
D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

The MSX Red Book (revised version 1997/08/06)

Notes from the editor:

- The book was scanned and converted (via O.C.R.) b y one person and edited by

  another (using an IBM PC compatible), independent ly.

- All pages have a fix size of 64 lines. The width was not justified to make

  future modifications easier, though no line is lo nger than 80 columns.

- This book only covers standard MSX. The BIOS entr y points from 0000H to

  01B5H should be used instead of the called entrie s described in the book,

  because other machines (MSX2, MSX2+, MSX turbo R and customized ones) have

  different positions for the routines. The use of internal BIOS routine

  addresses are responsible for many programs only running in MSX.

- Some errors present in the original book were fix ed, though it was tried to

  keep it as unaltered as possible. All page number s match the originals,

  except undetected errors already present in the o riginal.

- Most figures were modificated due to the text-onl y nature of this file. The

  character set used during edition was the Interna tional IBM PC's one. The

  following special characters were used and should  be changed to the

  corresponding ones of other character sets:

  Frame       +---+     Pound: £

  characters: ¦ ¦ ¦     Micro: µ

              +-+-¦

              ¦ ¦ ¦

              +---+

  Converted to ASCII format by MSXHans 2001

-1-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

--------------------------------------------------- ----------------------------

                                CONTENTS

    Introduction ..............................    1

    1. Programmable Peripheral Interface ......    3

    2. Video Display Processor ................    8

    3. Programmable Sound Generator ...........   2 1

    4. ROM BIOS ...............................   2 6

    5. ROM BASIC Interpreter ..................   8 9

    6. Memory Map .............................  20 8

    7. Machine Code Programs ..................  24 0

    Contents Copyright 1985 Avalon Software

    Iver Lane, Cowley, Middx, UB8 2JD

    MSX is a trademark of Microsoft Corp.

    Z80 is a trademark of Zilog Corp.

    ACADEMY is trademark of Alfred .

-2-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

                              INTRODUCTION

Aims

    This book is about MSX computers and how they w ork. For

technical and commercial reasons MSX computer manuf acturers

only make a limited amount of information available  to the end

user about the design of their machines. Usually th is will be a

fairly detailed description of Microsoft MSX BASIC together

with a broad outline of the system hardware. While this level

of documentation is adequate for the casual user it  will

inevitably prove limiting to anyone engaged in more

sophisticated programming.

    The aim of this book is to provide a descriptio n of the

standard MSX hardware and software at a level of de tail

sufficient to satisfy that most demanding of users,  the machine

code programmer. It is not an introductory course o n

programming and is necessarily of a rather technica l nature. It

is assumed that you already possess, or intend to a cquire by

other means, an understanding of the Z80 Microproce ssor at the

machine code level. As there are so many general pu rpose books

already in existence about the Z80 any description of its

characteristics would simply duplicate widely avail able

information.

Organization

    The MSX Standard specifies the following as the  major

functional components in any MSX computer:

  (1) Zilog Z80 Microprocessor

  (2) Intel 8255 Programmable Peripheral Interface

  (3) Texas 9929 Video Display Processor

  (4) General Instrument 8910 Programmable Sound Ge nerator

-3-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

  (5) 32 KB MSX BASIC ROM

  (6) 8 KB RAM minimum

    Although there are obviously a great many addit ional

components involved in the design of an MSX compute r they are

all small-scale, non-programmable ones and therefor e

"invisible" to the user. Manufacturers generally ha ve

considerable freedom in the selection of these smal l-scale

components. The programmable components cannot be v aried and

therefore all MSX machines are identical as far as the

programmer is concerned.

    Chapters 1, 2 and 3 describe the operation of t he

Programmable Peripheral Interface, Video Display Pr ocessor and

Programmable Sound Generator respectively. These th ree devices

-- 1 --

INTRODUCTION

provide the interface between the Z80 and the perip heral

hardware on a standard MSX machine. All occupy posi tions on the

Z80 I/O (Input/output) Bus.

    Chapter 4 covers the software contained in the first part of

the MSX ROM. This section of the ROM is concerned w ith

controlling the machine hardware at the fine detail  level and

is known as the ROM BIOS (Basic Input Output System ). It is

structured in such a way that most of the functions  a machine

code programmer requires, such as keyboard and vide o drivers,

are readily available.

    Chapter 5 describes the software contained in t he remainder

of the ROM, the Microsoft MSX BASIC Interpreter. Al though this

is largely a text-driven program, and consequently of less use

to the programmer, a close examination reveals many  points not

documented by manufacturers.

    Chapter 6 is concerned with the organization of  system

memory. Particular attention is paid to the Workspa ce Area,

that section of RAM from F380H to FFFFH, as this is  used as a

scratchpad by the BIOS and the BASIC Interpreter an d contains

much information of use to any application program.

    Chapter 7 gives some examples of machine code p rograms that

make use of ROM features to minimize design effort.

    It is believed that this book contains zero def ects, if you

know otherwise the author would be delighted to hea r from you.

This book is dedicated to the Walking Nightmare.

-4-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

-- 2 --

                  1. PROGRAMMABLE PERIPHERAL INTERF ACE

    The 8255 PPI is a general purpose parallel inte rface device

configured as three eight bit data ports, called A,  B and C, and

a mode port. It appears to the Z80 as four I/O port s through

which the keyboard, the memory switching hardware, the cassette

motor, the cassette output, the Caps Lock LED and t he Key Click

audio output can be controlled. Once the PPI has be en

initialized access to a particular piece of hardwar e just

involves writing to or reading the relevant I/O por t.

PPI Port A (I/O Port A8H)

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  Page 3   ¦  Page 2   ¦  Page 1   ¦  Page 0   ¦

    ¦  PSLOT#   ¦  PSLOT#   ¦  PSLOT#   ¦  PSLOT#   ¦

    ¦ C000-FFFF ¦ 8000-BFFF ¦ 4000-7FFF ¦ 0000-3FFF  ¦

    +---------------------------------------------- -+

Figure 1: Primary Slot Register

-5-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This output port, known as the Primary Slot Reg ister in MSX

terminology, is used to control the memory switchin g hardware.

The Z80 Microprocessor can only access 64 KB of mem ory directly.

This limitation is currently regarded as too restri ctive and

several of the newer personal computers employ meth ods to

overcome it.

    MSX machines can have multiple memory devices a t the same

address and the Z80 may switch in any one of them a s required.

The processor address space is regarded as being du plicated

"sideways" into four separate 64 KB areas, called P rimary Slots

0 to 3, each of which receives its own slot select signal

alongside the normal Z80 bus signals. The contents of the

Primary Slot Register determine which slot select s ignal is

active and therefore which Primary Slot is selected .

    To increase flexibility each 16 KB "page" of th e Z80 address

space may be selected from a different Primary Slot . As shown

in Figure 1 two bits of the Primary Slot Register a re required

to define the Primary Slot number for each page.

    The first operation performed by the MSX ROM at  power-up is

to search through each slot for RAM in pages 2 and 3 (8000H to

FFFFH). The Primary Slot Register is then set so th at the

relevant slots are selected thus making the RAM per manently

available. The memory configuration of any MSX mach ine can be

-- 3 --

1. PROGRAMMABLE PERIPHERAL INTERFACE

determined by displaying the Primary Slot Register setting with

the BASIC statement:

        PRINT RIGHT$("0000000"+BIN$(INP(&HA8)),8)

    As an example "10100000" would be produced on a  Toshiba HX10

where pages 3 and 2 (the RAM) both come from Primar y Slot 2 and

pages 1 and 0 (the MSX ROM) from Primary Slot 0. Th e MSX ROM

must always be placed in Primary Slot 0 by a manufa cturer as

this is the slot selected by the hardware at power- up. Other

memory devices, RAM and any additional ROM, may be placed in

any slot by a manufacturer.

    A typical UK machine will have one Primary Slot  containing

the MSX ROM, one containing 64 KB of RAM and two sl ots brought

out to external connectors. Most Japanese machines have a

cartridge type connector on each of these external slots but UK

-6-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

machines usually have one cartridge connector and o ne IDC

connector.

Expanders

    System memory can be increased to a theoretical  maximum of

sixteen 64 KB areas by using expander interfaces. A n expander

plugs into any Primary Slot to provide four 64 KB S econdary

Slots, numbered 0 to 3, instead of one primary one.  Each

expander has its own local hardware, called a Secon dary Slot

Register, to select which of the Secondary Slots sh ould appear

in the Primary Slot. As before pages can be selecte d from

different Secondary Slots.

       7  6     5  4     3  2     1  0

    +-----------------------------------+

    ¦ Page 3 ¦ Page 2 ¦ Page 1 ¦ Page 0 ¦

    ¦ SSLOT# ¦ SSLOT# ¦ SSLOT# ¦ SSLOT# ¦

    +-----------------------------------+

Figure 2: Secondary Slot Register

    Each Secondary Slot Register, while actually be ing an eight

bit read/write latch, is made to appear as memory l ocation

FFFFH of its Primary Slot by the expander hardware.  In order to

gain access to this location on a particular expand er it will

usually be necessary to first switch page 3 (C000H to FFFFH) of

that Primary Slot into the processor address space.  The

Secondary Slot Register can then be modified and, i f necessary,

page 3 restored to its original Primary Slot settin g. Accessing

memory in expanders can become rather a convoluted process.

    It is apparent that there must be some way of d etermining

whether a Primary Slot contains ordinary RAM or an expander in

-- 4 --

1. PROGRAMMABLE PERIPHERAL INTERFACE

order to access it properly. To achieve this the Se condary Slot

Registers are designed to invert their contents whe n read back.

During the power-up RAM search memory location FFFF H of each

Primary Slot is examined to determine whether it be haves

normally or whether the slot contains an expander. The results

of these tests are stored in the Workspace Area sys tem resource

map EXPTBL for later use. This is done at power-up because of

the difficulty in performing tests when the Seconda ry Slot

Registers actually contain live settings.

-7-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Memory switching is obviously an area demanding  extra

caution, particularly with the hierarchical mechani sms needed

to control expanders. Care must be taken to avoid s witching out

the page in which a program is running or, if it is  being used,

the page containing the stack. There are a number o f standard

routines available to the machine code programmer i n the BIOS

section of the MSX ROM to simplify the process.

    The BASIC Interpreter itself has four methods o f accessing

extension ROMs. The first three of these are for us e with

machine code ROMs placed in page 1 (4000H to 7FFFH) , they are:

  (1) Hooks (Chapter 6).

  (2) The "CALL" statement (Chapter 5).

  (3) Additional device names (Chapter 5).

    The BASIC Interpreter can also execute a BASIC program ROM

detected in page 2 (8000H to BFFFH) during the powe r-up ROM

search. What the BASIC Interpreter cannot do is use  any RAM

hidden behind other memory devices. This limitation  is a

reflection of the difficulty in converting an estab lished

program to take advantage of newer, more complex ma chines. A

similar situation exists with the version of Micros oft BASIC

available on the IBM PC. Out of a 1 MB memory space  only 64 KB

can be used for program storage.

PPI Port B (I/O Port A9H)

      7  6  5  4  3  2  1  0

    +------------------------+

    ¦ Keyboard Column Inputs ¦

    +------------------------+

Figure 3

    This input port is used to read the eight bits of column

data from the currently selected row of the keyboar d. The MSX

keyboard is a software scanned eleven row by eight column

matrix of normally open switches. Current machines usually only

have keys in rows zero to eight. Conversion of key depressions

-- 5 --

1. PROGRAMMABLE PERIPHERAL INTERFACE

into character codes is performed by the MSX ROM in terrupt

handler, this process is described in Chapter 4.

-8-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

PPI Port C (I/O Port AAH)

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦ Key ¦ Cap ¦ Cas ¦ Cas ¦  Keyboard Row Select  ¦

    ¦Click¦ LED ¦ Out ¦Motor¦                       ¦

    +---------------------------------------------- -+

Figure 4

    This output port controls a variety of function s. The four

Keyboard Row Select bits select which of the eleven  keyboard

rows, numbered from 0 to 10, is to be read in by PP I Port B.

    The Cas Motor bit determines the state of the c assette motor

relay: 0=On, 1=Off.

    The Cas Out bit is filtered and attenuated befo re being

taken to the cassette DIN socket as the MIC signal.  All

cassette tone generation is performed by software.

    The Cap LED bit determines the state of the Cap s Lock LED:

0=On, 1=Off.

    The Key Click output is attenuated and mixed wi th the audio

output from the Programmable Sound Generator. To ac tually

generate a sound this bit should be flipped on and off.

    Note that there are standard routines in the RO M BIOS to

access all of the functions available with this por t. These

should be used in preference to direct manipulation  of the

hardware if at all possible.

PPI Mode Port (I/O Port ABH)

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  1  ¦    A&C    ¦  A  ¦  C  ¦ B&C ¦  B  ¦  C  ¦

    ¦     ¦    Mode   ¦ Dir ¦ Dir ¦ Mode¦ Dir ¦ Dir  ¦

    +---------------------------------------------- -+

Figure 5: PPI Mode Selection

    This port is used to set the operating mode of the PPI. As

the MSX hardware is designed to work in one particu lar

-- 6 --

-9-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

1. PROGRAMMABLE PERIPHERAL INTERFACE

configuration only this port should not be modified  under any

circumstances. Details are given for completeness o nly.

    Bit 7 must be 1 in order to alter the PPI mode,  when it is 0

the PPI performs the single bit set/reset function shown in

Figure 6.

    The A&C Mode bits determine the operating mode of Port A and

the upper four bits only of Port C: 00=Normal Mode (MSX),

01=Strobed Mode, 10=Bidirectional Mode

    The A Dir mode determines the direction of Port  A: 0=Output

(MSX), 1=Input.

    The C Dir bit determines the direction of the u pper four

bits only of Port C: 0=Output (MSX), 1=Input.

    The B&C Mode bits determine the operating mode of Port B and

the lower four bits only of Port C: 0=Normal Mode ( MSX),

1=Strobed Mode.

    The B Dir bit determines the direction of Port B:0= output,

1=Input (MSX).

    The C Dir bit determines the direction of the l ower four

bits only of Port C: 0=Output (MSX), 1=Input

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  0  ¦    Not used     ¦   Bit Number    ¦ Set  ¦

    +---------------------------------------------- -+

Figure 6: PPI Bit Set/Reset

    The PPI Mode Port can be used to directly set o r reset any

bit of Port C when bit 7 is 0. The Bit Number, from  0 to 7,

determines which bit is to be affected. Its new val ue is

determined by the Set/Reset bit: 0=Reset, 1=Set. Th e advantage

of this mode is that a single output can be easily modified. As

an example the Caps Lock LED may be turned on with the BASIC

statement OUT &HAB,12 and off with the statement OU T &HAB,13.

-10-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

-- 7 --

                       2. VIDEO DISPLAY PROCESSOR

    The 9929 VDP contains all the circuitry necessa ry to

generate the video display. It appears to the Z80 a s two I/O

ports called the Data Port and the Command Port. Al though the

VDP has its own 16 KB of VRAM (Video RAM), the cont ents of which

define the screen image, this cannot be directly ac cessed by

the Z80. Instead it must use the two I/O ports to m odify the

VRAM and to set the various VDP operating condition s.

Data Port (I/O Port 98H)

    The Data Port is used to read or write single b ytes to the

VRAM. The VDP possesses an internal address registe r pointing

to a location in the VRAM. Reading the Data Port wi ll input the

byte from this VRAM location while writing to the D ata Port

will store a byte there. After a read or write the address

register is automatically incremented to point to t he next VRAM

location. Sequential bytes can be accessed simply b y continuous

reads or writes to the Data Port.

Command Port (I/O Port 99H)

    The Command Port is used for three purposes:

  (1) To set up the Data Port address register.

  (2) To read the VDP Status Register.

  (3) To write to one of the VDP Mode Registers.

Address Register

    The Data Port address register must be set up i n different

ways depending on whether the subsequent access is to be a read

or a write. The address register can be set to any value from

0000H to 3FFFH by first writing the LSB (Least Sign ificant

Byte) and then the MSB (Most Significant Byte) to t he Command

Port. Bits 6 and 7 of the MSB are used by the VDP t o determine

whether the address register is being set up for su bsequent

reads or writes as follows:

    +-----------------------------+

    ¦ Read  ¦ xxxxxxxx ¦ 00xxxxxx ¦

    +-----------------------------+

-11-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +-----------------------------+

    ¦ Write ¦ xxxxxxxx ¦ 01xxxxxx ¦

    +-----------------------------+

Figure 7: VDP Address Setup

    It is important that no other accesses are made  to the VDP

in between writing the LSB and the MSB as this will  upset its

-- 8 --

2. VIDEO DISPLAY PROCESSOR

synchronization. The MSX ROM interrupt handler is c ontinuously

reading the VDP Status Register as a background tas k so

interrupts should be disabled as necessary.

VDP Status Register

    Reading the Command Port will input the content s of the VDP

Status Register. This contains various flags as bel ow:

      7    6    5    4    3    2    1    0

    +--------------------------------------+

    ¦ F  ¦ 5S ¦ C  ¦  Fifth Sprite Number  ¦

    ¦Flag¦Flag¦Flag¦                       ¦

    +--------------------------------------+

Figure 8: VDP Status Register

    The Fifth Sprite Number bits contain the number  (0 to 31) of

the sprite triggering the Fifth Sprite Flag.

    The Coincidence Flag is normally 0 but is set t o 1 if any

sprites have one or more overlapping pixels. Readin g the Status

Register will reset this flag to a 0. Note that coi ncidence is

only checked as each pixel is generated during a vi deo frame,

on a UK machine this is every 20 ms. If fast moving  sprites pass

over each other between checks then no coincidence will be

flagged.

    The Fifth Sprite Flag is normally 0 but is set to 1 when

there are more than four sprites on any pixel line.  Reading the

Status Register will reset this flag to a 0.

    The Frame Flag is normally 0 but is set to a 1 at the end of

the last active line of the video frame. For UK mac hines with a

50 Hz frame rate this will occur every 20 ms. Readi ng the Status

register will reset this flag to a 0. There is an a ssociated

output signal from the VDP which generates Z80 inte rrupts at

the same rate, this drives the MSX ROM interrupt ha ndler.

-12-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

VDP Mode Registers

    The VDP has eight write-only registers, numbere d 0 to 7,

which control its general operation. A particular r egister is

set by first writing a data byte then a register se lection byte

to the Command Port. The register selection byte co ntains the

register number in the lower three bits: 10000RRR. As the Mode

Registers are write-only, and cannot be read, the M SX ROM

maintains an exact copy of the eight registers in t he Workspace

Area of RAM (Chapter 6). Using the MSX ROM standard  routines

for VDP functions ensures that this register image is correctly

updated.

-- 9 --

2. VIDEO DISPLAY PROCESSOR

Mode Register 0

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦ 0 ¦ 0 ¦ 0 ¦ 0 ¦ 0 ¦ 0 ¦M3 ¦EV ¦

    +-------------------------------+

Figure 9

    The External VDP bit determines whether externa l VDP input

is to be enabled or disabled: 0=Disabled, 1=Enabled .

    The M3 bit is one of the three VDP mode selecti on bits, see

Mode Register 1.

Mode Register 1

       7      6      5      4      3      2      1      0

    +---------------------------------------------- ---------+

    ¦4/16K ¦Blank ¦  IE  ¦  M1  ¦  M2  ¦  0   ¦ Siz e ¦ Mag  ¦

    +---------------------------------------------- ---------+

Figure 10

    The Magnification bit determines whether sprite s will be

normal or doubled in size: 0=Normal, 1=Doubled.

    The Size bit determines whether each sprite pat tern will be

8x8 bits or 16x16 bits: 0=8x8, 1=16x16.

-13-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The M1 and M2 bits determine the VDP operating mode in

conjunction with the M3 bit from Mode Register 0:

    M1 M2 M3

    0  0  0  32x24 Text Mode

    0  0  1  Graphics Mode

    0  1  0  Multicolour Mode

    1  0  0  40x24 Text Mode

    The Interrupt Enable bit enables or disables th e interrupt

output signal from the VDP: 0=Disable, 1=Enable.

    The Blank bit is used to enable or disable the entire video

display: 0=Disable, 1=Enable. When the display is b lanked it

will be the same colour as the border.

    The 4/16K bit alters the VDP VRAM addressing ch aracteristics

to suit either 4 KB or 16 KB chips: 0=4 KB, 1=16 KB .

- 10 -

2. VIDEO DISPLAY PROCESSOR

Mode Register 2

      7    6    5    4    3    2    1    0

    +---------------------------------------+

    ¦ 0  ¦ 0  ¦ 0  ¦ 0  ¦  Name Table Base  ¦

    +---------------------------------------+

Figure 11

    Mode Register 2 defines the starting address of  the Name

Table in the VDP VRAM. The four available bits only  specify

positions 00BB BB00 0000 0000 of the full address s o register

contents of 0FH would result in a base address of 3 C00H.

Mode Register 3

     7  6  5  4  3  2  1  0

    +----------------------+

    ¦  Colour Table Base   ¦

    +----------------------+

-14-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Figure 12

    Mode Register 3 defines the starting address of  the Colour

Table in the VDP VRAM. The eight available bits onl y specify

positions 00BB BBBB BB00 0000 of the full address s o register

contents of FFH would result in a base address of 3 FC0H. In

Graphics Mode only bit 7 is effective thus offering  a base of

0000H or 2000H. Bits 0 to 6 must be 1.

Mode Register 4

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  0  ¦  0  ¦  0  ¦  0  ¦  0  ¦Character Patter n¦

    +---------------------------------------------- -+

Figure 13

    Mode Register 4 defines the starting address of  the

Character Pattern Table in the VDP VRAM. The three available

bits only specify positions 00BB B000 0000 0000 of the full

address so register contents of 07H would result in  a base

address of 3800H. In Graphics Mode only bit 2 is ef fective thus

offering a base of 0000H or 2000H. Bits 0 and 1 mus t be 1.

- 11 -

2. VIDEO DISPLAY PROCESSOR

Mode Register 5

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦ 0 ¦   Sprite Attribute base   ¦

    +-------------------------------+

Figure 14

    Mode Register 5 defines the starting address of  the Sprite

Attribute Table in the VDP VRAM. The seven availabl e bits only

specify positions 00BB BBBB B000 0000 of the full a ddress so

register contents of 7FH would result in a base add ress of

3F80H.

-15-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Mode Register 6

      7    6    5    4    3    2    1    0

    +---------------------------------------+

    ¦ 0  ¦ 0  ¦ 0  ¦ 0  ¦ 0  ¦Sprite Pattern¦

    +---------------------------------------+

Figure 15

    Mode Register 6 defines the starting address of  the Sprite

Pattern Table in the VDP VRAM. The three available bits only

specify positions 00BB B000 0000 0000 of the full a ddress so

register contents of 07H would result in a base add ress of

3800H.

Mode Register 7

      7    6    5    4    3    2    1    0

    +---------------------------------------+

    ¦   Text Colour 1   ¦   Border Colour   ¦

    +---------------------------------------+

Figure 16

    The Border Colour bits determine the colour of the region

surrounding the active video area in all four VDP m odes. They

also determine the colour of all 0 pixels on the sc reen in

40x24 Text Mode. Note that the border region actual ly extends

across the entire screen but will only become visib le in the

active area if the overlying pixel is transparent.

- 12 -

2. VIDEO DISPLAY PROCESSOR

    The Text Colour 1 bits determine the colour of all 1 pixels

in 40x24 Text Mode. They have no effect in the othe r three

modes where greater flexibility is provided through  the use of

the Colour Table. The VDP colour codes are:

    0 Transparent  4 Dark Blue   8 Red           12  Dark Green

    1 Black        5 Light Blue  9 Bright Red    13  Purple

    2 Green        6 Dark Red   10 Yellow        14  Grey

    3 Light Green  7 Sky Blue   11 Light Yellow  15  White

-16-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Screen Modes

    The VDP has four operating modes, each one offe ring a

slightly different set of capabilities. Generally s peaking, as

the resolution goes up the price to be paid in VRAM  size and

updating complexity also increases. In a dedicated application

these associated hardware and software costs are im portant

considerations. For an MSX machine they are irrelev ant, it

therefore seems a pity that a greater attempt was n ot made to

standardize on one particular mode. The Graphics Mo de is

capable of adequately performing all the functions of the other

modes with only minor reservations.

    An added difficulty in using the VDP arises bec ause

insufficient allowance was made in its design for t he

overscanning used by most televisions. The resultin g loss of

characters at the screen edges has forced all the v ideo-related

MSX software into being based on peculiar screen si zes. UK

machines normally use only the central thirty-seven  characters

available in 40x24 Text Mode. Japanese machines, wi th NTSC

(National Television Standards Committee) video out puts, use the

central thirty-nine characters.

    The central element in the VDP, from the progra mmer's point

of view, is the Name Table. This is a simple list o f single-

byte character codes held in VRAM. It is 960 bytes long in

40x24 Text Mode, 768 bytes long in 32x24 Text Mode,  Graphics

Mode and Multicolour Mode. Each position in the Nam e Table

corresponds to a particular location on the screen.

    During a video frame the VDP will sequentially read every

character code from the Name Table, starting at the  base. As

each character code is read the corresponding 8x8 p attern of

pixels is looked up in the Character Pattern Table and

displayed on the screen. The appearance of the scre en can thus

be modified by either changing the character codes in the Name

Table or the pixel patterns in the Character Patter n Table.

    Note that the VDP has no hardware cursor facili ty, if one is

required it must be software generated.

- 13 -

2. VIDEO DISPLAY PROCESSOR

40x24 Text Mode

    The Name Table occupies 960 bytes of VRAM from 0000H to

03BFH:

-17-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

              0123456789012345678901234567890123456 789

        0000H +------------------------------------ ---+  0

        0028H +++++++++++++++++++++++++++++++++++++ +++¦  1

        0050H +++++++++++++++++++++++++++++++++++++ +++¦  2

        0078H +++++++++++++++++++++++++++++++++++++ +++¦  3

        00A0H +++++++++++++++++++++++++++++++++++++ +++¦  4

        00C8H +++++++++++++++++++++++++++++++++++++ +++¦  5

        00F0H +++++++++++++++++++++++++++++++++++++ +++¦  6

        0118H +++++++++++++++++++++++++++++++++++++ +++¦  7

        0140H +++++++++++++++++++++++++++++++++++++ +++¦  8

        0168H +++++++++++++++++++++++++++++++++++++ +++¦  9

        0190H +++++++++++++++++++++++++++++++++++++ +++¦ 10

        01B8H +++++++++++++++++++++++++++++++++++++ +++¦ 11

        01E0H +++++++++++++++++++++++++++++++++++++ +++¦ 12

        0208H +++++++++++++++++++++++++++++++++++++ +++¦ 13

        0230H +++++++++++++++++++++++++++++++++++++ +++¦ 14

        0258H +++++++++++++++++++++++++++++++++++++ +++¦ 15

        0280H +++++++++++++++++++++++++++++++++++++ +++¦ 16

        02A8H +++++++++++++++++++++++++++++++++++++ +++¦ 17

        02D0H +++++++++++++++++++++++++++++++++++++ +++¦ 18

        02F8H +++++++++++++++++++++++++++++++++++++ +++¦ 19

        0320H +++++++++++++++++++++++++++++++++++++ +++¦ 20

        0348H +++++++++++++++++++++++++++++++++++++ +++¦ 21

        0370H +++++++++++++++++++++++++++++++++++++ +++¦ 22

        0398H +++++++++++++++++++++++++++++++++++++ +++¦ 23

              +------------------------------------ ---+

              0123456789012345678901234567890123456 789

Figure 17: 40x24 Name Table

    Pattern Table occupies 2 KB of VRAM from 0800H

to 0FFFH. Each eight byte block contains the pixel pattern for

a character code:

    +---------------+

    ¦0 0 1 0 0 0 0 0¦ Byte 0

    ¦0 1 0 1 0 0 0 0¦ Byte 1

    ¦1 0 0 0 1 0 0 0¦ Byte 2

    ¦1 0 0 0 1 0 0 0¦ Byte 3

    ¦1 1 1 1 1 0 0 0¦ Byte 4

    ¦1 0 0 0 1 0 0 0¦ Byte 5

    ¦1 0 0 0 1 0 0 0¦ Byte 6

    ¦0 0 0 0 0 0 0 0¦ Byte 7

    +---------------+

Figure 18: Character Pattern Block (No. 65 shown = `A')

    The first block contains the pattern for charac ter code 0, the

second the pattern for character code 1 and so on t o character

code 255. Note that only the leftmost six pixels ar e actually

displayed in this mode. The colours of the 0 and 1 pixels in

this mode are defined by VDP Mode Register 7, initi ally they

are blue and white.

