 1 and 9

Line 13 1loads register B
be the counter

There is one extra line, Enter '3+

DISPLAYED ENTER
—=2>Aarnb

23
24
ZEN>

DINZ START

76

308 &

This command was discussed in the 'Special jumps' section in chapter
2 and is a unique 280 instruction for the B register which
decrements B and executes a relative jump back to wherever you
nominate, to carry out the instructions in the loop again until B
decreases to zero, similar to a FOR. .NEXT loop in Basic. 1In this
case it jumps back to line 14 which is labelled START.

one will have to assemble the Program before it is capable of being
run. If errors occur during assembly refer back to the specified
line and check it in this chapter. To run enter 'GEOOOH' 'RETURN'

and for BKPT enter 'RETURN'.

The assembled listing:-

PAGE 1
1 ORG O0EO00OH
2 LOAD OEOQOH
3 LOOP: EQU O0AO0OQOH ;JUMP ON END
4 EO00 CD4908 CALL 0849H
5 EO03 2130E0 LD HL ,MESG1
6 E006 CD7866 CALL 6678H
7 E009 CD9F0Q0 TIMES: CALL 009FH
8 EO00OC FE31 CP 31H
9 EOOE 38F9 JR C,TIMES
10 EO10 FE3A CpP 3AH
11 E012 30F5 JR NC, TIMES
12 E014 D630 SUB 30H
13 EO16 47 LD B,A
14 E017 3E5A START: LD R, "z"
15 E019 CDA200 NEXT: CALL 00A2H
16 EO01C 3D DEC A
17 EO1D FE40 CP "A"-1
18 EO1F 20F8 JR NZ ,NEXT
19 E021 3EOD LD A,O0DH
20 E023 CDA200 CALL 00A2H
21 E026 3E0A LD A,OAH
22 E028 CcDbA200 CALL 00AZ2H
23 E02B 10EA DINZ START
24 E02D C300A0 JP LOOP
25 E030 494E5055 MESG1: DB "INPUT 1to9",0AH, ODH, 0
25 E034 54203174
25 E038 6F390A0D
25 EO03C 00
END

Scanned by CamScanner

St o o po Sl

USER INPUTS 2

. 1 . n ‘
This section deals with user inputs of unspecified lz gth, -
i i 1 oar
against single key inputs, entering a string from the key d to Ba

printed a number of times.

e all addresses have been labelled, as one would whe,
and entering should be good practise at
'k' and 'RETURN' to kill the existing

In this exampl
writing a longer program,

getting it right. Enter

program followed by 'g' and 'RETURN'.

TO
DISPLAYED ENTER

1 ORG OE0O0OH
2 LOAD OEO0OOH
3 LOOP:EQU OAO003H
4 ; ROM ROUTINES
5 PTMESG:EQU 6678H
6 PINLIN:EQU OOAEH
7 CLS:EQU 0849H
8 INPBUF:EQU OF55EH
9 CHGET:EQU 009FH
10 CHPUT:EQU 00A2H
11 ; CONTROL CODES
12 BL:EQU 7
13 CR:EQU ODH
14 NEWLNE:EQU OAH
15 H
16 CALL CLS
17 LD HL,MSG1
18 CALL PTMESG
19 CALL BELL
20 CALL PINLIN
21 CALL CRLF
22 LD HL,MSG2
23 CALL BELL
8 . Scanned by CamScanner_.
I T eSO e N e s,

24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5
52
53
54
55
56
57
58

ZEN

CALL PTMESG
TIMES :CALL CHGET

cp 31H
JR C,TIMES

CP 3AH

JR NC,TIMES

SUB 30H

LD B,A
AGAIN:CALL CRLF
LD HL,INPBUF
NEXTCH:LD A, (HL)
CP 0

JR 2Z,FINI

CALL OUTPUT

INC HL

JR NEXTCH
FINI:DJNZ AGAIN
CALL CRLF

JP LOOP

;

;OUTPUT ROUTINES
BELL:LD A,BL

JR OUTPUT
CRLF:LD A,NEWLNE
CALL OUTPUT

LD A,CR
OUTPUT:CALL CHPUT

RET
;

;s MESSAGES
MSG1:DB"ENTER A "

DB"STRING" ,0DH,0AH,0

MSG2:DB"INPUT 1to9",0DH,0AH,0

END

Scanned by CamScamrger

am with a call to the clear -
th

he progr
: commences t .
une © (cLs) assigned an adaress in the eduate®, at 0849m.
routine; , . . nto HL and printed by a ¢
er a string is loaded 1 calltg

message to ent
6678H (PTMESG).
the output routines hlli

Ng

is entered in

] hich
Line 19 calls BELL W ' .
45 where register A 18 loaded with the desired character, ip b,
and the program jumps to OUTPUT (line 50) where 3 a
f reg A afterwhich a ret,
n

case BL (7).
the contents ©

to CHPUT (00A2H) . |
is made back to the nex This line calls the ROM routj,,

PINLIN (00AEH) which allows input keyboard until the
'RETURN' keY pressed and stores the string in the input buffe,

(INPBUF) at OFS5EH. 21 calls the carriage return and line feeq
ere once again reg A is loaded with the Ascy;

of the control character, first with NEWLNE (OAH), and j;
call to OUTPUT in line 50. Line 51 returns to the

call (line 49) where A is loaded with the cy
it does not call,

This time line 51
call (line 22)

outputs

t line (20).
from the

is
Line

subroutine (line 47) wh

value
outputted by 2a
line after the last
code (0DH) and this time the progr

line 50 to output the character in A once again.
m line after the original

ded into HL and is followed by a

am runs into,

will return to the progra
whereupon the second message 1is loa
the message is printed in line 24.

call to BELL and
the previous progranm.

25 to 31 get a number from 1 to 2 as
where the string is

Lines

Line 33 loads the start of the input buffer,

stored, into HL and line 34 loads the first character of the string
d in line 37 which calls OUTPUT. When

into reg A and it gets printe
fter the last byte

a string is stored in the input buffer the byte a
of the string is loaded with a zero, therefore in line 35 we comparé

the contents of reg A for zero and if the test is positive 2

ump to FINI (line 40) is carried out in line 36.
the next character in the in

to NEXTCH (line 34) to load the

Line 38

relative j
put

increments HL to move

buffer and 1line 39
character into reg A once again and compare it with zero

it up to
jumps back

as a counter, and 1oop?

Line 40 decrements reg B, which was set up
Line 4

back to line 32 (AGAIN) to print the string once more.

80 Scanned by CamScanner

ind §
tG (8

the »
Ca].
ine v
=

i b'\'_:

an
1

e

performs another line feed and carriage return before the program
jumps back to LOOP (OAO03H) the warm start address of ZEN. The main
jifference with the ZEN addresses O0A000 and 0A003 i; that on
completion a jump to OAOO0O3 will maintain the condition of the
registers allowing one to enter 'X' and 'RETURN' to examine the user
registers. Very useful when programs are playing up.

following assembl i : ,
The g ed llstlng 1ls reprodueed Using the IPI Optlon

for printer, the main differences between this and the 'V' video
option is that line numbers are included in the printout and the any
comment fields are shown in full due to the additional columns being
available. To run the program enter GE000OH and 'RETURN' twice,
afterwhich the screen will clear and the 'ENTER A STRING' message
will be printed. After one has entered a string of characters the

'INPUT 1to9' message will be shown and on entering a value between 1

and 9 the string will be printed.

PAGE 1
1 ORG OEO000H
2 LOAD OEO0O0O0H
3 LOOP: EQU OAO0O03H
4 ;ROM ROUTINES
5 PTMESG: EQU 6678H
6 PINLIN: EQU O0O0AEH
7 CLS: EQU 0849H
8 INPBUF: EQU OFS5EH
9 CHGET: EQU 009FH
10 CHPUT: EQU O0O0AZH
1 : CONTROL CODES
12 BL: EQU 7
13 CR: EQU ODH
14 NEWLNE: EQU OAH
15 ;
16 E000 CD4908 CALL CLS
pe LD HL,MSG1
E003 2151E0 CALL PTMESG
18 E006 CD7866
CALL BELL
19 E009 CD42EO
CALL PINLIN
20 EQ0C CDAEO0O
CALL CRLF
22 E012 2162E0 CALL BE£L
23 E015 CD42EO CALL PTMESG
24 E018 CD7866
TIMES: CALL CHGET
25 E01B CD9FO00 CP 31H
26 E01E FE31 JR C,TIMES
27 E020 38F9 CP 3AH
28 E022 FE3A JR NC,TIMES
29 E024 30F5 81

PR ftisw

82

E026
E028
E029
E02C
EO2F
E030
E032
E034
E037
E038
E03A
EO03C
EO3F

E042
E044
E046
E048
E04B
E04D
E050

E051
E055
E059
EO5D
EO061
E062
E066

EO6A
EO6E

D630
47
CD46E0
215EF5
7E
FEOO
2806
CD4DEO
23
18F5
10ED
CD46E0
C303A0

3E07
1807
3EOA
CD4DEO
3EOD
CDA200
cY

454E5445
52204120
53545249
4E470D0A
00

494E5055
54203174

6F390D0A
00

AGAIN:

NEXTCH:

FINI:

SUB 30H
LD B,A
CALL CRLF

LD HL, INPBUF
LD A, (HL)

Cp 0

JR Z,FINI
CALL OUTPUT
INC HL

JR NEXTCH
DIJNZ AGAIN
CALL CRLF

JP LOOP

;
;OUTPUT ROUTINES

BELL:

CRLF:

OUTPUT:

r
tMESSAGES
MSG1:

MSG2:

LD A,BL
JR OUTPUT
LD A,NEWLNE
CALL OUTPUT
LD A,CR
CALL CHPUT
RET

DB "ENTER A "

DB "STRING",ODH,OAH,O

DB "INPUT 1to9",0DH, 0AH, 0

END

Scanned by CamScanner

GAVING PROGRAMS
SAVII

Although one probably won't need to save this program on tape it
ijs a good idea to use this small program to practise getting it
right, it is not so straightforward as saving a basic program, SO
pmaking mistakes now will be less costly than when your own machine

code masterpiece is at stake.

gEN has 2 methods of saving machine code programs. The first is to
save the source file as an ASCII text file. ASCII text files (or
programs) are made up of the pure text which has been entered from
the keyboard. One will require this option for saving unfinished
programs, which obviously cannot be assembled in that state, for
future loading using ZEN which would be achieved by entering 'R' and

IRETURN' after the ZEN prompt.

Entering 'H' and 'RETURN' will now display the start and end of the
source file and the top of memory. At this stage the last program

should display, if one hasn't added extra spaces or comments:-

C000 C2A7 F37F

'QCO000H' and 'RETURN' the text entered will be shown
To save an ASCII text file using ZEN enter

If one enters

in memory byte by byte.
'W' and 'RETURN' and one will be prompted for a file name,

afterwhich it will be saved on tape as normal. Afterwhich one

should verify the saved file.

The second method is for saving the object file as a binary file.
Binary files are the assembled program, and what gets saved is the
pure machine code file, without comments, ready to run. In the last
program it could be saved and then run directly from the loading,
without ZEN being present, by simply BLOAD although one would need
to alter line 42 from JP LOOP to RET as we would not require a jump

to A0O3 if ZEN was not loaded.

Scanned by CamScanner
83

To test that one is conversant in saving a binary

Bl
the following:- Qarry

Alter what should be line 42 to read: -
42 RET

One will need to assemble the Program once agaip b
entry is correct that will take no time at a13 ot
assemble to the screen by entering 'v' ang 'RETURN as y
the end address of the file. After altering lipe 42

will be 2 bytes shorter making the end of pProgram E06CH, prqha

Place a fresh tape in the cassette ang enter 'ygp' which ok
an

write binary. One will be prompted for the START addresg dsfm;
S0

e“ter
X 'Hn

ot,

"EO00H' and 'RETURN', it is important to enter the syf¢;
1

otherwise ZEN will believe it is a decimal number which j¢ 15
n

Next prompt is for the STOP address so enter 'E06cy! ang RETURy:

which is the last byte of the pProgram.

The next prompt is for the EXEC address which is where the Prograp
should run from. In this case we want to run from the same addresg
as it loaded from so enter once again 'EQ00H', 'RETURN' , EXEC i
added because g Program does not always execute from its start
address in memory. It may be that a Program is written ang then has
Some screen graphics titles added to the end of it but which one
wants to run first, so the execution address could well be different
to that of the loading one.

This is followed by the LOAD prompt for the address at which it
should load into, and again enter 'EQOOH'.

, is
The final prompt is for a file name, we could simply call thi
'"TEST' and all that remains is to set the cassette to record mode.
” fev
Once the file has been saved switch off the computer, e = and
) on 1
seconds, (never switch off and on quickly) and turn it back |

84
Scanned b

Progry
ddres:
XEC I;
star!
en b
ch o

arel

.
~h i
’

P+

e

load the test pProgram by entering:-
BLOAD"TEST" ,R

hich after .
w a few Seconds, will automatically run if you saved it

correctly, and when finish]
ed will jump into th i :
display the 'Ok’ message. € Basic mainloop and

Please understand that this was an exercise to correctly save and
subsequently load and run machine code programs, which normally
should be far more exciting than the Test program, and it is far
less costly in pProgramming hours to get it right at this stage than
get it wrong and lose many hours work.

CRASHES

When testing programs in ZEN it is quite feasible that there may
be something wrong with your program and it may crash, fall out of
Zen's control, into Basic or even re-initialise and display the
switch-on MSX screen message. One should be able to jump back into

ZEN by entering:-
DEF USR=&HA000
A=USR(0)

and hopefully ZEN, and your program, will
This may also happen when accessing Basic

if an error occurs the

still be in memory and

debugging can continue.
routines from a machine code program for

error trap routine within Basic could pick up the error,
Basic's mainloop with the 'Ok'

display an

error message, and dump you into
message. To simplify the restoration one could enter the above 2
lines with line numbers, making it a 2 line Basic program, and if
the crash was not too severe entering the 'F5' key for Run should

restore control to ZENs mainloop.

. g T z
B T P £, S T A R R U R T S -
—— R TR S T, e e Z el S S
M L R O R s T A e ,

Scanned by CamScanner

i A I B

E———————"—

R e R

_ shich are provided j
more routines "t
er gemonstrd m 6
This chap o and how tO access them.
goM of the
RUCTION

tABLE_CONST
, roduce notes j
4 input to P in the

m uses keyboar , .

of the 8 octaves: which gives 1t SOME appey
]

to demonstrate method of accessip,

uce sounds are as follows:-

The followind progra
e C to B in any

put its main purposeé is
tables. The keys which will prod
T UIO

DFGHJK L

rang one

used for notes C to B whilst the keys on the tg

P
ys (C+ etc). Pressing the '£' Kkey exits th
4 when the program runs but can b

The lower row are
row signify the sharp ke
The Octave is set to

program.
tering keys 1 to 8 while it is running.

altered by en

:!r]zgr::rrent note and octave are displayed on the screen Th

to be plZ::; ;Ezt 1322;(: PLAY routine at 73ESH, therefore the Strin:

cias 1) surmundinas .1t would in a Basic program line with
strings, must teHMﬂ:t lt-and' like the previously used '

e with a zero value byte oth . prin

erwise an error

will occur
and the program will drop into B
asic an

statement. d di
display an error

One should
now be famili
miliar with entering
Programs so
only the

assembled li .
Stlng is
sho
Wn, however the s
lous ROM i
routines which

are utiljged
are describeq after th
e listin
g.