- 14 -

2. VIDEO DISPLAY PROCESSOR

-18-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

32x24 Text Mode

    The Name Table occupies 768 bytes of VRAM from 1800H to

1AFFH. As in 40x24 Text Mode normal operation invol ves placing

character codes in the required position in the tab le. The

"VPOKE" statement may be used to attain familiarity  with the

screen layout:

              01234567890123456789012345678901

        1800H +-------------------------------+  0

        1820H ++++++++++++++++++++++++++++++++¦  1

        1840H ++++++++++++++++++++++++++++++++¦  2

        1860H ++++++++++++++++++++++++++++++++¦  3

        1880H ++++++++++++++++++++++++++++++++¦  4

        18A0H ++++++++++++++++++++++++++++++++¦  5

        18C0H ++++++++++++++++++++++++++++++++¦  6

        18E0H ++++++++++++++++++++++++++++++++¦  7

        1900H ++++++++++++++++++++++++++++++++¦  8

        1920H ++++++++++++++++++++++++++++++++¦  9

        1940H ++++++++++++++++++++++++++++++++¦ 10

        1960H ++++++++++++++++++++++++++++++++¦ 11

        1980H ++++++++++++++++++++++++++++++++¦ 12

        19A0H ++++++++++++++++++++++++++++++++¦ 13

        19C0H ++++++++++++++++++++++++++++++++¦ 14

        19E0H ++++++++++++++++++++++++++++++++¦ 15

        1A00H ++++++++++++++++++++++++++++++++¦ 16

        1A20H ++++++++++++++++++++++++++++++++¦ 17

        1A40H ++++++++++++++++++++++++++++++++¦ 18

        1A60H ++++++++++++++++++++++++++++++++¦ 19

        1A80H ++++++++++++++++++++++++++++++++¦ 20

        1AA0H ++++++++++++++++++++++++++++++++¦ 21

        1AC0H ++++++++++++++++++++++++++++++++¦ 22

        1AE0H ++++++++++++++++++++++++++++++++¦ 23

              +-------------------------------+

              01234567890123456789012345678901

Figure 19: 32x24 Name Table

    The Character Pattern Table occupies 2 KB of VR AM from 0000H

to 07FFH. Its structure is the same as in 40x24 Tex t Mode, all

eight pixels of an 8x8 pattern are now displayed.

    The border colour is defined by VDP Mode Regist er 7 and is

initially blue. An additional table, the Colour Tab le,

determines the colour of the 0 and 1 pixels. This o ccupies

thirty-two bytes of VRAM from 2000H to 201FH. Each entry in the

Colour Table defines the 0 and 1 pixel colours for a group of

eight character codes, the lower four bits defining  the 0 pixel

colour, the upper four bits the 1 pixel colour. The  first entry

in the table defines the colours for character code s 0 to 7,

the second for character codes 8 to 15 and so on fo r thirty-two

entries. The MSX ROM initializes all entries to the  same value,

blue and white, and provides no facilities for chan ging

-19-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

individual ones.

- 15 -

2. VIDEO DISPLAY PROCESSOR

Graphics Mode

    The Name Table occupies 768 bytes of VRAM from 1800H to

1AFFH, the same as in 32x24 Text Mode. The table is  initialized

with the character code sequence 0 to 255 repeated three times

and is then left untouched, in this mode it is the Character

Pattern Table which is modified during normal opera tion.

    The Character Pattern Table occupies 6 KB of VR AM from 0000H

to 17FFH. While its structure is the same as in the  text modes

it does not contain a character set but is initiali zed to all 0

pixels. The first 2 KB of the Character Pattern Tab le is

addressed by the character codes from the first thi rd of the

Name Table, the second 2 KB by the central third of  the Name

Table and the last 2 KB by the final third of the N ame Table.

Because of the sequential pattern in the Name Table  the entire

Character Pattern Table is read out linearly during  a video

frame. Setting a point on the screen involves worki ng out where

the corresponding bit is in the Character Pattern T able and

turning it on. For a BASIC program to convert X,Y c oordinates

to an address see the MAPXYC standard routine in Ch apter 4.

              01234567890123456789012345678901

        0000H +-------------------------------+  0

        0100H ++++++++++++++++++++++++++++++++¦  1

        0200H ++++++++++++++++++++++++++++++++¦  2

        0300H ++++++++++++++++++++++++++++++++¦  3

        0400H ++++++++++++++++++++++++++++++++¦  4

        0500H ++++++++++++++++++++++++++++++++¦  5

        0600H ++++++++++++++++++++++++++++++++¦  6

        0700H ++++++++++++++++++++++++++++++++¦  7

        0800H ++++++++++++++++++++++++++++++++¦  8

        0900H ++++++++++++++++++++++++++++++++¦  9

        0A00H ++++++++++++++++++++++++++++++++¦ 10

        0B00H ++++++++++++++++++++++++++++++++¦ 11

        0C00H ++++++++++++++++++++++++++++++++¦ 12

        0D00H ++++++++++++++++++++++++++++++++¦ 13

        0E00H ++++++++++++++++++++++++++++++++¦ 14

        0F00H ++++++++++++++++++++++++++++++++¦ 15

        1000H ++++++++++++++++++++++++++++++++¦ 16

        1100H ++++++++++++++++++++++++++++++++¦ 17

        1200H ++++++++++++++++++++++++++++++++¦ 18

        1300H ++++++++++++++++++++++++++++++++¦ 19

        1400H ++++++++++++++++++++++++++++++++¦ 20

        1500H ++++++++++++++++++++++++++++++++¦ 21

        1600H ++++++++++++++++++++++++++++++++¦ 22

        1700H ++++++++++++++++++++++++++++++++¦ 23

-20-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

              +-------------------------------+

              01234567890123456789012345678901

Figure 20: Graphics Character Pattern Table

    The border colour is defined by VDP Mode Regist er 7 and is

initially blue. The Colour Table occupies 6 KB of V RAM from

- 16 -

2. VIDEO DISPLAY PROCESSOR

2000H to 37FFH. There is an exact byte-to-byte mapp ing from the

Character Pattern Table to the Colour Table but, be cause it

takes a whole byte to define the 0 pixel and 1 pixe l colours,

there is a lower resolution for colours than for pi xels. The

lower four bits of a Colour Table entry define the colour of

all the 0 pixels on the corresponding eight pixel l ine. The

upper four bits define the colour of the 1 pixels. The Colour

Table is initialized so that the 0 pixel colour and  the 1 pixel

colour are blue for the entire table. Because both colours are

the same it will be necessary to alter one colour w hen a bit is

set in the Character Pattern Table.

Multicolour Mode

    The Name Table occupies 768 bytes of VRAM from 0800H to

0AFFH, the screen mapping is the same as in 32x24 T ext Mode.

The table is initialized with the following charact er code

pattern:

    00H to 1FH (Repeated four times)

    20H to 3FH (Repeated four times)

    40H to 5FH (Repeated four times)

    60H to 7FH (Repeated four times)

    80H to 9FH (Repeated four times)

    A0H to BFH (Repeated four times)

    As with Graphics Mode this is just a character code "driver"

pattern, it is the Character Pattern Table which is  modified

during normal operation.

    The Character Pattern table occupies 1536 bytes  of VRAM from

0000H to 05FFH. As in the other modes each characte r code maps

onto an eight byte block in the Character Pattern T able.

Because of the lower resolution in this mode only t wo bytes of

the pattern block are actually needed to define an 8x8 pattern:

    +---------------+           +-------+

    ¦A A A A B B B B¦ Byte 0    ¦   ¦   ¦

    ¦C C C C D D D D¦ Byte 1    ¦ A ¦ B ¦

-21-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    ¦...............¦ ......    ¦   ¦   ¦

    ¦               ¦           +---+---¦

    ¦               ¦           ¦   ¦   ¦

    ¦               ¦           ¦ C ¦ D ¦

    +---------------+           ¦   ¦   ¦

                                +-------+

Figure 21: Multicolour Pattern Block

    As can be seen from Figure 21 each four bit sec tion of the two

byte block contains a colour code and thus defines the COLOUR

of a quadrant of the 8x8 pixel pattern. So that the  entire

eight bytes of the pattern block can be utilized a given

character code will use a different two byte sectio n depending

- 17 -

2. VIDEO DISPLAY PROCESSOR

upon the character code's screen location (i.e. its  position in

the Name Table):

    Video row 0, 4, 8, 12, 16, 20   Uses bytes 0 an d 1

    Video row 1, 5, 9, 13, 17, 21   Uses bytes 2 an d 3

    Video row 2, 6, 10, 14, 18, 22  Uses bytes 4 an d 5

    Video row 3, 7, 11, 15, 19, 23  Uses bytes 6 an d 7

    When the Name Table is filled with the special driver sequence

of character codes shown above the Character Patter n Table will

be read out linearly during a video frame:

              01234567890123456789012345678901

        0000H +-------------------------------+  0

        0002H ++++++++++++++++++++++++++++++++¦  1

        0004H ++++++++++++++++++++++++++++++++¦  2

        0006H ++++++++++++++++++++++++++++++++¦  3

        0100H ++++++++++++++++++++++++++++++++¦  4

        0102H ++++++++++++++++++++++++++++++++¦  5

        0104H ++++++++++++++++++++++++++++++++¦  6

        0106H ++++++++++++++++++++++++++++++++¦  7

        0200H ++++++++++++++++++++++++++++++++¦  8

        0202H ++++++++++++++++++++++++++++++++¦  9

        0204H ++++++++++++++++++++++++++++++++¦ 10

        0206H ++++++++++++++++++++++++++++++++¦ 11

        0300H ++++++++++++++++++++++++++++++++¦ 12

        0302H ++++++++++++++++++++++++++++++++¦ 13

        0304H ++++++++++++++++++++++++++++++++¦ 14

        0306H ++++++++++++++++++++++++++++++++¦ 15

        0400H ++++++++++++++++++++++++++++++++¦ 16

        0402H ++++++++++++++++++++++++++++++++¦ 17

        0404H ++++++++++++++++++++++++++++++++¦ 18

        0406H ++++++++++++++++++++++++++++++++¦ 19

        0500H ++++++++++++++++++++++++++++++++¦ 20

-22-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        0502H ++++++++++++++++++++++++++++++++¦ 21

        0504H ++++++++++++++++++++++++++++++++¦ 22

        0506H ++++++++++++++++++++++++++++++++¦ 23

              +-------------------------------+

              01234567890123456789012345678901

Figure 22: Multicolour Character Pattern Table

    The border colour is defined by VDP Mode Regist er 7 and is

initially blue. There is no separate Colour Table a s the

colours are defined directly by the contents of the  Character

Pattern Table, this is initially filled with blue.

Sprites

    The VDP can control thirty-two sprites in all m odes except

40X24 Text Mode. Their treatment is identical in al l modes and

independent of any character-orientated activity.

    The Sprite Attribute Table occupies 128 bytes o f VRAM from

- 18 -

2. VIDEO DISPLAY PROCESSOR

1B00H to 1B7FH. The table contains thirty-two four byte blocks,

one for each sprite. The first block controls sprit e 0 (the

"top" sprite), the second controls sprite 1 and so on to sprite

31. The format of each block is as below:

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦       Vertical Position       ¦ Byte 0

    +-------------------------------¦

    ¦      Horizontal Position      ¦ Byte 1

    +-------------------------------¦

    ¦        Pattern Number         ¦ Byte 2

    +-------------------------------¦

    ¦EC ¦ 0 ¦ 0 ¦ 0 ¦  Colour Code  ¦ Byte 3

    +-------------------------------+

Figure 23: Sprite Attribute Block

    Byte 0 specifies the vertical (Y) coordinate of  the top-left

pixel of the sprite. The coordinate system runs fro m -1 (FFH)

for the top pixel line on the screen down to 190 (B EH) for the

-23-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

bottom line. Values less than -1 can be used to sli de the

sprite in from the top of the screen. The exact val ues needed

will obviously depend upon the size of the sprite. Curiously

there has been no attempt in MSX BASIC to reconcile  this

coordinate system with the normal graphics range of  Y=0 to 191.

As a consequence a sprite will always be one pixel lower on the

screen than the equivalent graphic point. Note that  the special

vertical coordinate value of 208 (D0H) placed in a sprite

attribute block will cause the VDP to ignore all su bsequent

blocks in the Sprite Attribute Table. Effectively t his means

that any lower sprites will disappear from the scre en.

    Byte 1 specifies the horizontal (X) coordinate of the top-

left pixel of the sprite. The coordinate system run s from 0 for

the leftmost pixel to 255 (FFH) for the rightmost. As this

coordinate system provides no mechanism for sliding  a sprite in

from the left a special bit in byte 3 is used for t his purpose,

see below.

    Byte 2 selects one of the two hundred and fifty -six 8x8 bit

patterns available in the Sprite Pattern Table. If the Size bit

is set in VDP Mode Register 1, resulting in 16x16 b it patterns

occupying thirty-two bytes each, the two least sign ificant bits

of the pattern number are ignored. Thus pattern num bers 0, 1, 2

and 3 would all select pattern number 0.

    In Byte 3 the four Colour Code bits define the colour of the

1 pixels in the sprite patterns, 0 pixels are alway s

- 19 -

2. VIDEO DISPLAY PROCESSOR

transparent. The Early Clock bit is normally 0 but will shift

the sprite thirty-two pixels to the left when set t o 1. This is

so that sprites can slide in from the left of the s creen, there

being no spare coordinates in the horizontal direct ion.

    The Sprite Pattern Table occupies 2 KB of VRAM from 3800H to

3FFFH. It contains two hundred and fifty-six 8x8 pi xel

patterns, numbered from 0 to 255. If the Size bit i n VDP Mode

Register 1 is 0, resulting in 8x8 sprites, then eac h eight byte

sprite pattern block is structured in the same way as the

character pattern block shown in Figure 18. If the Size bit is

1, resulting in 16x16 sprites, then four eight byte  blocks are

needed to define the pattern as below:

    +---------+            +-----------+

    ¦ 8 Bytes ¦            ¦     ¦     ¦

    ¦ Block A ¦            ¦  A  ¦  C  ¦

    +---------¦            ¦     ¦     ¦

    ¦ 8 Bytes ¦            +-----+-----¦

    ¦ Block B ¦            ¦     ¦     ¦

-24-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +---------¦            ¦  B  ¦  D  ¦

    ¦ 8 Bytes ¦            ¦     ¦     ¦

    ¦ Block C ¦            +-----------+

    +---------¦

    ¦ 8 Bytes ¦

    ¦ Block D ¦

    +---------+

Figure 24: 16x16 Sprite Pattern Block

- 20 -

                    3. PROGRAMMABLE SOUND GENERATOR

    As well as controlling three sound channels the  8910 PSG

contains two eight bit data ports, called A and B, through

which it interfaces the joysticks and the cassette input. The

PSG appears to the Z80 as three I/O ports called th e Address

Port, the Data Write Port and the Data Read Port.

Address Port (I/O port A0H)

    The PSG contains sixteen internal registers whi ch completely

define its operation. A specific register is select ed by

-25-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

writing its number, from 0 to 15, to this port. Onc e selected,

repeated accesses to that register may be made via the two data

ports.

Data Write Port (I/O port A1H)

    This port is used to write to any register once  it has been

selected by the Address Port.

Data Read Port (I/O port A2H)

    This port is used to read any register once it has been

selected by the Address Port.

Registers 0 and 1

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦              Channel A Frequency              ¦ R0

    ¦                     (LSB)                     ¦

    +---------------------------------------------- -¦

    ¦  x  ¦  x  ¦  x  ¦  x  ¦  Channel A Frequency  ¦ R1

    ¦     ¦     ¦     ¦     ¦         (MSB)         ¦

    +---------------------------------------------- -+

Figure 25

    These two registers are used to define the freq uency of the

Tone Generator for Channel A. Variable frequencies are produced

by dividing a fixed master frequency with the numbe r held in

Registers 0 and 1, this number can be in the range 1 to 4095.

Register 0 holds the least significant eight bits a nd Register

1 the most significant four. The PSG divides an ext ernal

1.7897725 MHz frequency by sixteen to produce a Ton e Generator

master frequency of 111,861 Hz. The output of the T one Generator

- 21 -

3. PROGRAMMABLE SOUND GENERATOR

can therefore range from 111,861 Hz (divide by 1) d own to

27.3 Hz (divide by 4095). As an example to produce a middle "A"

(440 Hz) the divider value in Registers 0 and 1 wou ld be 254.

Registers 2 and 3

-26-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    These two registers control the Channel B Tone Generator as

for Channel A.

Registers 4 and 5

    These two registers control the Channel C Tone Generator as

for Channel A.

Register 6

       7   6   5   4   3   2   1   0

    +---------------------------------+

    ¦ x ¦ x ¦ x ¦   Noise Frequency   ¦

    +---------------------------------+

Figure 26

    In addition to three square wave Tone Generator s the PSG

contains a single Noise Generator. The fundamental frequency of

the noise source can be controlled in a similar fas hion to the

Tone Generators. The five least significant bits of  Register 6

hold a divider value from 1 to 31. The Noise Genera tor master

frequency is 111,861 Hz as before.

Register 7

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦Port ¦Port ¦  C  ¦  B  ¦  A  ¦  C  ¦  B  ¦  A  ¦

    ¦B Dir¦A Dir¦Noise¦Noise¦Noise¦Tone ¦Tone ¦Tone  ¦

    +---------------------------------------------- -+

Figure 27

    This register enables or disables the Tone Gene rator and

Noise Generator for each of the three channels: 0=E nable

1=Disable. It also controls the direction of interf ace ports A

and B, to which the joysticks and cassette are atta ched:

0=Input, 1=Output. Register 7 must always contain 1 0xxxxxx or

possible damage could result to the PSG, there are active

devices connected to its I/O pins. The BASIC "SOUND " statement

will force these bits to the correct value for Regi ster 7 but

there is no protection at the machine code level.

- 22 -

3. PROGRAMMABLE SOUND GENERATOR

-27-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Register 8

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  x  ¦  x  ¦  x  ¦Mode ¦  Channel A Amplitude  ¦

    +---------------------------------------------- -+

Figure 28

    The four Amplitude bits determine the amplitude  of Channel A

from a minimum of 0 to a maximum of 15. The Mode bi t selects

either fixed or modulated amplitude: 0=Fixed, 1=Mod ulated. When

modulated amplitude is selected the fixed amplitude  value is

ignored and the channel is modulated by the output from the

Envelope Generator.

Register 9

    This register controls the amplitude of Channel  B as for

Channel A.

Register 10

    This register controls the amplitude of Channel  C as for

Channel A.

Registers 11 and 12

      7  6  5  4  3  2  1  0

    +------------------------+

    ¦Envelope Frequency (LSB)¦ R11

    +------------------------¦

    ¦Envelope Frequency (MSB)¦ R12

    +------------------------+

Figure 29

    These two registers control the frequency of th e single

Envelope Generator used for amplitude modulation. A s for the

Tone Generators this frequency is determined by pla cing a

divider count in the registers. The divider value m ay range

from 1 to 65535 with Register 11 holding the least significant

eight bits and Register 12 the most significant. Th e master

frequency for the Envelope Generator is 6991 Hz so the envelope

frequency may range from 6991 Hz (divide by 1) to 0 .11 Hz (divide

by 65535).

-28-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 23 -

3. PROGRAMMABLE SOUND GENERATOR

Register 13

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦ x ¦ x ¦ x ¦ x ¦Envelope Shape ¦

    +-------------------------------+

Figure 30

    The four Envelope Shape bits determine the shap e of the

amplitude modulation envelope produced by the Envel ope

Generator:

    3 2 1 0   Modulation Envelope

    0 0 x x   ¦\_________________

    0 1 x x   /¦_________________

    1 0 0 0   ¦\¦\¦\¦\¦\¦\¦\¦\¦\¦

    1 0 0 1   ¦\_________________

    1 0 1 0   \/\/\/\/\/\/\/\/\/\

                _________________

    1 0 1 1   \¦

    1 1 0 0   /¦/¦/¦/¦/¦/¦/¦/¦/¦/

               __________________

    1 1 0 1   /

    1 1 1 0   /\/\/\/\/\/\/\/\/\/

    1 1 1 1   /¦_________________

Figure 31

Register 14

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦ Cas ¦ Kbd ¦ Joy ¦ Joy ¦ Joy ¦ Joy ¦ Joy ¦ Joy  ¦

    ¦Input¦Mode ¦Trg.B¦Trg.A¦Right¦Left ¦Back ¦ Fwd  ¦

-29-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +---------------------------------------------- -+

Figure 32

    This register is used to read in PSG Port A. Th e six

joystick bits reflect the state of the four directi on switches

- 24 -

3. PROGRAMMABLE SOUND GENERATOR

and two trigger buttons on a joystick: 0=Pressed, 1 =Not

pressed. Alternatively up to six Paddles may be con nected

instead of one joystick. Although most MSX machines  have two 9

pin joystick connectors only one can be read at a t ime. The one

to be selected for reading is determined by the Joy stick Select

bit in PSG Register 15.

    The Keyboard Mode bit is unused on UK machines.  On Japanese

machines it is tied to a jumper link to determine t he

keyboard's character set.

    The Cassette Input is used to read the signal f rom the

cassette EAR output. This is passed through a compa rator to

clean the edges and to convert to digital levels bu t is

otherwise unprocessed.

Register 15

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦Kana ¦ Joy ¦Pulse¦Pulse¦  1  ¦  1  ¦  1  ¦  1  ¦

    ¦ LED ¦ Sel ¦  2  ¦  1  ¦     ¦     ¦     ¦     ¦

    +---------------------------------------------- -+

Figure 33

    This register is used to output to PSG Port B. The four

least significant bits are connected via TTL open-c ollector

buffers to pins 6 and 7 of each joystick connector.  They are

normally set to a 1, when a paddle or joystick is c onnected, so

that the pins can function as inputs. When a touchp ad is

connected they are used as handshaking outputs.

    The two Pulse bits are used to generate a short  positive-

going pulse to any paddles attached to joystick con nectors 1 or

2. Each paddle contains a monostable timer with a v ariable

resistor controlling its pulse length. Once the tim er is

triggered the position of the variable resistor can  be

-30-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

determined by counting until the monostable times o ut.

    The Joystick Select bit determines which joysti ck connector

is connected to PSG Port A for input: 0=Connector 1 ,

1=Connector 2.

    The Kana LED output is unused on UK machines. O n Japanese

machines it is used to drive a keyboard mode indica tor.

- 25 -

                              4. ROM BIOS

    The design of the MSX ROM is of importance if m achine code

programs are to be developed efficiently and Operat e reliably.

Almost every program, including the BASIC Interpret er itself,

will require a certain set of primitive functions t o operate.

These include screen and printer drivers, a keyboar d decoder

and other hardware related functions. By separating  these

routines from the BASIC Interpreter they can be mad e available

to any application program. The section of ROM from  0000H to

268BH is largely devoted to such routines and is ca lled the ROM

BIOS (Basic Input Output System).

    This chapter gives a functional description of every

recognizably separate routine in the ROM BIOS. Spec ial

attention is given to the "standard" routines. Thes e are

documented by Microsoft and guaranteed to remain co nsistent

through possible hardware and software changes. The  first few

hundred bytes of the ROM consists of Z80 JP instruc tions which

provide fixed position entry points to these routin es. For

maximum compatibility with future software an appli cation

program should restrict its dependence on the ROM t o these

locations only. The description of the ROM begins w ith this

list of entry points to the standard routines. A br ief comment

is placed with each entry point, the full descripti on is given

with the routine itself.

Data Areas

    It is expected that most users will wish to dis assemble the

ROM to some extent (the full listing runs to nearly  four

hundred pages). In order to ease this process the d ata areas,

which do not contain executable Z80 code, are shown  below:

-31-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    0004H-0007H    185DH-1863H 4B3AH-4B4CH    73E4H -73E4H

    002BH-002FH    1B97H-1BAAH 4C2FH-4C3FH    752EH -7585H

    0508H-050DH    1BBFH-23BEH 555AH-5569H    7754H -7757H

    092FH-097FH    2439H-2459H 5D83H-5DB0H    7BA3H -7BCAH

    0DA5H-0EC4H    2CF1H-2E70H 6F76H-6F8EH    7ED8H -7F26H

    1033H-105AH    3030H-3039H 70FFH-710CH    7F41H -7FB6H

    1061H-10C1H    3710H-3719H 7182H-7195H    7FBEH -7FFFH

    1233H-1252H    392EH-3FE1H 71A2H-71B5H

    13A9H-1448H    43B5H-43C3H 71C7H-71DAH

    160BH-1612H    46E6H-46E7H 72A6H-72B9H

    Note that these data areas are for the UK ROM, there are slight

differences in the Japanese ROM relating to the key board

decoder and the video character set. Disparities be tween the

ROMs are restricted to these regions with the bulk of the code

being identical in both cases.

- 26 -

4. ROM BIOS

Terminology

    Reference is frequently made in this chapter to  the standard

routines and to Workspace Area variables. Whenever this is done

the Microsoft-recommended name is used in upper cas e letters,

for example "the FILVRM standard routine" and "SCRM OD is set".

Subroutines which are not named are referred to by a

parenthesized address, "the screen is cleared (0777 H)" for

example. When reference is made to the Z80 status f lags

assembly language conventions are used, for example  "Flag C"

would mean that the carry flag is set while "Flag N Z" means

that the zero flag is reset. The terms "EI" and "DI " mean

enabled interrupts and disabled interrupts respecti vely.

ADDR. NAME   TO    FUNCTION

--------------------------------------------------- ------------------

0000H CHKRAM 02D7H Power-up, check RAM

0004H ............ Two bytes, address of ROM charac ter set

0006H ............ One byte, VDP Data Port number

0007H ............ One byte, VDP Data Port number

0008H SYNCHR 2683H Check BASIC program character

000BH ............ NOP

000CH RDSLT  01B6H Read RAM in any slot

000FH ............ NOP

0010H CHRGTR 2686H Get next BASIC program character

0013H ............ NOP

-32-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

0014H WRSLT  01D1H Write to RAM in any slot

0017H ............ NOP

0018H OUTDO  1B45H Output to current device

001BH ............ NOP

001CH CALSLT 0217H Call routine in any slot

001FH ............ NOP

0020H DCOMPR 146AH Compare register pairs HL and DE

0023H ............ NOP

0024H ENASLT 025EH Enable any slot permanently

0027H ............ NOP

0028H GETYPR 2689H Get BASIC operand type

002BH ............ Five bytes Version Number

0030H CALLF  0205H Call routine in any slot

0033H ............ Five NOPs

0038H KEYINT 0C3CH Interrupt handler, keyboard scan

003BH INITIO 049DH Initialize I/O devices

003EH INIFNK 139DH Initialize function key strings

0041H DISSCR 0577H Disable screen

0044H ENASCR 0570H Enable screen

0047H WRTVDP 057FH Write to any VDP register

004AH RDVRM  07D7H Read byte from VRAM

004DH WRTVRM 07CDH Write byte to VRAM

0050H SETRD  07ECH Set up VDP for read

0053H SETWRT 07DFH Set up VDP for write

0056H FILVRM 0815H Fill block of VRAM with data byt e

0059H LDIRMV 070FH Copy block to memory from VRAM

005CH LDIRVM 0744H Copy block to VRAM, from memory

005FH CHGMOD 084FH Change VDP mode

- 27 -

4. ROM BIOS

0062H CHGCLR 07F7H Change VDP colours

0065H ............ NOP

0066H NMI    1398H Non Maskable Interrupt handler

0069H CLRSPR 06A8H Clear all sprites

006CH INITXT 050EH Initialize VDP to 40x24 Text Mod e

006FH INIT32 0538H Initialize VDP to 32x24 Text Mod e

0072H INIGRP 05D2H Initialize VDP to Graphics Mode

0075H INIMLT 061FH Initialize VDP to Multicolour Mo de

0078H SETTXT 0594H Set VDP to 40x24 Text Mode

007BH SETT32 05B4H Set VDP to 32x24 Text Mode

007EH SETGRP 0602H Set VDP to Graphics Mode

0081H SETMLT 0659H Set VDP to Multicolour Mode

0084H CALPAT 06E4H Calculate address of sprite patt ern

0087H CALATR 06F9H Calculate address of sprite attr ibute

008AH GSPSIZ 0704H Get sprite size

008DH GRPPRT 1510H Print character on graphic scree n

0090H GICINI 04BDH Initialize PSG (GI Chip)

0093H WRTPSG 1102H Write to any PSG register

0096H RDPSG  110EH Read from any PSG register

0099H STRTMS 11C4H Start music dequeueing

-33-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

009CH CHSNS  0D6AH Sense keyboard buffer for charac ter

009FH CHGET  10CBH Get character from keyboard buff er (wait)

00A2H CHPUT  08BCH Screen character output

00A5H LPTOUT 085DH Line printer character output

00A8H LPTSTT 0884H Line printer status test

00ABH CNVCHR 089DH Convert character with graphic h eader

00AEH PINLIN 23BFH Get line from console (editor)

00B1H INLIN  23D5H Get line from console (editor)

00B4H QINLIN 23CCH Display "?", get line from conso le (editor)

00B7H BREAKX 046FH Check CTRL-STOP key directly

00BAH ISCNTC 03FBH Check CRTL-STOP key

00BDH CKCNTC 10F9H Check CTRL-STOP key

00C0H BEEP   1113H Go beep

00C3H CLS    0848H Clear screen

00C6H POSIT  088EH Set cursor position

00C9H FNKSB  0B26H Check if function key display on

00CCH ERAFNK 0B15H Erase function key display

00CFH DSPFNK 0B2BH Display function keys

00D2H TOTEXT 083BH Return VDP to text mode

00D5H GTSTCK 11EEH Get joystick status

00D8H GTTRIG 1253H Get trigger status

00DBH GTPAD  12ACH Get touch pad status

00DEH GTPDL  1273H Get paddle status

00E1H TAPION 1A63H Tape input ON

00E4H TAPIN  1ABCH Tape input

00E7H TAPIOF 19E9H Tape input OFF

00EAH TAPOON 19F1H Tape output ON

00EDH TAPOUT 1A19H Tape output

00F0H TAPOOF 19DDH Tape output OFF

00F3H STMOTR 1384H Turn motor ON/OFF

00F6H LFTQ   14EBH Space left in music queue

00F9H PUTQ   1492H Put byte in music queue

00FCH RIGHTC 16C5H Move current pixel physical addr ess right

00FFH LEFTC  16EEH Move current pixel physical addr ess left

- 28 -

4. ROM BIOS

0102H UPC    175DH Move current pixel physical addr ess up

0105H TUPC   173CH Test then UPC if legal

0108H DOWNC  172AH Move current pixel physical addr ess down

010BH TDOWNC 170AH Test then DOWNC if legal

010EH SCALXY 1599H Scale graphics coordinates

0111H MAPXYC 15DFH Map graphic coordinates to physi cal address

0114H FETCHC 1639H Fetch current pixel physical add ress

0117H STOREC 1640H Store current pixel physical add ress

011AH SETATR 1676H Set attribute byte

011DH READC  1647H Read attribute of current pixel

0120H SETC   167EH Set attribute of current pixel

0123H NSETCX 1809H Set attribute of number of pixel s

0126H GTASPC 18C7H Get aspect ratio

0129H PNTINI 18CFH Paint initialize

-34-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

012CH SCANR  18E4H Scan pixels to right

012FH SCANL  197AH Scan pixels to left

0132H CHGCAP 0F3DH Change Caps Lock LED

0135H CHGSND 0F7AH Change Key Click sound output

0138H RSLREG 144CH Read Primary Slot Register

013BH WSLREG 144FH Write to Primary Slot Register

013EH RDVDP  1449H Read VDP Status Register

0141H SNSMAT 1452H Read row of keyboard matrix

0144H PHYDIO 148AH Disk, no action

0147H FORMAT 148EH Disk, no action

014AH ISFLIO 145FH Check for file I/O

014DH OUTDLP 1B63H Formatted output to line printer

0150H GETVCP 1470H Get music voice pointer

0153H GETVC2 1474H Get music voice pointer

0156H KILBUF 0468H Clear keyboard buffer

0159H CALBAS 01FFH Call to BASIC from any slot

015CH ............ NOPs to 01B5H for expansion

    Address... 01B6H

    Name...... RDSLT

    Entry..... A=Slot ID, HL=Address

    Exit...... A=Byte read

    Modifies.. AF, BC, DE, DI

    Standard routine to read a single byte from mem ory in any

slot. The Slot Identifier is composed of a Primary Slot number

a Secondary Slot number and a flag:

        7       6       5       4       3       2       1       0

    +---------------------------------------------- -----------------+

    ¦ Flag  ¦   0   ¦   0   ¦   0   ¦Secondary Slot #¦ Primary Slot# ¦

    +---------------------------------------------- -----------------+

Figure 34: Slot ID

    The flag is normally 0 but must be 1 if a Secon dary Slot number

is included in the Slot ID. The memory address and Slot ID are

first processed (027EH) to yield a set of bit masks  to apply to

the relevant slot register. If a Secondary Slot num ber is

- 29 -

4. ROM BIOS

specified then the Secondary Slot Register is first  modified to

select the relevant page from that Secondary Slot ( 02A3H). The

Primary Slot is then switched in to the Z80 address  space, the

byte read and the Primary Slot restored to its orig inal setting

via the RDPRIM routine in the Workspace Area. Final ly, if a

Secondary Slot number is included in the Slot ID, t he original

Secondary Slot Register setting is restored (01ECH) .