86
Scanned by CamScanner

G " Pay e el
o

&2

W NN s W N -

W W W W W
W W N
N O e W N = & oW g 53 3: NN R R N RS o
mhuw_c\om:;;—-.ﬁm_‘é
B W N = O WO

E000
E003
E004
E007
EOOA
E00C
EOOE
EO11
E014
E017
E019
EO01B
EO1E
E021
E024
E026
E028
E02ZB
EO2E
E031
E034
E037
E039
E03C
EO3E

CDCCO00
AF
32DBF3
CDC300
2608
2E02
CDC600
21CCEO0
CD7866
260C
2EQA
CDC600
21E0EO
CD7866
260E
2E0C
CDC600
21E9E0Q
CD7866
C34CEQ
CD9C00
28FB
CD9FO00
FE23
CA03A0

QUIT:
CHGET:
CLS:
POSIT:
PTMESG:
CLIKSW:
CHPUT:
ERAFNK:
CHSNS:

’

START:

INPUT:

ORG
LOAD
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CALL
XOR
LD
CALL
LD
LD
CALL
LD
CALL
LD
LD
CALL
LD
CALL
LD
LD
CALL
LD
CALL
JP
CALL
JR
CALL
Ccp
JP

OEOOOH
OEOOOH
OAOO03H
009FH
00C3H
00C6H
6678H
OF 3DBH
00AZ2H
00CCH
009CH

ERAFNK
A
(CLIKSW),A
CLS

H,8

Tyl
POSIT

HL ,MESG1
PTMESG
H,12
L,10
POSIT

HL ,MESG2
PTMESG
H,14
Tl B
POSIT

HL ,MESG3
PTMESG
PTOCT
CHSNS

7, INPUT
CHGET
ngn

Z ,QUIT

‘Scanned by CamScaffer

: ZEN MAINLOOP
;WAIT FOR KEY

; CLEAR SCREEN

; CURSOR SET UP

: PRINT MESSAGE
sKEY CLICK SW
;OUTPUT CHARACT.
:ERASE FUNC KEY
;KEY SCAN

s FUNC KEYS OFF
;ZERO A

: TURN OFF CLICK

s CLEAR SCREEN

: SET CURSOR COLUMN
: SET CURSOR LINE

: POSITION CURSOR

s PRINT OCTAVE VALUE
;IS KEY DOWN

:NO LOOP BACK

;GET KEY IN REG A
;IS IT £ KEY

: YES FINISH

.~Wp‘“mv,\xvt-rd~q'hﬂa»wwvfl—wﬂ 4 m g nem

R

38 E041 FE31
39 E043 38EF
40 EO045 FE39
41 E047 3012
42 E049 3295E0
43 EO04C 2615
44 EO4E 2EOA
45 E050 CDC600
46 E053 3A95E0Q
47 E056 CDA200
48 E059 18D9
49 EO5B CD9000
50 EOS5E 47
51 EOSF 21A7EQ
52 E062 7E
53 E063 FEOF
54 E065 28CD
55 E067 23
56 E068 B8
57 E069 2804
58 E06B 23
59 EO6C 23
60 E06D 18F3
61
62 EO6F 7E
63 E070 32A3E0
64 E073 23
65 E074 7E
66 E075 32A4EQ
67 E078 2193E0
68 E07B CDES573
69 EO7E 2615
70 E080 2EOC
71 E082 CDC600
72 E085 3AA3E0Q
73 E088 CDA200
74 E08B 3AA4E0

88

PTOCT:

SAMOCT:

COMPR:

FOUND:

CPp
JR
CP
JR
LD
LD
LD
CALL
LD
CALL
JR
CALL
LD
LD
LD
Ccp
JR
INC
CP
JR
INC
INC
JR

LD
LD
INC
LD
LD
LD
CALL
LD
LD
CALL
LD
CALL
LD

31H
C,INPUT
39H

NC, SAMOCT
(OCTVE+1) ,A
H,21

Ty 10

POSIT

A, (OCTVE+1)
CHPUT
INPUT
0090H

B,A

HL, TABLE

A, (HL)

OFH

Z ,INPUT

HL

B

Z ,FOUND

HL

HL

COMPR

A, (HL)
(NOTE) ,A
HL

A, (HL)
(NOTE+1),A
HL, STRING
73E5H

H,21

L,12
POSIT

A, (NOTE)
CHPUT

A, (NOTE+1)

; TEST FOR 1

; IF LESS GET NEYp

; TEST FOR 9

+STILL SAME OCTAVE
s DISPLAY OCTAVE

i POSITION CURSOR

; TO PRINT OCTAvVE No.

;NEW OCTAVE
;PRINT IT

;GET NEXT KEY
;NO QUEUES
;SAVE KEY IN B

;TABLE IN A
iEND OF TABLE?
i YES WRONG KEY

; COMPARE KEY/TABLE
;GO PLAY

iNOT FOUND. BUMP Ovi; §

iNOTE STRING AND
;TEST NEXT IN TABLE

sNOTE TO PLAY

i SECOND PART OF NOTE

i HL=PLAY STRING
iBASIC PLAY ROUTINE
i POSITION CURSOR TO
iRIGHT OF NOTE:-

; PRINT CURRENT
;NOTE, AND

iPRINT + CHARACTER

~~Scanned by CamScanner

100
101
102
10;

b Ly b
' 8
Sy, By b
R SRTRY
B SDLASM‘IE 75 EO8E
08y, ¥ o i 76 EO91
Ly TIQ Q% 4
By NQU)P"E 4
Iy, U, 78 B093
By Qﬁ; 79 E094
X OQ.PA ‘, 80 E096
Ivp " g1 E£099
? NEIT g2 E09B
) Gy XTKQ 83 E09D
Ve Zugy ¥ g3 moAT
Key L
} g5 EO0AS
3
L W, 86 EOA6
My, s oA
Gkpy 89 EOAA
90 EOAD
A
RE mﬂﬂm,91 EOBO
LAY © 92 EOB3
FOUND.swp‘93 E0B6
- “" 94 EOBY
6w o5 gonc
NEXT IN 12 96 EoBF
97 E0C2
TO PLAY 98 EOCS
99 E0C8
100 EOCB
, part €'
102 EOCC
102 EODO

v ST 102 gopa

e

1AY P 102 Bops
N c®% " 103 Eops
¢ N0 103 EoDD

104 EOEO
mggf 104 EOE4

104 EOES8
oA

0 "

A
»

CDA200
18A1

22

4F34
543630
4C38
5330
4D313030
3030

22
00

444320
524323
464420
544423
474520
484620
554623
474720
494723
4B4120
4F4123
4C4220
OF

43555252
454E5420
4E4F5445
20
53544154
555300
4F435441
56453A2D
00

4

STRING:
OCTVE:
TEMPO:
DURAT:
ENVPAT:
ENVPER:

NOTE:

TABLE:

MESG1:

MESG2:

CALL CHPUT
JR INPUT
DB 22H

DB "og4q"

DB "TGO"
DB "L8 "
DB llsoll

DB "M10000"

DS 2
DB 22H
DB 0

DB "p","c "
DB "R","C+"
pB "F","D "
DB "T","D+"
DB “g',"E "
DB gt g W
ps "u","F+"
pB "Jg","¢ "
DB "I","G+"
DB "K","a "
DB "o","As+"
pB "u","B"
DB OFH

DB "CURRENT NOTE "

DB "sTATUS",0

DB "OCTAVE:-",0

;OR SPACE
sGET NEXT KEY

; START WITH QUOTES
iOCTAVE 4

; TEMPO 60

; DURATION 8

;ENV WAVEFORM SO

s PERIOD M10000

;NOTE STORAGE
;PLAY END QUOTES
;END STRING WITH 0

;END OF TABLE MARKER

89

“Scanned by CamScanner

105 EOE9 4E4F5445 MESG3: DB "NOTE:-",0
105 EOED 3A2D0O
106

END

Where practical the names, or labels, assigned to the ROM routing,
are as used in the MSX specification and should be compatible Wity
other publications on MSX. They have a maximum length of 6
characters and are usually an abbreviation of the function - CHGEp
is assigned to the routine which gets a character from the keyboanL

CHaracter GET.

Analysis

Line 13-CALL ERAFNK (00CCH) turns off the function key display. The
sister routine is CALL DSPFNK (00CFH) which turns it back on.

Line 15-CLIKSW (F3DBH) is the switch for the key press click. Here
we zeroed A with XOR A and loaded zero into F3DB which turns it off,

any other value switches it back on.

Line 16-CALL CLS (00C3H) clears the screen but only if register A
has been cleared by XOR A. 00C3H contains a jump to the actual CLS
routine at 0848H, if you wish to clear the screen but aren't sure of
the contents of A, a CALL 0849H will achieve the same goal by
skipping the test on the flag. Used in the previous chapter.

Line 19-CALL POSIT (00C6H) positions the cursor depending on the
value of HL. 1In lines 17/18 the column was entered into H and the

line into L.

Line 21-CALL PTMESG (6678H) as used previously, prints a messag®
with the start address in HL and must terminate with a zero. MESG! |

is shown in line 102.

Lines 22-31 The same as above. To aid readability H and L are loaded
on separate lines and decimal values have been used, not hex. '

90 Scanned by CamScanner

e |

i 27
pines /28 could have been entered using only one line DbY

Convertlng the column and line values to hex (14 and 12 pecome OE
and 0oC) so entering:- LD HL,0EOCH would make the program shorter

pine 33-CALL CHSNS (009CH) checks the keyboard buffer where @
’

pressed key is stored, and returns with Z flag reset if there was.

1t does not return with the character. If there was no key line 34

;s a relative jump back to line 33 to do it again. The program will

not pass these 2 lines until a key is entered

pine 35-CALL CHGET (009FH) waits until a key is entered and returns

sith the ASCII value in register A. In fact we could have dispenced

qith lines 33/34 as this routine waits for a key but it also
and in my opinion

displays the cursor if it needs to do any waiting,
first means

spoilt the display, therefore using the CHSNS routine
a key is in the buffer

that the program does not reach here until
eby

and this routine picks up the key and does not need to wait ther

the cursor 1is not displayed.

36-checks if it was the '€' key and if so line 37 quits the

Line

program. This line jumps back to ZEN but if one saved this as a
pinary file and ran it without 2EN this instruction would be altered
to RET 2.

ut of keys 1 to 8 to change the octave.

t that if the key is higher than an
line 49 to check on a

Lines 38/41- check for inp

gimilar to the last chapter excep
8 the program Jumps to the SAMOCT label in

note to be played.

if the key was petween 1 and 8 and loads the

Line 42- is reached
e octave is stored.

value into OCTVE+1, where th

he cursor next to the octave message on screen

Lines 43/45 position t
with a call to pOSIT.

HPUT (00A2H) outputs the character in the A register,

Line 47-CALL C
at the current cursor position already

which was joaded in line 46,

Scanned by Cam

AT

o1
canner

43/45 and line 48 jumps back to INPUT for ¢
One could alter line 47 from CALL CHPUT to RST 18§ whh
) i

A to the current device, be it printer, SCreeth

Op

specified in lines
next key. &
ocutputs register

whatever.

Line 49-CALL 0090H (GICINI) initialises the Programmable g

Generator (PSG) and has been used to eliminate a queue of p ¢
Otg,

being stored and so not continuing to play for minutes after the k
was released. Try deleting this line for different results. kK

loads HL with the start address of the tableof

Line 51-LD HL,TABLE
The key entered has been stored in register p j
n

notes in line 88.
line 50 and the first entry of the table is loaded into A in line

52. Line 53 compares A with OFH as this defines the end of ty,
table and if the key was not found it is assumed that an alien key
such as Z or X, was pressed and therefore nothing should be playeg

and a jump back to INPUT is made for another key.

moves it up a byte, and line 56 compares the

Line 55 increments HL,
A) and if the two match 3

key pressed (in B) with the table (in
relative jump is made to FOUND to play the note (first time round it

would be comparing with the first key in the table, key D). If the
key did not match then HL must be moved up past the following bytes

and must now point to the key remembering it has

been incremented once, SO lines HL twice more and
line 60 Jjumps back to compare the next entry in the table. This
ontinues until HL is looking at the first byte in line
this is where lines 53/54 checked for the end of the

'R' in line 89,
58/59 incement

comparing C
100 (OFH) as
table, which OFH is, and aborted back to INPUT.

Line 62-FOUND is reached when the key pressed matched a key in the

table and a note must be played. Remember that HL is pointing to the
table and has previously (line 55) been incremented. 'D’
key was entered and HL will now be pointing to the byte after 'D' if
line 88 of the table. This is the letter of the note to be Plﬁ‘yed

ds
and therefore gets loaded into register A (line 62). 63 loa
labelled NOTE in line 84.

Assume the

Line

this note into position in the string,
- Scanned by CamScanner

TR, W mT

this t i i
Th . Note in line 84 b
¢he second byte ;¢ —— © first 44 Y

letter of the note while

sign, The first note in

and therefore a space is

allowed in pLAY strings,

ubsequently overwrite the
+' sign if it
Note 1line

To0 load

contained it,

64 increments HL,

stores it into NoO sign and line 66

P ayed to be in g

Lines 69/71- position the Cursor adjacent to the NOTE:- message on
screen in order to display the note being played.

Lines 72/75- load the note into A and print it with CALL CHPUT as
used for the octave print in lines 43/47. As the note is always 2
characters long register A is subsequently loaded with the second
byte of the note storage and similarly gets displayed in line 75.
The cursor does not require positioning for the second byte as it
will have been automatically moved along one screen

the previous CHPUT in line 73.
get the next key.

position after
This is then followed by JP INPUT to

Line 78- STRING is where the whole of the PLAY string is stored.

Line 78 contains the ASCII value for '"' which must open and close a

play string. As we are accessing a Basic function it must appear

Syntactically correct else an error will be instituted and our

machine code program will crash back into Basic, not a pleasant

thought Line 79 stores the octave and commences with the character

0, not zero, and is followed by the starting value 4. This second

byte obviously gets altered if one presses keys 1 to 8 whilst the
Program is running and so changes the octave.

Sthnner

of the string for Tempo ‘Tﬁm

80/83- set the remainder
(S0 zero this time, not o) ,
q

Envelope waveform
These values remain constant, the on]
Y

are to the note and octave, alth“@h
he program which takes seconqg

Lines
Duration (L8),
Envelope Period (M10000).

alterations via the keyboard
re-assemble t

One could also alter the program to accep
duration or waveforp

one can change them and
for different results.
the cursor keys for instance to alter tempo,
Line 84- contains the note storage which is blank when the Progry,

Line 85 is the ASCII value for the closing '"' sign ap

first runs.
o value which must be entered to

line 86 contains a byte with a zer
just like the print strings.

signify the end of a string,
Lines 88/100 contain the table of keys followed by there respectiy,
notes and the line 100 contains the end of table marker OFH.

Lines 102/105- are the print strings which one should be familiar

with by now, taking note of the trailing zero byte after each.

To save as a binary file use the same procedure as in the last

chapter. Alter line 37 to RET 2 and note the last byte of the

program when re-assembling to video and enter it when prompted as

the STOP address.

This program was written to run on screen 0 but is quite possible to
run on screen 1 except the display will be slightly moved to the
right, it will not upset the POSIT routine which positions the
cursor. One could enter a 1line at the start of the code to

initialise the screen:-

CALL 006FH
(INIT32) will initialise to screen 1

CALL 006CH
(INITXT) initialises screen 0

___‘_AScan n_ed by CamScanner

94

A il

rhe MSX allocates memory locations FD9A to FFC9 to what is known
,5 a Hook area. There are 112 hooks each containing 5 bytes.
several routines within ROM make a call to these hooks to find if
they contain additional instructions for tasks that should be
pe,ffc.rmed. Normally they all contain the value C9 hex, which is the
code for the RETurn instruction. Quite simply the routine in ROM
calls the hook, finds it must return and do nothing, and carries on
from where it left off. As sophisticated software becomes available
for MSX these hooks will be used to hook up to disc drives and other
peripheral devices in order to expand the system without the need to
change the ROM. 1In order to write to a hook one must obviously know
from which ROM routine it is called, so indiscriminant use could
cause all sorts of problems, the rule should be, if you aren't sure

leave it.

The following program writes instructions into one such hook, at
FDIF, labelled HTIMI. It is called from the timer interrupt handler
routine, which means it is accessed 50 times a second whatever task
the MSX is performing, excluding reading or writing to tape. This
obviously lends itself to be used as a buiit in timer as one knows
how many times a second it will be encountered.

It has been used in the next program to slow down the movement of
sprites, as without the delay they would move too quickly for the
eye to see. Yes we could have written a machine code routine to

create a delay, but that would not have demonstrated the use of a
hook.

Scanned by CamScagser

N T T

SPRITES
processor (vDP) used in the MSX 1is QXtr&Ml

her complex to the average yg,
X

The video Display
Your awareness of ;
ity

irst may

did Basic once u
d on the amo

particular machine.
at least be co
l'lVEj[‘i.,'-al_lt

appear rat

pon a time.
unt of information g
glven

In order tog%

power ful and at f
put then again SO
capabilities will probably depen

in the manual supplied for your
the best from the vDP in the MSX oné should

m variable commands
cannot be described in op,

roduction to machj,
¢

and how to access ¢
§

with the Basic VDP syste
This, unfortunately,

various registers.
beyond the scopé of this int

code. For a fuller knowledge of its workings one would be we

advised to obtain a book specifically written on the VDP of the Mgy
one such book is titled 'Behind the Screens of the MSX' by Mike Sh‘
av

and should answer most if not all of ones questions.

chapter and 1is

is to set up 2 sprite
he patterns
move one across the until it collides with the othe
r

s . ;
freupon it will move up to the top of the screen This progr
- - . . am is
y emonstration of how to get sprites moving and detecti
: ' | in
ut with the machine coding practise you should h g
ave

The main task of this next program

screen

collisions,
now, it could prove a
good core program t .
o fire-up the
grey matter

in order to ;
For phio mies git a complete display moving. One could t
r Ke ' r e i
yS being pressed and move the sprites L
accordingly,

The explanation
s follow the a
ssembled listin
g.

Scanned by CamScanner

OO A O oY e e R ==

.
T o W Y = O

E000
E003
E006
E009

L
SO W e - O

EOOB
EOOE

LT R I S I N
Lo TS L B - o

EO011
E012
E013
E015

A o W W N NN
w N = O W o =2

E018
E01B
E01D
EO1E
37 E020

)
N U e

219EEO
119FFD
010300
EDBO

CDCCO00
CD6F00

AF

47
OEO6
CD4700

3AEQF3
F601
47
OEO1
CD4700

CHSNS:
HTIMI:
ERAFNK:
WRTVDP:
RDVRM:
WRTVRM:
INIT32:
RG1SAV:
STATFL:
ATTR1:
ATTR2:
:

;WRITE CODE

-e

.
!

ORG OQOEOQOOH
LOAD 0EOOQOH
EQU 009CH
EQU OFD9FH
EQU 00cCcH
EQU 0047H
EQU 004AH
EQU 004DH
EQU 006FH
EQU OF3EOH
EQU OF3E7H
EQU 1BOOH
EQU 1B04H

TO HOOK (HTIMI)
LD HL,CODE
LD DE,HTIMI
LD BC,3

LDIR

CALL ERAFNK
CALL INIT32

; ALTER SPRITE PATTERN
s GENERATOR BASE ADDRESS TO 0000

.
r

XOR A
LD B,A
LD C,6

CALL WRTVDP

;ALTER BIT 0 OF VDP REG 1

$TO 1.,

TO INCREASE MAGNITUDE

LD A,(RG1SAV)
OR 1

LD B,A

LD C,1

CALL WRTVDP

Scanned by CamScagmer

; TURN OFF FUNC KEYS
; SCREEN 1

38
39

40 E023 3E8C
41 E025 21001B
42 E028 CD4D00O
43 E02B 3ECS8
44 EO02D 21011B
45 E030 CD4D00O
46 E033 3E41
47 E035 21021B
48 E038 CD4D00
49 EO03B 3E01
50 EO3D 21031B
51 E040 CD4D0O
52

53

54 E043 3E8C
55 E045 21041B
56 E048 CD4D00O
57 EO4B 3E1E
58 E04D 21051B
59 E050 CD4D00
60 E053 3E42
61 E055 21061B
62 E058 CD4D00
63 EO5B 3EQF
64 EOSD 21071B
65 E060 CD4D00
66

67 E063 AF

68 E064 3298E0
69

70 E067 CD9CO00
71 E06A 2024
72 E06C 3A98E0
73 EO6F FEO1

74 E071 38F4

98

iSET UP SPRITE 1

.
’

LD a,140

LD HL ,ATTR1
CALL WRTVRM

LD A,200

LD HL,ATTR1+1
CALL WRTVRM

LD A,65

LD HL,ATTR1+2
CALL WRTVRM

LD A,1

LD HL,ATTR1+3
CALL WRTVRM

;SET UP SPRITE 2

LD A,140

LD HL,ATTR2
CALL WRTVRM

LD a,30

LD HL,ATTR2+1
CALL WRTVRM

LD A,66

LD HL,ATTR2+2
CALL WRTVRM

LD A,15

LD HL,ATTR2+3
CALL WRTVRM

XOR A
LD (COUNT),A

;DELAY COUNTER CHECK

CKMOVE:

Ry Wy .

CALL CHSNS
JR NZ,QUIT

LD A, (COUNT)
CP 1

JR C,CKMOVE

;VERTICAL POg

+HORIZ POS

 CHARACTER 65

; COLOUR BLACK

;VERTICAL POS

;HORIZ POS

s CHARACTER 66=B

;COLOUR WHITE

7 ZERO COUNTER

;IF LESS DONT MOVE

Scanned by CamScanner

: FE——
-~ Vel Yy Vel Vs) (@ +} oD (e +] o o o OO OO T o -3 -3 =3

19

71
18
79
80
81
82
83
g4
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

E073
£076
E079
EO7A
EO7D
EO7E

E081
E0B84
E086

E088
E08B
E08D

E090
E092
E095

E098
E099
E09C

EO9D

EO9E

21051B
CD4A00
3C
CD4D00
AF
3298E0

3AE7F3
CB6F
28DF

21041B
3E28
CD4D00

3EC9
329FFD
C303A0

00

2198E0

34

C9

C399E0

¥

L Me&-ﬂﬁw
:-'**w ”'33

.
L

;MOVE SPRITE 2
LD HL,ATTR2+1
CALL RDVRM
INC A
CALL WRTVRM
XOR A
LD (COUNT),A
;s CHECK FOR COLLISION
LD A, (STATFL)
BIT 5,A
JR Z,CKMOVE
-
; COLLISION OCCURED
LD HL,ATTR2
LD A,40
CALL WRTVRM

-e

: PROG END, SO REPLACE RET
s INTO HOOK (HTIMI)
QUIT: LD A,0C9H
LD (HTIMI),A
JP OAO0O3H

I
COUNT: DB 0
’

; INCREMENT COUNT 50 TIMES A SEC

INCCNT: LD HL ,COUNT
INC (HL)
RET

'

CODE: JP INCCNT

i
END

(4 :(7 R RS A R {0, AT . .-
LT [f' ‘.-v{w-.- 's"‘ﬂs PP . -{-',-""‘;f

L,
an oo At A wm&«w&m'm o

; VERT POS

; PUT INTO A

:MOVE 1 PIXEL RGHT
;NEW POS OF SPRT z

s ZERO COUNTER

:TEST COLLISION BIT
;:IF ZERO KEEP MOVING

;HORIZ POS

;sMOVE IT UP

. CamScar? ﬁer

NadB ol R e e

g PR

code into the hook labelled HTIMI at FDIF. The
as you should know by ngq,
’

y HL into that pointed toby
BC, in this case 3 bY&Q

Lines 16/19 load

LDIR instruction h |
m the address pol

as been used which,
nted to b

loads code fro e 1o
fer is he i

DE. The amount to trans '

hich are shown in line 106 which tell the hook to jump to INCey,

whic This has the effect of slowing the

which increments the counter.

i seen.
movement and can be speeded up or slowed as will be

routine and this is followedby

function key
as you cannot hay,

Line 21 is the erase
display to screen 1,

INIT32 which switches the

sprites on screen 0.

Lines 26/29 Write to the VDP register whose number (0 to 7) must b,
C and the data to be loaded into the VDP held i,

in register
are loading VDP register 6(C) with O0(B). Thig

register B. Here we
altering the base address of sprite pattern table tq

in effect 1is
So we now have the

that of the character generator base address.

full ASCII character set stored as sprites.

Line 33 Loads the value of RG1SAV (F3E0) which stores the current
value of register 1 of the VDP. The only bit of VDP 1 we are
interested in is bit 0 which controls the magnification for sprites.
Zero 1is the normal size whilst altering it to 1 magnifies the
sprites, so in line 34 we OR 1 which will not effect the remainder
of the bits but will turn bit 0 to a 1, putting it in magnify mode,
And once again we must load the contents of A into register B,
select the VDP register in C and call WRTVDP, which will write to

the VDP register 1.

Now if that appeared slightly beyond you don't panic, as practise
makes perfect, just enter the code and alter it later, it can only
get easier and you will pick it up.

z::::n:Z:51a:etazgr:prite 1. The sprite attribute table in screen 1
Therefore the attribS: 1Room aéd contains 4 bytes for each sprite.
were given equates iU e? for sprite 2 will commence at 1B04H. These

n lines 12/13, ATTR1 and ATTR2. The first byte

100 Scanned by CamScanner

nolds the vertical pixel Position of
register A with 140. e

(bottom) . Line 41 1loads

The Pprocess continues with loading the horj
ister A and stori T Orizontal
reg. toring it in the secong byte of i
sprite 1 at 1BO1H by loading HL with ATTR14+1 ot The attribute for
+1,

position into

NOTE Line
47 could be entered as INC HL as when the program

returns fr .
om the WRTVRM routine register HL is not changed in any

wa therefo i] .
Yr re it still points to the previous location, and one

coulé simply increment it. But it was shown in this form for
clarity and not program elegance.

The third byte of the attribute holds the sprite character number.

But we have not defined our own sprite we have shifted the sprite
pattern table so it is looking at the ASCII characters, purely for
convenience. Therefore the ASCII for the letter A is 65 decimal,
and line 46 loads register A with 65 as the letter A is to be our
sprite 1. This is then loaded into the third byte 1in the
attributes, ATTR1+2. Note that the although the decimal value was

used for clarity, the assembler converted it to hex, as one will see

in the left column.

Lastly the colour must be defined and loaded into the fourth
attribute byte ATTR1+3, and line 49 defines the colour number 1,
which is black and this concludes the set up for sprite 1, having

its co-ordinates, character and colour stored in 1B00 to 1BO3H.

The procedure 1is duplicated for setting up sprite 2 except the

information must pbe stored at 1B04 to 1BO7H, which was labelled as

ATTR2 in line 13. The vertical position is the same as sprite 1,
horizontal (30) in line 57, the

: es being the
the only differences I 66 decimal) and the

character which this time is the jetter B (ASCI

colour which is 15 for white.

Scanned by CamSca1non1er

o-ordinates can be altered for

is running these C

he program
Once t prog emembers to assemble each time,

different effects, providing one I

Lines 67/68 zero register A and loads this into COUNT.

which checks for a key beh@

Lines 70/71 is the CHSNS routine
een included so tha

jumps to the QUIT routine, and has b

pressed and _ ' .
s to modify it Just 3

one can stop the program before it finishe
case one has slowed it down too much.

Line 72 loads the value stored in COUNT into register A and if j¢
has not reached 1 line 74 jumps back to check it again. This loop
continues until register A is equal or greater
line 73. Remember the hook at FD9F is incrementing COUNT 50 times 3
will only cause the loop to continue for

than the value ip

second, therefore CP 1
1/50th of a second before carrying on with the program and moving

the sprite by 1 pixel. If line 73 was altered to CP 50 the sprite
would move by 1 pixel only once a second, very slow. Without the
delay at hook HTIMI the sprite would move so fast it would simply.

appear at the finishing point.

Lines 77/82 move sprite 2 and zero the counter for the next delay
before moving again. The only attribute we are changing is the
horizontal position, ATTR2+1, therefore this must be loaded into HL
and a call to read VRAM (RDVRM) will return the wvalue in the A
register (its current horizontal position). To move the sprite we
INCrement A and write it back to the VRAM address still pointed to
by HL by WRTVRM.

Lines 84/86 check for a collision of the 2 sprites. STATFL (F3E7H)
holds the status register of the VDP and bit 5 is set to 1 ifa
collision, 2 sprites overlap by at least 1
Therefore line 85 tests bit 5 of the status

if it was zero back to CKMOVE again,
bit 5 would be 1 therefore the

pixel, has occured.
flag and line 86 jumps
If a collision had taken place

zero flag would not be set and the
test would fail and the program would fall through to the next line.

102

~ Scanned by CamScanner

i cbcnia .

L apdiind, " bttt Ry I
canh i ke b ol bl e b

3 e Ry - 5 . 2"
: R S R R S R i S YR i i e v
PIAEER DTS e S T R R S L B L S Y SRR o

pine 95 QUIT is reached after a collision

running, It
its

(C9H) in case one is going to run a
want the hook accessing COUNT 50 time

ZEN.

or if a key has been

simply replaces the
Ooriginal byte the code for RET

nother program as you will not

pressed while the program wag
contents of hook HTIMI with

S a second, and jumps back to

Line 99 is the storage byte for the counter,

Lines 102/104 are accessed only from the hook HTIMI,

and simply add
1 to count each time the interrupt occurs.

Once running experiment with altering the positions of
and time delays and try adding a routine
the press of certain keys.

the sprites
for moving each sprite on

by CamScatozer

e

R S I AR

sk

LOADER PROGRAM

when loading a machine code program one may have seen a dlfferefl
screen message displayed than the usual one or, as is becoming Moy
popular, the complete display could alter to a graphics title whif
the program appears to be still loading.

The answer can lie in the fact that two programs have been loaded
the second automatically. The first short program containg Ué
titles and a jump to the loading routine for the second 1argez
program. When the first program has loaded it executes immediately
so printing the titles on screen and enters a loading routine for
the second. Execution is so fast that the tape stops for a minip,)
time and starts again almost without being noticed. Only One

'Found:program name' message appears on screen whilst the firg

program is loading.

The loader program begins with the screen title message, in the
example it will display 'NOW LOADING MAIN PROGRAM', but this can be
expanded upon as will be explained. It is advised to only add the
loader jump section after fully debugging and testing the graphics
titles. Although the ORG is set at 9000H, which is ideal for
testing, before saving the object file it could be altered to
another memory location, this also means that the second progran
could be set to the same ORG before saving and the loader progran
will be overwritten and dissappear from memory as the main progranm
loads in. If one has recorded an ASCII file of one of the earlier
programs it will be simple to test this loader. First complete the
entries on the next page, making sure it runs correctly, then add in
the loader section carefully and save as a binary file by the 'WB'
command. Verify the tape and do not rewind as the main program will
be recorded starting from where the first finished, on the next
section of the tape. Kill the loader program from memory and load
in a program from the earlier chapter Assemble and save the second
program with the 'WB' command onto the tape, and one should possess
two programs on the tape, the second will automatically load and

run,

1N 4 Scanned by CamScanner-

—_—

\pm_dmu\a.m‘-.)