-35-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Note that, unless it is the slot containing the  Workspace

Area, any attempt to access page 3 (C000H to FFFFH)  will cause

the system to crash as RDPRIM will switch itself ou t. Note also

that interrupts are left disabled by all the memory  switching

routines.

    Address... 01D1H

    Name...... WRSLT

    Entry..... A=Slot ID, HL=Address, E=Byte to wri te

    Exit...... None

    Modifies.. AF, BC, D, DI

    Standard routine to write a single byte to memo ry in any

slot. Its operation is fundamentally the same as th at of the

RDSLT standard routine except that the Workspace Ar ea routine

WRPRIM is used rather than RDPRIM.

    Address... 01FFH

    Name...... CALBAS

    Entry..... IX=Address

    Exit...... None

    Modifies.. AF', BC', DE', HL', IY, DI

    Standard routine to call an address in the BASI C Interpreter

from any slot. Usually this will be from a machine code program

running in an extension ROM in page 1 (4000H to 7FF FH). The

high byte of register pair IY is loaded with the MS X ROM Slot

ID (00H) and control transfers to the CALSLT standa rd routine.

    Address... 0205H

    Name...... CALLF

    Entry..... None

    Exit...... None

    Modifies.. AF', BC', DE', HL', IX, IY, DI

    Standard routine to call an address in any slot . The Slot ID

and address are supplied as inline parameters rathe r than in

registers to fit inside a hook (Chapter 6), for exa mple:

        RST 30H

        DEFB Slot ID

        DEFW Address

        RET

    The Slot ID is first collected and placed in th e high byte of

register pair IY. The address is then placed in reg ister pair

- 30 -

4. ROM BIOS

-36-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

IX and control drops into the CALSLT standard routi ne.

    Address... 0217H

    Name...... CALSLT

    Entry..... IY(High byte)=Slot ID, IX=Address

    Exit...... None

    Modifies.. AF', BC', DE', HL', DI

    Standard routine to call an address in any slot . Its

operation is fundamentally the same as that of the RDSLT

standard routine except that the Workspace Area rou tine CLPRIM

is used rather than RDPRIM. Note that CALBAS and CA LLF are just

specialized entry points to this standard routine w hich offer a

reduction in the amount of code required.

    Address... 025EH

    Name...... ENASLT

    Entry..... A=Slot ID, HL=Address

    Exit...... None

    Modifies.. AF, BC, DE, DI

    Standard routine to switch in a page permanentl y from any

slot. Unlike the RDSLT, WRSLT and CALSLT standard r outines the

Primary Slot switching is performed directly and no t by a

Workspace Area routine. Consequently addresses in p age 0 (0000H

to 3FFFH) will cause an immediate system crash.

    Address... 027EH

    This routine is used by the memory switching st andard

routines to turn an address, in register pair HL, a nd a Slot

ID, in register A, into a set of bit masks. As an e xample a

Slot ID of FxxxSSPP and an address in Page 1 (4000H  to 7FFFH)

would return the following:

        Register B=00 00 PP 00 (OR mask)

        Register C=11 11 00 11 (AND mask)

        Register D=PP PP PP PP (Replicated)

        Register E=00 00 11 00 (Page mask)

    Registers B and C are derived from the Primary Slot number and

the page mask. They are later used to mix the new P rimary Slot

number into the existing contents of the Primary Sl ot Register.

Register D contains the Primary Slot number replica ted four

times and register E the page mask. This is produce d by

examining the two most significant bits of the addr ess, to

determine the page number, and then shifting the ma sk along to

the relevant position. These registers are later us ed during

Secondary Slot switching.

    As the routine terminates bit 7 of the Slot ID is tested, to

determine whether a Secondary Slot has been specifi ed, and Flag

M returned if this is so.

-37-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 31 -

4. ROM BIOS

    Address... 02A3H

    This routine is used by the memory switching st andard

routines to modify a Secondary Slot Register. The S lot ID is

supplied in register A while registers D and E cont ain the bit

masks shown in the previous routine.

    Bits 6 and 7 of register D are first copied int o the Primary

Slot register. This switches in page 3 from the Pri mary Slot

specified by the Slot ID and makes the required Sec ondary Slot

Register available. This is then read from memory l ocation

FFFFH and the page mask, inverted, used to clear th e required

two bits. The Secondary Slot number is shifted to t he relevant

position and mixed in. Finally the new setting is p laced in the

Secondary Slot Register and the Primary Slot Regist er restored

to its original setting.

    Address... 02D7H

    Name...... CHKRAM

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, SP

    Standard routine to perform memory initializati on at power-

up. It non-destructively tests for RAM in pages 2 a nd 3 in all

sixteen possible slots then sets the Primary and Se condary Slot

registers to switch in the largest area found. The entire

Workspace Area (F380H to FFC9H) is zeroed and EXPTB L and SLTTBL

filled in to map any expansion interfaces in existe nce

Interrupt Mode 1 is set and control transfers to th e remainder

of the power-up initialization routine (7C76H).

    Address... 03FBH

    Name...... ISCNTC

    Entry..... None

    Exit...... None

    Modifies.. AF, EI

    Standard routine to check whether the CTRL-STOP  or STOP keys

have been pressed. It is used by the BASIC Interpre ter at the

end of each statement to check for program terminat ion. BASROM

is first examined to see if it contains a non-zero value, if so

the routine terminates immediately. This is to prev ent users

breaking into any extension ROM containing a BASIC program.

    INTFLG is then checked to determine whether the  interrupt

handler has placed the CTRL-STOP or STOP key codes (03H or 04H)

there. If STOP has been detected then the cursor is  turned on

(09DAH) and INTFLG continually checked until one of  the two key

-38-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

codes reappears. The cursor is then turned off (0A2 7H) and, if

the key is STOP, the routine terminates.

    If CTRL-STOP has been detected then the keyboar d buffer is

first cleared via the KILBUF standard routine and T RPTBL is

- 32 -

4. ROM BIOS

checked to see whether an "ON STOP GOSUB" statement  is active.

If so the relevant entry in TRPTBL is updated (0EF1 H) and the

routine terminates as the event will be handled by the

Interpreter Runloop. Otherwise the ENASLT standard routine is

used to switch in page 1 from the MSX ROM, in case an extension

ROM is using the routine, and control transfers to the "STOP"

statement handler (63E6H).

    Address... 0468H

    Name...... KILBUF

    Entry..... None

    Exit...... None

    Modifies.. HL

    Standard Routine to clear the forty character t ype-ahead

keyboard buffer KEYBUF. There are two pointers into  this

buffer, PUTPNT where the interrupt handler places c haracters,

and GETPNT where application programs fetch them fr om. As the

number of characters in the buffer is indicated by the

difference between these two pointers KEYBUF is emp tied simply

by making them both equal.

    Address... 046FH

    Name...... BREAKX

    Entry..... None

    Exit...... Flag C if CTRL-STOP key pressed

    Modifies.. AF

    Standard routine which directly tests rows 6 an d 7 of the

keyboard to determine whether the CTRL and STOP key s are both

pressed. If they are then KEYBUF is cleared and row  7 of OLDKEY

modified to prevent the interrupt handler picking t he keys up

as well. This routine may often be more suitable fo r use by an

application program, in preference to ISCNTC, as it  will work

when interrupts are disabled, during cassette I/O f or example,

and does not exit to the Interpreter.

    Address... 049DH

    Name...... INITIO

    Entry..... None

    Exit...... None

    Modifies.. AF, E, EI

-39-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to initialize the PSG and the Centronics

Status Port. PSG Register 7 is first set to 80H mak ing PSG Port

B=Output and PSG Port A=Input. PSG Register 15 is s et to CFH to

initialize the Joystick connector control hardware.  PSG

Register 14 is then read and the Keyboard Mode bit placed in

KANAMD, this has no relevance for UK machines.

    Finally a value of FFH is output to the Centron ics Status

Port (I/O port 90H) to set the STROBE signal high. Control then

drops into the GICINI standard routine to complete

initialization.

- 33 -

4. ROM BIOS

    Address... 04BDH

    Name...... GICINI

    Entry..... None

    Exit...... None

    Modifies.. EI

    Standard routine to initialize the PSG and the Workspace

Area variables associated with the "PLAY" statement . QUETAB,

VCBA, VCBB and VCBC are first initialized with the values shown

in Chapter 6. PSG Registers 8, 9 and 10 are then se t to zero

amplitude and PSG Register 7 to B8H. This enables t he Tone

Generator and disables the Noise Generator on each channel.

    Address... 0508H

    This six byte table contains the "PLAY" stateme nt parameters

initially placed in VCBA, VCBB and VCBC by the GICI NI standard

routine: Octave=4, Length=4, Tempo=120, Volume=88H,

Envelope=00FFH.

    Address... 050EH

    Name...... INITXT

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to initialize the VDP to 40x24  Text Mode.

The screen is temporarily disabled via the DISSCR s tandard

routine and SCRMOD and OLDSCR set to 00H. The param eters

required by the CHPUT standard routine are set up b y copying

LINI.40 to LINLEN, TXTNAM to NAMBAS and TXTCGP to C GPBAS. The

VDP colours are then set by the CHGCLR standard rou tine and the

screen is cleared (077EH). The current character se t is copied

into the VRAM Character Pattern Table (071EH). Fina lly the VDP

mode and base addresses are set via the SETTXT stan dard routine

-40-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

and the screen is enabled.

    Address... 0538H

    Name...... INIT32

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to initialize the VDP to 32x24  Text Mode.

The screen is temporarily disabled via the DISSCR s tandard

routine and SCRMOD and OLDSCR set to 01H. The param eters

required by the CHPUT standard routine are set up b y copying

LINL32 to LINLEN, T32NAM to NAMBAS, T32CGP to CGPBA S, T32PAT to

PATBAS and T32ATR to ATRBAS. The VDP colours are th en set via

the CHGCLR standard routine and the screen is clear ed (077EH).

The current character set is copied into the VRAM C haracter

Pattern Table (071EH) and all sprites cleared (06BB H). Finally

the VDP mode and base addresses are set via the SET T32 standard

routine and the screen is enabled.

- 34 -

4. ROM BIOS

    Address... 0570H

    Name...... ENASCR

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, EI

    Standard routine to enable the screen. This sim ply involves

setting bit 6 of VDP Mode Register 1.

    Address... 0577H

    Name...... DISSCR

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, EI

    Standard routine to disable the screen. This si mply involves

resetting bit 6 of VDP Mode Register 1.

    Address... 057FH

    Name...... WRTVDP

    Entry..... B=Data byte, C=VDP Mode Register num ber

    Exit...... None

    Modifies.. AF, B, EI

    Standard routine to write a data byte to any VD P Mode

Register. The register selection byte is first writ ten to the

VDP Command Port, followed by the data byte. This i s then

copied to the relevant register image, RGOSAV to RG 7SAV, in the

-41-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Workspace Area

    Address... 0594H

    Name...... SETTXT

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to partially set the VDP to 40 x24 Text

Mode. The mode bits M1, M2 and M3 are first set in VDP Mode

Registers 0 and 1. The five VRAM table base address es,

beginning with TXTNAM, are then copied from the Wor kspace Area

into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

    Address... 05B4H

    Name...... SETT32

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to partially set the VDP to 32 x24 Text

Mode. The mode bits M1, M2 and M3 are first set in VDP Mode

Registers 0 and 1. The five VRAM table base address es,

beginning with T32NAM, are then copied from the Wor kspace Area

into VDP Mode Registers 2, 3, 4, 5 and 6 (0677H).

- 35 -

4. ROM BIOS

    Address... 05D2H

    Name...... INIGRP

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to initialize the VDP to Graph ics Mode. The

screen is temporarily disabled via the DISSCR stand ard routine

and SCRMOD set to 02H. The parameters required by t he GRPPRT

standard routine are set up by copying GRPPAT to PA TBAS and

GRPATR to ATRBAS. The character code driver pattern  is then

copied into the VDP Name Table, the screen cleared (07A1H) and

all sprites cleared (06BBH). Finally the VDP mode a nd base

addresses are set via the SETGRP standard routine a nd the

screen is enabled.

    Address... 0602H

    Name...... SETGRP

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

-42-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to partially set the VDP to Gr aphics Mode.

The mode bits M1, M2 and M3 are first set in VDP Mo de Registers

0 and 1. The five VRAM table base addresses, beginn ing with

GRPNAM, are then copied from the Workspace Area int o VDP Mode

Registers 2, 3, 4, 5 and 6 (0677H).

    Address... 061FH

    Name...... INIMLT

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to initialize the VDP to Multi colour Mode.

The screen is temporarily disabled via the DISSCR s tandard

routine and SCRMOD set to 03H. The parameters requi red by the

GRPPRT standard routine are set up by copying MLTPA T to PATBAS

and MLTATR to ATRBAS. The character code driver pat tern is then

copied into the VDP Name Table, the screen cleared (07B9H) and

all sprites cleared (06BBH). Finally the VDP mode a nd base

addresses are set via the SETMLT standard routine a nd the

screen is enabled.

    Address... 0659H

    Name...... SETMLT

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to partially set the VDP to Mu lticolour

Mode. The mode bits M1, M2 and M3 are first set in VDP Mode

Registers 0 and 1. The five VRAM table base address es,

beginning with MLTNAM, are then copied from the Wor kspace Area

- 36 -

4. ROM BIOS

to VDP Mode Registers 2, 3, 4, 5 and 6.

    Address... 0677H

    This routine is used by the SETTXT, SETT32, SET GRP and

SETMLT standard routines to copy a block of five ta ble base

addresses from the Workspace Area into VDP Mode Reg isters

2, 3, 4, 5 and 6. On entry register pair HL points to the relevant

group of addresses. Each base address is collected in turn

shifted the required number of places and then writ ten to the

relevant Mode Register via the WRTVDP standard rout ine.

    Address... 06A8H

    Name...... CLRSPR

-43-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to clear all sprites. The enti re 2 KB Sprite

Pattern Table is first filled with zeros via the FI LVRM

standard routine. The vertical coordinate of each o f the

thirty-two sprite attribute blocks is then set to - 47 (D1H) to

place the sprite above the top of the screen, the h orizontal

coordinate is left unchanged.

    The pattern numbers in the Sprite Attribute Tab le are

initialized with the series 0, 1, 2, 3, 4,... 31 fo r 8x8 sprites or

the series 0, 4, 8, 12, 16,... 124 for 16x16 sprite s. The series to

be generated is determined by the Size bit in VDP M ode Register

1. Finally the colour byte of each sprite attribute  block is

filled in with the colour code contained in FORCLR,  this is

initially white.

    Note that the Size and Mag bits in VDP Mode Reg ister 1 are

not affected by this routine. Note also that the IN IT32, INIGRP

and INIMLT standard routines use this routine with an entry

point at 06BBH, leaving the Sprite Pattern Table un disturbed.

    Address... 06E4H

    Name...... CALPAT

    Entry..... A=Sprite pattern number

    Exit...... HL=Sprite pattern address

    Modifies.. AF, DE, HL

    Standard routine to calculate the address of a sprite

pattern. The pattern number is first multiplied by eight then,

if 16x16 sprites are selected, multiplied by a furt her factor

of four. This is then added to the Sprite Pattern T able base

address, taken from PATBAS, to produce the final ad dress.

    This numbering system is in line with the BASIC

Interpreter's usage of pattern numbers rather than the VDP's

when 16x16 sprites are selected. As an example whil e the

Interpreter calls the second pattern number one, it  is actually

- 37 -

4. ROM BIOS

VDP pattern number four. This usage means that the maximum

pattern number this routine should allow, when 16x1 6 sprites

are selected, is sixty-three. There is no actual ch eck on this

limit so large pattern numbers will produce address es greater

than 3FFFH. Such addresses, when passed to the othe r VDP

routines, will wrap around past zero and corrupt th e Character

Pattern Table in VRAM.

-44-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 06F9H

    Name...... CALATR

    Entry..... A=Sprite number

    Exit...... HL=Sprite attribute address

    Modifies.. AF, DE, HL

    Standard routine to calculate the address of a sprite

attribute block. The sprite number, from zero to th irty-one, is

multiplied by four and added to the Sprite Attribut e Table base

address taken from ATRBAS.

    Address... 0704H

    Name...... GSPSIZ

    Entry..... None

    Exit...... A=Bytes in sprite pattern (8 or 32)

    Modifies.. AF

    Standard routine to return the number of bytes occupied by

each sprite pattern in the Sprite Pattern Table. Th e result is

determined simply by examining the Size bit in VDP Mode

Register 1.

    Address... 070FH

    Name...... LDIRMV

    Entry..... BC=Length, DE=RAM address, HL=VRAM a ddress

    Exit...... None

    Modifies.. AF, BC, DE, EI

    Standard routine to copy a block into main memo ry from the

VDP VRAM. The VRAM starting address is set via the SETRD

standard routine and then sequential bytes read fro m the VDP

Data Port and placed in main memory.

    Address... 071EH

    This routine is used to copy a 2 KB character s et into the

VDP Character Pattern Table in any mode. The base a ddress of

the Character Pattern Table in VRAM is taken from C GPBAS. The

starting address of the character set is taken from  CGPNT. The

RDSLT standard routine is used to read the characte r data so

this may be situated in an extension ROM.

    At power-up CGPNT is initialized with the addre ss contained

at ROM location 0004H, which is 1BBFH. CGPNT is eas ily altered

to produce some interesting results, POKE &HF920,&H C7:SCREEN 0

provides a thoroughly confusing example.

- 38 -

4. ROM BIOS

-45-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 0744H

    Name...... LDIRVM

    Entry..... BC=Length, DE=VRAM address, HL=RAM a ddress

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to copy a block to VRAM from m ain memory.

The VRAM starting address is set via the SETWRT sta ndard

routine and then sequential bytes taken from main m emory and

written to the VDP Data Port.

    Address... 0777H

    This routine will clear the screen in any VDP m ode. In 40x24

Text Mode and 32x24 Text Mode the Name Table, whose  base

address is taken from NAMBAS, is first filled with ASCII

spaces. The cursor is then set to the home position  (0A7FH) and

LINTTB, the line termination table, re-initialized.  Finally the

function key display is restored, if it is enabled,  via the

FNKSB standard routine.

    In Graphics Mode the border colour is first set  via VDP Mode

Register 7 (0832H). The Colour Table is then filled  with the

background colour code, taken from BAKCLR, for both  0 and 1

pixels. Finally the Character Pattern Table is fill ed with

zeroes.

    In Multicolour Mode the border colour is first set via VDP

Mode Register 7 (0832H). The Character Pattern Tabl e is then

filled with the background colour taken from BAKCLR .

    Address... 07CDH

    Name...... WRTVRM

    Entry..... A=Data byte, HL=VRAM address

    Exit...... None

    Modifies.. EI

    Standard routine to write a single byte to the VDP VRAM. The

VRAM address is first set up via the SETWRT standar d routine

and then the data byte written to the VDP Data Port . Note that

the two seemingly spurious EX(SP),HL instructions i n this

routine, and several others, are required to meet t he VDP's

timing constraints.

    Address... 07D7H

    Name...... RDVRM

    Entry..... HL=VRAM address

    Exit...... A=Byte read

    Modifies.. AF, EI

    Standard routine to read a single byte from the  VDP VRAM.

The VRAM address is first set up via the SETRD stan dard routine

and then the byte read from the VDP Data Port.

-46-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 39 -

4. ROM BIOS

    Address... 07DFH

    Name...... SETWRT

    Entry..... HL=VRAM address

    Exit...... None

    Modifies.. AF, EI

    Standard routine to set up the VDP for subseque nt writes to

VRAM via the Data Port. The address contained in re gister pair

HL is written to the VDP Command Port LSB first, MS B second as

shown in Figure 7. Addresses greater than 3FFFH wil l wrap

around past zero as the two most significant bits o f the

address are ignored.

    Address... 07ECH

    Name...... SETRD

    Entry..... HL=VRAM address

    Exit...... None

    Modifies.. AF, EI

    Standard routine to set up the VDP for subseque nt reads from

VRAM via the Data Port. The address contained in re gister pair

HL is written to the VDP Command Port LSB first, MS B second as

shown in Figure 7. Addresses greater than 3FFFH wil l wrap

around past zero as the two most significant bits o f the

address are ignored.

    Address... 07F7H

    Name...... CHGCLR

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, HL, EI

    Standard routine to set the VDP colours. SCRMOD  is first

examined to determine the appropriate course of act ion. In

40x24 Text Mode the contents of BAKCLR and FORCLR a re written

to VDP Mode Register 7 to set the colour of the 0 a nd 1 pixels,

these are initially blue and white. Note that in th is mode

there is no way of specifying the border colour, th is will be

the same as the 0 pixel colour. In 32x24 Text Mode,  Graphics

Mode or Multicolour Mode the contents of BDRCLR are  written to

VDP Mode Register 7 to set the colour of the border , this is

initially blue. Also in 32x24 Text Mode the content s of BAKCLR

and FORCLR are copied to the whole of the Colour Ta ble to

determine the 0 and 1 pixel colours.

    Address... 0815H

    Name...... FILVRM

    Entry..... A=Data byte, BC=Length, HL=VRAM addr ess

    Exit...... None

    Modifies.. AF, BC, EI

-47-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to fill a block of the VDP VRA M with a

single data byte. The VRAM starting address, contai ned in

register pair HL, is first set up via the SETWRT st andard

- 40 -

4. ROM BIOS

routine. The data byte is then repeatedly written t o the VDP

Data Port to fill successive VRAM locations.

    Address... 083BH

    Name...... TOTEXT

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to return the VDP to either 40 x24 Text Mode

or 32x24 Text Mode if it is currently in Graphics M ode or

Multicolour Mode. It is used by the BASIC Interpret er Mainloop

and by the "INPUT" statement handler. Whenever the INITXT or

INIT32 standard routines are used the mode byte, 00 H or 01H, is

copied into OLDSCR. If the mode is subsequently cha nged to

Graphics Mode or Multicolour Mode, and then has to be returned

to one of the two text modes for keyboard input, th is routine

ensures that it returns to the same one.

    SCRMOD is first examined and, if the screen is already in

either text mode, the routine simply terminates wit h no action.

Otherwise the previous text mode is taken from OLDS CR and

passed to the CHGMOD standard routine.

    Address... 0848H

    Name...... CLS

    Entry..... Flag Z

    Exit...... None

    Modifies.. AF, BC, DE, EI

    Standard routine to clear the screen in any mod e, it does

nothing but call the routine at 0777H. This is actu ally the

"CLS" statement handler and, because this indicates  that there

is illegal text after the statement, it will simply  return if

entered with Flag NZ.

    Address... 084FH

    Name...... CHGMOD

    Entry..... A=Screen mode required (0, 1, 2, 3)

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to set a new screen mode. Regi ster A,

-48-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

containing the required screen mode, is tested and control

transferred to INITXT, INIT32, INIGRP or INIMLT.

    Address... 085DH

    Name...... LPTOUT

    Entry..... A=Character to print

    Exit...... Flag C if CTRL-STOP termination

    Modifies.. AF

    Standard routine to output a character to the l ine printer

via the Centronics Port. The printer status is cont inually

- 41 -

4. ROM BIOS

tested, via the LPTSTT standard routine, until the printer

becomes free. The character is then written to the Centronics

Data Port (I/O port 91H) and the STROBE signal of t he

Centronics Status Port (I/O port 90H) briefly pulse d low. Note

that the BREAKX standard routine is used to test fo r the CTRL-

-STOP key if the printer is busy. If CTRL-STOP is d etected a CR

code is written to the Centronics Data Port, to flu sh the

printer's line buffer, and the routine terminates w ith Flag C.

    Address... 0884H

    Name...... LPTSTT

    Entry..... None

    Exit...... A=0 and Flag Z if printer busy

    Modifies.. AF

    Standard routine to test the Centronics Status Port BUSY

signal. This just involves reading I/O port 90H and  examining

the state of bit 1: 0=Ready, 1=Busy.

    Address... 088EH

    Name...... POSIT

    Entry..... H=Column, L=Row

    Exit...... None

    Modifies.. AF, EI

    Standard routine to set the cursor coordinates.  The row and

column coordinates are sent to the OUTDO standard r outine as

the parameters in an ESC,"Y",Row+1FH, Column+1FH se quence. Note

that the BIOS home position has coordinates of 1,1 rather than

the 0,0 used by the BASIC Interpreter.

    Address... 089DH

    Name...... CNVCHR

    Entry..... A=Character

    Exit...... Flag Z,NC=Header; Flag NZ,C=Graphic;  Flag Z,C=Normal

    Modifies.. AF

-49-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to test for, and convert if ne cessary,

characters with graphic headers. Characters less th an 20H are

normally interpreted by the output device drivers a s control

characters. A character code in this range can be t reated as a

displayable character by preceding it with a graphi c header

control code (01H) and adding 40H to its value. For  example to

directly display character code 0DH, rather than ha ve it

interpreted as a carriage return, it is necessary t o output the

two bytes 01H,4DH. This routine is used by the outp ut device

drivers, such as the CHPUT standard routine, to che ck for such

sequences.

    If the character is a graphic header GRPHED is set to 01H

and the routine terminates, otherwise GRPHED is zer oed. If the

character is outside the range 40H to 5FH it is lef t unchanged.

If it is inside this range, and GRPHED contains 01H  indicating

a previous graphic header, it is converted by subtr acting 40H.

- 42 -

4. ROM BIOS

    Address... 08BCH

    Name...... CHPUT

    Entry..... A=Character

    Exit...... None

    Modifies.. EI

    Standard routine to output a character to the s creen in

40x24 Text Mode or 32x24 Text Mode.  SCRMOD is firs t checked

and, if the VDP is in either Graphics Mode or Multi colour Mode,

the routine terminates with no action. Otherwise th e cursor is

removed (0A2EH), the character decoded (08DFH) and then the

cursor replaced (09E1H). Finally the cursor column position is

placed in TTYPOS, for use by the "PRINT" statement,  and the

routine terminates.

    Address... 08DFH

    This routine is used by the CHPUT standard rout ine to decode

a character and take the appropriate action. The CN VCHR

standard routine is first used to check for a graph ic

character, if the character is a header code (01H) then the

routine terminates with no action. If the character  is a

converted graphic one then the control code decodin g section is

skipped. Otherwise ESCCNT is checked to see if a pr evious ESC

character (1BH) has been received, if so control tr ansfers to

the ESC sequence processor (098FH). Otherwise the c haracter is

checked to see if it is smaller than 20H, if so con trol

transfers to the control code processor (0914H). Th e character

is then checked to see if it is DEL (7FH), if so co ntrol

-50-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

transfers to the delete routine (0AE3H).

    Assuming the character is displayable the curso r coordinates

are taken from CSRY and CSRX and placed in register  pair HL,

H=Column, L=Row. These are then converted to a phys ical address

in the VDP Name Table and the character placed ther e (0BE6H).