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
30
30
3

31

N

3

32

9000
9003
9005
9008
900B
900D
9010
9013
9016
9018
901B
901E
9021
9024
9027
902A

902D
9031

9035
9039
903D
9041

9045

CDCCO00
3E09

32EAF3
32EBF3
3E01

32E9F3
CD6F00
210018
3ED1

010003
CD5600
212D90
116319
011A00
CD5C00
C300A0

204E6F77
204C6F61
64696E67
204D6169
6E205072
6F677261
6D20

INIT32:
ERAFNK:
FORCLR:
BAKCLR:
BDRCLR:
CHGCLR:
T32NAM:
LDIRVM:
FILVRM:

.
’

L

DISPL:

ORG
LOAD
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CALL
LD
LD
LD
LD
LD
CALL
LD
LD
LD
CALL
LD
LD
LD
CALL
JP

DB

DB

END

9000H
9000y
006FH
00CCH
OF3E9H
OF3EAH
OF3EBH
0062H
1800H
005CH
0056H

ERAFNK

A,9
(BAKCLR) ,A
(BDRCLR) ,A
A,
(FORCLR) ,A
INIT32
HL,T32NAM
A,0D1H

BC, 768
FILVRM
HL,DISPL
DE, T32NAM+355
BC, 26
LDIRVM
0AQ00H

" Now Loading"

" Main Program "

Scanned by CamScher

e N

B oo e 5 i 3
e T e, T R A A A AR S M 2 s

Analysis

Line 13 which has been used before erases the function keys.

Lines 14/18 set up the colours. Register A is first loaded with the
code for the colour light red, and this is loaded into the Storag,
bytes for background (BAKCLR) and border (BDRCLR) colours at Fig,
and F3BE respectively. The character colours (FORCLR) is loadeq
with register A, this time 1 for black, at F3E9.

Line 19 initialises screen 1 which will clear the screen and Change

it to the new colours.

NOTE If one wished to simply alter the existing colours whilst
remaining in the same screen mode and maintaining what was
currently displayed on screen, a call to 0062H (CHGCLR) woulg

suffice after setting up the colours.

Line 20 1loads HL with the start of the Name table for sCreen 1
(1800H), the top left position.

Line 21 loads register A with the code for the character which will
cover the screen whilst line 22 loads our byte counter (register BC)
with the number of positions we will write to. As screen 1 contains
24 lines of 32 characters BC is loaded with 768 decimal, it could of
course been converted to hex to read LD BC,300H.

Line 23 calls a routine (FILVRM) at 0056H which writes the data in
register A to VRAM, which has its source address in HL and the
number of bytes in BC, all of which has been done. If one only
wanted to write to the centre 4 lines of the screen then HL would
instead have required loading with the start of the name table plus
the offset. The tenth screen line starts at 288 positions (32x9 as
first line is 0) higher than the start of the screen, therefore
progam line 20 could have read:- LD HL,T32NAM+288, But obviously
the byte counter would require reducing too, for 4 lines of print it
should be loaded with 128 decimal (32x4).

106

Scanned by CamScanner

Py s s

Now

24/26

load the
Program

Line? . start of our actual screen message
Doadlng .Maln ' (labelled DISPL) into HL load the
destj,natl.on address of its position into DE, and load ;he 1e29th of
(he message into BC (26 bytes including the leading and trailing
spaces)- As the message should commence 3 positions in from the left
an 1ine 12 the actual screen position is calculated thus:- 32x11+3

the tOP (first) line is 0 therefore to calculate the 12t; line, th;

Line width of 32 is multiplied by 11.

LDIRVM at 005CH which was used in chapter one to load

with the contents of an area of RAM.

pine 27 calls

VRAM directly

titles can be altered

pack to the ZEN mainloop so the

it reaches your satisfaction.

pine 28 Jjumps

and run until
be.altered when we add the loading section.

This jump address will

9000H the display will switch into screen 1 mode

After entering G

and cover the sc
line will print our message.

your alterations to colour,

assemble
entered into memory.

reen with the ASCII character of 'pD1!
Get 1it
length of message etc.,

after each change in the program
. After each test the

and the centre

running first and then make

remembering to

otherwise the changes will
'2EN' message will

not be
appear at the top of the screen and in order to clear the screen and
return to screen 0, which 1s the usual screen in ZEN, enter the
'RETURN' key on its owi.
The Loader

To append the loader routine make the line which contains the
'"END' message the current line, if one has not altered the program

add the lines

it should be line 32, and enter 'E'

listed on the following page.

and tReturn’ and

Scanned by CamSc:%\Bper

TO
DISPLAYED ENTER

32 LOADER:LD A,OFEH
33 LD (OF41CH),A
34 LD HL,STRING
35 JP 6EC6H
36 STRING:DB 22H,"CAS:"
37 DB 22H,2CH,"R",0
38
ZEN

Line 28 which is the jump to Zen requires altering to:-

JR LOADER

this will then make the program jump to the loader routine after the

titles have been displayed. Make sure the last line is still 'END' }§
and assemble the program to (v)ideo and make a note of the last byte
of the program. 1f one has not altered the program it should be‘ﬁ

905AH but obviously your program could be longer. The final section {

of the program would have assembled like this:-

32 9047 3EFE LOADER: LD A,OFEH

33 9049 321CF4 LD (OF41CH) ,A

34 904C 215290 LD HL,STRING

35 904F C3C66E JP 6EC6H

36 9052 22434153 STRING: DB 22H,"cAas:"

36 9056 3A

37 9057 222C5200 DB 22H,2CH,"R",0
38 END

Quite simply we have loaded the value FE Hex into the contents of §
F41CH which stops a second 'Found:' message being printed when the §
second program is loading, which would spoil the display. Line 34
loads HL. with the start of a string which are the characters that %
could normally follow a BLOAD command i.e. "CAS:",R. We then jumpP {
to the BLOAD routine in ROM at 6EC6H. ;

108 Scanned by CamScanner

e e s AT LT A I it i e it

save the program as a binary file enter

10

B
gtART 9000H

5TOP 905AH

LOAD 9000H
. gXEC 9000H
ond give the loader the name of the main program th i
on tape. Afterwhich rewind the tape and veslEy b at wz%l f?llow it
geTURN', and if all is well move the tape on :lén;er1ng VB' and
gap petween the end of the loader and the staiz tii :;ea::ZZn:

Also, as a safety measure, save the ASCII file of this loader

program on a separate tape for other programs and also in case it
does not operate correctly when the second program is appended

ow kill the file by entering 'k' and 'RETURN', similar to 'NEW' in

N
Basic, and load in or enter from the keyboard the main program. If
one saved the ASCII file of one of the earlier example programs in

Alter the ORG and LOAD of

chapter 3 this will be ideal for testing.
address as the loader used,

the second program to 9000H, the same
and assemble to (V)ideo in order to note the last byte of the
previously shown onto the same tape that

program and save as
but press 'RETURN' when prompted for a

contains the loader program,
name.

To test switch off for 2 few seconds, and when turned back on

enter: -

BLOAD"CAS:",R

and the first program
displaying the titles, and in doing s

run the second, main program.

load and run,

on the tape will
oad and

found
o should automatically 1

Scanned by CamSct®ner

I —

e ———

Argument Transfer using USR

The USR function was used in chapter 1 with what is termegd as ,
dummy arqgument within the brackets i.e. USR(0). It is possimeto
pass up to a machine code routine an integer, string, singleOr
double precision variable. A=USR(&H1234) would store 1in a StOIqh
area in RAM the hex value 1234 and call up the machine code routhm.

Misuse of this function could cause a program to crash.

The type of argqument passed to the routine is always storedat
address F663, so the routine can check what type has been passedlm'
and would contain:-

2 for an integer

3 a string

4 a single precision real type variable

8 a double precision real type variable.

Take an example:-
First one needs to DEFine the USeR address as was shown in chapter 1
(i.e. 10 DEF USR2=&HE000). Our machine code routine is called frop
Basic to - execute a certain task, it could be to move a block of
memory, and requires the destination address (for example A020H) to
be passed from the Basic program and stored in order to load into
register DE. The Basic line could be:-

100 A=USR2(&HA020)
This would then call the machine code routine at address EO0OQOH and
carry out any tasks wuntil it RETurned to the Basic program. The
integer (or address) A020H is always stored at address F7F8 and F7F9
hex. Therefore to load the integer into register DE all the machine
code program needs to do is:-

LD DE, (OF7F8H) .
and DE will contain AQ20H. If, while still in the machine code |
routine, one wished to alter the integer and pass it back downto?
the Basic program when it RETurns simply:-

LD (F7F8H),DE

and the new value will be placed into variable A on returning to the
Basic program.

110

ings operate i .
+* will containl:oa slightly different manner in that F7F8 and F7F9
ho? T the string, but an address where the string

riptor is 1 ;
gescr P ocated. This string descriptor contains 3 bytes.

irst signifi i
rhe fi) g %flés the string's length and the second and third the
address where 1t is stored, and could be used thus:-

100 B$="MSX"

110 A$=USR2(B$%)
this time, as it is a string, F663H contains the value 3. Addresses
¢7¢8 and F7F9 hex contain the address of the descriptor, for example
802D, and at address 802D will be the length of the string, 3, while
g02E and 802F will contain the actual location where the string is
stored in reverse order naturally. Did I mention it was complicated?

gingle precision values, type 4, are stored at F7F6 to F7F9 hex and
pouble precision, type 8, at F7F6 to F7FD hex.

WARNING One cannot access the storage addresses (F7F6H onwards)
after the routine has returned to the Basic program (they cannot be
PEEKed), as they will not be stored. Oonly the variable which was
used in the USR line (in the last example A$) will contain the data.

For an example of how an integer would be passed into a machine code

routine load ZEN in the normal way, and enter this short program:-

ORG OEQO00H

LOAD OEOOOH
LOOP :EQU OAO003H
LD DE, (OF7F8H)
JP LOOP

END

1
2
3
4
5
6
7

and assemble.

111

CamScanner

If all is well enter 'B' to return to Basic and enter this Bag;
¢

program:-

10 DEFUSR2=&HA000
20 A=USR2(&H1234)
30 PRINT HEX$(A)

and RUN.

The program will enter the ZEN mainloop so enter:-

The short program will execute

ZEN prompt. Now enter 'X' g,
find DE contains 1234, whicy

GEOOOH and 'RETURN' twice.
return with the

rs and one will
passed up to 2 routine.

immediately and
examine the registe
proves that an integer can be

To discover how it passes back an integer enter 'MF7F8H' and the
contents will be displayed as 34. Enter 35H and 'RETURN' followed
by the full stop '.' and 'RETURN' which alters the contents of

as you will obviously know by now. Enter 'B' to return to
and line 30 will then execute and print the hex value of
which one will see has changed to 1235H.

memory,
Basic
variable A,

The 'Q' command in ZEN is useful for displaying the contents of

memory and could be used here to discover how the single and double

precision variables are stored, as once control is passed back te

Basic the storage area is corrupted.

Scanned by CamScanner

1 1 Bt s ek T -
2 L e e Py
a e T o L B

AR

rthis section lists some of the useful routines found in ROM which

can b€ used by your own machine code program, some have been used

in previ
ﬂ;eadY P ious chapters, and some may be too advanced for ones
immediate use.

fhe start of ROM contains a table of jumps to the various routines,

gome of the more straightforward have been listed to assist if one
q4ishes to disassemb;e certain sections of memory, but normally a
call to the appropriate location in the table is all that will be
required, providing one knows which registers should be loaded with
the relevant data before the call is made. Each routine carries an

sppreviated name, or label up to six characters in length, as used
in the MSX specification.

addr Jump Name Function

0000 02D7 CHKRAM The first byte disables the interrupts and a jump
to 02D7 checks RAM and sets slots for the command
area, this is followed by the address of the

| character generator table and also the ports for

VDP read and write.

0008 2683 SYNCHR Called by RST 8. Checks the current character
pointed to by HL is the required one and falls
into CHRGTR if true, else gives Syntax error.
Character to be checked must be the next byte
after this RST. Carry flag set if it is a number,
72 flag set if end of statement.
Modifies AF,HL

0010 2686 CHRGTR Gets next character, or basic token, in basic
text. Entry HL. Exits with HL pointing to next

char, A contains char, carry flag set if number, 2

flag set if end of statement.
Modifies AF,HL

, by CamScHrC?n er

Outputs contents of reg A to current device, VDU
printer etc. Called by RST 18H

Compares HL with DE and sets Zero flag if matchem

Performs hardware interrupt procedure 50 times 4
Modifies nothing,

Disables screen, blanks out screen.
Modifies AF, BC

Enables screen, switches it back and restores
characters which were previously displayed.
Modifies AF, BC

Writes data to VDP register. Enter with reqg in ¢,

Modifies AF, BC

Reads VRAM pointed to by HL, returns data in reg

Writes to VRAM pointed by HL, data in reqg A.

Sets up VDP for Read. HL on entry.

Sets up VDP for Write. HL on entry.

Fills VRAM starting at HL with data in reg A and

Modifies AF, BC

Addr Jump Name Function
0018 1B45 OUTDO
0020 146A DCOMPR

Modifies AF
0038 0C3C KEYINT

second.
0041 0577 DISSCR
0044 0570 ENASCR
0047 057F WRTVDP

data in B
004A 07D7 RDVRM

A,

Modifies AF
004D 07CD WRTVRM

Modifies AF
0050 07EC SETRD

Modifies AF
0053 07DF SETWRT

Modifies AF
0056 0815 FILVRM

length in BC.
114

wed.by CamoScanner

i! "l? s

pddr Jump Name Function

0059 070F LDIRMY
005C 0744 LDIRVM

005F 084F CHGMOD

Modifies all,

1e in.

Fo
reground colour (FORCLR) at F3E9, Background

(BAKCLR) at F3EA and Border (BDRCLR) at F3EB.
Modifies all.

0066 1398 NMI Performs non-maskable Interrupt procedure. Entry

none.

Modifies none.

0069 06A8 CLRSPR Initialises all sprites. Patterns are set to
nulls.

006C 0S50FE INITXT 1Initialises screen to text mode, screen 0 and sets
VDP.
Modifies all.

006F 0538 INIT32 1Initialises for screen 1, and sets VDP.
Modifies all.
VDP.
0072 05D2 INIGRP Initialises to screen 2, and sets
Modifies all.
d sets VDP.
0075 061F INIMLT Initialises to gcreen 3, an
Modifies all.

Scanned by CamScaaser

Addr Jump

0078 0594
007B 05B4
007E 0602
0081 0659

0084 06E4

0087 06F9

008A 0704

008D 1510

0090 04BD

0093 1102

0096 110E

0099 11C4

009C ODé6A

116

Name

SETTXT

SETT32

SETGRP

SETMLT

CALPAT

CALATR

GSPSIZ

GRPPRT

GICINI

WRTPSG

RDPSG

STRTMS

CHSNS

Function

sets VDP for screen
Sets VDP for screen 1
Sets VDP for screen 2

Sets VDP for screen 3

Returns address of sprite pattern table in HL,

Entry reg A = sprite no.
Modifies AF, DE, HL.

Returns address of sprite attribute table in HL,

Entry sprite no. in reg A.
Modifies AF, DE, HL.