The cursor column position is then incremented (0A4 4H) and,

assuming the rightmost column has not been exceeded , the

routine terminates. Otherwise the row's entry in LI NTTB, the

line termination table, is zeroed to indicate an ex tended

logical line, the column number is set to 01H and a  LF is

performed.

    Address... 0908H

    This routine performs the LF operation for the CHPUT

standard routine control code processor. The cursor  row is

incremented (0A61H) and, assuming the lowest row ha s not been

exceeded, the routine terminates. Otherwise the scr een is

scrolled upwards and the lowest row erased (0A88H).

    Address... 0914H

    This is the control code processor for the CHPU T standard

routine. The table at 092FH is searched for a match  with the

- 43 -

4. ROM BIOS

code and control transferred to the associated addr ess.

    Address... 092FH

    This table contains the control codes, each wit h an

associated address, recognized by the CHPUT standar d routine:

        CODE TO     FUNCTION

        ------------------------------------------- ------

        07H  1113H  BELL, go beep

        08H  0A4CH  BS, cursor left

        09H  0A71H  TAB, cursor to next tab positio n

        0AH  0908H  LF, cursor down a row

        0BH  0A7FH  HOME, cursor to home

        0CH  077EH  FORMFEED, clear screen and home

        0DH  0A81H  CR, cursor to leftmost column

        1BH  0989H  ESC, enter escape sequence

        1CH  0A5BH  RIGHT, cursor right

        1DH  0A4CH  LEFT, cursor left

        1EH  0A57H  UP, cursor up

        1FH  0A61H  DOWN, cursor down.

-51-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 0953H

    This table contains the ESC control codes, each  with an

associated address, recognized by the CHPUT standar d routine:

        CODE TO     FUNCTION

        ------------------------------------------- ------

        6AH  077EH  ESC,"j", clear screen and home

        45H  077EH  ESC,"E", clear screen and home

        4BH  0AEEH  ESC,"K", clear to end of line

        4AH  0B05H  ESC,"J", clear to end of screen

        6CH  0AECH  ESC,"l", clear line

        4CH  0AB4H  ESC,"L", insert line

        4DH  0A85H  ESC,"M", delete line

        59H  0986H  ESC,"Y", set cursor coordinates

        41H  0A57H  ESC,"A", cursor up

        42H  0A61H  ESC,"B", cursor down

        43H  0A44H  ESC,"C", cursor right

        44H  0A55H  ESC,"D", cursor left

        48H  0A7FH  ESC,"H", cursor home

        78H  0980H  ESC,"x", change cursor

        79H  0983H  ESC,"y", change cursor

    Address... 0980H

    This routine performs the ESC,"x" operation for  the CHPUT

standard routine control code processor. ESCCNT is set to 01H

to indicate that the next character received is a p arameter.

    Address... 0983H

    This routine performs the ESC,"y" operation for  the CHPUT

- 44 -

4. ROM BIOS

standard routine control code decoder. ESCCNT is se t to 02H to

indicate that the next character received is a para meter.

    Address... 0986H

    This routine performs the ESC",Y" operation for  the CHPUT

standard routine control code processor. ESCCNT is set to 04H

to indicate that the next character received is a p arameter.

    Address... 0989H

    This routine performs the ESC operation for the  CHPUT

standard routine control code processor. ESCCNT is set to FFH

to indicate that the next character received is the  second

control character.

-52-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 098FH

    This is the CHPUT standard routine ESC sequence  processor.

If ESCCNT contains FFH then the character is the se cond control

character and control transfers to the control code  processor

(0919H) to search the ESC code table at 0953H.

    If ESCCNT contains 01H then the character is th e single

parameter of the ESC,"x" sequence. If the parameter  is "4"

(34H) then CSTYLE is set to 00H resulting in a bloc k cursor. If

the parameter is "5" (35H) then CSRSW is set to 00H  making the

cursor normally disabled.

    If ESCCNT contains 02H then the character is th e single

parameter in the ESC,"y" sequence. If the parameter  is "4"

(34H) then CSTYLE is set to 01H resulting in an und erline

cursor. If the parameter is "5" (35H) then CSRSW is  set to 01H

making the cursor normally enabled.

    If ESCCNT contains 04H then the character is th e first

parameter of the ESC,"Y" sequence and is the row co ordinate.

The parameter has 1FH subtracted and is placed in C SRY, ESCCNT

is then decremented to 03H.

    If ESCCNT contains 03H then the character is th e second

parameter of the ESC,"Y" sequence and is the column  coordinate.

The parameter has 1FH subtracted and is placed in C SRX.

    Address... 09DAH

    This routine is used, by the CHGET standard rou tine for

example, to display the cursor character when it is  normally

disabled. If CSRSW is non-zero the routine simply t erminates

with no action, otherwise the cursor is displayed ( 09E6H).

    Address... 09E1H

    This routine is used, by the CHPUT standard rou tine for

- 45 -

4. ROM BIOS

example, to display the cursor character when it is  normally

enabled. If CSRSW is zero the routine simply termin ates with no

action. SCRMOD is checked and, if the screen is in Graphics

Mode or Multicolour Mode, the routine terminates wi th no

action. Otherwise the cursor coordinates are conver ted to a

physical address in the VDP Name Table and the char acter read

from that location (0BD8H) and saved in CURSAV.

-53-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The character's eight byte pixel pattern is rea d from the

VDP Character Pattern Table into the LINWRK buffer (0BA5H). The

pixel pattern is then inverted, all eight bytes if CSTYLE

indicates a block cursor, only the bottom three if CSTYLE

indicates an underline cursor. The pixel pattern is  copied back

to the position for character code 255 in the VDP C haracter

Pattern Table (0BBEH). The character code 255 is th en placed at

the current cursor location in the VDP Name Table ( 0BE6H) and

the routine terminates.

    This method of generating the cursor character,  by using

character code 255, can produce curious effects und er certain

conditions. These can be demonstrated by executing the BASIC

statement FOR N=1 TO 100: PRINT CHR$(255);:NEXT and  then

pressing the cursor up key.

    Address... 0A27H

    This routine is used, by the CHGET standard rou tine for

example, to remove the cursor character when it is normally

disabled. If CSRSW is non-zero the routine simply t erminates

with no action, otherwise the cursor is removed (0A 33H).

    Address... 0A2EH

    This routine is used, by the CHPUT standard rou tine for

example, .to remove the cursor character when it is  normally

enabled. If CSRSW is zero the routine simply termin ates with no

action. .SCRMOD is checked and, if the screen is in  Graphics

Mode or Multicolour Mode, the routine terminates wi th no

action. Otherwise the cursor coordinates are conver ted to a

physical address in the VDP Name Table and the char acter held

in CURSAV written to that location (0BE6H).

    Address... 0A44H

    This routine performs the ESC,"C" operation for  the CHPUT

standard routine control code processor. If the cur sor column

coordinate is already at the rightmost column, dete rmined by

LINLEN, then the routine terminates with no action.  Otherwise

the column coordinate is incremented and CSRX updat ed. .

    Address... 0A4CH

    This routine performs the BS/LEFT operation for  the CHPUT

standard routine control code processor. The cursor  column

- 46 -

4. ROM BIOS

coordinate is decremented and CSRX updated. If the column

-54-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

coordinate has moved beyond the leftmost position i t is set to

the rightmost position, from LINLEN, and an UP oper ation

performed.

    Address... 0A55H

    This routine performs the ESC,"D" operation for  the CHPUT

standard routine control code processor. If the cur sor column

coordinate is already at the leftmost position then  the routine

terminates with no action. Otherwise the column coo rdinate is

decremented and CSRX updated.

    Address... 0A57H

    This routine performs the ESC,"A" (UP) operatio n for the CHPUT

standard routine control code processor. If the cur sor row

coordinate is already at the topmost position the r outine

terminates with no action. Otherwise the row coordi nate is

decremented and CSRY updated.

    Address... 0A5BH

    This routine performs the RIGHT operation for t he CHPUT

standard routine control code processor. The cursor  column

coordinate is incremented and CSRX updated. If the column

coordinate has moved beyond the rightmost position,  determined

by LINLEN, it is set to the leftmost position (01H)  and a DOWN

operation performed.

    Address... 0A61H

    This routine performs the ESC,"B" (DOWN) operat ion for the

CHPUT standard routine control code processor. If t he cursor

row coordinate is already at the lowest position, d etermined by

CRTCNT and CNSDFG (0C32H), then the routine termina tes with no

action. Otherwise the row coordinate is incremented  and CSRY

updated.

    Address... 0A71H

    This routine performs the TAB operation for the  CHPUT

standard routine control code processor. ASCII spac es are

output (08DFH) until CSRX is a multiple of eight pl us one (BIOS

columns 1, 9, 17, 25, 33).

    Address... 0A7FH

    This routine performs the ESC,"H" (HOME) operat ion for the

CHPUT standard routine control code processor, CSRX  and CSRY

are simply set to 1,1. The ROM BIOS cursor coordina te system,

while functionally identical to that used by the BA SIC

Interpreter, numbers the screen rows from 1 to 24 a nd the

columns from 1 to 32/40.

- 47 -

-55-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

4. ROM BIOS

    Address... 0A81H

    This routine performs the CR operation for the CHPUT

standard routine control code processor, CSRX is si mply set to

01H .

    Address... 0A85H

    This routine performs the ESC,"M" function for the CHPUT

standard routine control code processor. A CR opera tion is

first performed to set the cursor column coordinate  to the

leftmost position. The number of rows from the curr ent row to

the bottom of the screen is then determined, if thi s is zero

the current row is simply erased (0AECH). The row c ount is

first used to scroll up the relevant section of LIN TTB, the

line termination table, by one byte. It is then use d to scroll

up the relevant section of the screen a row at a ti me. Starting

at the row below the current row, each line is copi ed from the

VDP Name Table into the LINWRK buffer (0BAAH) then copied back

to the Name Table one row higher (0BC3H). Finally t he lowest

row on the screen is erased (0AECH).

    Address... 0AB4H

    This routine performs the ESC,"L" operation for  the CHPDT

standard routine control code processor. A CR opera tion is

first performed to set the cursor column coordinate  to the

leftmost position. The number of rows from the curr ent row to

the bottom of the screen is then determined, if thi s is zero

the current row is simply erased (0AECH). The row c ount is

first used to scroll down the relevant section of L INTTB, the

line termination table, by one byte. It is then use d to scroll

down the relevant section of the screen a row at a time.

Starting at the next to last row of the screen, eac h line is

copied from the VDP Name Table into the LINWRK buff er (0BAAH),

then copied back to the Name Table one row lower (0 BC3H).

Finally the current row is erased (0AECH).

    Address... 0AE3H

    This routine is used to perform the DEL operati on for the

CHPUT standard routine control code processor. A LE FT operation

is first performed. If this cannot be completed, be cause the

cursor is already at the home position, then the ro utine

terminates with no action. Otherwise a space is wri tten to the

VDP Name Table at the cursor's physical location (0 BE6H).

    Address... 0AECH

    This routine performs the ESC,"l" operation for  the CHPUT

standard routine control code processor. The cursor  column

-56-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

coordinate is set to 01H and control drops into the  ESC,"K"

routine.

- 48 -

4. ROM BIOS

    Address... 0AEEH

    This routine performs the ESC,"K" operation for  the CHPHT

standard routine control code processor. The row's entry in

LINTTB, the line termination table, is first made n on-zero to

indicate that the logical line is not extended (0C2 9H). The

cursor coordinates are converted to a physical addr ess (0BF2H)

in the VDP Name Table and the VDP set up for writes  via the

SETWRT standard routine. Spaces are then written di rectly to

the VDP Data Port until the rightmost column, deter mined by

LINLEN, is reached.

    Address... 0B05H

    This routine performs the ESC,"J" operation for  the CHPUT

standard routine control code processor. An ESC,"K"  operation

is performed on successive rows, starting with the current one,

until the bottom of the screen is reached.

    Address... 0B15H

    Name...... ERAFNK

    Entry..... None

    Exit...... None

    Modifies.. AF, DE, EI

    Standard routine to turn the function key displ ay off.

CNSDFG is first zeroed and, if the VDP is in Graphi cs Mode or

Multicolour Mode, the routine terminates with no fu rther

action. If the VDP is in 40x24 Text Mode or 32x24 T ext Mode the

last row on the screen is then erased (0AECH).

    Address... 0B26H

    Name...... FNKSB

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, EI

    Standard routine to show the function key displ ay if it is

enabled. If CNSDFG is zero the routine terminates w ith no

action, otherwise control drops into the DSPFNK sta ndard

routine..

    Address... 0B2BH

    Name...... DSPFNK

-57-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, DE, EI

    Standard routine to turn the function key displ ay on. CNSDFG

is set to FFH and, if the VDP is in Graphics Mode o r

Multicolour Mode, the routine terminates with no fu rther

action. Otherwise the cursor row coordinate is chec ked and, if

the cursor is on the last row of the screen, a LF c ode (0AH)

issued to the OUTDO standard routine to scroll the screen up.

- 49 -

4. ROM BIOS

    Register pair HL is then set to point to either  the unshifted

or shifted function strings in the Workspace Area d epending

upon whether the SHIFT key is pressed. LINLEN has f our

subtracted, to allow a minimum of one space between  fields, and

is divided by five to determine the field size for each string.

Successive characters are then taken from each func tion string,

checked for graphic headers via the CNVCHR standard  routine and

placed in the LINWRK buffer until the string is exh austed or

the zone is filled. When all five strings are compl eted the

LINWRK buffer is written to the last row in the VDP  Name Table

(0BC3H).

    Address... 0B9CH

    This routine is used by the function key displa y related

standard routines. The contents of register A are p laced in

CNSDFG then SCRMOD tested and Flag NC returned if t he screen is

in Graphics Mode or Multicolour Mode.

    Address... 0BA5H

    This routine copies eight bytes from the VDP VR AM into the

LINWRK buffer, the VRAM physical address is supplie d in

register pair HL.

    Address... 0BAAH

    This routine copies a complete row of character s, with the

length determined by LINLEN, from the VDP VRAM into  the LINWRK

buffer. The cursor row coordinate is supplied in re gister L.

    Address... 0BBEH

    This routine copies eight bytes from the LINWRK  buffer into

the VDP VRAM, the VRAM physical address is supplied  in register

pair HL.

-58-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 0BC3H

    This routine copies a complete row of character s, with the

length determined by LINLEN, from the LINWRK buffer  into the

VDP VRAM. The cursor row coordinate is supplied in register L.

    Address... 0BD8H

    This routine reads a single byte from the VDP V RAM into

register C. The column coordinate is supplied in re gister H,

the row coordinate in register L.

    Address... 0BE6H

    This routine converts a pair of screen coordina tes, the

column in register H and the row in register L, int o a physical

address in the VDP Name Table. This address is retu rned in

- 50 -

4. ROM BIOS

register pair HL.

    The row coordinate is first multiplied by thirt y-two or

forty, depending upon the screen mode, and added to  the column

coordinate. This is then added to the Name Table ba se address,

taken from NAMBAS, to produce an initial address.

    Because of the variable screen width, as contai ned in

LINLEN, an additional offset has to be added to the  initial

address to keep the active region roughly centered within the

screen. The difference between the "true" number of  characters

per row, thirty-two or forty, and the current width  is halved

and then rounded up to produce the left hand offset . For a UK

machine, with a thirty-seven character width in 40x 24 Text

Mode, this will result in two unused characters on the left

hand side and one on the right. The statement PRINT  (41-WID)\2,

where WID is any screen width, will display the lef t hand

column offset in 40x24 Text Mode.

    A complete BASIC program which emulates this ro utine is

given below:

        10 CPR=40:NAM=BASE(0):WID=PEEK(&HF3AE)

        20 SCRMD=PEEK(&HFCAF):IF SCRMD=0 THEN 40

        30 CPR=32:NAM=BASE(5):WID=PEEK(&HF3AF)

        40 LH=(CPR+1-WID)\2

        50 ADDR=NAM+(ROW-1)*CPR+(COL-1)+LH

    This program is designed for the ROW and COL co ordinate system

-59-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

used by the ROM BIOS where home is 1,1. Line 50 may  be

simplified, by removing the "-1" factors, if the BA SIC

Interpreter's coordinate system is to be used.

    Address... 0C1DH

    This routine calculates the address of a row's entry in

LINTTB, the line termination table. The row coordin ate is

supplied in register L and the address returned in register

pair DE.

    Address... 0C29H

    This routine makes a row's entry in LINTTB non- zero when

entered at 0C29H and zero when entered at 0C2AH. Th e row

coordinate is supplied in register L.

    Address... 0C32H

    This routine returns the number of rows on the screen in

register A. It will normally return twenty-four if the function

key display is disabled and twenty-three if it is e nabled. Note

that the screen size is determined by CRTCNT and ma y be

modified with a BASIC statement, POKE &HF3B1H,14:SC REEN 0 for

example.

- 51 -

4. ROM BIOS

    Address... 0C3CH

    Name...... KEYINT

    Entry..... None

    Exit...... None

    Modifies.. EI

    Standard routine to process Z80 interrupts, the se are

generated by the VDP once every 20 ms on a UK machi ne. The VDP

Status Register is first read and bit 7 checked to ensure that

this is a frame rate interrupt, if not the routine terminates

with no action. The contents of the Status Register  are saved

in STATFL and bit 5 checked for sprite coincidence.  If the

Coincidence Flag is active then the relevant entry in TRPTBL is

updated (0EF1H).

    INTCNT, the "INTERVAL" counter, is then decreme nted. If this

has reached zero the relevant entry in TRPTBL is up dated

(0EF1H) and the counter reset with the contents of INTVAL.

    JIFFY, the "TIME" counter, is then incremented.  This counter

just wraps around to zero when it overflows.

    MUSICF is examined to determine whether any of the three

music queues generated by the "PLAY" statement are active. For

-60-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

each active queue the dequeueing routine (113BH) is  called to

fetch the next music packet and write it to the PSG .

    SCNCNT is then decremented to determine if a jo ystick and

keyboard scan is required, if not the interrupt han dler

terminates with no further action. This counter is used to

increase throughput and to minimize keybounce probl ems by

ensuring that a scan is only carried out every thre e

interrupts. Assuming a scan is required joystick co nnector 1 is

selected and the two Trigger bits read (120CH), fol lowed by the

two Trigger bits from joystick connector 2 (120CH) and the

SPACE key from row 8 of the keyboard (1226H). These  five

inputs, which are all related to the "STRIG" statem ent, are

combined into a single byte where 0=Pressed, 1=Not pressed:

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦Joy 2¦Joy 2¦Joy 1¦Joy 1¦  0  ¦  0  ¦  0  ¦Spac e¦

    ¦Trg.B¦Trg.A¦Trg.B¦Trg.A¦     ¦     ¦     ¦     ¦

    +---------------------------------------------- -+

Figure 35: "STRIG" Inputs

    This reading is compared with the previous one,  held in TRGFLG,

to produce an active transition byte and TRGFLG is updated with

the new reading. The active transition byte is norm ally zero

but contains a 1 in each position where a transitio n from

unpressed to pressed has occurred. This active tran sition byte

- 52 -

4. ROM BIOS

is shifted out bit by bit and the relevant entry in  TRPTBL

updated (0EF1H) for each active device.

    A complete scan of the keyboard matrix is then performed to

identify new key depressions, any found are transla ted into key

codes and placed in KEYBUF (0D12H). If KEYBUF is fo und to be

empty at the end of this process REPCNT is decremen ted to see

whether the auto-repeat delay has expired, if not t he routine

terminates. If the delay period has expired REPCNT is reset

with the fast repeat value (60 ms), the OLDKEY keyb oard map is

reinitialized and the keyboard scanned again (0D4EH ). Any keys

which are continuously pressed will show up as new transitions

during this scan. Note that keys will only auto-rep eat while an

application program keeps KEYBUF empty by reading c haracters.

The interrupt handler then terminates.

-61-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 0D12H

    This routine performs a complete scan of all el even rows of

the keyboard matrix for the interrupt handler. Each  of the

eleven rows is read in via the PPI and placed in as cending '

order in NEWKEY. ENSTOP is then checked to see if w arm starts

are enabled. If its contents are non-zero and the k eys CODE,

GRAPH, CTRL and SHIFT are pressed control transfers  to the BASIC

Interpreter (409BH) via the CALBAS standard routine . This

facility is useful as even a machine code program c an be

terminated as long as the interrupt handler is runn ing.

The contents of NEWKEY are compared with the previo us scan

contained in OLDKEY. If any change at all has occur red REPCNT

is loaded with the initial auto-repeat delay (780 m s). Each row 1,

reading from NEWKEY is then compared with the previ ous one,

held in OLDKEY, to produce an active transition byt e and OLDKEY

is updated with the new reading. The active transit ion byte is

normally zero but contains a 1 in each position whe re a

transition from unpressed to pressed has occurred. If the row

contains any transitions these are decoded and plac ed in KEYBUF

as key codes (0D89H). When all eleven rows have bee n completed

the routine checks whether there are any characters  in KEYBUF,

by subtracting GETPNT from PUTPNT, and terminates.

    Address... 0D6AH

    Name...... CHSNS

    Entry..... None

    Exit...... Flag NZ if characters in KEYBUF

    Modifies.. AF, EI

    Standard routine to check if any keyboard chara cters are

ready. If the screen is in Graphics Mode or Multico lour Mode

then GETPNT is subtracted from PUTPNT (0D62H) and t he routine

terminates. If the screen is in 40x24 Text Mode or 32x24 Text

Mode the state of the SHIFT key is also examined an d the

function key display updated, via the DSPFNK standa rd routine,

if it has changed.

- 53 -

4. ROM BIOS

    Address... 0D89H

    This routine converts each active bit in a keyb oard row

transition byte into a key code. A bit is first con verted into

a key number determined by its position in the keyb oard matrix:

-62-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +---------------------------------------------- -+

    ¦  7  ¦  6  ¦  5  ¦  4  ¦  3  ¦  2  ¦  1  ¦  0  ¦   Row 0

    ¦(07H)¦(06H)¦(05H)¦(04H)¦(03H)¦(02H)¦(01H)¦(00H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  ;  ¦  ]  ¦  [  ¦  \  ¦  =  ¦  -  ¦  9  ¦  8  ¦   Row 1

    ¦(0FH)¦(0EH)¦(0DH)¦(0CH)¦(0BH)¦(0AH)¦(09H)¦(08H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  B  ¦  A  ¦  £  ¦  /  ¦  .  ¦  ,  ¦  `  ¦  '  ¦   Row 2

    ¦(17H)¦(16H)¦(15H)¦(14H)¦(13H)¦(12H)¦(11H)¦(10H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  J  ¦  I  ¦  H  ¦  G  ¦  F  ¦  E  ¦  D  ¦  C  ¦   Row 3

    ¦(1FH)¦(1EH)¦(1DH)¦(1CH)¦(1BH)¦(1AH)¦(19H)¦(18H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  R  ¦  Q  ¦  P  ¦  O  ¦  N  ¦  M  ¦  L  ¦  K  ¦   Row 4

    ¦(27H)¦(26H)¦(25H)¦(24H)¦(23H)¦(22H)¦(21H)¦(20H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  Z  ¦  Y  ¦  X  ¦  W  ¦  V  ¦  U  ¦  T  ¦  S  ¦   Row 5

    ¦(2FH)¦(2EH)¦(2DH)¦(2CH)¦(2BH)¦(2AH)¦(29H)¦(28H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦ F3  ¦ F2  ¦ F1  ¦CODE ¦ CAP ¦GRAPH¦CTRL ¦SHIF T¦   Row 6

    ¦(37H)¦(36H)¦(35H)¦(34H)¦(33H)¦(32H)¦(31H)¦(30H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦ CR  ¦ SEL ¦ BS  ¦STOP ¦ TAB ¦ ESC ¦ F5  ¦ F4  ¦   Row 7

    ¦(3FH)¦(3EH)¦(3DH)¦(3CH)¦(3BH)¦(3AH)¦(39H)¦(38H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦RIGHT¦DOWN ¦ UP  ¦LEFT ¦ DEL ¦ INS ¦HOME ¦SPAC E¦   Row 8

    ¦(47H)¦(46H)¦(45H)¦(44H)¦(43H)¦(42H)¦(41H)¦(40H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  4  ¦  3  ¦  2  ¦  1  ¦  0  ¦     ¦     ¦     ¦   Row 9

    ¦(4FH)¦(4EH)¦(4DH)¦(4CH)¦(4BH)¦(4AH)¦(49H)¦(48H )¦

    +-----+-----+-----+-----+-----+-----+-----+---- -¦

    ¦  .  ¦  ,  ¦  -  ¦  9  ¦  8  ¦  7  ¦  6  ¦  5  ¦   Row 10

    ¦(57H)¦(56H)¦(55H)¦(54H)¦(53H)¦(52H)¦(51H)¦(50H )¦

    +---------------------------------------------- -+

      7     6     5     4     3     2     1     0       Column

Figure 36: Key Numbers

- 54 -

4. ROM BIOS

    The key number is then converted into a key cod e and placed in

KEYBUF (1021H). When all eight possible bits have b een

processed the routine terminates.

-63-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 0DA5H

    This table contains the key codes of key number s 00H to 2FH

for various combinations of the control keys. A zer o entry in

the table means that no key code will be produced w hen that key

is pressed:

           37H  36H  35H  34H  33H  32H  31H  30H   Row  0

           3BH  5DH  5BH  5CH  3DH  2DH  39H  38H   Row  1

    NORMAL 62H  61H  9CH  2FH  2EH  2CH  60H  27H   Row  2

           6AH  69H  68H  67H  66H  65H  64H  63H   Row  3

           72H  71H  70H  6FH  6EH  6DH  6CH  6BH   Row  4

           7AH  79H  78H  77H  76H  75H  74H  73H   Row  5

           26H  5EH  25H  24H  23H  40H  21H  29H   Row  0

           3AH  7DH  7BH  7CH  2BH  5FH  28H  2AH   Row  1

    SHIFT  42H  41H  9CH  3FH  3EH  3CH  7EH  22H   Row  2

           4AH  49H  48H  47H  46H  45H  44H  43H   Row  3

           52H  51H  50H  4FH  4EH  4DH  4CH  4BH   Row  4

           5AH  59H  58H  57H  56H  55H  54H  53H   Row  5

           FBH  F4H  BDH  EFH  BAH  ABH  ACH  09H   Row  0

           06H  0DH  01H  1EH  F1H  17H  07H  ECH   Row  1

    GRAPH  11H  C4H  9CH  1DH  F2H  F3H  BBH  05H   Row  2

           C6H  DCH  13H  15H  14H  CDH  C7H  BCH   Row  3

           18H  CCH  DBH  C2H  1BH  0BH  C8H  DDH   Row  4

           0FH  19H  1CH  CFH  1AH  C0H  12H  D2H   Row  5

           00H  F5H  00H  00H  FCH  FDH  00H  0AH   Row  0

           04H  0EH  02H  16H  F0H  1FH  08H  00H   Row  1

    SHIFT  00H  FEH  9CH  F6H  AFH  AEH  F7H  03H   Row  2

    GRAPH  CAH  DFH  D6H  10H  D4H  CEH  C1H  FAH   Row  3

           A9H  CBH  D7H  C3H  D3H  0CH  C9H  DEH   Row  4

           F8H  AAH  F9H  D0H  D5H  C5H  00H  D1H   Row  5

           E1H  E0H  98H  9BH  BFH  D9H  9FH  EBH   Row  0

           B7H  DAH  EDH  9CH  E9H  EEH  87H  E7H   Row  1

    CODE   97H  84H  9CH  A7H  A6H  86H  E5H  B9H   Row  2

           91H  A1H  B1H  81H  94H  8CH  8BH  8DH   Row  3

           93H  83H  A3H  A2H  A4H  E6H  B5H  B3H   Row  4

           85H  A0H  8AH  88H  95H  82H  96H  89H   Row  5

           00H  00H  9DH  9CH  BEH  9EH  ADH  D8H   Row  0

           B6H  EAH  E8H  00H  00H  00H  80H  E2H   Row  1

    SHIFT  00H  8EH  9CH  A8H  00H  8FH  E4H  B8H   Row  2

    CODE   92H  00H  B0H  9AH  99H  00H  00H  00H   Row  3

           00H  00H  E3H  00H  A5H  00H  B4H  B2H   Row  4

           00H  00H  00H  00H  00H  90H  00H  00H   Row  5

            7    6    5    4    3    2    1    0    Column

- 55 -

-64-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

4. ROM BIOS

    Address... 0EC5H

    Control transfers to this routine, from 0FC3H, to complete

decoding of the five function keys. The relevant en try in

FNKFLG is first checked to determine whether the ke y is

associated with an "ON KEY GOSUB" statement. If so,  and

provided that CURLIN shows the BASIC Interpreter to  be in

program mode, the relevant entry in TRPTBL is updat ed (0EF1H)

and the routine terminates. If the key is not tied to an "ON

KEY GOSUB" statement, or if the Interpreter is in d irect mode,

the string of characters associated with the functi on key is

returned instead. The key number is multiplied by s ixteen, as

each string is sixteen characters long, and added t o the

starting address of the function key strings in the  Workspace

Area. Sequential characters are then taken from the  string and

placed in KEYBUF (0F55H) until the zero byte termin ator is

reached.

    Address... 0EF1H

    This routine is used to update a device's entry  in TRPTBL

when it has produced a BASIC program interrupt. On entry

register pair HL points to the device's status byte  in the

table. Bit 0 of the status byte is checked first, i f the device

is not "ON" then the routine terminates with no act ion. Bit 2,

the event flag, is then checked. If this is already  set then

the routine terminates, otherwise it is set to indi cate that an

event has occurred. Bit 1, the "STOP" flag, is then  checked. If

the device is stopped then the routine terminates w ith no

further action. Otherwise ONGSBF is incremented to signal to

the Interpreter Runloop that the event should now b e processed.

    Address... 0F06H

    This section of the key decoder processes the H OME key only.

The state of the SHIFT key is determined via row 6 of NEWKEY

and the key code for HOME (0BH) or CLS (0CH) placed  in KEYBUF

(0F55H) accordingly.

    Address... 0F10H

    This section of the keyboard decoder processes key numbers

30H to 57H apart from the CAP, F1 to F5, STOP and H OME keys.

The key number is simply used to look up the key co de in the

table at 1033H and this is then placed in KEYBUF (0 F55H).

    Address... 0F1FH

    This section of the keyboard decoder processes the DEAD key

found on European MSX machines. On UK machines the key in row

2, column 5 always generates the pound key code (9C H) shown in

the table at 0DA5H. On European machines this table  will have

-65-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

the key code FFH in the same locations. This key co de only

serves as a flag to indicate that the next key pres sed, if it

- 56 -

4. ROM BIOS

is a vowel, should be modified to produce an accent ed graphics

character.

    The state of the SHIFT and CODE keys is determi ned via row 6

of NEWKEY and one of the following placed in KANAST : 01H=DEAD,

02H=DEAD+SHIFT, 03H=DEAD+CODE, 04H=DEAD+SHIFT+CODE.

    Address... 0F36H

    This section of the keyboard decoder processes the CAP key.

The current state of CAPST is inverted and control drops into

the CHGCAP standard routine.

    Address... 0F3DH

    Name...... CHGCAP

    Entry..... A=ON/OFF Switch

    Exit...... None

    Modifies.. AF

    Standard routine to turn the Caps Lock LED on o r off as

determined by the contents of register A: 00H=On, N Z=Off. The

LED is modified using the bit set/reset facility of  the PPI

Mode Port. As CAPST is not changed this routine doe s not affect

the characters produced by the keyboard.

    Address... 0F46H

    This section of the keyboard decoder processes the STOP key.

The state of the CTRL key is determined via row 6 o f NEWKEY and

the key code for STOP (04H) or CTRL/STOP (03H) prod uced as

appropriate. If the CTRL/STOP code is produced it i s copied to

INTFLG, for use by the ISCNTC standard routine, and  then placed

in KEYBUF (0F55H). If the STOP code is produced it is also

copied to INTFLG but is not placed in KEYBUF, inste ad only a

click is generated (0F64H). This means that an appl ication

program cannot read the STOP key code via the ROM B IOS standard

routines.

    Address... 0F55H

    This section of the keyboard decoder places a k ey code in

KEYBUF and generates an audible click. The correct address in

the keyboard buffer is first taken from PUTPNT and the code

placed there. The address is then incremented (105B H). If it

has wrapped round and caught up with GETPNT then th e routine

-66-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

terminates with no further action as the keyboard b uffer is

full. Otherwise PUTPNT is updated with the new addr ess.

    CLIKSW and CLIKFL are then both checked to dete rmine whether

a click is required. CLIKSW is a general enable/dis able switch

while CLIKFL is used to prevent multiple clicks whe n the

function keys are pressed. Assuming a click is requ ired the Key

Click output is set via the PPI Mode Port and, afte r a delay of

50 µs, control drops into the CHGSND standard routi ne.

- 57 -

4. ROM BIOS

    Address... 0F7AH

    Name...... CHGSND

    Entry..... A=ON/OFF Switch

    Exit...... None

    Modifies.. AF

    Standard routine to set or reset the Key Click output via

the PPI Mode Port: 00H=Reset, NZ=Set. This audio ou tput is AC

coupled so absolute polarities should not be taken too

seriously.

    Address... 0F83H

    This section of the keyboard decoder processes key numbers

00H to 2FH. The state of the SHIFT, GRAPH and CODE keys is

determined via row 6 of NEWKEY and combined with th e key number

to form a look-up address into the table at 0DA5H. The key code

is then taken from the table. If it is zero the rou tine

terminates with no further action, if it is FFH con trol

transfers to the DEAD key processor (0F1FH). If the  code is in

the range 40H to 5FH or 60H to 7FH and the CTRL key  is pressed

then the corresponding control code is placed in KE YBUF

(0F55H). If the code is in the range 01H to 1FH the n a graphic

header code (01H) is first placed in KEYBUF (0F55H)  followed by

the code with 40H added. If the code is in the rang e 61H to 7BH

and CAPST indicates that caps lock is on then it is  converted

to upper case by subtracting 20H. Assuming that KAN AST contains

zero, as it always will on UK machines, then the ke y code is

placed in KEYBUF (0F55H) and the routine terminates . On

European MSX machines, with a DEAD key instead of a  pound key,

then the key codes corresponding to the vowels a, e , i, o, u may be

further modified into graphics codes.

    Address... 0FC3H

    This section of the keyboard decoder processes the five

function keys. The state of the SHIFT key is examin ed via row 6

of NEWKEY and five added to the key number if it is  pressed.

-67-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Control then transfers to 0EC5H to complete process ing.

    Address... 1021H

    This routine searches the table at 1B97H to det ermine which

group of keys the key number supplied in register C  belongs to.

The associated address is then taken from the table  and control

transferred to that section of the keyboard decoder . Note that

the table itself is actually patched into the middl e of the

OUTDO standard routine as a result of the modificat ions made to

the Japanese ROM.

    Address... 1033H

    This table contains the key codes of key number s 30H to 57H

other than the special keys CAP, F1 to F5, STOP and  HOME. A

- 58 -

4. ROM BIOS

zero entry in the table means that no key code will  be produced

when that key is pressed:

           00H 00H 00H 00H 00H 00H 00H 00H Row 6

           0DH 18H 08H 00H 09H 1BH 00H 00H Row 7

           1CH 1FH 1EH 1DH 7FH 12H 0CH 20H Row 8

           34H 33H 32H 31H 30H 00H 00H 00H Row 9

           2EH 2CH 2DH 39H 38H 37H 36H 35H Row 10

            7   6   5   4   3   2   1   0  Column

    Address... 105BH

    This routine simply zeroes KANAST and then tran sfers control

to 10C2H.

    Address... 1061H

    This table contains the graphics characters whi ch replace

the vowels a, e, i, o, u on European machines.

    Address... 10C2H

    This routine increments the keyboard buffer poi nter, either

PUTPNT or GETPNT, supplied in register pair HL. If the pointer

then exceeds the end of the keyboard buffer it is w rapped back

to the beginning.

    Address... 10CBH

    Name...... CHGET

-68-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Entry..... None

    Exit...... A=Character from keyboard

    Modifies.. AF, EI

    Standard routine to fetch a character from the keyboard

buffer. The buffer is first checked to see if alrea dy contains

a character (0D6AH). If not the cursor is turned on  (09DAH),

the buffer checked repeatedly until a character app ears (0D6AH)

and then the cursor turned off (0A27H). The charact er is taken

from the buffer using GETPNT which is then incremen ted (10C2H).

    Address... 10F9H

    Name...... CKCNTC

    Entry..... None

    Exit...... None

    Modifies.. AF, EI

    Standard routine to check whether the CTRL-STOP  or STOP keys

have been pressed. It is used by the BASIC Interpre ter inside

processor-intensive statements, such as "WAIT" and "CIRCLE", to

check for program termination. Register pair HL is first zeroed

and then control transferred to the ISCNTC standard  routine.

When the Interpreter is running register pair HL no rmally

contains the address of the current character in th e BASIC

- 59 -

4. ROM BIOS

program text. If ISCNTC is CTRL-STOP terminated thi s address

will be placed in OLDTXT by the "STOP" statement ha ndler

(63E6H) for use by a later "CONT" statement. Zeroin g register

pair HL beforehand signals to the "CONT" handler th at

termination occurred inside a statement and it will  issue a

"Can't CONTINUE" error if continuation is attempted .

    Address... 1102H

    Name...... WRTPSG

    Entry..... A=Register number, E=Data byte

    Exit...... None

    Modifies.. EI

    Standard routine to write a data byte to any of  the sixteen

PSG registers. The register selection number is wri tten to the

PSG Address Port and the data byte written to the P SG Data

Write Port.

    Address... 110EH

    Name...... RDPSG

    Entry..... A=Register number

    Exit...... A=Data byte read from PSG

    Modifies.. A

-69-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to read a data byte from any o f the sixteen

PSG registers. The register selection number is wri tten to the

PSG Address Port and the data byte read from the PS G Data Read

Port.

    Address... 1113H

    Name...... BEEP

    Entry..... None

    Exit...... None

    Modifies.. AF, BC, E, EI

    Standard routine to produce a beep via the PSG.  Channel A is

set to produce a tone of 1316Hz then enabled with a n amplitude

of seven. After a delay of 40 ms control transfers to the GICINI

standard routine to reinitialize the PSG.

    Address... 113BH

    This routine is used by the interrupt handler t o service a

music queue. As there are three of these, each feed ing a PSG

channel, the queue to be serviced is specified by s upplying its

number in register A: 0=VOICAQ, 1=VOICBQ and 2=VOIC CQ.

    Each string in a "PLAY" statement is translated  into a

series of data packets by the BASIC Interpreter. Th ese are

placed in the appropriate queue followed by an end of data byte

(FFH). The task of dequeueing the packets, decoding  them and

setting the PSG is left to the interrupt handler. T he

Interpreter is thus free to proceed immediately to the next

statement without having to wait for notes to finis h.

- 60 -

4. ROM BIOS

    The first two bytes of any packet specify its b yte count and

duration. The three most significant bits of the fi rst byte

specify the number of bytes following the header in  the packet.

The remainder of the header specifies the event dur ation in

20 ms units. This duration count determines how lon g it will be

before the next packet is read from the queue.

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦Byte Count ¦           Duration (MSB)          ¦

    +---------------------------------------------- -¦

    ¦                Duration (LSB)                 ¦

    +---------------------------------------------- -+

Figure 37: Packet Header

-70-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The packet header may be followed by zero or mo re blocks, in

any order, containing frequency or amplitude inform ation:

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦ 0 ¦ 0 ¦ x ¦ x ¦Frequency (MSB)¦

    +-------------------------------¦

    ¦        Frequency (LSB)        ¦

    +-------------------------------+

    Frequency Block

      7   6   5   4   3   2   1   0

    +-------------------------------+

    ¦ x ¦ 1 ¦ x ¦ x ¦ x ¦ x ¦ x ¦ x ¦

    +-------------------------------¦

    ¦   Envelope Frequency (MSB)    ¦

    +-------------------------------¦

    ¦   Envelope Frequency (LSB)    ¦

    +-------------------------------+

    Envelope Block

      7    6    5    4    3    2    1    0

    +---------------------------------------+

    ¦ 1  ¦ x  ¦ x  ¦Mode¦  Amplitude/Shape  ¦

    +---------------------------------------+

    Amplitude Block

Figure 38: Packet Block Types

    The routine first locates the current duration counter in the

relevant voice buffer (VCBA, VCBB or VCBC) via the GETVCP

- 61 -

4. ROM BIOS

standard routine and decrements it. If the counter has reached

zero then the next packet must be read from the que ue,

otherwise the routine terminates.

    The queue number is placed in QUEUEN and a byte  read from

the queue (11E2H). This is then checked to see if i t is the end

of data mark (FFH), if so the queue terminates (11B 0H).

Otherwise the byte count is placed in register C an d the

duration MSB in the relevant voice buffer. The seco nd byte is

read (11E2H) and the duration LSB placed in the rel evant voice

-71-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

buffer. The byte count is then examined, if there a re no bytes

to follow the packet header the routine terminates.  Otherwise

successive bytes are read from the queue, and the a ppropriate

action taken, until the byte count is exhausted.

    If a frequency block is found then a second byt e is read and

both bytes written to PSG Registers 0 and 1, 2 and 3 or 4 and 5

depending on the queue number.

    If an amplitude block is found the Amplitude an d Mode bits

are written to PSG Registers 8, 9 or 10 depending o n the queue

number. If the Mode bit is 1, selecting modulated r ather than

fixed amplitude, then the byte is also written to P SG Register

13 to set the envelope shape.

    If an envelope block is found, or if bit 6 of a n amplitude

block is set, then a further two bytes are read fro m the queue

and written to PSG Registers 11 and 12.

    Address... 11B0H

    This routine is used when an end of data mark ( FFH) is found

in one of the three music queues. An amplitude valu e of zero is

written to PSG Register 8 9 or 10, depending on the  queue

number, to shut the channel down. The channel's bit  in MUSICF

is then reset and control drops into the STRTMS sta ndard

routine.

    Address... 11C4H

    Name...... STRTMS

    Entry..... None

    Exit...... None

    Modifies.. AF, HL

    Standard routine used by the "PLAY" statement h andler to

initiate music dequeueing by the interrupt handler.  MUSICF is

first examined, if any channels are already running  the routine

terminates with no action. PLYCNT is then decrement ed, if there

are no more "PLAY" strings queued up the routine te rminates.

Otherwise the three duration counters, in VCBA, VCB B and VCBC,

are set to 0001H, so that the first packet of the n ew group

will be dequeued at the next interrupt, and MUSICF is set to

07H to enable all three channels.

- 62 -

4. ROM BIOS

    Address... 11E2H

    This routine loads register A with the current queue number,

from QUEUEN, and then reads a byte from that queue (14ADH).

-72-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 11EEH

    Name...... GTSTCK

    Entry..... A=Joystick ID (0, 1 or 2)

    Exit...... A=Joystick position code

    Modifies.. AF, B, DE, HL, EI

    Standard routine to read the position of a joys tick or the

four cursor keys. If the supplied ID is zero the st ate of the

cursor keys is read via PPI Port B (1226H) and conv erted to a

position code using the look-up table at 1243H. Oth erwise

joystick connector 1 or 2 is read (120CH) and the f our

direction bits converted to a position code using t he look-up

table at 1233H. The returned position codes are:

             1

          8  ¦  2

           \ ¦ /

            \¦/

        7----0----3

            /¦\

           / ¦ \

          6  ¦  4

             5

    Address... 120CH

    This routine reads the joystick connector speci fied by the

contents of register A: 0=Connector 1, 1=Connector 2. The

current contents of PSG Register 15 are read in the n written

back with the Joystick Select bit appropriately set . PSG

Register 14 is then read into register A (110CH) an d the

routine terminates.

    Address... 1226H

    This routine reads row 8 of the keyboard matrix . The current

contents of PPI Port C are read in then written bac k with the

four Keyboard Row Select bits set for row 8. The co lumn inputs

are then read into register A from PPI Port B.

    Address... 1253H

    Name...... GTTRIG

    Entry..... A=Trigger ID (0, 1, 2, 3 or 4)

    Exit...... A=Status code

    Modifies.. AF, BC, EI

    Standard routine to check the joystick trigger or space key

status. If the supplied ID is zero row 8 of the key board matrix

is read (1226H) and converted to a status code. Oth erwise

- 63 -

-73-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

4. ROM BIOS

joystick connector 1 or 2 is read (120CH) and conve rted to a

status code. The selection IDs are:

        0=SPACE KEY

        1=JOY 1, TRIGGER A

        2=JOY 2, TRIGGER A

        3=JOY 1, TRIGGER B

        4=JOY 2, TRIGGER B

    The value returned is FFH if the relevant trigg er is pressed

and zero otherwise.

    Address... 1273H

    Name...... GTPDL

    Entry..... A=Paddle ID (1 to 12)

    Exit...... A=Paddle value (0 to 255)

    Modifies.. AF, BC, DE, EI

    Standard routine to read the value of any paddl e attached to

a joystick connector. Each of the six input lines ( four

direction plus two triggers) per connector can supp ort a paddle

so twelve are possible altogether. The paddles atta ched to

joystick connector 1 have entry identifiers 1, 3, 5 , 7, 9 and 11.

Those attached to joystick connector 2 have entry i dentifiers

2, 4, 6, 8, 10 and 12. Each paddle is basically a o ne-shot pulse

generator, the length of the pulse being controlled  by a

variable resistor. A start pulse is issued to the s pecified

joystick connector via PSG Register 15. A count is then kept of

how many times PSG Register 14 has to be read until  the

relevant input times out. Each unit increment repre sents an

approximate period of 12 µs on an MSX machine with one wait

state.

    Address... 12ACH

    Name...... GTPAD

    Entry..... A=Function code (0 to 7)

    Exit...... A=Status or value

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to access a touchpad attached to either of

the joystick connectors. Available functions codes for joystick

connector 1 are:

        0=Return Activity Status

        1=Return "X" coordinate

        2=Return "Y" coordinate

        3=Return Switch Status

    Function codes 4 to 7 have the same effect with  respect to

joystick connector 2. The Activity Status function returns FFH

if the Touchpad is being touched and zero otherwise . The Switch

Status function returns FFH if the switch is being pressed and

-74-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

zero otherwise. The two coordinate request function s return the

coordinates of the last location touched. These coo rdinates are

- 64 -

4. ROM BIOS

actually stored in the Workspace Area variables PAD X and PADY

when a call with function code 0 or 4 detects activ ity. Note

that these variables are shared by both joystick co nnectors.

    Address... 1384H

    Name...... STMOTR

    Entry..... A=Motor ON/OFF code

    Exit...... None

    Modifies.. AF

    Standard routine to turn the cassette motor rel ay on or off

via PPI Port C: 00H=Off, 01H=On, FFH=Reverse curren t state.

    Address... 1398H

    Name...... NMI

    Entry..... None

    Exit...... None

    Modifies.. None

    Standard routine to process a Z80 Non Maskable Interrupt,

simply returns on a standard MSX machine.

    Address... 139DH

    Name...... INIFNK

    Entry..... None

    Exit...... None

    Modifies.. BC, DE, HL

    Standard routine to initialize the ten function  key strings

to their power-up values. The one hundred and sixty  bytes of

data commencing at 13A9H are copied to the FNKSTR b uffer in the

Workspace Area.

    Address... 13A9H

    This area contains the power-up strings for the  ten function

keys. Each string is sixteen characters long, unuse d positions

contain zeroes:

        F1 to F5  F6 to F10

        color     color 15,4,4 CR

        auto      cload"

        goto      cont CR

        list      list. CR UP UP

        run CR    run CLS CR

-75-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 1449H

    Name...... RDVDP

    Entry..... None

    Exit...... A=VDP Status Register contents

    Modifies.. A

    Standard routine to input the contents of the V DP Status

Register by reading the Command Port. Note that rea ding the VDP

- 65 -

4. ROM BIOS

Status Register will clear the associated flags and  may affect

the interrupt handler.

    Address... 144CH

    Name...... RSLREG

    Entry..... None

    Exit...... A=Primary Slot Register contents

    Modifies.. A

    Standard routine to input the contents of the P rimary slot

Register by reading PPI Port A.

    Address... 144FH

    Name...... WSLREG

    Entry..... A=Value to write

    Exit...... None

    Modifies.. None

    Standard routine to set the Primary Slot Regist er by writing

to PPI Port A.

    Address... 1452H

    Name...... SNSMAT

    Entry..... A=Keyboard row number

    Exit...... A=Column data of keyboard row

    Modifies.. AF, C, EI

    Standard routine to read a complete row of the keyboard

matrix. PPI Port C is read in then written back wit h the row

number occupying the four Keyboard Row Select bits.  PPI Port B

is then read into register A to return the eight co lumn inputs.

The four miscellaneous control outputs of PPI Port C are

unaffected by this routine.

    Address... 145FH

    Name...... ISFLIO

    Entry..... None

    Exit...... Flag NZ if file I/O active

    Modifies.. AF

-76-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to check whether the BASIC Int erpreter is

currently directing its input or output via an I/O buffer. This

is determined by examining PTRFIL. It is normally z ero but will

contain a buffer FCB (File Control Block) address w hile

statements such as "PRINT#1", "INPUT#1", etc. are b eing

executed by the Interpreter.

    Address... 146AH

    Name...... DCOMPR

    Entry..... HL, DE

    Exit...... Flag NC if HL>DE, Flag Z if HL=DE, F lag C if HL<DE

    Modifies.. AF

    Standard routine used by the BASIC Interpreter to check the

- 66 -

4. ROM BIOS

relative values of register pairs HL and DE.

    Address... 1470H

    Name...... GETVCP

    Entry..... A=Voice number (0, 1, 2)

    Exit...... HL=Address in voice buffer

    Modifies.. AF, HL

    Standard routine to return the address of byte 2 in the

specified voice buffer (VCBA, VCBB or VCBC).

    Address... 1474H

    Name...... GETVC2

    Entry..... L=Byte number (0 to 36)

    Exit...... HL=Address in voice buffer

    Modifies.. AF, HL

    Standard routine to return the address of any b yte in the

voice buffer (VCBA, VCBB or VCBC) specified by the voice number

in VOICEN.

    Address... 148AH

    Name...... PHYDIO

    Entry..... None

    Exit...... None

    Modifies.. None

    Standard routine for use by Disk BASIC, simply returns on

standard MSX machines.

    Address... 148EH

    Name...... FORMAT

-77-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Entry..... None

    Exit...... None

    Modifies.. None

    Standard routine for use by Disk BASIC, simply returns on

standard MSX machines.

    Address... 1492H

    Name...... PUTQ

    Entry..... A=Queue number, E=Data byte

    Exit...... Flag Z if queue full

    Modifies.. AF, BC, HL

    Standard routine to place a data byte in one of  the three

music queues. The queue's get and put positions are  first taken

from QUETAB (14FAH). The put position is temporaril y

incremented and compared with the get position, if they are

equal the routine terminates as the queue is full. Otherwise

the queue's address is taken from QUETAB and the pu t position

added to it. The data byte is placed at this locati on in the

queue, the put position is incremented and the rout ine

terminates. Note that the music queues are circular , if the get

- 67 -

4. ROM BIOS

or put pointers reach the last position in the queu e they wrap

around back to the start.

    Address... 14ADH

    This routine is used by the interrupt handler t o read a byte

from one of the three music queues. The queue numbe r is

supplied in register A, the data byte is returned i n register A

and the routine returns Flag Z if the queue is empt y. The

queue's get and put positions are first taken from QUETAB

(14FAH). If the putback flag is active then the dat a byte is

taken from QUEBAK and the routine terminates (14D1H ), this

facility is unused in the current versions of the M SX ROM. The

put position is then compared with the get position , if they

are equal the routine terminates as the queue is em pty.

Otherwise the queue's address is taken from QUETAB and the get

position added to it. The data byte is read from th is location

in the queue, the get position is incremented and t he routine

terminates.

    Address... 14DAH

    This routine is used by the GICINI standard rou tine to

initialize a queue's control block in QUETAB. The c ontrol block

is first located in QUETAB (1504H) and the put, get  and putback

-78-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

bytes zeroed. The size byte is set from register B and the

queue address from register pair DE.

    Address... 14EBH

    Name...... LFTQ

    Entry..... A=Queue number

    Exit...... HL=Free space left in queue

    Modifies.. AF, BC, HL

    Standard routine to return the number of free b ytes left in

a music queue. The queue's get and put positions ar e taken from

QUETAB (14FAH) and the free space determined by sub tracting put

from get.

    Address... 14FAH

    This routine returns a queue's control paramete rs from

QUETAB, the queue number is supplied in register A.  The control

block is first located in QUETAB (1504H), the put p osition is

then placed in register B, the get position in regi ster C and

the putback flag in register A.

    Address... 1504H

    This routine locates a queue's control block in  QUETAB. The

queue number is supplied in register A and the cont rol block

address returned in register pair HL. The queue num ber is

simply multiplied by six, as there are six bytes pe r block, and

added to the address of QUETAB as held in QUEUES.

- 68 -

4. ROM BIOS

    Address... 1510H

    Name...... GRPPRT

    Entry..... A=Character

    Exit...... None

    Modifies.. EI

    Standard routine to display a character on the screen in

either Graphics Mode or Multicolour Mode, it is fun ctionally

equivalent to the CHPUT standard routine.

    The CNVCHR standard routine is first used to ch eck for a

graphic character, if the character is a header cod e (01H) then

the routine terminates with no action. If the chara cter is a

converted graphic one then the control code decodin g section is

skipped. Otherwise the character is checked to see if it is a

control code. Only the CR code (0DH) is recognized (157EH), all

other characters smaller than 20H are ignored.

-79-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Assuming the character is displayable its eight  byte pixel

pattern is copied from the ROM character set into t he PATWRK

buffer (0752H) and FORCLR copied to ATRBYT to set i ts colour.

The current graphics coordinates are then taken fro m GRPACX and

GRPACY and used to set the current pixel physical a ddress via

the SCALXY and MAPXYC standard routines.

    The eight byte pattern in PATWRK is processed a  byte at a

time. At the start of each byte the current pixel p hysical

address is obtained via the FETCHC standard routine  and saved.

The eight bits are then examined in turn. If the bi t is a 1 the

associated pixel is set by the SETC standard routin e, if it is

a 0 no action is taken. After each bit the current pixel

physical address is moved right (16ACH). When the b yte is

finished, or the right hand edge of the screen is r eached, the

initial current pixel physical address is restored and moved

down one position by the TDOWNC standard routine.

    When the pattern is complete, or the bottom of the screen

has been reached, GRPACX is updated. In Graphics Mo de its value

is increased by eight, in Multicolour Mode by thirt y-two. If

GRPACX then exceeds 255, the right hand edge of the  screen, a

CR operation is performed (157EH).

    Address... 157EH

    This routine performs the CR operation for the GRPPRT

standard routine, this code functions as a combined  CR,LF.

GRPACX is zeroed and eight or thirty-two, depending  on the

screen mode, added to GRPACY. If GRPACY then exceed s 191, the

bottom of the screen, it is set to zero.

    GRPACX and GRPACY may be manipulated directly b y an

application program to compensate for the limited n umber of

control functions available.

- 69 -

4. ROM BIOS

    Address... 1599B

    Name...... SCALXY

    Entry..... BC=X coordinate, DE=Y coordinate

    Exit...... Flag NC if clipped

    Modifies.. AF

    Standard routine to clip a pair of graphics coo rdinates if

necessary. The BASIC Interpreter can produce coordi nates in the

range -32768 to +32767 even though this far exceeds  the actual

screen size. This routine modifies excessive coordi nate values

to fit within the physically realizable range. If t he X

-80-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

coordinate is greater than 255 it is set to 255, if  the Y

coordinate is greater than 191 it is set to 191. If  either

coordinate is negative (greater than 7FFFH) it is s et to zero.

Finally if the screen is in Multicolour Mode both c oordinates

are divided by four as required by the MAPXYC stand ard routine.

    Address... 15D9H

    This routine is used to check the current scree n mode, it

returns Flag Z if the screen is in Graphics Mode.

    Address... 15DFH

    Name...... MAPXYC

    Entry..... BC=X coordinate, DE=Y coordinate

    Exit...... None

    Modifies.. AF, D, HL

    Standard routine to convert a graphics coordina te pair into

the current pixel physical address. The location in  the

Character Pattern Table of the byte containing the pixel is

placed in CLOC. The bit mask identifying the pixel within that

byte is placed in CMASK. Slightly different convers ion methods

are used for Graphics Mode and Multicolour Mode, eq uivalent

programs in BASIC are:

        Graphics Mode

        10 INPUT"X,Y Coordinates";X,Y

        20 A=(Y\8)*256+(Y AND 7)+(X AND &HF8)

        30 PRINT"ADDR=";HEX$(Base(12)+A);"H ";

        40 RESTORE 100

        50 FOR N=0 TO (X AND 7):READ M$: NEXT N

        60 PRINT"MASK=";M$

        70 GOTO 10

        100 DATA 10000000

        110 DATA 01000000

        120 DATA 00100000

        130 DATA 00010000

        140 DATA 00001000

        150 DATA 00000100

        160 DATA 00000010

        170 DATA 00000001

- 70 -

4. ROM BIOS

        Multicolour Mode

        10 INPUT"X,Y Coordinates";X,Y

        20 X=X\4:Y-Y\4

-81-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        30 A=(Y\8)*256+(Y AND 7)+(X*4 AND &HF8)

        40 PRINT"ADDR=";HEX$(BASE(17)+A);"H ";

        50 IF X MOD 2=0 THEN MS="11110000" ELSE MS= "00001111"

        60 PRINT"MASK=";M$

        70 GOTO 10

    The allowable input range for both programs is X=0 to 255 and

Y=0 to 191. The data statements in the Graphics Mod e program

correspond to the eight byte mask table commencing at 160BH in

the MSX ROM. Line 20 in the Multicolour Mode progra m actually

corresponds to the division by four in the SCALXY s tandard

routine. It is included to make the coordinate syst em

consistent for both programs.

    Address... 1639H

    Name...... FETCHC

    Entry..... None

    Exit...... A=CMASK, HL=CLOC

    Modifies.. A, HL

    Standard routine to return the current pixel ph ysical

address, register pair HL is loaded from CLOC and r egister A

from CMASK.

    Address... 1640H

    Name...... STOREC

    Entry..... A=CMASK, HL=CLOC

    Exit...... None

    Modifies.. None

    Standard routine to set the current pixel physi cal address,

register pair HL is copied to CLOC and register A i s copied to

CMASK.

    Address... 1647H

    Name...... READC

    Entry..... None

    Exit...... A=Colour code of current pixel

    Modifies.. AF, EI

    Standard routine to return the colour of the cu rrent pixel.

The VRAM physical address is first obtained via the  FETCHC

standard routine. If the screen is in Graphics Mode  the byte

pointed to by CLOC is read from the Character Patte rn Table via

the RDVRM standard routine. The required bit is the n isolated

by CMASK and used to select either the upper or low er four bits

of the corresponding entry in the Colour Table.