Returns current sprite size in reg A (no. of
bytes) Returns carry flag set if 16x16 sprite
otherwise reset.

Modifies AF.

Prints a character on graphic screen in reg A.

Initialises PSG.
Modifies all.

Write data in reg E to PSG register number in A.

Reads data from PSG register in A, returns with
data in A,
Modifies AF.

Checks and starts the background music.
Checks the keyboard for pressed key. Returns with

Z flag set if key in buffer.
Modifies AF.

Scanned by CamScanner

Jum Name
por 252 T

009F

00A2

00AS

00A8

00AE

00B7

goco
00C3

00C6

00c9

|

10CB

08BC

085D

0884

23BF

046F

1113

0848

088E

0B26

§{ oocc 0B15

CHGET

CHPUT

LPTOUT

LPTSTT

PINLIN

BREAKX

BEEP

CLS

POSIT

FNKSB

ERAFNK

Function

Waits until a key is t
yped. Re -
a5 St turns with AscCII of

Modifies AF.
Outputs contents of reg A to screen

Outputs contents of
reg A to printer.
set if aborted. corry Has

Modifies F.

Checks printer status. Returns FFhex in A and Z

flag reset if printer ready, 0 in A and Z flag set
if not ready.

Modifies AF.

Stores line of input from keyboard in buffer,
terminates when RETURN entered. Returns start of
buffer in HL, carry flag set if STOP was entered.
Modifies all.

Checks for CTRL/STOP keys. carry flag set if

pressed.
Modifies AF.

Sounds bell.

Clears screen if z flag set.
Positions the cursor. Entry H=column, L=1line.

Modifies AF.

checks if function keys should be on, if so

displays them, else does nothing.

Modifies all.

Turns off function key display.

Modifies all.

Scanned by CamSc#tiner

B . W

Addr Jump Name Function

0
OCF 0B2B DSPFNK Turns on function key display.
Modifies all.

00D2 083B TOTEXT Forces screen into text mode.
Mcdifies all.

013 "
2 OF3D CHGCAP Switches CAPS light on/off, but does not affect
CAP status. Entry 0 in reg A turns on, any other
turns off.
Modifies AF.

0156 0468 KILBUF Clears keyboard buffer.
Modifies HL.

Addresses F380H upwards are assigned to storage areas for

accessing from ROM or equally from your own program in RAM.
more common of which are listed below followed by their MSX name and

The

amount of bytes and purpose.

For example the current line length of screen 0 is held at F3AEH,

and is usually set to 25H (37 dec) and can naturally be altered as

To check on the contents of a location in memory

this is in RAM.
. -QF3AEH L]

one could enter a Basic line:- ?PEEK(&HF3AE) or from ZEN

Addr Name Size Function

F39A USRTAB 20 Addresses assigned to the 10 USR functions (0 to9d).
Until a DEF USR statement been initialised these

addresses all contain 475A which loads error 5 into

the error flag.

F3AE LINL40 Line width in screen 0

F3AF LINL32 Line width in screen 1

118 ~——.—Scanned by CamScanner

08r

F]BO

F3B2

F3B3
F3B5
F3B7
F3B9

F3BB

F3BD
F3BF
F3Ci
F3C3

F3C5

F3C7
F3C9
F3CB
F3cD

F3CF

Name Size Function
LINLEN Line length.
CLMLST Lines on screen,
Screen 0
TXTNAM Name address table start. (0000H)
TXTCOL Colour " " AL (unused)
TXTCGP Character Generator table start (0800H)
TXTATR Attribute Table start (unused)
TXTPAT Sprite Pattern Generator table start (unused)
Screen 1
T32NAM Name address table start. (1800H)
T32COL Colour " " " (2000H)
T32CGP Character Generator table start (0000H)
T32ATR Attribute Table start (1BOOH)
T32PAT Sprite Pattern Generator table start (3800H)
Screen 2
GRPNAM Name address table start. (1800H)
GRPCOL Colour " " " (2000H)
GRPCGP Character Generator table start (0000H)
GRPATR Attribute Table start (1BOOH)
GRPPAT Sprite Pattern Generator table start (3800H)

Scanned by CamSca1q8er

Addr Name

Size Function

F3D1 MLTNAM
F3D3 MLTCOL
F3D5 MLTCGP
F3D7 MLTATR
F3D9 MLTPAT
F3DB CLIKSW
F3DC CSRY
F3DD CSRX
F3DE CNSDFG
F3DF to
F3E6

F3E7 STATFL
F3E9 FORCLR
F3EA BAKCLR

F3EB BDRCLR

F55E BUF

F672 MEMSIZ

120

256

2

Screen 3

Name address table start. (0800H)

Colour " " . (unused)

Ccharacter Generator table start (0000H)
(1BOOH)

Attribute Table start

Sprite Pattern Generator table start (3800H)

Key click switch. 0=0off, any other=on
Cursor Y position (line)
Cursor X position (column)

Function key display switch. 0=o0ff

VDP Register values
Stores VDP 0 to VDP 7

Stores VDP Status register
Foreground colour
Background colour

Border colour

Input Buffer

Highest location in memory

RTTE EF, 43 ey

Scanned by CamScanner

This utility Program is
search routine which is

loadeg from Z2EN ang

SImply appends a byte
useful yhep

. disassembling
memory. One can either Sea

Sections of
byte address or string,
Two byte search

The keyboard routine within gzgy co

Mmences at address A742H, and let
us SUpPPOSe one wanted to discover

eyboard
area which zgn occupies,

where and hoy often the k
routine was referreg to within the memory
One would enter:-

YA742H

not as it would be found
in memory low byte first,

the search routine adjusts for this,
as most other are already
although thisg could be e 11 to a lower case
(small) letter such as 's' which is not otherwise useq.

as
The command 'y has been used

letters
utilised,

One will be prompted to enter the 'START'
so if
ZEN: -
AQOOH

address

followed by 1
ZEN was to be searched enter the first memo

ry location of

Logically the next prompt is for 'END'

enter the last address of ZEN:-
BBS5CH

+ SO in this example one could

The final prompt is for 'OPTION'

and for the screen to display the
locations one would enter 'V',

The screen will then display:-

Occurences of A742H
between:-A000 and BB5C

ATF4 n927
ZEN

121

d by CamScanner

String search

Strings may be searched for by entering the strin

g within quotes:.
Y"Ok"

which will search for the 'Ok’ message. To find its location Withjy,
the ROM one would enter the Start address as '0000' or simply 'gr
, 4

and for the End address enter the top of ROM 'B000H'.
would then display:-

The SCreep
Occurences of "ok"
between:-0000 and 8000

3FD7
ZEN

which is the location in ROM where this message resides.

The two byte search could then be used to discover which areag of

the ROM access the 'Ok’ message by searching for 3FD7 between 0 and

8000H, and the display would reveal that it is referred to at:-
412F 53FB and 7072

Bytesearcher accesses many routines within ZEN
routine outside at 0020H which is a

DE, and the routines are 1listed in

only once calling a
ROM routine to compare HL with

the comment field and may be
checked against your ZEN reference manual.

The program can be saved as an ASCII file, where one simply enters

'W' and enters the filename, and can be loaded back in and assembled
only when one requires the extra byte

search facility, for
disassembling,

NOTE After entering the code, or

loading from tape, it is
BEFORE modifying the 3

as this area is within the mainloop of 2EN and a
jump is made to E000H to discover if the key pressed was 'y', and

if it has not been assembled the bytesearcher program will not be
at EOOOH and ZEN could crash and the program lost.

122

essential to assemble the bytesearcher
bytes at A251H,

T A et A)
B 2 . ."’

‘sﬁﬂgﬂw‘;&m‘ =

¢+ BYTESEARCHER

;AFTER ASSEMBLY ALTER
+ZEN BY:- MOA251H

sjand enter these 3 bytes
;OC3H 00 OEOH

—

i
ORG OEOOOH
LOAD OEOOOH

S o B =3 S W S s T

r i routine
£000 CAAS5A3 EXTRA: JP Z,0A3AS5H ;0rig
! FE59 CP "y" :For Bytesearcher
E1mﬁz 2803 JR Z ,BYTSCH ;It's what we want
‘2 EO

H
;New commands go here

lZEmﬁ C354A2 JP 0A254H ;Back to Zen
17 i

13E0&A118AA1 BYTSCH: LD DE,OA18AH s (TBUFF+1)

19 E00D 21D6EO LD HL,SCHSTR ;Store Input
20 E010 010000 LD BC,0 :String counter
Al H

22 sTransfer the string

3 ;

4 E013 1A TRSTR: LD A,(DE)

15 E014 77 LD (HL) ,A

% E015 23 INC HL

21 E016 13 INC DE

8 E017 03 INC BC

}9Eme FEOD CP ODH sReturn?

30 E01A 20F7 JR NZ,TRSTR

1 iNo-keep transfering

2
33
L

H
;Transfer complete-Check that
;something is there

-
’

3% Eo1p
E0O1E B1 OR c

Scanned by CamScanner
S 197

Lkt S

38

39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74

E01F CAD5A8

E022 CDCS5A8
E025 2B

E026 19

E027 ED532CA1
E02B 222EA1
EO2E CD39AB

E031 21EQEQ
E034 CDDCA7
E037 21D6EQ
EO3A CDDCA7
EO03D 21EFEQ
E040 CDC4a6
E043 CDDCA7
E046 2A2CA1
E049 CD95a9
E04C 21F9EQ
EO4F CDDCA7
E052 2A2Ea1
E055 CDp95a9
E058 CDC4ag
EOSB CDc4ag

EOSE 21D6Eo
E061 0600
E063 7
E066 2804
EOGa 23

124

JP

.
r

r

' CALL
DEC
ADD
LD
LD
CALL

;

;Print title

;
LD
CALL
LD
CALL
LD
CALL
CALL
LD
CALL
LD
CALL
LD
CALL
CALL
CALL

LD
LD
LD
cp
JR
INC

FENDS;

z,0A8D5H

0A8CS5H
HL

HL , DE
(0A12CH) ,DE
(0A12EH) , HL
0AB39H

HL ,MSG1
0A7DCH

HL ,SCHSTR
0A7DCH
HL,MSG2
OA6C4H
OA7DCH

HL, (0A12CH)
0A995H
HL,MSG3
OA7DCH

HL, (0A12EH)
0A995y
0A6C4H
OA6C4H

: 'STARTSTOP'

;ZEN "STR1"

iZEN "WORDSP"

;ZEN 'H:RLFH
;another CRLF

?Counter for convert

‘Find string end

Scanned by CamScanner

g069 04 INC B

g06A 18F7 JR FENDS

; ;

iEo5c 2B COMP: DEC HL sBack-up to 'H' or "
 £06D 7E LD A, (HL) |
)3063 FE22 CP 22H :It's a quote string
£070 2816 JR Z,SEEK

) £072 FE48 cp "H"

; £074 C2D5A8 JP NZ,0A8DSH sNot hex

y £077 23 INC HL :Back to end

5 £078 11D6EQ LD DE,SCHSTR '
¢ E07B CDDAAS CALL OA8DAH :ZEN convert routine
1 EOTE 22D7EO LD (SCHSTR+1),HL
g £081 3EOD LD A,ODH
9 £083 32D9EO LD (SCHSTR+3),A
0 E086 1802 JR FIND
1 ;
) E088 360D SEEK: LD (HL),ODH
3 EOB8A 2A2CA1 FIND: LD HL,(O0A12CH)
44 E08D EDSB2EA1 LD DE,(O0A12EH)
95 E091 2B DEC HL
96 E092 D5 PUSH DE
97 E093 E5 PUSH HL
98 ;
99 E094 AF XOR A
00 3
01 E095 32D5EOQ LD (COUNT),A
02 E098 E1 FINDIT: POP HL
03 E099 D1 POP DE
04 E09A 23 INC HL
05 EO9B D5 PUSH DE
06 EQ9C ES5 PUSH HL
07 E09D CD2000 CALL 0020H ;ROM Compare HL'DE
08 EOAD 2008 JR NZ,LOOK
99 E0A2 E1 POP HL
10 EOA3 D1 POP DE
11 EOA4 CDCA4AG CALL OA6CA4H

;Finished so CRLF

agned by CamSdasner

112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
140
140
140
141
141
141
142
142
143

EOA7

EOAA
EOAD
EOAE
EOBO
EOB2
EOB3
EOB5
EOB6
EOB7

EOB9
EOBA
EOBB
EOBE
EOC1
EOC2
EOC4
EOC7
E0C9
EOCA
EOCD
EODO

EOD2
EODS5

EOEO
EOE4
EOE8
EQEC
EQOEF
EOF3
EOF7
EOF9
EOFD

126

C300A0

H

LOOK:
LOOKIT:

11D7E0Q
1A
FEOD
2807
BE
20E3
13

23
18F4

ES
CD95A9
3ADSEO
3¢
FEO5
32D5EQ
20CF
AF
32D5E0
CDC4A6
18C6

-e

C300A0

00 COUNT:

SCHSTR:
4F636375 MSG1:
72656E63
6573206F
66200D
62657477
65656E3A
2D0D
616E6420

0D

MSG2:

MSG3:

JP

LD
LD
CP
JR
CP
JR
INC
INC
JR

pPOP
PUSH
CALL
LD
INC
CP
LD
JR
XOR
LD
CALL
JR

Jp
DB

DS
DB

DB

DB

END

i, Q-ﬂéﬁv- Fe 4‘? tmmf-ﬁﬁ‘wyi m*l‘ﬁr -

0AOQQO0H

DE,SCHSTR+1
A, (DE)

ODH

Z ,FOUND
(HL)

NZ ,FINDIT
DE

HL

LOOKIT

HL
HL

0A995H

A, (COUNT)
A

5
(COUNT) ,A
NZ ,FINDIT
A
(COUNT) ,A
0A6C4H
FINDIT

OAO0OOH
0
10

SR S Lk

w,gnwc Py

;Back to ZEN

sAddress this srch
;Restack it

"Occurences of " ,0DH

"between:-",0DH

fw’;"o.

n'{ﬁ

Appendix

HEX to OPCODE Conversion Table
————=510n Table

this first table is to assist

«ishes to know the opcode
W

the Hex value ang
followed by.

amount of bytes it should be
When one attempts tg convert decima) vValues jp Basic
pATA statements to Opcodes ang Operang

- S be sure to start With the
first byte in the routine, elge One could get false information
As an example take Program 1 ijnp chapt

er 1, The firsgt byte in the
pATA line has the decimal value of 62, convert this to hex and one
vill see it is 3Ehex. Now look in the table below t

signifies. It is LD A

O find what 3p
N which means load register A with the valye
of the next byte which is ¢g dec (42hex),

Now continue with the
third value in the DATA line which is 33 which

looked in the table below it equals on its own

LD B,D which would be totally wrong,

therefore it is essential to
start at the beginning,

In the table nn equals a one byte value in the range 00h to FFh (0
to 255 dec) and bb aa two bytes in the same range.