    If the screen is in Multicolour Mode the byte p ointed to by

CLOC is read from the Character Pattern Table via t he RDVRM

- 71 -

4. ROM BIOS

-82-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

standard routine. CMASK is then used to select eith er the upper

or lower four bits of this byte. The value returned  in either

case will be a normal VDP colour code from zero to fifteen.

    Address... 1676H

    Name...... SETATR

    Entry..... A=Colour code

    Exit...... Flag C if illegal code

    Modifies.. Flags

    Standard routine to set the graphics ink colour  used by the

SETC and NSETCX standard routines. The colour code,  from zero

to fifteen, is simply placed in ATRBYT.

    Address... 167EH

    Name...... SETC

    Entry..... None

    Exit...... None

    Modifies.. AF, EI

    Standard routine to set the current pixel to an y colour, the

colour code is taken from ATRBYT. The pixel's VRAM physical

address is first obtained via the FETCHC standard r outine. In

Graphics Mode both the Character Pattern Table and Colour Table

are then modified (186CH).

    In Multicolour Mode the byte pointed to by CLOC  is read from

the Character Pattern Table by the RDVRM standard r outine. The

contents of ATRBYT are then placed in the upper or lower four

bits, as determined by CMASK, and the byte written back via the

WRTVRM standard routine

    Address... 16ACH

    This routine moves the current pixel physical a ddress one

position right. If the right hand edge of the scree n is

exceeded it returns with Flag C and the physical ad dress is

unchanged. In Graphics Mode CMASK is first shifted one bit

right, if the pixel still remains within the byte t he routine

terminates. If CLOC is at the rightmost character c ell (LSB=F8H

to FFH) then the routine terminates with Flag C (17 5AH).

Otherwise CMASK is set to 80H, the leftmost pixel, and 0008H

added to CLOC.

    In Multicolour Mode control transfers to a sepa rate routine

(1779H).

    Address... 16C5H

    Name...... RIGHTC

    Entry..... None

    Exit...... None

    Modifies.. AF

    Standard routine to move the current pixel phys ical address

-83-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 72 -

4. ROM BIOS

one position right. In Graphics Mode CMASK is first  shifted one

bit right, if the pixel still remains within the by te the

routine terminates. Otherwise CMASK is set to 80H, the leftmost

pixel, and 0008H added to CLOC. Note that incorrect  addresses

will be produced if the right hand edge of the scre en is

exceeded.

    In Multicolour Mode control transfers to a sepa rate routine

(178BH).

    Address... 16D8H

    This routine moves the current pixel physical a ddress one

position left. If the left hand edge of the screen is exceeded

it returns Flag C and the physical address is uncha nged. In

Graphics Mode CMASK is first shifted one bit left, if the pixel

still remains within the byte the routine terminate s. If CLOC

is at the leftmost character cell (LSB=00H to 07H) then the

routine terminates with Flag C (175AH). Otherwise C MASK is set

to 01H, the rightmost pixel, and 0008H subtracted f rom CLOC.

    In Multicolour Mode control transfers to a sepa rate routine

(179CH).

    Address... 16EEH

    Name...... LEFTC

    Entry..... None

    Exit...... None

    Modifies.. AF

    Standard routine to move the current pixel phys ical address

one position left. In Graphics Mode CMASK is first shifted one

bit left, if the pixel still remains within the byt e the

routine terminates. Otherwise CMASK is set to 01H, the leftmost

pixel, and 0008H subtracted from CLOC. Note that in correct

addresses will be produced if the left hand edge of  the screen

is exceeded.

    In Multicolour Mode control transfers to a sepa rate routine

(17ACH).

    Address... 170AH

    Name...... TDOWNC

    Entry..... None

    Exit...... Flag C if off screen

    Modifies.. AF

-84-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to move the current pixel phys ical address

one position down. If the bottom edge of the screen  is exceeded

it returns Flag C and the physical address is uncha nged. In

Graphics Mode CLOC is first incremented, if it stil l remains

within an eight byte boundary the routine terminate s. If CLOC

was in the bottom character row (CLOC>=1700H) then the routine

terminates with Flag C (1759H). Otherwise 00F8H is added to

- 73 -

4. ROM BIOS

CLOC.

    In Multicolour Mode control transfers to a sepa rate routine

(17C6H).

    Address... 172AH

    Name...... DOWNC

    Entry..... None

    Exit...... None

    Modifies.. AF

    Standard routine to move the current pixel phys ical address

one position down. In Graphics Mode CLOC is first i ncremented,

if it still remains within an eight byte boundary t he routine

terminates. Otherwise 00F8H is added to CLOC. Note that

incorrect addresses will be produced if the bottom edge of the

screen is exceeded.

    In Multicolour Mode control transfers to a sepa rate routine

(17DCH).

    Address... 173CH

    Name...... TUPC

    Entry..... None

    Exit...... Flag C if off screen

    Modifies.. AF

    Standard routine to move the current pixel phys ical address

one position up. If the top edge of the screen is e xceeded it

returns with Flag C and the physical address is unc hanged. In

Graphics Mode CLOC is first decremented, if it stil l remains

within an eight byte boundary the routine terminate s. If CLOC

was in the top character row (CLOC<0100H) then the routine

terminates with Flag C. Otherwise 00F8H is subtract ed from

CLOC.

    In Multicolour Mode control transfers to a sepa rate routine

(17E3H).

    Address... 175DH

-85-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Name...... UPC

    Entry..... None

    Exit...... None

    Modifies.. AF

    Standard routine to move the current pixel phys ical address

one position up. In Graphics Mode CLOC is first dec remented, if

it still remains within an eight byte boundary the routine

terminates. Otherwise 00F8H is subtracted from CLOC . Note that

incorrect addresses will be produced if the top edg e of the

screen is exceeded.

    In Multicolour Mode control transfers to a sepa rate routine

(17F8H).

- 74 -

4. ROM BIOS

    Address... 1779H

    This is the Multicolour Mode version of the rou tine at

16ACH. It is identical to the Graphics Mode version  except that

CMASK is shifted four bit positions right and becom es F0H if a

cell boundary is crossed.

    Address... 178BH

    This is the Multicolour Mode version of the RIG HTC standard

routine. It is identical to the Graphics Mode versi on except

that CMASK is shifted four bit positions right and becomes F0H

if a cell boundary is crossed.

    Address... 179CH

    This is the Multicolour Mode version of the rou tine at

16D8H. It is identical to the Graphics Mode version  except that

CMASK is shifted four bit positions left and become s 0FH if a

cell boundary is crossed.

    Address... 17ACH

    This is the Multicolour Mode version of the LEF TC standard

routine. It is identical to the Graphics Mode versi on except

that CMASK is shifted four bit positions left and b ecomes 0FH

if a cell boundary is crossed.

    Address... 17C6H

    This is the Multicolour Mode version of the TDO WNC standard

routine. It is identical to the Graphics Mode versi on except

that the bottom boundary address is 0500H instead o f 1700H.

There is a bug in this routine which will cause it to behave

-86-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

unpredictably if MLTCGP, the Character Pattern Tabl e base

address, is changed from its normal value of zero. There should

be an EX DE,HL instruction inserted at address 17CE H.

    If the Character Pattern Table base is increase d the routine

will think it has reached the bottom of the screen when it

actually has not. This routine is used by the "PAIN T" statement

so the following demonstrates the fault:

        10 BASE(17)=&H1000

        20 SCREEN 3

        30 PSET(200,0)

        40 DRAW"D180L100U180R100"

        50 PAINT(150,90)

        60 GOTO 60

    Address... 17DCH

    This is the Multicolour Mode version of the DOW NC standard

routine, it is identical to the Graphics Mode versi on.

- 75 -

4. ROM BIOS

    Address... 17E3H

    This is the Multicolour Mode version of the TUP C standard

routine. It is identical to the Graphics Mode versi on except

that is has a bug as above, this time there should be an EX

DE,HL instruction at address 17EBH.

    If the Character Pattern Table base address is increased the

routine will think it is within the table when it h as actually

exceeded the top edge of the screen. This may be de monstrated

by removing the "R100" part of Line 40 in the previ ous program.

    Address... 17F8H

    This is the Multicolour Mode version of the UPC  standard

routine, it is identical to the Graphics Mode versi on.

    Address... 1809H

    Name...... NSETCX

    Entry..... HL=Pixel fill count

    Exit...... None

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to set the colour of multiple pixels

horizontally rightwards from the current pixel phys ical

address. Although its function can be duplicated by  the SETC

-87-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

and RIGHTC standard routines this would result in s ignificantly

slower operation. The supplied pixel count should b e chosen so

that the right-hand edge of the screen is not passe d as this

will produce anomalous behaviour. The current pixel  physical

address is unchanged by this routine.

    In Graphics Mode CMASK is first examined to det ermine the

number of pixels to the right within the current ch aracter

cell. Assuming the fill count is large enough these  are then

set (186CH). The remaining fill count is divided by  eight to

determine the number of whole character cells. Succ essive bytes

in the Character Pattern Table are then zeroed and the

corresponding bytes in the Colour Table set from AT RBYT to fill

these whole cells. The remaining fill count is then  converted

to a bit mask, using the seven byte table at 185DH,  and these

pixels are set (186CH).

    In Multicolour Mode control transfers to a sepa rate routine

(18BBH).

    Address... 186CH

    This routine sets up to eight pixels within a c ell to a

specified colour in Graphics Mode. ATRBYT contains the colour

code, register pair HL the address of the relevant byte in the

Character Pattern Table and register A a bit mask, 11100000 for

example, where every 1 specifies a bit to be set.

- 76 -

4. ROM BIOS

    If ATRBYT matches the existing 1 pixel colour i n the

corresponding Colour Table byte then each specified  bit is set

to 1 in the Character Pattern Table byte. If ATRBYT  matches the

existing 0 pixel colour in the corresponding Colour  Table byte

then each specified bit is set to 0 in the Characte r Pattern

Table byte.

    If ATRBYT does not match either of the existing  colours in

the Colour Table Byte then normally each specified bit is set

to 1 in the Character Pattern Table byte and the 1 pixel colour

changed in the Colour Table byte. However if this w ould result

in all bits being set to 1 in the Character Pattern  Table byte

then each specified bit is set to 0 and the 0 pixel  colour

changed in the Colour Table byte.

    Address... 18BBH

    This is the Multicolour Mode version of the NSE TCX standard

routine. The SETC and RIGHTC standard routines are called until

-88-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

the fill count is exhausted. Speed of operation is not so

important in Multicolour Mode because of the lower screen

resolution and the consequent reduction in the numb er of

operations required.

    Address... 18C7H

    Name...... GTASPC

    Entry..... None

    Exit...... DE=ASPCT1, HL=ASPCT2

    Modifies.. DE, HL

    Standard routine to return the "CIRCLE" stateme nt default

aspect ratios.

    Address... 18CFH

    Name...... PNTINI

    Entry..... A=Boundary colour (0 to 15)

    Exit...... Flag C if illegal colour

    Modifies.. AF

    Standard routine to set the boundary colour for  the "PAINT"

statement. In Multicolour Mode the supplied colour code is

placed in BDRATR. In Graphics Mode BDRATR is copied  from ATRBYT

as it is not possible to have separate paint and bo undary

colours.

    Address... 18E4H

    Name...... SCANR

    Entry..... B=Fill switch, DE=Skip count

    Exit...... DE=Skip remainder, HL=Pixel count

    Modifies.. AF, BC, DE, HL, EI

    Standard routine used by the "PAINT" statement handler to

search rightwards from the current pixel physical a ddress

until a colour code equal to BDRATR is found or the  edge of the

- 77 -

4. ROM BIOS

screen is reached. The terminating position becomes  the current

pixel physical address and the initial position is returned in

CSAVEA and CSAVEM. The size of the traversed region  is returned

in register pair HL and FILNAM+1. The traversed reg ion is

normally filled in but this can be inhibited, in Gr aphics Mode

only, by using an entry parameter of zero in regist er B. The

skip count in register pair DE determines the maxim um number

of pixels of the required colour that may be ignore d from the

initial starting position. This facility is used by  the "PAINT"

statement handler to search for gaps in a horizonta l boundary

blocking its upward progress.

-89-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 197AH

    Name...... SCANL

    Entry..... None

    Exit...... HL=Pixel count

    Modifies.. AF, BC, DE, HL, EI

    Standard routine to search leftwards from the c urrent pixel

physical address until a colour code equal to BDRAT R is found

or the edge of the screen is reached. The terminati ng position

becomes the current pixel physical address and the size of the

traversed region is returned in register pair HL. T he traversed

region is always filled in.

    Address... 19C7H

    This routine is used by the SCANL and SCANR sta ndard

routines to check the current pixel's colour agains t the

boundary colour in BDRATR.

    Address... 19DDH

    Name...... TAPOOF

    Entry..... None

    Exit...... None

    Modifies.. EI

    Standard routine to stop the cassette motor aft er data has

been written to the cassette. After a delay of 550 ms, on MSX

machines with one wait state, control drops into th e TAPIOF

standard routine.

    Address... 19E9H

    Name...... TAPIOF

    Entry..... None

    Exit...... None

    Modifies.. EI

    Standard routine to stop the cassette motor aft er data has

been read from the cassette. The motor relay is ope ned via the

PPI Mode Port. Note that interrupts, which must be disabled

during cassette data transfers for timing reasons, are enabled

as this routine terminates.

- 78 -

4. ROM BIOS

    Address... 19F1H

    Name...... TAPOON

    Entry..... A=Header length switch

    Exit...... Flag C if CTRL-STOP termination

    Modifies.. AF, BC, HL, DI

-90-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine to turn the cassette motor on,  wait 550 ms

for the tape to come up to speed and then write a h eader to the

cassette. A header is a burst of HI cycles written in front of

every data block so the baud rate can be determined  when the

data is read back.

    The length of the header is determined by the c ontents of

register A: 00H=Short header, NZ=Long header. The B ASIC

cassette statements "SAVE", "CSAVE" and "BSAVE" all  generate a

long header at the start of the file, in front of t he

identification block, and thereafter use short head ers between

data blocks. The number of cycles in the header is also

modified by the current baud rate so as to keep its  duration

constant:

        1200 Baud SHORT ... 3840 Cycles ... 1.5 Sec onds

        1200 Baud LONG ... 15360 Cycles ... 6.1 Sec onds

        2400 Baud SHORT ... 7936 Cycles ... 1.6 Sec onds

        2400 Baud LONG ... 31744 Cycles ... 6.3 Sec onds

    After the motor has been turned on and the dela y has expired

the contents of HEADER are multiplied by two hundre d and fifty-

six and, if register A is non-zero, by a further fa ctor of four

to produce the cycle count. HI cycles are then gene rated

(1A4DH) until the count is exhausted whereupon cont rol

transfers to the BREAKX standard routine. Because t he CTRL-STOP

key is only examined at termination it is impossibl e to break

out part way through this routine.

    Address... 1A19H

    Name...... TAPOUT

    Entry..... A=Data byte

    Exit...... Flag C if CTRL-STOP termination

    Modifies.. AF, B, HL

    Standard routine to write a single byte of data  to the

cassette. The MSX ROM uses a software driven FSK (F requency

Shift Keyed) method for storing information on the cassette. At

the 1200 baud rate this is identical to the Kansas City

Standard used by the BBC for the distribution of BA SICODE

programs.

    At 1200 baud each 0 bit is written as one compl ete 1200 Hz LO

cycle and each 1 bit as two complete 2400 Hz HI cyc les. The data

rate is thus constant as 0 and 1 bits have the same  duration.

When the 2400 baud rate is selected the two frequen cies change

to 2400 Hz and 4800 Hz but the format is otherwise unchanged.

- 79 -

4. ROM BIOS

-91-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    A byte of data is written with a 0 start bit (1 A50H), eight

data bits with the least significant bit first, and  two 1 stop

bits (1A40H). At the 1200 baud rate a single byte w ill have a

nominal duration of 11 x 833 µs = 9.2 ms. After the  stop bits

have been written control transfers to the BREAKX s tandard

routine to check the CTRL-STOP key. The byte 43H is  shown below

as it would be written to cassette:

      +-+++++++++ +-+ +-+ +-+ +-+++++ +-+++++++++

      ¦ ¦¦¦¦¦¦¦¦¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦¦¦¦¦ ¦ ¦¦¦¦¦¦¦¦¦

    --+ +++++++++-+ +-+ +-+ +-+ +++++-+ +++++++++

    ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦   ¦

    START 0   1   2   3   4   5   6   7 STOP STOP

    1 = two "short" transitions (as STOP BITS)

    0 = one "long" transition (as START BIT)

Figure 39: Cassette Data Byte

    It is important not to leave too long an interv al between bytes

when writing data as this will increase the error r ate. An

inter-byte gap of 80 µs, for example, produces a re ad failure

rate of approximately twelve percent. If a substant ial amount

of processing is required between each byte then bu ffering

should be used to lump data into headered blocks. T he BASIC

"SAVE" format is of this type.

    Address... 1A39H

    This routine writes a single LO cycle with a le ngth of

approximately 816 µs to the cassette. The length of  each half of

the cycle is taken from LOW and control transfers t o the

general cycle generator (1A50H).

    Address... 1A40H

    This routine writes two HI cycles to the casset te. The first

cycle is generated (1A4DH) followed by a 17 µs dela y and then

the second cycle (1A4DH).

    Address... 1A4DH

    This routine writes a single HI cycle with a le ngth of

approximately 396 µs to the cassette. The length of  each half of

the cycle is taken from HIGH and control drops into  the general

cycle generator.

    Address... 1A50H

    This routine writes a single cycle to the casse tte. The

length of the cycle's first half is supplied in reg ister L and

its second half in register H. The first length is counted down

and then the Cas Out bit set via the PPI Mode Port.  The second

length is counted down and the Cas Out bit reset.

-92-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 80 -

4. ROM BIOS

    On all MSX machines the Z80 runs at a clock fre quency of

3.579545 MHz (280 ns) with one wait state during th e M1 cycle. As

this routine counts every 16T states each unit incr ement in the

length count represents a period of 4.47 µs. There is also a

fixed overhead of 20.7 µs associated with the routi ne whatever

the length count.

    Address... 1A63H

    Name...... TAPION

    Entry..... None

    Exit...... Flag C if CTRL-STOP termination

    Modifies.. AF, BC, DE, HL, DI

    Standard routine to turn the cassette motor on,  read the

cassette until a header is found and then determine  the baud

rate. Successive cycles are read from the cassette and the

length of each one measured (1B34H). When 1,111 cyc les have

been found with less than 35 µs variation in their lengths a

header has been located.

    The next 256 cycles are then read (1B34H) and a veraged to

determine the cassette HI cycle length. This figure  is

multiplied by 1.5 and placed in LOWLIM where it def ines the

minimum acceptable length of a 0 start bit. The HI cycle length

is placed in WINWID and will be used to discriminat e between LO

and HI cycles.

    Address... 1ABCH

    Name...... TAPIN

    Entry..... None

    Exit...... A=Byte read, Flag C if CTRL-STOP or I/O error

    Modifies.. AF, BC, DE, L

    Standard routine to read a byte of data from th e cassette.

The cassette is first read continuously until a sta rt bit is

found. This is done by locating a negative transiti on,

measuring the following cycle length (1B1FH) and co mparing this

to see if it is greater than LOWLIM.

    Each of the eight data bits is then read by cou nting the

number of transitions within a fixed period of time  (1B03H). If

zero or one transitions are found it is a 0 bit, if  two or

three are found it is a 1 bit. If more than three t ransitions

are found the routine terminates with Flag C as thi s is

presumed to be a hardware error of some sort. After  the value

of each bit has been determined a further one or tw o

transitions are read (1B23H) to retain synchronizat ion. With an

odd transition count one more will be read, with an  even

-93-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

transition count two more.

    Address... 1B03H

    This routine is used by the TAPIN standard rout ine to count

the number of cassette transitions within a fixed p eriod of

- 81 -

4. ROM BIOS

time. The window duration is contained in WINWID an d is

approximately 1.5 times the length of a HI cycle as  shown

below:

     +-- window --+

     ¦            ¦

    -+       +-------+

     ¦       ¦       ¦  LO Cycle

     ¦       ¦       ¦

     +-------+       +-

    -+   +---+   +---+

     ¦   ¦   ¦   ¦   ¦  HI Cycles

     ¦   ¦   ¦   ¦   ¦

     +---+   +---+   +-

Figure 40: Cassette Window

    The Cas Input bit is continuously sampled via P SG Register 14

and compared with the previous reading held in regi ster E. Each

time a change of state is found register C is incre mented. The

sampling rate is once every 17.3 µs so the value in  WINWID,

which was determined by the TAPION standard routine  with a

count rate of 11.45 µs, is effectively multiplied o ne and a half

times.

    Address... 1B1FH

    This routine measures the time to the next cass ette input

transition. The Cassette Input bit is continuously sampled via

PSG Register 14 until it changes from the state sup plied in

register E. The state flag is then inverted and the  duration

count returned in register C, each unit increment r epresents a

period of 11.45 µs.

    Address... 1B34H

    This routine measures the length of a complete cassette

cycle from negative transition to negative transiti on. The

-94-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Cassette Input bit is sampled via PSG Register 14 u ntil it goes

to zero. The transition flag in register E is set t o zero and

the time to the positive transition measured (1B23H ). The time

to the negative transition is then measured (1B25H)  and the

total returned in register C.

    Address... 1B45H

    Name...... OUTDO

    Entry..... A=Character to output

    Exit...... None

    Modifies.. EI

    Standard routine used by the BASIC Interpreter to output a

character to the current device. The ISFLIO standar d routine is

- 82 -

4. ROM BIOS

first used to check whether output is currently dir ected to an

I/O buffer, if so control transfers to the sequenti al output

driver (6C48H) via the CALBAS standard routine. If PRTFLG is

zero control transfers to the CHPUT standard routin e to output

the character to the screen. Assuming the printer i s active

RAWPRT is checked. If this is non-zero the characte r is passed

directly to the printer (1BABH), otherwise control drops into

the OUTDLP standard routine.

    Address... 1B63H

    Name...... OUTDLP

    Entry..... A=Character to output

    Exit...... None

    Modifies.. EI

    Standard routine to output a character to the p rinter. If

the character is a TAB code (09H) spaces are issued  to the

OUTDLP standard routine until LPTPOS is a multiple of eight

(0, 8, 16 etc.). If the character is a CR code (0DH ) LPTPOS is

zeroed if it is any other control code LPTPOS is un affected,

if it is a displayable character LPTPOS is incremen ted.

    If NTMSXP is zero, meaning an MSX-specific prin ter is

connected, the character is passed directly to the printer

(1BABH). Assuming a normal printer is connected the  CNVCHR

standard routine is used to check for graphic chara cters. If

the character is a header code (01H) the routine te rminates

with no action. If it is a converted graphic charac ter it is

replaced by a space, all other characters are passe d to the

printer (1BACH).

    Address... 1B97H

This twenty byte table is used by the keyboard deco der to

find the correct routine for a given key number:

-95-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        KEY NUMBER  TO     FUNCTION

        ---------------------------------------

        00H to 2FH  0F83H  Rows 0 to 5

        30H to 32H  0F10H  SHIFT, CTRL, GRAPH

        33H         0F36H  CAP

        34H         0F10H  CODE

        35H to 39H  0FC3H  F1 to F5

        3AH to 3BH  0F10H  ESC, TAB

        3CH         0F46H  STOP

        3DH to 40H  0F10H  BS, CR, SEL, SPACE

        41H         0F06H  HOME

        42H to 57H  0F10H  INS, DEL, CURSOR

    Address... 1BABH

This routine is used by the OUTDLP standard routine  to pass

a character to the printer. It is sent via the LPTO UT standard

routine, if this returns Flag C control transfers t o the

- 83 -

4. ROM BIOS

"Device I/O error" generator (73B2H) via the CALBAS  standard

routine.

    Address... 1BBFH

    The following 2 KB contains the power-up charac ter set. The

first eight bytes contain the pattern for character  code 00H,

the second eight bytes the pattern for character co de 01H and

so on to character code FFH.

    Address... 23BFH

    Name...... PINLIN

    Entry..... None

    Exit...... HL=Start of text, Flag C if CTRL-STO P termination

    Modifies.. AF, BC, DE, HL, EI

    Standard routine used by the BASIC Interpreter Mainloop to

collect a logical line of text from the console. Co ntrol

transfers to the INLIN standard routine just after the point

where the previous line has been cut (23E0H).

    Address... 23CCH

    Name...... QINLIN

    Entry..... None

    Exit...... HL=Start of text, Flag C if CTRL-STO P termination

    Modifies.. AF, BC, DE, HL, EI

-96-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Standard routine used by the "INPUT" statement handler to

collect a logical line of text from the console. Th e characters

"? " are displayed via the OUTDO standard routine a nd control

drops into the INLIN standard routine.

    Address... 23D5H

    Name...... INLIN

    Entry..... None

    Exit...... HL=Start of text, Flag C if CTRL-STO P termination

    Modifies.. AF, BC, DE, HL, EI

    Standard routine used by the "LINE INPUT" state ment handler

to collect a logical line of text from the console.  Characters

are read from the keyboard until either the CR or C TRL-STOP

keys are pressed. The logical line is then read fro m the screen

character by character and placed in the Workspace Area text

buffer BUF.

    The current screen coordinates are first taken from CSRX and

CSRY and placed in FSTPOS. The screen row immediate ly above the

current one then has its entry in LINTTB made non-z ero (0C29H)

to stop it extending logically into the current row .

    Each keyboard character read via the CHGET stan dard routine

is checked (0919H) against the editing key table at  2439H.

Control then transfers to one of the editing routin es or to the

default key handler (23FFH) as appropriate. This pr ocess

- 84 -

4. ROM BIOS

continues until Flag C is returned by the CTRL-STOP  or CR

routines. Register pair HL is then set to point to the start of

BUF and the routine terminates. Note that the carry , flag is

cleared when Flag NZ is also returned to distinguis h between a

CR or protected CTRL-STOP termination and a normal CTRL-STOP

termination.

    Address... 23FFH

    This routine processes all characters for the I NLIN standard

routine except the special editing keys. If the cha racter is a

TAB code (09H) spaces are issued (23FFH) until CSRX  is a

multiple of eight plus one (columns 1, 9, 17, 25, 3 3). If the

character is a graphic header code (01H) it is simp ly echoed to

the OUTDO standard routine. All other control codes  smaller

than 20H are echoed to the OUTDO standard routine a fter which

INSFLG and CSTYLE are zeroed. For the displayable c haracters

INSFLG is first checked and a space inserted (24F2H ) if

applicable before the character is echoed to the OU TDO standard

routine.

-97-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 2439H

    This table contains the special editing keys re cognized by

the INLIN standard routine together with the releva nt

addresses:

        CODE TO    FUNCTION

        ------------------------------------------- -

        08H  2561H BS, backspace

        12H  24E5H INS, toggle insert mode

        1BH  23FEH ESC, no action

        02H  260EH CTRL-B, previous word

        06H  25F8H CTRL-F, next word

        0EH  25D7H CTRL-N, end of logical line

        05H  25B9H CTRL-E, clear to end of line

        03H  24C5H CTRL-STOP, terminate

        0DH  245AH CR, terminate

        15H  25AEH CTRL-U, clear line

        7FH  2550H DEL, delete character

    Address... 245AH

    This routine performs the CR operation for the INLIN

standard routine. The starting coordinates of the l ogical line

are found (266CH) and the cursor removed from the s creen

(0A2EH). Up to 254 characters are then read from th e VDP VRAM

(0BD8H) and placed in BUF. Any null codes (00H) are  ignored,

any characters smaller than 20H are replaced by a g raphic

header code (01H) and the character itself with 40H  added. As

the end of each physical row is reached LINTTB is c hecked

(0C1DH) to see whether the logical line extends to the next

physical row. Trailing spaces are then stripped fro m BUF and a

zero byte added as an end of text marker. The curso r is

- 85 -

4. ROM BIOS

restored to the screen (09E1H) and its coordinates set to the

last physical row of the logical line via the POSIT  standard

routine. A LF code is issued to the OUTDO standard routine,

INSFLG is zeroed and the routine terminates with a CR code

(0DH) in register A and Flag NZ,C. This CR code wil l be echoed

to the screen by the INLIN standard routine mainloo p just

before it terminates.

    Address... 24C5H

    This routine performs the CTRL-STOP operation f or the INLIN

standard routine. The last physical row of the logi cal line is

found by examining LINTTB (0C1DH), CSTYLE is zeroed , a zero

-98-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

byte is placed at the start of BUF and all music va riables are

cleared via the GICINI standard routine. TRPTBL is then

examined (0454H) to see if an "ON STOP" statement i s active, if

so the cursor is reset (24AFH) and the routine term inates with

Flag NZ,C. BASROM is then checked to see whether a protected

ROM is running, if so the cursor is reset (24AFH) a nd the

routine terminates with Flag NZ,C. Otherwise the cu rsor is

reset (24B2H) and the routine terminates with Flag Z,C.

    Address... 24E5H

    This routine performs the INS operation for the  INLIN

standard routine. The current state of INSFLG is in verted and

control terminates via the CSTYLE setting routine ( 242CH).

    Address... 24F2H

    This routine inserts a space character for the default key

section of the INLIN standard routine. The cursor i s removed

(0A2EH) and the current cursor coordinates taken fr om CSRX and

CSRY. The character at this position is read from t he VDP VRAM

(0BD8H) and replaced with a space (0BE6H). Successi ve

characters are then copied one column position to t he right

until the end of the physical row is reached.

    At this point LINTTB is examined (0C1DH) to det ermine

whether the logical line is extended, if so the pro cess

continues on the next physical row. Otherwise the c haracter

taken from the last column position is examined, if  this is a

space the routine terminates by replacing the curso r (09E1H).