00

NOP ocC INC C
01 bb aa LD BC,aabb 0D DEC C
¢
02 LD (BC),A OE nn LDCA,nn
03 INC BC OF RR
04 INC B 10 nn DJINZ nn
05 DEC B 11 bb aa LD DE,aabb
LD (DE),A
06 nn LD B,nn 12 o
0 RLCA 13 IN
: INC D
08 EX AF,AF' 14 o
15
ADD HL,BC
o LD A (éc) 16 nn LD Dgn0
o ' RLA
1
OB DEC BC 7

127

Scanned by CamScanner

DEC
18 nn JR nn 3D A

19 ADD HL,DE 3E nn LD A,nn
1 LD A, (DE) il cCF
1B DEC DE o4 5 B8
i85 INC E 41 b B,C
1D DEC E 42 LD B,D
1E nn LD E,nn 43 LD B,E
1F RRA 44 LD B,H
20 nn JR NZ,nn 45 LD B,Ln
21 bb aa LD HL,aabb 46 LD B, (Hy)
22 bb aa LD (aabb),HL 47 LD B,a
23 INC HL 48 LD c,s
24 INC H 49 LD C,C
25 DEC H 4A LD C,Dp
26 nn LD H,nn 4B LD C,E
27 DAA AC LD C,H
28 nn JR Z,nn 4D LD C,L
29 ADD HL,HL 4E LD C,(HL)
2A bb aa LD HL, (nn) 4F LD c,a
2B DEC HL 50 LD D,B
2C INC I, 51 LD D,C
2D DEC I, 52 LD D,D
2E nn LD L,nn 53 LD D,E
2F CPL 54 LD D,H
30 nn JR NC,nn 55 LD D,L
31 bb aa LD SP,aabb 56 LD D, (HL)
32 bb aa LD (aabb),A 57 LD D,a
33 INC sp 58 LD E,B
34 INC (HL) 59 LD E,C
35 DEC (HL) 5A LD E,D
;S nn LD (HL) ,nn 5B LD E,E
SCF 5C
38 nn JR C,nn 5D ig 2:2
39 ADD HL,sp 5E LD E, (HL)
3A bb aa LD A, (aabb) 5F LD E,A
ji DEC sp 60 LD H,B
INC 2 61 LD H,C
128

Scanned by CamScanner

LD H,D 85

62 ADD
63 LD H,E 86 Aok
LD H,H ADD A, (HL)
64 ’ 87 A
D H,L a0 Ba
65 LD H, 88 I
66 LD H, (HL) 89 !
ADC A,C
67 LD H,A 8A
ADC A,D
; o ADC A,E
6 o L'D 8C ADC A,H
6A o L'E 8D ADC A,L
B
6c LD L'H o AEE A4HEL
6 : 8F ADC A,A
6F LD L, (HL) 91 R
6F LD Luph 92 SUB D
71 LD (HL),C 94 SUB H
712 LD (HL),D 95 SUB L
73 LD (HL),E 96 SUB (HL)
74 LD (HL),H 97 SUB A
75 LD (HL),L 98 SBC A,B
76 HALT 99 SBC A,C
77 LD (HL),A 9A SBC A,D
78 LD A,B 9B SBC A,E
79 LD A,C 9C SBC A,H
7A LD A,D 9D SBC A,L
7B LD A,E 9E SBC A, (HL)
7C LD A,H 9F SBC A,A
7D LD A,L A0 AND B
TE LD A, (HL) Al ARD C
7F LD A,A A2 AND D
80 ADD A,B A3 AND E
81 ADD A,C A4 AND H
82 ADD A,D AS AND L
83 ADD A,E A AND (HL)
84 ADD A,H A7 ENE:

129
Scanned by CamScanner

A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1
c2
c3
C4
C5
Cé
Cc7
C8
C9
CA

130

bb aa
bb aa
bb aa

nn

bb aa

XOR
XOR
XOR
XOR
XOR
XOR L
XOR (HL)
XOR A
OR
OR
OR
OR
OR
OR
OR
OR
Cp
Ccp
Cp
Cp
Ccp
Cp
Cp
Cp
RET Nz

POP BC

JP NZ,aabb
JP aabb

CALL NZ,aabb
PUSH pc

ADD A,nn

RST 00

RET g

RET

JP 2 adabb

= T m O N w

T 0O 0wy ~ B om

HL)

P~

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

Scanned by CamScanner

00
01
02
03
04
05
06
07
08
09
0A
0B
0cC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22

RLC B
RLC ¢
RLC p
RLC g
RLC y
RLC 1,
RLC (
RLC a
RRC B
RRC ¢
RRC p
RRC E
RRC H
RRC L
RRC (HL)
RRC A
RL B
RL C
RL D
RL E
RL H
RL 1,
RL (
RL A
RR B
RR C
RR D
RR E
RR H
RR L
RR (HL)
RR A
SLA B
SLA ¢
SLA D

i &Mwu mvw:,& R
iR

cp 23 SLA E CB 46 BIT 0, (HL)
cp 24 sLA H CB 47 BIT 0,A
cB 25 SLA L CB 48 BIT 1,B
cB 26 SLA (HL) CB 49 BIT 1,C
cB 27 SLA A CB 4A BIT 1,D
cB 28 SRA B CB 4B BIT 1,E
cB 29 SRA C CB 4C BIT 1,H
cB 2A SRA D CB 4D BIT 1,L
cB 2B SRA E CB 4E BIT 1, (HL)
cB 2C SRA H CB 4F BIT 1,A
cB 2D SRA L CB 50 BIT 2,B
cB 2E SRA (HL) CB 51 BIT 2,C
c 2F SRA A CB 52 BIT 2,D
c 30 SLI B CB 53 BIT 2,E
ce 31 sLI C CB 54 BIT 2,H
cB 32 SLI D CB 55 BIT 2,L
cB 33 SLI E CB 56 BIT 2, (HL)
cB 34 SLI H CB 57 BIT 2,A
cB 35 SLI L CB 58 BIT 3,B
cB 36 SLI (HL) CB 59 BIT 3,C
cB 37 SLI A CB 5A BIT 3,D
cB 38 SRL B CB 5B BIT 3,E
CB 39 SRL C CB 5C BIT 3,H
CB 3A SRL D CB 5D BIT 3,L
CB 3B SRL E CB 5E BIT 3, (HL)
CB 3C SRL H CB 5F BIT 3,A
cB 3D SRL L CB 60 BIT 4,B
cB 3E SRL (HL) CB 61 BIT 4,C
CB 3F SRL A CB 62 BIT 4,D
CB 40 BIT 0,B CB 63 BIT 4,E
CB 41 BIT 0,C CB 64 BIT 4,H
CB 42 BIT 0,D CB 65 BIT 4,L
CB 43 BIT 0,E CB 66 BIT 4,(HL)
CB 44 BIT O,H CB 67 BIT 4,A
CB 45 BIT O,L CB 68 BIT 5,B
S 131
canned by CamScanner

CB 8C RES 1,4 l

CB 69 BIT 5,C CB 8D RES 1,1
CB 6A BIT 5,0 CB BE RES 1, (n1,)
CB 6B BIT 5,E CB 8F RES 1,a
CB 6C BIT :'2 cB 90 RES 2,B
o Zi: 5. (ML) en 2% = AR
CB 6E ' CB 92 RES 2,D
CB 6F BIT 5,A
CB 70 BIT 6,B CB 93 RES 2,E
- BIT 6,C CB 94 RES 2,H
CB 72 BIT 6,D CB 95 RES 2,L
CB 73 BIT 6,E CB 96 RES 2, (HL)
CB 74 BIT 6,H CB 97 RES 2,A
CB 75 BIT 6,L CB 98 RES 3,B
CB 76 BIT 6, (HL) CB 99 RES 3,C
CB 77 BIT 6,A CB 9A RES 3,D
CB 78 BIT 7,B CB 9B RES 3,E
CB 79 BIT 7,C CB 9C RES 3,H
CB 7A BIT 7,D CB 9D RES 3,L
CB 7B BIT 7,E CB 9E RES 3, (HL)
CB 7C BIT 7,H CB 9F RES 3,A
CB 7D BIT 7,L CB A0 RES 4,B
CB 7E BIT 7,(HL) CB A1 RES 4,C
CB 7F BIT 7,A CB A2 RES 4,D
CB 80 RES 0,B CB A3 RES 4,E
CB 81 RES 0,C CB A4 RES 4,H
CB 82 RES 0,D CB AS RES 4,L
CB 83 RES 0,E CB A6 RES 4, (HL)
CB 84 RES 0,H CB A7 RES 4.A
CB 85 RES 0,1 CB a8 — S'B
CB 86 RES 0, (HL) CB A9 RES 5'(-_-
CB 87 RES 0,A CB aa RES S'D
CB 88 RES 1,B CB AB R '
CB 89 RES 1,C CB AC ES 5,E
CB 8a RES 1.1 o RES 5,H
CB 8g RES 1.5 o e RES 5,1
RES 5, (HL)

132 Scanned by CamScanner

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
co
83
C2
C3
C4
C5
Cé
Cc7
Cc8
Cc9
CA
CB
cc
CD
CE
CF
DO
D1

RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

5,A
6,B
6,C
6,D
6,E
6,H
6,L
6, (HL)
6,A
7.B
7,C
7,D
7,E
7,H
7.L
7,(HL)
7,A
0,B
0,C
0,D
0,E
0,H
0,L
0, (HL)
0,A
1,B
1,C
1,D
1,E
1,H
1,L
1, (HL)
1,A
2,B
2,C

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB

CB

CB

CB

CB

CB
CB

CB
CB
CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB
CB

CB
CB
CB
CB
CB

Scanned by CamScapmer

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1
E2
E3
E4
ES
E6
E7
ES8
E9
EA
EB
EC
ED
EE
EF
FO
F1
F2
F3
F4

SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2, (HL)
SET 2,A
SET 3,B
SET 3,C
SET 3:D
SET 3,E
SET 3,H
SET 3,L
SET 3, (HL)
SET 3,A
SET 4,B
SET 4,C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 4, (HL)
SET 4,A
SET 5,B
SET 5,C
SET 5,D
SET 5,E
SET 5,H
SET 5,L
SET S, (HL)
SET 5,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H

CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
CB
ccC
Ch
CE
CF
DO
D1
D2
D3
D4
DS
Dé
D7
D8
D9
DA
DB

DD
DD
DD
DD
DD
DD
DD

134

F5
Fé
F?7
F8
F9
FA
FB
FC
FD
FE
FF
bb
bb

nn

bb
nn
bb

nn

bb
nn
bb
09
19
21

22
23
29
2A

aa
aa

aa

aa

daa

aa

bb aa
bb aa

bb aa

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET 7, (HL)
SET 7,A

CALL Z,aabb
CALL aabb
ADC A,nn

RST 08

RET NC

POP DE

JP NC,aabb
OUT (nn),a
CALL NC,aabb
PUSH DE

SUB nn

RST 10

RET C

EXX

JP C,aabb

IN A, (nn)
CALL C,nn
ADD IX,BC
ADD IX,DE

LD IX,aabb
LD (aabb),rx
INC IX

ADD IX,Ix

LD IX, (aabb)

6,L
6, (HL)
6,A
7,B
7.,C
7,D
7,E
TN
7,L

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

2B
34
35
36
39
46
4E
56
SE
66
6E
70
71

72
73
74
75
77
7E
86
8E
96
S9E
A6
AE
Bé
BE
CB
CB
CB
CB
CB
CB
CB
CB

nn
nn

nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nr

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

ni

06
OE
16
1E
26
2E
36
3E

DEC 1x

INC (Ix+nn)
DEC (Ix+nn’
LD (I)Hnn)'n.I
ADD IX,sp

LD Br(IX+nn)
LD c:(IX+nn)
LD D'(Ix+nn)
LD E,(Ix+nn)
LD H, (IX+np)
LD L:(Ix+nn)
LD (IX+nn),p
LD
LD
LD
LD
LD
LD (IX+nn),a
LD A, (IX+nn)
ADD A, (IX+nn)
ADC A, (IX+nn)
SUB (IX+nn)
SBC A, (IX+nn)
AND (IX+nn)
XOR (IX+nn)
OR (IX+nn)
CP (IX+nn)
RLC (IX+nn)
RRC (IX+nn)
RL (IX+nn)
RR (IX+nn)
SLA (IX+nn)
SRA (IX+nn)
SLI (IX+nn)
SRL (IX+nn)

(IX+nn),c
(IX+nn),p
(IX+nn),E
(IX+nn),n
(IX+nn),L

Scanned by CamScanner

oD CB nn 46 BIT 0,(IXenn) E4 bb aa CALL PO,aabb

pp CB nn 4E BIT 1,(IX+nn) ES PUSH R

pp CB nn 56 BIT 2,(IX+nn) E6 nn AND nn

pb CB nn 5E BIT 3,(IX+nn) E7 RST 20

pp CB nn 66 BIT 4,(IX+nn) ES RET PE

ppb CB nn 6E BIT 5, (IX+nn) E9 JP (HL)

pD CB nn 76 BIT 6,(IX+nn) EA bb aa JP PE,aabb

pp CB nn 7E BIT 7,(IX+nn) EB EX DE,HL

pp CB nn 86 RES 0,(IX+nn) EC bb aa CALL PE,aabb

pp CB nn 8E RES 1,(IX+nn) ED 40 IN B, (C)

DD CB nn 96 RES 2,(IX+nn) ED 41 ouT (C),B

pD CB nn 9E RES 3,(IX+nn) ED 42 SBC HL,BC

DD CB nn A6 RES 4, (IX+nn) ED 43 bb aa LD (aabb),BC

DD CB nn AE RES 5,(IX+nn) ED 44 NEG

pD CB nn B6 RES 6,(IX+nn) ED 45 RETN

pD CB nn BE RES 7,(IX+nn) ED 46 IM 0

DD CB nn C6 SET 0,(IX+nn) ED 47 LD I,A

DD CB nn CE SET 1,(IX+nn) ED 48 IN C,(C)

DD CB nn D6 SET 2,(IX+nn) ED 49 outT (C),C

DD CB nn DE SET 3,(IX+nn) ED 4A ADC HL,BC

DD CB nn E6 SET 4, (IX+nn) ED 4B bb aa LD BC,(aabb)

DD CB nn EE SET 5,(IX+nn) ED 4D RETI

DD CB nn F6 SET 6,(IX+nn) ED 4F LD R,A

DD CB nn FE SET 7,(IX+nn) ED 50 IN D,(C)

DD E1 POP IX ED 51 out (C),D

DD E3 EX (SP),IX ED 53 bb aa LD (aabb),DE

DD E5 PUSH IX ED 56 IM 1

DD E9 Jp (IX) ED 57 LD A,l

DD F9 LD SP,IX ED 58 IN E,(C)

DE nn SBC A,nn ED 59 ouT (C),E

DF RST 18 ED 5A ADC HL,DE

EQ RET PO ED 5B bb aa LD DE,(aabb)

E1 POP HL ED 5E i i

E2 bb aa JP PO,aabb ED SF LD A,R

E3 EX (SP),HL ED 60 IN H,(C)
Scanned by CamSaahner

|

ED 61
ED 62
ED &7
ED 68
ED 69
ED 6A
ED 6F
ED 70
ED 72
ED 73
ED 78
ED 79
ED 7A
ED 7B bb aa
ED AQ

ED A1

ED A2

ED A3

ED A8

ED A9

ED AA

ED AB

ED BO

ED B1

ED B2

ED B3

ED B8

ED B9

ED Ba

ED BB

EE nn

EF
FO

F1

F2 bb

bb aa

daa

136

ouT (C),H
SBC HL,HL
RRD

IN L,(C)
ouT (C),L
ADC HL,HL
RLD

IN F,(C)
SBC HL,SP
LD (aabb),SP
IN A,(C)
OUT (C),A
ADC HL,SP
LD SP,(aabb)
LDI

CPI

INI

OUTI

LDD

CPD

IND

ouTD

LDIR

CPIR

INIR

OTIR

LDDR

CPDR

INDR

OTDR

XOR nn
RST 28
RET p

POP aAf

JP P:aabb

F3

F4

F5

Fé6

F7

F8

F9

FA
FB
FC
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD
FD

Scanned

bb

nn

bb

bb
09
19
21

22
23
29
2A
2B
34
35
36
39
46
4E
56
SE
66
6E
70
71

72
73
74
75
77

by CamScanner

s

aa

aa

aa

bb
bb

bb

nn
nn

nn

nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn

nn

aa

aa

aa

nl

DI

CALL P,aap,
PUSH ap

OR nn

RST 30

RET M

LD SP,HL
JP M,aabp
E1

CALL M,aabp
ADD 1Y,BC
ADD 1Y,DE
LD IY,aabb
LD (aabb},1y
INC 1Y

ADD IY,Ty

LD IY, (aabb)
DEC 1Yy

INC (IY+nn)
DEC (IY+nn)
LD (IY+nn),n1
ADD 1Y,8P

LD B, (IY+nn)
LD C,(IY+nn)
LD D,(IY+nn)
LD E,(IY+nn)
LD H,(IY+nn)
LD L,(IY+nn)
LD (IY+nn),B
LD (IY+nn),cC
LD (IY+nn),D
LD (IY+nn),E
LD (IY+nn),H
LD (IY+nn),L
LD (IY+nn),A