Otherwise the physical row's entry in LINTTB is zer oed to

indicate an extended logical line. The number of th e next

physical row is compared with the number of rows on  the screen

(0C32H). If the next row is the last one the screen  is scrolled

up (0A88H), otherwise a blank row is inserted (0AB7 H) and the

copying process continues.

    Address... 2550H

    This routine performs the DEL operation for the  INLIN

standard routine. If the current cursor position is  at the

- 86 -

4. ROM BIOS

rightmost column and the logical line is not extend ed no action

is taken other than to write a space to the VDP VRA M (2595H).

Otherwise a RIGHT code (1CH) is issued to the OUTDO  standard

routine and control drops into the BS routine.

    Address... 2561H

-99-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine performs the BS operation for the INLIN

standard routine. The cursor is first removed (0A2E H) and the

cursor column coordinate decremented unless it is a t the

leftmost position and the previous row is not exten ded.

Characters are then read from the VDP VRAM (0BD8H) and written

back one position to the left (0BE6H) until the end  of the

logical line is reached. At this point a space is w ritten to

the VDP VRAM (0BE6H) and the cursor character is re stored

(09E1H).

    Address... 25AEH

    This routine performs the CTRL-U operation for the INLIN

standard routine. The cursor is removed (0A2EH) and  the start

of the logical line located (266CH) and placed in C SRX and

CSRY. The entire logical line is then cleared (25BE H).

    Address... 25B9H

    This routine performs the CTRL-E operation for the INLIN

standard routine. The cursor is removed (0A2EH) and  the

remainder of the physical row cleared (0AEEH). This  process is

repeated for successive physical rows until the end  of the

logical line is found in LINTBB (0C1DH). The cursor  is then

restored (09E1H), INSFLG zeroed and CSTLYE reset to  a block

cursor (242DH).

    Address... 25D7H

    This routine performs the CTRL-N operation for the INLIN

standard routine. The cursor is removed (0A2EH) and  the last

physical row of the logical line found by examinati on of LINTTB

(0C1DH). Starting at the rightmost column of this p hysical row

characters are read from the VDP VRAM (0BD8H) until  a non-space

character is found. The cursor coordinates are then  set one

column to the right of this position (0A5BH) and th e routine

terminates by restoring the cursor (25CDH).

    Address... 25F8H

    This routine performs the CTRL-F operation for the INLIN

standard routine. The cursor is removed (0A2EH) and  moved

successively right (2624H) until a non-alphanumeric  character

is found. The cursor is then moved successively rig ht (2624H)

until an alphanumeric character is found. The routi ne

terminates by restoring the cursor (25CDH).

- 87 -

4. ROM BIOS

-100-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 260EH

    This routine performs the CTRL-B operation for the INLIN

standard routine. The cursor is removed (0A2EH) and  moved

successively left (2634H) until an alphanumeric cha racter is

found. The cursor is then moved successively left ( 2634H) until

a non-alphanumeric character is found and then move d one

position right (0A5BH). The routine terminates by r estoring the

cursor (25CDH).

    Address... 2624H

    This routine moves the cursor one position righ t (0A5BH),

loads register D with the rightmost column number, register E

with the bottom row number and then tests for an al phanumeric

character at the cursor position (263DH).

    Address... 2634H

    This routine moves the cursor one position left  (0A4CH),

loads register D with the leftmost column number an d register E

with the top row number. The current cursor coordin ates are

compared with these values and the routine terminat es Flag Z if

the cursor is at this position. Otherwise the chara cter at this

position is read from the VDP VRAM (0BD8H) and chec ked to see

if it is alphanumeric. If so the routine terminates  Flag NZ,C

otherwise it terminates Flag NZ,NC.

    The alphanumeric characters are the digits "0" to "9" and

the letters "A" to "Z" and "a" to "z". Also include d are the

graphics characters 86H to 9FH and A6H to FFH, thes e were

originally Japanese letters and should have been ex cluded

during the conversion to the UK ROM.

    Address... 266CH

    This routine finds the start of a logical line and returns

its screen coordinates in register pair HL. Each ph ysical row

above the current one is checked via the LINTTB tab le (0C1DH)

until a non-extended row is found. The row immediat ely below

this on the screen is the start of the logical line  and its row

number is placed in register L. This is then compar ed with

FSTPOS, which contains the row number when the INLI N standard

routine was first entered, to see if the cursor is still on the

same line. If so the column coordinate in register H is set to

its initial position from FSTPOS. Otherwise registe r H is set

to the leftmost position to return the whole line.

        Address...2680H, JP to power-up initialize routine (7C76H).

        Address...2683H, JP to the SYNCHR standard routine (558CH).

        Address...2686H, JP to the CHRGTR standard routine (4666H).

        Address...2689H, JP to the GETYPR standard routine (5597H).

-101-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 88 -

                       5. ROM BASIC INTERPRETER

    Microsoft BASIC has evolved over the years to i ts present

position as the industry standard. It was originall y written

for the 8080 Microprocessor and even the MSX versio n is held in

8080 Assembly Language form. This process of contin uous

development means that there are less Z80-specific instructions

than would be expected in a more modern program. It  also means

that numerous changes have been made and the result  is a rather

convoluted program. The structure of the Interprete r makes it

unlikely that an application program will be able t o use its

many facilities. However most programs will need to  cooperate

with it to some extent so this chapter gives a deta iled

description of its operation.

    There are four readily identifiable areas of im portance

within the Interpreter, the one most familiar to an y user is

the Mainloop (4134H). This collects numbered lines of text from

the console and places them in order in the Program  Text Area

of memory until a direct statement is received.

    The Runloop (4601H) is responsible for the exec ution of a

program. It examines the first token of each progra m line and

calls the appropriate routine to process the remain der of the

statement. This continues until no more program tex t remains,

control then returns to the Mainloop.

    The analysis of numeric or string operands with in a

statement is performed by the Expression Evaluator (4C64H).

Each expression is composed of factors, in turn ana lyzed by the

Factor Evaluator (4DC7H), which are linked together  by dyadic

infix operators. As there are several types of oper and, notably

line numbers, which cannot form part of an expressi on in

Microsoft BASIC the term "evaluated" is only used t o refer to

those that can. Otherwise a term such as "computed"  will be

used.

    One point to note when examining the Interprete r in detail

is that it contains a lot of trick code. The writer s seem

particularly fond of jumping into the middle of ins tructions to

provide multiple entry points to a routine. As an e xample take

the instruction:

        3E D1       Normal: LD   A,0D1H

-102-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    When encountered in the usual way this will of course load the

accumulator with the value D1H. However if it is en tered at

"Normal" then it will be executed as a POP DE instr uction.

The Interpreter has many similarly obscure sections .

- 89 -

5. ROM BASIC INTERPRETER

    Address... 268CH

    This routine is used by the Expression Evaluato r to subtract

two double precision operands. The first operand is  contained

in DAC and the second in ARG, the result is returne d in DAC.

The second operand's mantissa sign is inverted and control

drops into the addition routine.

    Address... 269AH

    This routine is used by the Expression Evaluato r to add two

double precision operands. The first operand is con tained in

DAC and the second in ARG, the result is returned i n DAC. If

the second operand is zero the routine terminates w ith no

action, if the first operand is zero the second ope rand is

copied to DAC (2F05H) and the routine terminates. T he two

exponents are compared, if they differ by more than  10^15 the

routine terminates with the larger operand as the r esult.

Otherwise the difference between the two exponents is used to

align the mantissae by shifting the smaller one rig htwards

(27A3H), for example:

        19.2100 = .1921*10^2 = .192100

        + .7436 = .7436*10^0 = .007436

    If the two mantissa signs are equal the mantiss ae are then

added (2759H), if they are different the mantissae are

subtracted (276BH). The exponent of the result is s imply the

larger of the two original exponents. If an overflo w was

produced by addition the result mantissa is shifted  right one

digit (27DBH) and the exponent incremented. If lead ing zeroes

were produced by subtraction the result mantissa is

renormalized by shifting left (2797H). The guard by te is then

examined and the result rounded up if the fifteenth  digit is

equal to or greater than five.

    Address... 2759H

    This routine adds the two double precision mant issae

contained in DAC and ARG and returns the result in DAC.

Addition commences at the least significant positio ns, DAC+7

and ARG+7, and proceeds two digits at a time for th e seven

-103-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

bytes.

    Address... 276BH

    This routine subtracts the two double precision  mantissae

contained in DAC and ARG and returns the result in DAC.

Subtraction commences at the guard bytes, DAC+8 and  ARG+8, and

proceeds two digits at a time for the eight bytes. If the

result underflows it is corrected by subtracting it  from zero

and inverting the mantissa sign, for example:

        0.17-0.85 = 0.32 = -0.68

- 90 -

5. ROM BASIC INTERPRETER

    Address... 2797H

    This routine shifts the double precision mantis sa contained

in DAC one digit left.

    Address... 27A3H

    This routine shifts a double precision mantissa  right. The

number of digits to shift is supplied in register A , the

address of the mantissa's most significant byte is supplied in

register pair HL. The digit count is first divided by two to

separate the byte and digit counts. The required nu mber of

whole bytes are then shifted right and the most sig nificant

bytes zeroed. If an odd number of digits was specif ied the

mantissa is then shifted a further one digit right.

    Address... 27E6H

    This routine is used by the Expression Evaluato r to multiply

two double precision operands. The first operand is  contained

in DAC and the second in ARG, the result is returne d in DAC. If

either operand is zero the routine terminates with a zero

result (2E7DH). Otherwise the two exponents are add ed to

produce the result exponent. If this is smaller tha n 10^-63 the

routine terminates with a zero result, if it is gre ater than

10^63 an "Overflow error" is generated (4067H). The  two

mantissa signs are then processed to yield the sign  of the

result, if they are the same the result is positive , if they

differ it is negative.

    Even though the mantissae are in BCD format the y are

multiplied using the normal binary add and shift me thod. To

accomplish this the first operand is successively m ultiplied by

two (288AH) to produce the constants X*80, X*40, X* 20, X*10,

X*8, X*4, X*2, and X in the HOLD8 buffer. The secon d operand

remains in ARG and DAC is zeroed to function as the  product

-104-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

accumulator. Multiplication proceeds by taking succ essive pairs

of digits from the second operand starting with the  least

significant pair. For each 1 bit in the digit pair the

appropriate multiple of the first operand is added to the

product. As an example the single multiplication 18 23*96 would

produce:

        1823*10010110=(1823*80)+(1823*10)+(1823*4)+ (1823*2)

    As each digit pair is completed the product is shifted two

digits right. When all seven digit pairs have been processed

the routine terminates by renormalizing and roundin g up the

product (26FAH).

    The time required for a multiplication depends largely upon

the number of 1 bits in the second operand. The wor st case,

when all the digits are sevens, can take up to 11 m s compared to

the average of approximately 7 ms.

- 91 -

5. ROM BASIC INTERPRETER

    Address... 288AH

    This routine doubles a double precision mantiss a three

successive times to produce the products X*2, X*4 a nd X*8. The

address of the mantissa's least significant byte is  supplied in

register pair DE. The products are stored at succes sively lower

addresses commencing immediately below the operand.

    Address... 289FH

    This routine is used by the Expression Evaluato r to divide

two double precision operands. The first operand is  contained

in DAC and the second in ARG, the result is returne d in DAC. If

the first operand is zero the routine terminates wi th a zero

result if the second operand is zero a "Division by  zero"

error is generated (4058H). Otherwise the two expon ents are

subtracted to produce the result exponent and the t wo mantissa

signs processed to yield the sign of the result. If  they are

the same the result is positive, if they differ it is negative.

    The mantissae are divided using the normal long  division

method. The second operand is repeatedly subtracted  from the

first until underflow to produce a single digit of the result.

The second operand is then added back to restore th e remainder

(2761H), the digit is stored in HOLD and the first operand is

shifted one digit left. When the first operand has been

completely shifted out the result is copied from HO LD to DAC

then renormalized and rounded up (2883H). The time required for

-105-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

a division reaches a maximum of approximately 25 ms  when the

first operand is composed largely of nines and the second

operand of ones. This will require the greatest num ber of

subtractions.

    Address... 2993H

    This routine is used by the Factor Evaluator to  apply the

"COS" function to a double precision operand contai ned in DAC.

The operand is first multiplied (2C3BH) by 1/(2*PI)  so that

unity corresponds to a complete 360 degree cycle. T he operand

then has 0.25 (90 degrees) subtracted (2C32H),    i ts mantissa

sign is inverted (2E8DH) and control drops into the  "SIN"

routine.

    Address... 29ACH

    This routine is used by the Factor Evaluator to  apply the

"SIN" function to a double precision operand contai ned in DAC.

The operand is first multiplied (2C3BH) by 1/(2*PI)  so that

unity corresponds to a complete 360 degree cycle. A s the

function is periodic only the fractional part of th e operand is

now required. This is extracted by pushing the oper and (2CCCH)

obtaining the integer part (30CFH) and copying it t o ARG

(2C4DH), popping the whole operand to DAC (2CE1H) a nd then

subtracting the integer part (268CH).

- 92 -

5. ROM BASIC INTERPRETER

    The first digit of the mantissa is then examine d to

determine the operand's quadrant. If it is in the f irst

quadrant it is unchanged. If it is in the second qu adrant it is

subtracted from 0.5 (180 degrees) to reflect it abo ut the Y

axis. If it is in the third quadrant it is subtract ed from 0.5

(180 degrees) to reflect it about the X axis. If it  is in the

fourth quadrant 1.0 (360 degrees) is subtracted to reflect it

about both axes. The function is then computed by p olynomial

approximation (2C88H) using the list of coefficient s at 2DEFH.

These are the first eight terms in the Taylor serie s X-

(X^3/3!)+(X^5/5!)-(X^7/7!) ... with the coefficient s multiplied

by successive factors of 2*PI to compensate for the  initial

scaling.

    Address... 29FBH

    This routine is used by the Factor Evaluator to  apply the

"TAN" function to a double precision operand contai ned in DAC.

The function is computed using the trigonometric id entity

TAN(X) = SIN(X)/COS(X).

    Address... 2A14H

-106-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by the Factor Evaluator to  apply the

"ATN" function to a double precision operand contai ned in DAC.

The function is computed by polynomial approximatio n (2C88H)

using the list of coefficients at 2E30H. These are the first

eight terms in the Taylor series X-(x^3/3)+(X^5/5)- (X^7/7) ...

with the coefficients modified slightly to telescop e the

series.

    Address... 2A72H

    This routine is used by the Factor Evaluator to  apply the

"LOG" function to a double precision operand contai ned in DAC.

The function is computed by polynomial approximatio n using the

list of coefficients at 2DA5H.

    Address... 2AFFH

    This routine is used by the Factor Evaluator to  apply the

"SQR" function to a double precision operand contai ned in DAC.

The function is computed using the Newton-Raphson p rocess, an

equivalent BASIC program is:

        10 INPUT"NUMBER";X

        20 GUESS=10

        30 FOR N=1 To 7

        40 GUESS=(GUESS+X/GUESS)/2

        50 NEXT N

        60 PRINT GUESS

        70 PRINT SQR(X)

The above program uses a fixed initial guess. While  this is

- 93 -

5. ROM BASIC INTERPRETER

accurate over a limited range maximum accuracy will  only be

attained if the initial guess is near the root. The  method used

by the ROM is to halve the exponent, with rounding up, and then

to divide the first two digits of the operand by fo ur and

increment the first digit.

    Address... 2B4AH

    This routine is used by the Factor Evaluator to  apply the

"EXP" function to a double precision operand contai ned in DAC.

The operand is first multiplied by 0.4342944819, wh ich is

LOG(e) to Base 10, so that the problem becomes comp uting 10^X

rather than e^X. This results in considerable simpl ification as

the integer part can be dealt with easily. The func tion is then

-107-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

computed by polynomial approximation using the list  of

coefficients at 2D6BH.

    Address... 2BDFH

    This routine is used by the Factor Evaluator to  apply the

"RND" function to a double precision operand contai ned in DAC.

If the operand is zero the current random number is  copied to

DAC from RNDX and the routine terminates. If the op erand is

negative it is copied to RNDX to set the current ra ndom number.

The new random number is produced by copying RNDX t o HOLD, the

constant at 2CF9H to ARG, the constant at 2CF1H to DAC and then

multiplying (282EH). The fourteen least significant  digits of

the double length product are copied to RNDX to for m the

mantissa of the new random number. The exponent byt e in DAC is

set to 10^0 to return a value in the range 0 to 1.

    Address... 2C24H

    This routine is used by the "NEW", "CLEAR" and "RUN"

statement handlers to initialize RNDX with the cons tant at

2D01H.

    Address... 2C2CH

    This routine adds the constant whose address is  supplied in

register pair HL to the double precision operand co ntained in

DAC.

    Address... 2C32H

    This routine subtracts the constant whose addre ss is

supplied in register pair HL from the double precis ion operand

contained in DAC.

    Address... 2C3BH

    This routine multiplies the double precision op erand

contained in DAC by the constant whose address is s upplied in

register pair HL.

- 94 -

5. ROM BASIC INTERPRETER

    Address... 2C41H

    This routine divides the double precision opera nd contained

in DAC by the constant whose address is supplied in  register

pair HL.

    Address... 2C47H

-108-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine performs the relation operation on  the double

precision operand contained in DAC and the constant  whose

address is supplied in register pair HL.

    Address... 2C4DH

    This routine copies an eight byte double precis ion operand

from DAC to ARG.

    Address... 2C59H

    This routine copies an eight byte double precis ion operand

from ARG to DAC.

    Address... 2C6FH

    This routine exchanges the eight bytes in DAC w ith the eight

bytes currently on the bottom of the Z80 stack.

    Address... 2C80H

    This routine inverts the mantissa sign of the o perand

contained in DAC (2E8DH). The same address is then pushed onto

the stack to restore the sign when the caller termi nates.

    Address... 2C88H

    This routine generates an odd series based on t he double

precision operand contained in DAC. The series is o f the form:

        X^1*(Kn)+X^3*(Kn-1)+x^5*(Kn-2)+X^5*(Kn-3) . ..

    The address of the coefficient list is supplied  in register

pair HL. The first byte of the list contains the co efficient

count, the double precision coefficients follow wit h K1 first

and Kn last. The even series is generated (2C9AH) a nd

multiplied (27E6H) by the original operand.

    Address... 2C9AH

    This routine generates an even series based on the double

precision operand contained in DAC. The series is o f the form:

        X^0*(Kn)+x^2*(Kn-1)+x^4*(Kn-2)+x^6*(Kn-3) . ..

    The address of the coefficient list is supplied  in register

- 95 -

5. ROM BASIC INTERPRETER

pair HL. The first byte of the list contains the co efficient

-109-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

count, the double precision coefficients follow wit h K1 first

and Kn last. The method used to compute the polynom ial is known

as Horner's method. It only requires one multiplica tion and one

addition per term, the BASIC equivalent is:

        10 X=X*X

        20 PRODUCT=0

        30 RESTORE 100

        40 READ COUNT

        50 FOR N=1 TO COUNT

        60 READ K

        70 PRODUCT= ( PRODUCT*X ) +K

        80 NEXT N

        90 END

        100 DATA 8

        110 DATA Kn-7

        120 DATA Kn-6

        130 DATA Kn-5

        140 DATA Kn-4

        150 DATA Kn-3

        160 DATA Kn-2

        170 DATA Kn-1

        180 DATA Kn

    The polynomial is processed from the final coef ficient through

to the first coefficient so that the partial produc t can be

used to save unnecessary operations.

    Address... 2CC7H

    This routine pushes an eight byte double precis ion operand

from ARG onto the Z80 stack.

    Address... 2CCCH

    This routine pushes an eight byte double precis ion operand

from DAC onto the Z80 stack.

    Address... 2CDCH

    This routine pops an eight byte double precisio n operand

from the Z80 stack into ARG.

    Address... 2CE1H

    This routine pops an eight byte double precisio n operand

from the Z80 stack into DAC.

    Address... 2CF1H

    This table contains the double precision consta nts used by

the math routines. The first three constants have z ero in the

exponent position as they are in a special intermed iate form

-110-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 96 -

5. ROM BASIC INTERPRETER

used by the random number generator.

        ADDR.  CONSTANT                   ADDR. CON STANT

        ------------------------------------------- ------------------

        2CF1H  .14389820420821 RND        2DAEH  6. 2503651127908

        2CF9H  .21132486540519 RND        2DB6H -13 .682370241503

        2D01H  .40649651372358            2DBEH  8. 5167319872389

        2D09H  .43429448190324 LOG(e)     2DC6H  5               LOG

        2D11H  .50000000000000            2DC7H  1. 0000000000000

        2D13H  .00000000000000            2DCFH -13 .210478350156

        2D1BH  1.0000000000000            2DD7H  47 .925256043873

        2D23H  .25000000000000            2DDFH -64 .906682740943

        2D2BH  3.1622776601684 SQR(10)    2DE7H  29 .415750172323

        2D33H  .86858896380650 2^LOG(e)   2DEFH  8               SIN

        2D3BH  2.3025850929940 1/LOG(e)   2DF0H -.6 9215692291809

        2D43H  1.5707963267949 PI/2       2DF8H  3. 8172886385771

        2D4BH  .26794919243112 TAN(PI/12) 2E00H -15 .094499474801

        2D53H  1.7320508075689 TAN(PI/3)  2E08H  42 .058689667355

        2D5BH  .52359877559830 PI/6       2E10H -76 .705859683291

        2D63H  .15915494309190 1/(2^PI)   2E18H  81 .605249275513

        2D6BH  4               EXP        2E20H -41 .341702240398

        2D6CH  1.0000000000000            2E28H  6. 2831853071796

        2D74H  159.37415236031            2E30H 8                ATN

        2D7CH  2709.3169408516            2E31H -.0 5208693904000

        2D84H  4497.6335574058            2E39H  .0 7530714913480

        2D8CH  3               EXP        2E41H -.0 9081343224705

        2D8DH  18.312360159275            2E49H  .1 1110794184029

        2D95H  831.40672129371            2E51H -.1 4285708554884

        2D9DH  5178.0919915162            2E59H  .1 9999999948967

        2DA5H  4               LOG        2E61H -.3 3333333333160

        2DA6H -.71433382153226            2E69H  1. 0000000000000

    Address... 2E71H

    This routine returns the mantissa sign of a Flo ating Point

operand contained in DAC. The exponent byte is test ed and the

result returned in register A and the flags:

Zero ....... A=00H, Flag Z,NC

Positive ... A=01H, Flag NZ,NC

Negative ... A=FFH, Flag NZ,C

    Address... 2E7DH

    This routine simply zeroes the exponent byte in  DAC.

    Address... 2E82H

    This routine is used by the Factor Evaluator to  apply the

-111-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

"ABS" function to an operand contained in DAC. The operand's

sign is first checked (2EA1H), if it is positive th e routine

simply terminates. The operand's type is then check ed via the

GETYPR standard routine. If it is a string a "Type mismatch"

error is generated (406DH). If it is an integer it is negated

- 97 -

5. ROM BASIC INTERPRETER

(322BH). If it is a double precision or single prec ision

operand the mantissa sign bit in DAC is inverted.

    Address... 2E97H

    This routine is used by the Factor Evaluator to  apply the

"SGN" function to an operand contained in DAC. The operand's

sign is checked (2EA1H), extended into register pai r HL and

then placed in DAC as an integer:

        Zero ....... 0000H

        Positive ... 0001H

        Negative ... FFFFH

    Address... 2EA1H

    This routine returns the sign of an operand con tained in

DAC. The operands type is first checked via the GET YPR standard

routine. If it is a string a "Type mismatch" error is generated

(406DH). If it is a single precision or double prec ision

operand the mantissa sign is examined (2E71H). If i t is an

integer its value is taken from DAC+2 and translate d into the

flags shown at 2E71H.

    Address... 2EB1H

    This routine pushes a four byte single precisio n operand

from DAC onto the Z80 stack.

    Address... 2EC1H

    This routine copies the contents of registers C , B, E and D

to DAC.

    Address... 2ECCH

    This routine copies the contents of DAC to regi sters C, B, E

and D.

    Address... 2ED6H

    This routine loads registers C, B, E and D from  upwardly

-112-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

sequential locations starting at the address suppli ed in

register pair HL.

    Address... 2EDFH

    This routine loads registers E, D, C and B from  upwardly

sequential locations starting at the address suppli ed in

register pair HL.

    Address... 2EE8H

    This routine copies a single precision operand from DAC to

- 98 -

5. ROM BASIC INTERPRETER

the address supplied in register pair HL.

    Address... 2EEFH

    This routine copies any operand from the addres s supplied in

register pair HL to ARG. The length of the operand is contained

in VALTYP: 2=Integer, 3=String, 4=Single Precision,  8=Double

Precision.

    Address... 2F05H

    This routine copies any operand from ARG to DAC . The length

of the operand is contained in VALTYP: 2=Integer, 3 =String,

4=Single Precision, 8=Double Precision.

    Address... 2F0DH

    This routine copies any operand from DAC to ARG . The length

of the operand is contained in VALTYP: 2=Integer, 3 =String,

4=Single Precision, 8=Double Precision.

    Address... 2F21H

    This routine is used by the Expression Evaluato r to find the

relation (<>=) between two single precision operand s. The first

operand is contained in registers C, B, E and D and  the second in

DAC. The result is returned in register A and the f lags:

        Operand 1=Operand 2 ... A=00H, Flag Z,NC

        Operand 1<Operand 2 ... A=01H, Flag NZ,NC

        Operand 1>Operand 2 ... A=FFH, Flag NZ,C

    It should be noted that for relational operator s the Expression

Evaluator regards maximally negative numbers as sma ll and

maximally positive numbers as large.

-113-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 2F4DH

    This routine is used by the Expression Evaluato r to find the

relation (<>=) between two integer operands. The fi rst operand

is contained in register pair DE and the second in register

pair HL. The results are as for the single precisio n version

(2F21H).

    Address... 2F83H

    This routine is used by the Expression Evaluato r to find the

relation (<>=) between two double precision operand s. The first

operand is contained in DAC and the second in ARG. The results

are as for the single precision version (2F21H).

    Address... 2F8AH

    This routine is used by the Factor Evaluator to  apply the

- 99 -

5. ROM BASIC INTERPRETER

"CINT" function to an operand contained in DAC. The  operand

type is first checked via the GETYPR standard routi ne, if it is

already integer the routine simply terminates. If i t is a

string a "Type mismatch" error is generated (406DH) . If it is a

single precision or double precision operand it is converted to

a signed binary integer in register pair DE (305DH)  and then

placed in DAC as an integer. Out of range values re sult in an

"Overflow" error (4067H).

    Address... 2FA2H

    This routine checks whether DAC contains the si ngle

precision operand -32768, if so it replaces it with  the integer

equivalent 8000H. This step is required during nume ric input

conversion (3299H) because of the asymmetric intege r number

range.

    Address... 2FB2H

    This routine is used by the Factor Evaluator to  apply the

"CSNG" function to an operand contained in DAC. The  operand's

type is first checked via the GETYPR standard routi ne, if it is

already single precision the routine simply termina tes. If it

is a string a "Type mismatch" error is generated (4 06DH). If it

is double precision VALTYP is changed (3053H) and t he mantissa

rounded up from the seventh digit (2741H). If the o perand is an

integer it is converted from binary to a maximum of  five BCD

digits by successive divisions using the constants 10000, 1000,

100, 10, 1. These are placed in DAC to form the sin gle

-114-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

precision mantissa. The exponent is equal to the nu mber of

significant digits in the mantissa. For example if there are

five the exponent would be 10^5.

    Address... 3030H

    This table contains the five constants used by the "CSNG"

routine: -10000, -1000, -100, -10, -1

    Address... 303AH

    This routine is used by the Factor Evaluator to  apply the

"CDBL" function to an operand contained in DAC. The  operand's

type is first checked via the GETYPR standard routi ne, if it is

already double precision the routine simply termina tes. If it

is a string a "Type mismatch" error is generated (4 06DH). If it

is an integer it is first converted to single preci sion

(2FC8H), the eight least significant digits are the n zeroed and

VALTYP set to 8.

    Address... 3058H

    This routine checks that the current operand is  a string

type, if not a "Type mismatch" error is generated ( 406DH).

- 100 -

5. ROM BASIC INTERPRETER

    Address... 305DH

    This routine is used by the "CINT" routine (2F8 AH) to

convert a BCD single precision or double precision operand into

a signed binary integer in register pair DE, it ret urns Flag C

if an overflow has occurred. Successive digits are taken from

the mantissa and added to the product starting with  the most

significant one. After each addition the product is  multiplied

by ten. The number of digits to process is determin ed by the

exponent, for example five digits would be taken wi th an

exponent of 10^5. Finally the mantissa sign is chec ked and the

product negated (3221H) if necessary.

    Address... 30BEH

    This routine is used by the Factor Evaluator to  apply the

"FIX" function to an operand contained in DAC. The operand's

type is first checked via the GETYPR standard routi ne, if it is

an integer the routine simply terminates. The manti ssa sign is

then checked (2E71H), if it is positive control tra nsfers to

the "INT" routine (30CFH). Otherwise the sign is in verted to

positive, the "INT" function is performed (30CFH) a nd the sign

-115-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

restored to negative.

    Address... 30CFH

    This routine is used by the Factor Evaluator to  apply the

"INT" function to an operand contained in DAC. The operand's

type is first checked via the GETYPR standard routi ne, if it is

an integer the routine simply terminates. The numbe r of

fractional digits is determined by subtracting the exponent

from the type's digit count, 6 for single precision , 14 for

double precision.

    If the mantissa sign is positive these fraction al digits are

simply zeroed. If the mantissa sign is negative eac h fractional

digit is examined before it is zeroed. If all the d igits were

previously zero the routine simply terminates. Othe rwise -1.0

is added to the operand by the single precision add ition

routine (324EH) or the double precision addition ro utine

(269AH). It should be noted that an operand's type is not

normally changed by the "CINT" function.