¢p 7E nn LD A, (IY+nn) FD CB nn D6 SET 2,(IY+nn)
FDp 86 nn ADD A, (IY+nn) FD CB nn DE SET 3,(IY+nn)
FD 8E nn ADC A,(IY+nn) FD CB nn E6 SET 4,(IY+nn)
FD 96 nn SUB (IY+nn) FD CB nn EE SET 5,(IY+nn)
£D 9E nn SBC A,(IY+nn) FD CB nn F6 SET 6,(IY+nn)
FD A6 nn AND (IY+nn) FD CB nn FE SET 7,(IY+nn)
FD AE nn XOR (I1IY+nn) FD E1 POP IY
FD B6 nn OR (IY+nn) FD E3 EX (SP),IY
FD BE nn CP (IY+nn) FD E5 PUSH IY
FD CB nn 06 RLC (IY+nn) FD E9 JP (1Y)
FD CB nn 0OE RRC (IY+nn) FD F9 LD SP,IY
FD CB nn 16 RL (IY+nn) FE nn CP nn
FD CB nn 1E RR (IY+nn) FF RST 38
FD CB nn 26 SLA (IY+nn)
FD CB nn 2E SRA (IY+nn)
FD CB nn 36 SLI (IY+nn)
FD CB nn 3E SRL (IY+nn)
FD CB nn 46 BIT 0,(IY+nn)
FD CB nn 4E BIT 1,(1IY+nn)
FD CB nn 56 BIT 2,(IY+nn)
FD CB nn 5E BIT 3,(1IY+nn)
FD CB nn 66 BIT 4,(IY+nn)
FD CB nn 6E BIT 5,(IY+nn)
FD CB nn 76 BIT 6,(IY+nn)
FD CB nn 7E BIT 7,(IY+nn)
FD CB nn 86 RES 0,(IY+nn)
. FD CB nn 8E RES 1,(IY+nn)
| FD CB nn 96 RES 2,(IY+nn)
FD CB nn 9E RES 3,(IY+nn)
FD CB nn A6 RES 4,(IY+nn)
FD CB nn AE RES 5,(IY+nn)
FD CB nn B6 RES 6,(IY+nn)
FD CB nn BE RES 7,(IY+nn)
FD CB nn C6 SET 0,(IY+nn)
FD CB nn CE SET 1,(IY+nn)
137

Scanned by CamScanner

4

Instruction set in Alphabetical order

(HL) DD 39 ADD IX,sp
ADC A
8E . A'(Ix”m) FD 09 ADD IY,BC
DD 8E nn A ' . FD 19 ADD 1Y,DE
A,(IY+nn
FD 8E nn :zz A'A FD 29 ADD 1Y,Iy
ol S FD 39 ADD Iy,sp
88 '
89 ADC A,C B
8C ADC A,H FD A6 nn AND (IY+nn)
8D ADC A,L A7 AlND A
CE nn ADC A,nn AQ AND B
ED 4A ADC HL,BC A1 AND C
ED 5a ADC HL,DE A2 AND D
ED 6A ADC HL,HL A3 AND E
ED 7a ADC HL,SP A4 AND H
AS AND L
86 ADD A, (HL) E6 nn AND nn
DD 86 nn ADD A,(IX+nn)
FD 86 nn ADD A, (IY+nn) CB 46 BIT 0, (HL)
87 ADD A,A DD CB nn 46 gy 0, (IX+nn)
80
ADD a,B FD CB nn 46 pgpo 0, (IY+nn)
81 ADD a,cC CB 47 BIT 0,a
8 r
" =R mra
ALE
5 4 CB 41 BIT 0,C
ADD A,H
’ CB 42 BIT 0,D
85 ADD A,L ’
’ CB 43 BIT 0,E
Cé nn ADD A,np !
; CB 44 BIT 0,H
9 ADD HL,BC !
19 CB 45 BIT 0,1
ADD HL,DE !
29 ADD HL, g, CB 4
39 ADD HL,gp 5 E BIT 1, (HL)
DD 09 ADD IX,gc S BondE gy '+ (IX+nn)
F
DD 19 ADD IxX,pp D CB nn 4p BIT 1, (IY+nn)
DD 29 ADD 1x,71y CB 4F BIT 1,a
CB 48 BIT 1,8
138

mScanner
Scanh?f& by Ca »

! CB 61 BIT 4

: T 1,C ’

o :i :i-r 1,D CB 62 BIT 4,

:EB 4B BIT 1.,E CB 63 BIT 4,E

22 e BIT 1,H CB 64 BIT 4,H

-3 4D BIT 1,L CB 65 BIT 4,L

B 56 BIT 2,(HL) CB 6E BIT 5, (HL)

op CB DN 56 BIT 2,(IX+nn) DD CB nn 6E BIT 5,(IX+nn)

¢p CB DD 56 BIT 2,(IY+nn) FD CB nn 6E BIT 5,(IY+nn)

s 57 BIT 2,A CB 6F BIT 5,A

cp 50 BIT 2,B CB 68 BIT 5,B

cB 51 BIT 2,C CB 69 BIT 5,C

CB 52 BIT 2,D CB 6A BIT 5,D

cB 53 BIT 2,E CB 6B BIT 5,E

cB 54 BIT 2,H CB 6C BIT 5,H

CB 55 BIT 2,L CB 6D BIT 5,L

CB SE BIT 3,(HL) CB 76 BIT 6, (HL)

pD CB nn 5E BIT 3,{(IX+nn) DD CB nn 76 BIT 6,(IX+nn)

FD CB nn 5E BIT 3,(1Y+nn) FD CB nn 76 BIT 6,(IY+nn)

CB SF BIT 3,A CcB 77 BIT 6,A

CB 58 BIT 3,B CB 70 BIT 6,B

CB 59 BIT 3,C cB 7 BIT 6,C

CB 5A BIT 3,D CB 72 BIT 6,D

CB 5B BIT 3,E cB 73 BIT 6,E

CB 5C BIT 3,H CB 74 BIT 6,H ;
CB 5D BIT 3,L CB 75 BIT 6,L ‘
CB 66 BIT 4, (HL) CB 7E BIT 7,(HL) '
DD CB nn 66 BIT 4,(IX+nn) pD CB nn 7E BIT 7,(IX+nn)
FD CB nn 66 BIT 4,(Iy+nn) FD CB nn 7E BIT 7,(I¥+nn)
CB 67 BIT 4,A CB 7F BIT 7,A
CB 60 BIT 4,B CB 78 BIT 7,B

139
Scanned by CamScanner

CB
CB
CB
CB
CB

DC

D4
Cb
c4
F4
EC
E4
CcC

3F

BE
DD
FD
BF
B8
B9
BA
BB
BC
BD
FE

ED
ED
ED
ED

79
TA
78
1C
7D

bb
bb
bb
bb
bb
bb
bb
bb
bb

BE
BE

nn

A9
B9
Al
B1

140

aa
aa
aa
aa
aa
aa
aa
aa

aa

nn

nn

piT 7,C
BIT 7,D
BIT 7,E
BIT 7,H
BIT 7,L

CALL C,aabb
CALL M,aabb
CALL NC,aabb
CALL aabb
CALL NZ,aabb
CALL P,aabb
CALL PE,aabb
CALL PO,aabb
CALL Z,aabb

CCF

CP (HL)

CP (IX+nn)
CP (IY+nn)
CP A

CP
Ccp
CP
Cp
CP
CP
CP nn

0D Mmoo nNnw

CPD
CPDR
CPI
CPIR

2F

27

35
DD
FD
3D
05
0B
0D
15
1B
1D
25
2B
DD
FD
2D
3B

F3

10

FB

E3
DD
FD
08
EB
D9

35 nn
35 nn

2B
2B

nn

E3
E3

CPL

DAA

DEC (HL)
DEC (IX+nn)
DEC (IY+nn)
DEC A

DEC B

DEC BC

DEC C

DEC D

DEC DE

DEC E

DEC H

DEC HL

DEC IX

DEC 1Y

DEC L

DEC SP

DI
DJNZ nn

EI

EX (SP),HL
EX (SP),IX
EX (SP),IY
EX AF,AF'
EX DE,HL

EXX

HALT

gD
gD
gD

ED
pB
gD
ED
ED
ED
ED
ED
ED

34
DD
FD
3C
04
03
0c
14
13
1c
24
23
DD
FD
2C
33

ED
ED
ED
ED

46
56
5E

78
nn
40
48
50
58
70
60
68

34 nn
34 nn

23
23

AR
BA
A2
B2

IM O
IM 1
IM 2

IN A, (C)
IN A,(nn)
IN B,(C)
IN C,(C)
IN D,(C)
IN E,(C)
IN F,(C)
IN H,(C)
IN L,(C)

INC (HL)
INC (IX+nn)
INC (IY+nn)
INC A

INC B

INC BC

INC C

INC D

INC DE

INC E

INC H

INC HL

INC IX

INC IY

INC L

INC SP

IND
INDR
INI
INIR

E9
DD
FD
DA
FA
D2
C3
Cc2
F2
EA
E2
CA

38
18
30
20
28

02
12
77
70
71

12
73
74
75
36

DD
DD
DD
DD

E9
E9
bb
bb
bb
bb
bb
bb
bb
bb
bb

nn
nn
nn
nn

nn

nn

77
70
A
72

DD 73

aa
aa
aa
aa
aa
aa
aa
aa

aa

nn
nn
nn
nn

nn

JP (HL)
JP (IX)
JP (1Y)
JP C,aabb
JP M,aabb
JP NC,aabb
JP aabb
JP NZ,aabb
JP P,aabh
JP PE,aabb
JP PO, aabb
JP Z,aabb

JR C,nn
JR nn
JR NC,nn
JR NZ,nn
JR Z,nn

LD (BC),A
LD (DE),A
LD (HL),A
LD (HL),B
LD (HL),C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L
LD (HL),nn

LD (IX+nn),A
LD (IX+nn),B
LD (IX+nn),C
LD (IX+nn),D
LD (IX+nn),E

141
Scanned by CamScanner

7D LD A,L
DD 74 nn LD (IX+nn},H 3E nn LD A,nn
DD 75 nn LD (IX+nn),L ED 5F LD A,R
DD 36 nn n1 LD (IX+nn),n?
FD 77 nn LD (IY+nn),A ;;[6) - Eg 2::?;)(!“”
B
o B TBE P> 46 on LD B (Itenm
FD 72 nn LD (IY+nn),D 47 HE Hoh
FD 73 nn LD (IY+nn),E 40 LD B,B
FD 74 nn LD (IY+nn),H 41 LD BaC
FD 75 nn LD (IY+nn),L 42 LD B:D
FD 36 nn n1 LD (IY+nn),n1 43 LD B,E
44 LD B,H
32 bb aa LD (aabb),A 45 LD B,L
ED 43 bb aa LD (aabb),BC 06 nn LD B,nn
ED 53 bb aa LD (aabb),DE
22 bb aa LD (aabb),HL ED 4B bb aa LD BC, (aabb)
DD 22 bb aa LD (aabb),1x 01 bb aa LD BC,aabb
FD 22 bb aa LD (aabb),1vy
ED 73 bb'aa LD (aabb),sp 4E LD C,(HL)
DD 4E nn LD C,(IX+nn)
0A LD A, (BC) FD 4E nn LD C,(IY+nn)
1A LD A, (DE) AF LD C,a
7E LD A, (HL) 48 LD C,B
DD 7E nn LD A, (IX+nn) 49 LD C.c
FD 7E nn LD A, (IY+nn) T L5 @ 15
3A bb aa LD A, (aabb) 4B LD o
7F LD a,a Skl
18 BD % g 4c LD C,H
79 LD A'C 4D LD C,L
7A LD A:D OF nn LD C,nn
L LD A,E »
7C LD A,H LD D, (HL)
ED 57 LD a,7 ED 56 nn LD D, (IX+nn)
D 56 nn LD D, (IY+nn)
142

- ' Scanned by CamScanner
“ T T

57
50
; 59
| o
53
LD
16

ED
1

5E
DD
FD
5F
58
59
5A
5B
5C
5D
1E

66
DD
FD
67
60
61
62
63
64
65
26

D,L

nn

SB bb aa
bb aa

SE nn
5E nn

nmn

66 nn
66 nn

nn

LD
LD
LD
LD
LD

LD

LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

D,a
D,B
D,c
D,D
D,E

D'nn

DEr(aabb)
DE,aabb

E, (HL)
E, (IX+nn)
E,(IY+nn)
E,A

E,B

E,C

E,D

E,E

E,H

E,L

E,nn

H, (HL)

H, (IX+nn)
H,(IY+nn)
H,A

H,B

H,C

H,D

H,E

H,H

H,L

H,nn

2A
21

ED

DD

FD
FD

6E
DD
FD
6F
68
69
6A
6B
6C
6D
2E

ED

ED
F9
DD
FD
31

ED
ED
ED
ED

bb
bb

47

21

2A

21

6E
6E

nn

4F

7B

F9
F9
bb

A8
B8
AQ
BO

aa

aa

bb aa

bb aa

bb aa

nn

nn

bb aa

aa

LD
LD

LD

LD

LD
LD

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD

LD
LD
LD
LD
LD

HL, (aabb)
HL,aabb

1,A

1X,aabb

1Y, (aabb)
1Y,aabb

L,(HL)
L,{(IX+nn)
L,(IY+nn)
L,A

A -

L,C

L,D

L,E

L,H

L,L

L,nn

R,A

SP, (aabb)
SP,HL
SpP,IX
sp,IY
SP,aabb

LDD
LDDR

LDI

LDIR

AR P . £

ED 44

00

B6
DD
FD
B7
BO
B1
B2
B3
B4
BS
Fé

ED
ED

ED
ED
ED
ED
ED
ED
ED
D3

ED
ED

F1
C1
D1
E1

B6 nn
B6 nn

nn

BB
B3

79
41
49
51
59
61
69
nn

AB
A3

144

NEG

NOP

OR (HL)

OR (IX+nn)
OR (IY+nn)
OR A

OR
OR
OR

OR
OR
OR nn

T m O O w

OTDR
OTIR

ouT (C),A
out (C),B
out (C),C
ouT (C),D
ouT (C),E
ouT (C),H
out (C),L
OUT (nn),A

OuTD
OUTI

POP AF
POP BC
POP DE
POP HL

DD
FD

F5
C5
D5
E5
DD
FD

CB
DD
FD

CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD

Scanned by

E1l POP 1IX :
E1 POP 1Y

PUSH AF

PUSH BC

PUSH DE

PUSH HL]
ES PUSH IX
ES PUSH IY
86 RES 0, (HL)
CB nn 86 RES 0, (IX+nn)
CB nn 86 RES 0,(IX+nn)
87 RES 0,A
80 RES 0,B
81 RES 0,C
82 RES 0,D
83 RES 0,E
84 RES 0,H
85 RES 0,L
8E RES 1, (HL)
CB nn 8E RES 1,(IX+nn)
CB nn 8E RES 1,(IY+nn)
8F RES 1,A
88 RES 1,B
89 RES 1,C
8A RES 1,D
8B RES 1,E
8cC RES 1,H
8D RES 1,L
96 RES 2, (HL)
CB nn 96 RES 2,(IX+nn)
CB nn 96 RES 2,(IY+nn)

.__a ne

RES 5.C

cB 97 RES 2,A
cB 90 R85 2.3 CB A9
' CB AA RES 5.,D
cB 91 RES 2,C CB AB RES 5,E
cB 92 RES 2,D CB AC RES 5,H
cp 93 RES 2,E CB AD RES 5,L
cB 94 RES 2,H
cB 95 RES 2,L CB B6 RES 6,(HL)
pp CB nn B6 RES 6, (1X+nn)
cB 9E RES 3, (HL) FD CB nn B6 RES 6,(1Y+nnN)
pp ¢B nn 9E RES 3,(IX+nn) CB B7 RES 6,A
gp cB nn 9E RES 3,(IY+nn) CB BO RES 6,B
cB 9F RES 3,A CB B1 RES 6,C
cB 98 RES 3,B CB B2 RES 6,D
B 99 RES 3,C CB B3 RES 6,E
cB 9A RES 3,D CB B4 RES 6,H
CB 9B RES 3,E CB BS5 RES 6,L
cB 9C RES 3,H
CcB 9D RES 3,L CB BE RES 7,(HL)
DD CB nn BE RES 7,(IX+nn)
CB A6 RES 4, (HL) FD CB nn BE RES 7,(IY+nn)
DD CB nn A6 RES 4,(IX+nn) CB BF RES 7,A
FD CB nn A6 RES 4,(IY+nn) CB B8 RES 7,B
CB A7 RES 4,A CB B9 RES 7,C
CB A0 RES 4,B CB BA RES 7,D
CB Al RES 4,C CB BB RES 7,E
CB A2 RES 4,D CB BC RES 7,H
CB A3 RES 4,E CB BD RES 7,L
CB A4 RES 4,H
CB A5 RES 4,L c9 RET
D8 RET C
CB AE RES 5, (HL) F8 RET M
DD CB nn AE RES 5,(IX+nn) DO RET NC
FD CB nn AE RES 5,(IY+nn) co RET NZ
CB AF RES 5,A FO RET P
CB A8 RES 5,B E8 RET PE

145

DD CB nn 1E RR (IX+nn)

EOQ RET PO FD CB nn 1E RR (IY+nn)
c8 RET & CB 1F RR A
CB 18 RR B
ED 4D RETI CB 19 RR C
RETN E,
ED 45 - RR D -
1B RE B 4
CB 16 RL (HL) B o
CB 1C RR i
DD CB nn 16 RL (IX+nn) i
FD CB nn 16 RL (IY+nn) 3
CB 17 RL A CRA
CB 10 RL B 1F]
CB 11 RL C (
CB 12 RL D CB 0E RRC (HL) ;
CB 13 RL E DD CB nn 0OE RRC (IX+nn)
CB 14 RL H FD CB nn OE RRC (IY+nn)
CB 15 RL L CB OF RRC A
CB 08 RRC B
17 RLA CB 09 RRC C
CB 0A RRC D
CB 06 RLC (HL) CB 0B RRC E
DD CB nn 06 RLC (IX+nn) CB 0OC RRC H
FD CB nn 06 RLC (IY+nn) CB 0D RRC L
CB 07 RLC A
CB 00 RLC B OF RRCA
CB 01 RLC C
CB 02 RLC D ED 67 RRD
CB 03 RLC E
- 24 RLC H c7 RST 0
CB 05
= & CF RST 8h
07 Gy RST 10h
RLCA DF
RST 18h
E7
ED 6F RLD RST 20h
EF RST 28h
¥7 RST
FF RST 38h
146

Scanned by CamScanner

9E

SBC A, (HL) R o2 =L s
oD 9E nn SBC A, (IX+nn) CB CA SET 1,D
FD 9E nn SBC A,(IY+nn) CB CB SET 1,E
9F SBC A,A CB CC SET 1,H
98 SBC A,B CB- CD SET 1,L
99 SBC A,C
9A SBC A,D CB D6 SET 2,(HL)
98 SBC A,E DD CB nn D6 SET 2,(IX+nn)
9C SBC A,H FD CB nn D6 SET 2,(IY+nn)
9D SBC A,L CB D7 SET 2,A
DE nn SBC A,nn CB DO SET 2,B
CB D1 SET 2,C
ED 42 SBC HL,BC CB D2 SET 2,D
ED 52 SBC HL,DE CB D3 SET 2,E
ED 62 SBC HL,HL CB D4 SET 2,H
ED 72 SBC HL,SP CB D5 SET 2,L
37 SCF CB DE SET 3, (HL)
DD CB nn DE SET 3,(IX+nn)
CB C6 SET 0, (HL) FD CB nn DE SET 3,(IY+nn)
DD CB nn C6 SET 0,(IX+nn) CB DF SET 3,A
FD CB nn C6 SET 0,(IY+nn) CB D8 SET 3,B
CB C7 SET 0,A CB D9 SET 3,C
CB C0 SET 0,B CB DA SET 3,D
CB C1 SET 0,C CB DB SET 3,E
CB C2 SET 0,D CB DC SET 3,H
CB C3 SET 0,E CB DD SET 3,L
CB C4 SET 0,H
CB CS SET 0,L CB E6 SET 4, (HL)
DD CB nn E6 SET 4,(IX+nn)
CB CE SET 1, (HL) FD CB nn Eé6 SET 4,(IY+nn)
DD CB nn CE SET 1,(IX+nn) CB E7 SET 4,A
FD CB nn CE SET 1,(IY+nn) CB EO SET 4,B
CB CF SET 1,A CB E1 SET 4,C
CB C8 SET 1,B CB E2 SET 4,D
147

Scanned by CamScanner

CB
CB
cB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

CB
DD
FD
CB
CB
CB
CB
CB
CB
CB

E3
E4
ES

EE
CB
CB
EF
E8
E9
EA
EB
EC
ED

F6
CB
CB
F7
FO
F1
F2
F3
F4
F5

FE
CB
CB
FF
F8
F9
FA
FB
FC
FD

148

nn EE
nn EE

nn Fé6
nn Fé6

nn FE
nn FE

SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

4, H
4L

5,(HL)
5,(IX+nn)
5,(IY+nn)
5,A

5,B

5,C

5,D

5,B

5,H

5,L

6, (HL)
6,(IX+nn)
6,(IY+nn)
6,A

6,B

6,C

6,D

6,E

6,H

6,L

7, (HL)
7,(IX+nn)
7,(IY+nn)
7,A

7,B

7,C

7,D

7,E

7,H

7,L

CB
DD
FD

838888

CB
CB
CB
CB
CB
CB
CB

CB
DD
FD

CB
CB
CB
CB
CB
CB

CB
DD
FD

26
CB nn 26
CB nn 26
27
20
21
22
23
24
25

36
CB nn 36
CB nn 36
37
30
31
32
33
34
35

2E
CB nn 2E
CB nn 2E
2F
28
29
2A
2B
2C
2D

3E
CB nn 3E
CB nn 3E

SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA

SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI
SLI

SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA

SRL
SRL
SRL

{HL)
{IX+nn)
(IY+nn)
A

Mmoo 0w

(HL)
(IX+nn)
(IY+nn)

f T 8 O 0O w

(HL)
(IX+nn)
(IY+nn)
A

0D m o 0w

(HL)
(IX+nn)
(IY+nn)

e
iR R T e

CB 3P SRL A 94 SUB H
cB 38 SRL B 5 SUR L
cB 39 SRL C D6 nn SUB nn
B 3A SRL D
CB 3B SRL E AE XOR (HL)
cB 3C SRL H DD AE nn XOR (IX+nn)
CB 3D SRL L FD AE nn XOR (IYenn)
AF XOR A
96 SUB (HL) A8 XOR B
pD 96 nn SUB (1X+nn) A9 XOR C
FD 96 nn SUB (1IY+nn) AA XOR D
97 SUB A AB XOR E
90 SUB B AC XOR H
91 SUB C AD XOR L
92 SUB D EE nn XOR nn
93 SUB E
149

Scanned by CamScanner

HEX DEC DECI|H D D |H D
*256 *256 *256 *256 * 256

00 00000 034 13312 5268 26624 104{9C 39936 156|D0 53248 208
01 00256 135 13568 53|69 26880 105|9D 40192 157|{D1 53504 209
02 00512 2136 13824 54|6A 27136 106|9E 40448 158|D2 53760 210
03 00768 3|37 14080 55(6B 27392 107|9F 40704 159|D3 54016 211
04 01024 4138 14336 56 |6C 27648 108|A0 40960 160|D4 54277 212
05 01280 5{39 14592 57|6D 27904 109|Al 41216 161|D5 54528 213
06 01536 6{3A 14848 SB8|6E 28160 110|A2 41472 162|{D6 54784 214
07 01792 7|3B 15104 59|6F 28416 111|A3 41728 163|D7 55040 215
08 02048 B|3C 15360 60{70 28672 112|A4 41984 164|D8 5529¢ 215
09 02304 9(3p 15616 61{71 28928 113|AS 42240 165/D9 55557 717
OA 02560 10|3E 15872 62{72 29184 114|A6 42496 166|DA 55808 218
0B 02816 11|3F 16128 63|73 29440 115|A7 42752 167|DB 56064 219
0C 03072 12{40 16384 64|74 29696 116|A8 43008 168|DC 56320 220
0D 03328 13141 16640 65|75 29952 117|A9 43264 169|DD 56576 221
OE 03584 14142 16896 66|76 30208 118|AA 43520 170|DE 56832 222
OF 03840 15143 17152 67{77 30464 119|AB 43776 171|DF 57088 223
10 04096 16|44 17408 68|78 30720 120|AC 44032 172|E0 57344 224
11 04352 17145 17664 69{79 30976 121[AD 44288 173|E1 57600 225
12 04608 18|46 17920 70|7A 31232 122|AE 44544 174|E2 5785¢ 226
13 04864 19/47 18176 71(7B 31488 123|AF 44800 175|E3 58112 227
14 05120 20148 18432 72|7C 31744 124|BO 45056 176|E4 58368 228
1505376 21149 18688 73 (7D 32000 125|B1 45312 177|E5 58624 229
16 05632 22/4A 18944 74 |7E 32256 126|B2 45568 178|E6 58880 230
17 05888 23/4B 19200 75(7F 32512 127|B3 45824 179|E7 59136 231
18 06144 2414C 19456 76|80 32768 128|B4 46080 180|E8 59392 PR,
19 06400 25(4p 19712 77|81 33024 129|B5 46336 181|E9 59648 233
1A 06656 26|4E 19968 78|82 33280 130|B6 46592 182|EA 59904 234
1B 06912 27(4F 20224 79|83 33536 131|B7 46848 183|EB 60160 235
1C 07168 28|50 20480 80|84 33792 132|B8 47104 184|EC 60416 236
1D 07424 29151 20736 81|85 34048 133|B9 47360 185|ED 60672 237
1E 07680 30152 20992 82|86 34304 134|BA 47616 186|EF 60928 238
1F 07936 31)53 21248 83|87 34560 135|BB 47872 187{EF 61184 239
20 08192 32154 21504 84|88 34816 136|BC 48128 188|F0 61440 240
21 08448 3355 21760 85/89 35072 137|BD 48384 189 F1 61696 241
22 08704 34156 22016 86(8A 35328 138|BE 48640 190|F2 61952 242
23 08960 35157 22272 87|8B 35584 139|BF 48896 191|F3 62208 243
24 09216 36/58 22528 88(8C 35840 140|{CO 49152 192 F4 62464 244
25 09472 37159 22784 89|8D 36096 141|C1 49408 193 F5 62720 245
26 09728 38|5A 23040 90|8E 36352 142|C2 49664 192 F6 62976 246
27 09984 39/5B 23296 91/8F 36608 143|C3 49920 195 F7 63232 247
28 10240 40{5C 23552 92|90 36864 144|C4 50176 196,F8 63488 248
29 10496 41{5D 23808 93|91 37120 145|C5 50432 197|F9 63744 249
2A 10752 42|SE 24064 94|92 37376 146|C6 50688 198{FA 64000 250
2B 11008 43{5F 24320 95(93 37632 147|C7 50944 199! FB 64256 251
2C 11264 44160 24576 96(94 37888 148|C8 51200 200{FC 64512 252
2D 11520 45161 24832 97/95 38144 149|C9 51456 201/ FD 64768 253
2E 11776 46162 25088 98|96 38400 150|CA 51712 202|FE 65024 254
2F 12032 47163 25344 99|97 38656 151|CB 51968 203 FF 65280 255
30 12288 48164 25600 100[98 38912 152|CC 52224 204

31 12544 49165 25856 101{99 39168 153|CD 52480 205

32 12600 50{66 26112 102|94 39424 154|CE 52736 206

33 13056 51{67 26368 103|9B8 39680 155|CF 52992 207

The left column is the Hex code.

The centre column is the

calculating the M.S.B

The third column is for use with the L.S.B. or single byte.

150

decimal equivalent multiplied by 256 for

INDEX
A& F reo , 51
9 manipulation
ADD A/apc p ¥ 42 NOM 280 jnet
AND 43 NOP Tuctiong
A Register 17
Assembly commands 29 OR
&8 CR S
B egisters 1 ouT:
BIT i JOTIR/0UTD /0y
Bit manipulation 49 Parit
Block comparisons 55 Progry Overflow fla
Block transfer group 39 aMm counter ¥
Brackets convention 30 RAM :
Byte search program 131 e&rg°1nters
RES Uttng Programs
Carry flag 9 Ret =5
22 urns
CCF o RL
CP 45 RLC
CPI/CPD/CPIR/CPDR 5% RLD/RRD
CPL 52 ROM routip
Crashes 8c RR/RRC es
D & E Registers Savin
DAA é? sac) Programs
Data manip. commands 41 SCF
Data transfer commands 31 Screen messages
Decimal arith. rotates 48 Pl
Direct screen addressing 2 Sign flag
DINZ 58 gLA/SRA
Prites
EX/EXX SRL
37 Stack pointer
Flag Register 19 gagrlng Screens
Flag table 23 S
Subtract flag
H & L Registers 18 ¥SLem controls
Half
Safe carry flag %; Table construction
Hex to opcode table 127 User inputs 1
Hooks 95 User inputs 2
Using ZEN Assembler
i & R Registers 26 USR
N 61
Index registers 24 XOR
INI/INIR/IND/INDR 61
Input/Output commands 61 780 Instructions
280 Instruction table 138
Jumps 56 zero flag 20
LDI/LDIR/LDD/LDDR 39 8 bit arithmetic group g;
Loader program 104 8 bit load group 7
8 bit registers 16
Machine code from Basic 1 8 bit shift/rotate
MSX Routines 86) i u 45
Music program 86 16 bit arithmetic gro P ¥
16 bit load group
NEG 52
151

Scanned by CamScanner