    Address... 314AH

    This routine multiplies the unsigned binary int egers in

register pairs BC and DE, the result is returned in  register

pair DE. The standard shift and add method is used,  the product

is successively multiplied by two and register pair  BC added to

it for every 1 bit in register pair DE. The routine  is used by

the Variable search routine (5EA4H) to compute an e lement's

position within an Array, a "Subscript out of range " error is

generated (601DH) if an overflow occurs.

- 101 -

5. ROM BASIC INTERPRETER

    Address... 3167H

    This routine is used by the Expression Evaluato r to subtract

two integer operands. The first operand is containe d in

register pair DE and the second in register pair HL , the result

is returned in DAC. The second operand is negated ( 3221H) and

control drops into the addition routine.

    Address... 3172H

    This routine is used by the Expression Evaluato r to add two

integer operands. The first operand is contained in  register

pair DE and the second in register pair HL, the res ult is

returned in DAC. The signed binary operands are nor mally just

added and placed in DAC. However, if an overflow ha s occurred

both operands are converted to single precision (2F CBH) and

-116-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

control transfers to the single precision adder (32 4EH). An

overflow has occurred when both operands are of the  same sign

and the result is of the opposite sign, for example :

        30000+15000=-20536

    Address... 3193H

    This routine is used by the Expression Evaluato r to multiply

two integer operands. The first operand is containe d in

register pair DE and the second in register pair HL , the result

is returned in DAC. The two operand signs are saved  temporarily

and both operands made positive (3215H). Multiplica tion

proceeds using the standard binary shift and add me thod with

register pair HL as the product accumulator, regist er pair BC

containing the first operand and register pair DE t he second.

If the product exceeds 7FFFH at any time during mul tiplication

both operands are converted to single precision (2F CBH) and

control transfers to the single precision multiplie r (325CH).

Otherwise the initial signs are restored and, if th ey differ,

the product negated before being placed in DAC as a n integer

(321DH).

    Address... 31E6H

    This routine is used by the Expression Evaluato r to integer

divide (\) two integer operands. The first operand is contained

in register pair DE and the second in register pair  HL, the

result is returned in DAC. If the second operand is  zero a

"Division by zero" error is generated (4058H), othe rwise the

two operand signs are saved and both operands made positive

(3215H). Division proceeds using the standard binar y shift and

subtract method with register pair HL containing th e remainder,

register pair BC the second operand and register pa ir DE the

first operand and the product. When division is com plete the

initial signs are restored and, if they differ, the  product is

negated before being placed in DAC as an integer (3 21DH).

- 102 -

5. ROM BASIC INTERPRETER

    Address... 3215H

    This routine is used to make two signed binary integers, in

register pairs HL and DE, positive. Both the initia l operand

signs are returned as a flag in bit 7 of register B : 0=Same,

1=Different. Each operand is then examined and, if it is

negative, made positive by subtracting it from zero .

-117-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 322BH

    This routine is used by the "ABS" function to m ake a

negative integer contained in DAC positive. The ope rand is

taken from DAC, negated and then placed back in DAC  (3221H). If

the operand's value is 8000H it is converted to sin gle

precision (2FCCH) as there is no integer of value + 32768.

    Address... 323AH

    This routine is used by the Expression Evaluato r to "MOD"

two integer operands. The first operand is containe d in

register pair DE and the second in register pair HL , the result

is returned in DAC. The sign of the first operand i s saved and

the two operands divided (31E6H). As the remainder is returned

doubled by the division process register pair DE is  shifted one

place right to restore it. The sign of the first op erand is

then restored and, if it is negative, the remainder  is negated

before being placed in DAC as an integer (321DH).

    Address... 324EH

    This routine is used by the Expression Evaluato r to add two

single precision operands. The first operand is con tained in

registers C, B, E, D and the second in DAC, the res ult is

returned in DAC. The first operand is copied to ARG  (3280H),

the second operand is converted to double precision  (3042H) and

control transfers to the double precision adder (26 9AH).

    Address... 3257H

    This routine is used by the Expression Evaluato r to subtract

two single precision operands. The first operand is  contained

in registers C, B, E, D and the second in DAC, the result is

returned in DAC. The second operand is negated (2E8 DH) and

control transfers to the single precision adder (32 4EH).

    Address... 325CH

    This routine is used by the Expression Evaluato r to multiply

two single precision operands. The first operand is  contained

in registers C, B, E, D and the second in DAC, the result is

returned in DAC. The first operand is copied to ARG  (3280H),

the second operand is converted to double precision  (3042H) and

control transfers to the double precision multiplie r (27E6H).

- 103 -

5. ROM BASIC INTERPRETER

    Address... 3265H

-118-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by the Expression Evaluato r to divide

two single precision operands. The first operand is  contained

in registers C, B, E, D and the second in DAC, the result is

returned in DAC. The first and second operands are exchanged so

that the first is in DAC and the second in the regi sters. The

second operand is then copied to ARG (3280H), the f irst operand

is converted to double precision (3042H) and contro l transfers

to the double precision divider (289FH).

    Address... 3280H

    This routine copies the single precision operan d contained

in registers C, B, E and D to ARG and then zeroes t he four

least significant bytes.

    Address... 3299H

    This routine converts a number in textual form to one of the

standard internal numeric types, it is used during tokenization

and by the "VAL", "INPUT" and "READ" Statement hand lers. On

entry register pair HL points to the first characte r of the

text string to be converted. On exit register pair HL points to

the character following the string, the numeric ope rand is in

DAC and the type code in VALTYP. Examples of the th ree types

are:

    +---------------------------------------------- -+

    ¦     ¦     ¦ FFH ¦ 7FH ¦     ¦     ¦     ¦     ¦

    +---------------------------------------------- -+

    Integer +32767

    +---------------------------------------------- -+

    ¦ 42H ¦ 17H ¦ 39H ¦ 04H ¦     ¦     ¦     ¦     ¦

    +---------------------------------------------- -+

    Single Precision .173904*10^2

    +---------------------------------------------- -+

    ¦ C2H ¦ 17H ¦ 39H ¦ 04H ¦ 62H ¦ 70H ¦ 93H ¦ 13H  ¦

    +---------------------------------------------- -+

    Double Precision -.17390462709313*10^2

Figure 41: Numeric Types in DAC

    An integer is a sixteen bit binary number in tw o's

complement form, it is stored LSB first, MSB second  at DAC+2.

An integer can range from 8000H (-32768) to 7FFFH ( +32767).

    A floating point number consists of an exponent  byte and a

three or seven byte mantissa. The exponent is kept in signed

binary form and can range from 01H (-63) through 40 H (0) up to

7FH (+63), the special value of 00H is used for the  number

zero. These exponent values are for a normalized ma ntissa. The

Interpreter presents exponent-form numbers to the u ser with a

- 104 -

-119-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

leading digit, this results in an asymmetric expone nt range of

E-64 to E+62. Bit 7 of the exponent byte holds the mantissa

sign, 0 for positive and 1 for negative, the mantis sa itself is

kept in packed BCD form with two digits per byte. I t should be

noted that the Interpreter uses the contents of VAL TYP to

determine a number's type, not the format of the nu mber itself.

    Conversion starts by examining the first text c haracter. If

this is an "&" control transfers to the special rad ix

conversion routine (4EB8H), if it is a leading sign  character

it is temporarily saved. Successive numeric charact ers are then

taken and added to the integer product with appropr iate

multiplications by ten as each new digit is found. If the value

of the product exceeds 32767, or a decimal point is  found, the

product is converted to single precision and any fu rther

characters placed directly in DAC. If a seventh dig it is found

the product is changed to double precision, if more  than

fourteen digits are found the excess digits are rea d but

ignored.

    Conversion ceases when a non-numeric character is found. If

this a type definition character ("%", "#" or "!") the

appropriate conversion routine is called and contro l transfers

to the exit point (331EH). If it is an exponent pre fix ("E",

"e", "D" or "d") one of the conversion routines wil l also be

used and then the following digits converted to a b inary

exponent in register E. At the exit point (331EH) t he product's

type is checked via the GETYPR standard routine. If  it is

single precision or double precision the exponent i s calculated

by first subtracting the fractional digit count, in  register B,

from the total digit count, in register D, to produ ce the

leading digit count. This is then added to any expl icitly

stated exponent, in register E, and placed at DAC+0  as the

exponent.

    The leading sign character is restored and the product

negated if required (2E86H), if the product is inte ger the

routine then terminates. If the product is single p recision

control terminates by checking for the special valu e of -32768

(2FA2H). If the product is double precision control  terminates

by rounding up from the fifteenth digit (273CH).

    Address... 340AH

    This routine is used by the error handler to di splay the

message " in " (6678H) followed by the line number supplied in

register pair HL (3412H).

    Address... 3412H

    This routine displays the unsigned binary integ er supplied

-120-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

in register pair HL. The operand is placed in DAC a s an integer

(2F99H), converted to text (3441H) and then display ed (6677H).

- 105 -

5. ROM BASIC INTERPRETER

    Address... 3425H

    This routine converts the numeric operand conta ined in DAC

to textual form in FBUFFR. The address of the first  character

of the resulting text is returned in register pair HL, the text

is terminated by a zero byte. The operand is first converted to

double precision (375FH). The BCD digits of the man tissa are

then unpacked, converted to ASCII and placed in FBU FFR (36B3H).

The position of the decimal point is determined by the

exponent, for example:

        .999*10 ^ +2 = 99.9

        .999*10 ^ +1 = 9.99

        .999*10 ^ +0 = .999

        .999*10 ^ -1 = .0999

    If the exponent is outside the range 10^-1 to 1 0^14 the number

is presented in exponential form. In this case the decimal

point is placed after the first digit and the expon ent is

converted from binary and follows the mantissa.

    An alternative entry point to the routine exist s at 3426H

for the "PRINT USING" statement handler. With this entry point

the number of characters to prefix the decimal poin t is

supplied in register B, the number of characters to  point fix it

in register C and a format byte in register A:

       7     6     5     4     3     2     1     0

    +---------------------------------------------- -+

    ¦  1  ¦  ,  ¦  *  ¦  $  ¦  +  ¦Sign ¦  0  ¦^^^^  ¦

    +---------------------------------------------- -+

Figure 42: Format Byte

    Operation in this mode is fairly similar to the  normal mode but

with the addition of extra facilities. Once the ope rand has

been converted to double precision the exponential form will be

assumed if bit 0 of the format byte is set. The man tissa is

shifted to the right in DAC and rounded up to lose unwanted

postfix digits (377BH). As the mantissa is converte d to ASCII

(36B3H) commas will be inserted at the appropriate points if

bit 6 of the format byte is set. During post-conver sion

-121-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

formatting (351CH) unused prefix positions will be filled with

asterisks if bit 5 is set, a pound prefix may be ad ded by

setting bit 4. Bit 3 enables the "+" sign for posit ive numbers

if set, otherwise a space is used. Bit 2 places any  sign at the

front if reset and at the back if set.

    The entry point to the routine at 3441H is used  to convert

unsigned integers, notably line numbers, to their t extual form.

For example 9000H, when treated as a normal integer , would be

converted to -28672. By using this entry point 3686 4 would be

produced instead. The operand is converted by succe ssive

- 106 -

5. ROM BASIC INTERPRETER

division with the factors 10000, 1000, 100, 10 and 1 and the

resulting digits placed in FBUFFR (36DBH).

    Address... 3710H

    This table contains the five constants used by the numeric

output routine: 10000, 1000, 100, 10, 1.

    Address... 371AH

    This routine is used by the "BIN$" function to convert a

numeric operand contained in DAC to textual form. R egister B is

loaded with the group size (1) and control transfer s to the

general conversion routine (3724H).

    Address... 371EH

    This routine is used by the "OCT$" function to convert a

numeric operand contained in DAC to textual form. R egister B is

loaded with the group size (3) and control transfer s to the

general conversion routine (3724H).

    Address... 3722H

    This routine is used by the "HEX$" function to convert a

numeric operand contained in DAC to textual form. R egister B is

loaded with the group size (4) and the operand conv erted to a

binary integer in register pair HL (5439H). Success ive groups

of 1, 3 or 4 bits are shifted rightwards out of the  operand,

converted to ASCII digits and placed in FBUFFR. Whe n the

operand is all zeroes the routine terminates with t he address

of the first text character in register pair HL, th e string is

terminated with a zero byte.

    Address... 3752H

    This routine is used during numeric output to r eturn an

-122-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

operand's digit count in register B and the address  of its

least significant byte in register pair HL. For sin gle

precision B=6 and HL=DAC+3, for double precision B= 14 and

HL=DAC+7.

    Address... 375FH

    This routine is used during numeric output to c onvert the

numeric operand in DAC to double precision (303AH).

    Address... 377BH

    This routine is used during numeric output to s hift the

mantissa in DAC rightwards (27DBH), the inverse of the digit

count is supplied in register A. The result is then  rounded up

from the fifteenth digit (2741H).

- 107 -

5. ROM BASIC INTERPRETER

    Address... 37A2H

    This routine is used during numeric output to r eturn the

inverse of the fractional digit count in a floating  point

operand. This is computed by subtracting the expone nt from the

operand's digit count (6 or 14).

    Address... 37B4H

    This routine is used during numeric output to l ocate the

last non-zero digit of the mantissa contained in DA C. Its

address is returned in register pair HL.

    Address... 37C8H

    This routine is used by the Expression Evaluato r to

exponentiate (^) two single precision operands. The  first

operand is contained in registers C, B, E, D and th e second in

DAC, the result is returned in DAC. The first opera nd is copied

to ARG (3280H), pushed onto the stack (2CC7H) and e xchanged

with DAC (2C6FH). The second operand is then popped  into ARG

and control drops into the double precision exponen tiation

routine.

    Address... 37D7H

    This routine is used by the Expression Evaluato r to

exponentiate (^) two double precision operands. The  first

operand is contained in DAC and the second in ARG, the result

is returned in DAC. The result is usually computed using:

-123-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        X^P=EXP(P*LOG(X))

    An alternative, much faster, method is possible  if the power

operand is an integer. This is tested for by extrac ting the

integer part of the operand and comparing for equal ity with the

original value (391AH). A positive result to this t est means

that the faster method can be used, this is describ ed below.

    Address... 383FH

    This routine is used by the Expression Evaluato r to

exponentiate (^) two integer operands. The first op erand is

contained in register pair DE and the second in reg ister pair

HL, the result is returned in DAC. The routine oper ates by

breaking the problem down into simple multiplicatio ns:

        6^13=6^1101=(6^8)*(6^4)*(6^1)

    As the power operand is in binary form a simple  right shift is

sufficient to determine whether a particular interm ediate

product needs to be included in the result. The int ermediate

products themselves are obtained by cumulative mult iplication

of the operand each time the computation loop is tr aversed. If

- 108 -

5. ROM BASIC INTERPRETER

the product overflows at any time it is converted t o single

precision. Upon completion the power operand is che cked, if it

is negative the product is reciprocated as X^-P=1/X ^P.

    Address... 390DH

    This routine is used during exponentiation to m ultiply two

integers (3193H), it returns Flag NZ if the result has

overflowed to single precision.

    Address... 391AH

    This routine is used during exponentiation to c heck whether

a double precision power operand consists only of a n integer

part, if so it returns Flag NC.

    Address... 392EH

    This table of addresses is used by the Interpre ter Runloop

to find the handler for a statement token. Although  not part of

the table the associated keywords are included belo w:

        TO     STMT        TO     STMT       TO     STMT

-124-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        ------------------------------------------- --------

        63EAH  END         00C3H  CLS        5B11H  CIRCLE

        4524H  FOR         51C9H  WIDTH      7980H  COLOR

        6527H  NEXT        485DH  ELSE       5D6EH  DRAW

        485BH  DATA        6438H  TRON       59C5H  PAINT

        4B6CH  INPUT       6439H  TROFF      00C0H  BEEP

        5E9FH  DIM         643EH  SWAP       73E5H  PLAY

        4B9FH  READ        6477H  ERASE      57EAH  PSET

        4880H  LET         49AAH  ERROR      57E5H  PRESET

        47E8H  GOTO        495DH  RESUME     73CAH  SOUND

        479EH  RUN         53E2H  DELETE     79CCH  SCREEN

        49E5H  IF          49B5H  AUTO       7BE2H  VPOKE

        63C9H  RESTORE     5468H  RENUM      7A48H  SPRITE

        47B2H  GOSUB       4718H  DEFSTR     7B37H  VDP

        4821H  RETURN      471BH  DEFINT     7B5AH  BASE

        485DH  REM         471EH  DEFSNG     55A8H  CALL

        63E3H  STOP        4721H  DEFDBL     7911H  TIME

        4A24H  PRINT       4B0EH  LINE       786CH  KEY

        64AFH  CLEAR       6AB7H  OPEN       7E4BH  MAX

        522EH  LIST        7C52H  FIELD      73B7H  MOTOR

        6286H  NEW         775BH  GET        6EC6H  BLOAD

        48E4H  ON          7758H  PUT        6E92H  BSAVE

        401CH  WAIT        6C14H  CLOSE      7C16H  DSKO$

        501DH  DEF         6B5DH  LOAD       7C1BH  SET

        5423H  POKE        6B5EH  MERGE      7C20H  NAME

        6424H  CONT        6C2FH  FILES      7C25H  KILL

        6FB7H  CSAVE       7C48H  LSET       7C2AH  IPL

        703FH  CLOAD       7C4DH  RSET       7C2FH  COPY

        4016H  OUT         6BA3H  SAVE       7C34H  CMD

        4A1DH  LPRINT      6C2AH  LFILES     7766H  LOCATE

        5229H  LLIST

- 109 -

5. ROM BASIC INTERPRETER

    Address... 39DEH

    This table of addresses is used by the Factor E valuator to

find the handler for a function token. Although not  part of the

table the associated keywords are included with the  addresses

shown below:

        TO     FUNCTION       TO     FUNCTION         TO     FUNCTION

        ------------------------------------------- ------------------

        6861H  LEFT$          4FCCH  POS              30BEH  FIX

        6891H  RIGHT$         67FFH  LEN              7940H  STICK

        689AH  MID$           6604H  TR$              794CH  TRIG

        2E97H  SGN            68BBH  VAL              795AH  PDL

        30CFH  INT            680BH  ASC              7969H  PAD

        2E82H  ABS            681BH  CHR$             7C39H  DSKF

        2AFFH  SQR            541CH  PEEK             6D39H  FPOS

        2BDFH  RND            7BF5H  VPEEK            7C66H  CVI

-125-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        29ACH  SIN            6848H  SPACE$           7C6BH  CVS

        2A72H  LOG            7C70H  OCT$             7C70H  CVD

        2B4AH  EXP            65FAH  HEX$             6D25H  EOF

        2993H  COS            4FC7H  LPOS             6D03H  LOC

        29FBH  TAN            6FFFH  BIN$             6D14H  LOF

        2A14H  ATN            2F8AH  CINT             7C57H  MKI$

        69F2H  FRE            2FB2H  CSNG             7C5CH  MKS$

        4001H  INP            303AH  CDBL             7C61H  MKD$

    Address... 3A3EH

    This table of addresses is used during program tokenization

as an index into the BASIC keyword table (3A72H). E ach of the

twenty six entries defines the starting address of one of the

keyword sub-blocks. The first entry points to the k eywords

beginning with the letter "A", the second to those beginning

with the letter "B" and so on.

        3A72H ... A   3B9FH ... J    3C8EH ... S

        3A88H ... B   3BA0H ... K    3CDBH ... T

        3A9FH ... C   3BA8H ... L    3CF6H ... U

        3AF3H ... D   3BE8H ... M    3CFFH ... V

        3B2EH ... E   3C09H ... N    3D16H ... W

        3B4FH ... F   3C18H ... O    3D20H ... X

        3B69H ... G   3C2BH ... P    3D24H ... Y

        3B7BH ... H   3C5DH ... Q    3D25H ... Z

        3B80H ... I   3C5EH ... R

    Address... 3A72H

    This table contains the BASIC keywords and toke ns. Each of

the twenty-six blocks within the table contains all  the

keywords beginning with a particular letter, it is terminated

with a zero byte. Each keyword is stored in plain t ext with bit

7 set to mark the last character, this is followed immediately

by the associated token. The first character of the  keyword

need not be stored as this is implied by its positi on in the

- 110 -

5. ROM BASIC INTERPRETER

table' The keywords and tokens are listed below in full, note

that the "J", "Q", "Y" and "Z" blocks are empty:

        AUTO   A9H  DSKF   26H  LIST    93H  REM     8FH

        AND    F6H  DRAW   BEH  LFILES  BBH  RESUME   A7H

        ABS    06H  ELSE   A1H  LOG     0AH  RSET    B9H

        ATN    0EH  END    81H  LOC     2CH  RIGHT$   02H

        ASC    15H  ERASE  A5H  LEN     12H  RND     08H

        ATTR$  E9H  ERROR  A6H  LEFT$   01H  RENUM   AAH

-126-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        BASE   C9H  ERL    E1H  LOF     2DH  SCREEN   C5H

        BSAVE  D0H  ERR    E2H  MOTOR   CEH  SPRITE   C7H

        BLOAD  CFH  EXP    0BH  MERGE   B6H  STOP    90H

        BEEP   C0H  EOF    2BH  MOD     FBH  SWAP    A4H

        BIN$   1DH  EQV    F9H  MKI$    2EH  SET     D2H

        CALL   CAH  FOR    82H  MKS$    2FH  SAVE    BAH

        CLOSE  B4H  FIELD  B1H  MKD$    30H  SPC(    DFH

        COPY   D6H  FILES  B7H  MID$    03H  STEP    DCH

        CONT   99H  FN     DEH  MAX     CDH  SGN     04H

        CLEAR  92H  FRE    0FH  NEXT    83H  SQR     07H

        CLOAD  9BH  FIX    21H  NAME    D3H  SIN     09H

        CSAVE  9AH  FPOS   27H  NEW     94H  STR$    13H

        CSRLIN E8H  GOTO   89H  NOT     E0H  STRING $ E3H

        CINT   1EH  GO TO  89H  OPEN    B0H  SPACE$   19H

        CSNG   1FH  GOSUB  8DH  OUT     9CH  SOUND   C4H

        CDBL   20H  GET    B2H  ON      95H  STICK   22H

        CVI    28H  HEX$   1BH  OR      F7H  STRIG   23H

        CVS    29H  INPUT  85H  OCT$    1AH  THEN    DAH

        CVD    2AH  IF     8BH  OFF     EBH  TRON    A2H

        COS    0CH  INSTR  E5H  PRINT   91H  TROFF   A3H

        CHR$   16H  INT    05H  PUT     B3H  TAB(    DBH

        CIRCLE BCH  INP    10H  POKE    98H  TO      D9H

        COLOR  BDH  IMP    FAH  POS     11H  TIME    CBH

        CLS    9FH  INKEY$ ECH  PEEK    17H  TAN     0DH

        CMD    D7H  IPL    D5H  PSET    C2H  USING   E4H

        DELETE A8H  KILL   D4H  PRESET  C3H  USR     DDH

        DATA   84H  KEY    CCH  POINT   EDH  VAL     14H

        DIM    86H  LPRINT 9DH  PAINT   BFH  VARPTR   E7H

        DEFSTR ABH  LLIST  9EH  PDL     24H  VDP     C8H

        DEFINT ACH  LPOS   1CH  PAD     25H  VPOKE   C6H

        DEFSNG ADH  LET    88H  PLAY    C1H  VPEEK   18H

        DEFDBL AEH  LOCATE D8H  RETURN  8EH  WIDTH   A0H

        DSKO$  D1H  LINE   AFH  READ    87H  WAIT    96H

        DEF    97H  LOAD   B5H  RUN     8AH  XOR     F8H

        DSKI$  EAH  LSET   B8H  RESTORE 8CH

    Address... 3D26H

    This twenty-one byte table is used by the Inter preter during

program tokenization. It contains the ten single ch aracter

keywords and their tokens:

+ ... F1H    * ... F3H   ^ ... F5H    ' ...  E6H = ... EFH

- ... F2H    / ... F4H   \ ... FCH    > ...  EEH < ... F0H

- 111 -

5. ROM BASIC INTERPRETER

    Address... 3D3BH

    This table is used by the Expression Evaluator to determine

-127-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

the precedence level for a given infix operator, th e higher the

table value the greater the operator's precedence. Not included

are the precedences for the relational operators (6 4H), the

"NOT" operator (5AH) and the negation operator (7DH ), these are

defined directly by the Expression and Factor Evalu ators.

        79H ... +       46H ... OR

        79H ... -       3CH ... XOR

        7CH ... *       32H ... EQV

        7CH ... /       28H ... IMP

        7FH ... ^       7AH ... MOD

        50H ... AND     7BH     \

    Address... 3D47H

    This table is used to convert the result of a u ser defined

function to the same type as the Variable used in t he function

definition. It contains the addresses of the type c onversion

routines:

        303AH ... CDBL

        0000H ... Not used

        2F8AH ... CINT

        3058H ... Check string type

        2FB2H ... CSNG

    Address... 3D51H

    This table of addresses is used by the Expressi on Evaluator

to find the handler for a particular infix math ope rator when

both operands are double precision:

        269AH ... +

        268CH ... -

        27E6H ... *

        289FH ... /

        37D7H ... ^

        2F83H ... Relation

    Address... 3D5DH

    This table of addresses is used by the Expressi on Evaluator

to find the handler for a particular infix math ope rator when

both operands are single precision:

        324EH ... +

        3257H ... -

        325CH ... *

        3267H ... /

        37C8H ... ^

        2F21H ... Relation

- 112 -

-128-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

    Address... 3D69H

    This table of addresses is used by the Expressi on Evaluator

to find the handler for a particular infix math ope rator when

both operands are integer:

        3172H ... +

        3167H ... -

        3193H ... *

        4DB8H ... /

        383FH ... ^

        2F4DH ... Relation

    Address... 3D75H

    This table contains the Interpreter error messa ges, each one

is stored in plain text with a zero byte terminator . The

associated error codes are shown below for referenc e only, they

do not form part of the table:

        01 NEXT without FOR             19 Device I /O error

        02 Syntax error                 20 Verify e rror

        03 RETURN without GOSUB         21 No RESUM E

        04 Out of DATA                  22 RESUME w ithout error

        05 Illegal function call        23 Unprinta ble error

        06 Overflow                     24 Missing operand

        07 Out of memory                25 Line buf fer overflow

        08 Undefined line number        50 FIELD ov erflow

        09 Subscript out of range       51 Internal  error

        10 Redimensioned array          52 Bad file  number

        11 Division by zero             53 File not  found

        12 Illegal direct               54 File alr eady open

        13 Type mismatch                55 Input pa st end

        14 Out of string space          56 Bad file  name

        15 String too long              57 Direct s tatement in file

        16 String formula too complex   58 Sequenti al I/O only

        17 Can't CONTINUE               59 File not  OPEN

        18 Undefined user function

    Address... 3FD2H

    This is the plain text message " in " terminate d by a zero

byte.

    Address... 3FD7H

    This is the plain text message "Ok", CR, LF ter minated by a

zero byte.

    Address... 3FDCH

-129-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the plain text message "Break" terminat ed by a zero

byte.

- 113 -

5. ROM BASIC INTERPRETER

    Address... 3FE2H

    This routine searches the Z80 stack for the "FO R" loop

parameter block whose loop Variable address is supp lied in

register pair DE. The search is started four bytes above the

current Z80 SP to allow for the caller's return add ress and the

Runloop return address. If no "FOR" token (82H) exi sts the

routine terminates Flag NZ, if one is found the loo p Variable

address is taken from the parameter block and check ed. The

routine terminates Flag Z upon a successful match w ith register

pair HL pointing to the type byte of the parameter block.

Otherwise the search moves up twenty-two bytes to t he start of

the next parameter block.

    Address... 4001H

    This routine is used by the Factor Evaluator to  apply the

"INP" function to an operand contained in DAC. The port number

is checked (5439H), the port read and the result pl aced in DAC

as an integer (4FCFH).

    Address... 400BH

    This routine first evaluates an operand in the range -32768

to +65535 (542FH) and places it in register pair BC . After

checking for a comma, via the SYNCHR standard routi ne, it

evaluates a second operand in the range 0 to 255 (5 21CH) and

places this in register A.

    Address... 4016H

    This is the "OUT" statement handler. The port n umber and

data byte are evaluated (400BH) and the data byte w ritten to

the relevant Z80 port.

    Address... 401CH

    This is the "WAIT" statement handler. The port number and

"AND" operands are first evaluated (400BH) followed  by the

optional "XOR" operand (521CH). The port is then re peatedly

read and the operands applied, XOR then AND, until a non-zero

result is obtained. Contrary to the information giv en in some

MSX manuals the loop can be broken by the CTRL-STOP  key as the

CKCNTC standard routine is called from inside it.

-130-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 4039H

    This routine is used by the Runloop when it enc ounters the

end of the program text while in program mode. ONEF LAG is

checked to see whether it still contains an active error code.

If so a "No RESUME" error is generated, otherwise p rogram

termination continues normally (6401H). The idea be hind this

routine is to catch any "ON ERROR" handlers without  a "RESUME"

statement at the end.

- 114 -

5. ROM BASIC INTERPRETER

  Address... 404FH

    This routine is used by the "READ" statement ha ndler when an

error is found in a "DATA" statement. The line numb er contained

in DATLIN is copied to CURLIN so the error handler will flag

the "DATA" line as the illegal statement rather tha n the

program line. Control then drops into the "Syntax e rror"

generator.

    Address... 4055H

    This is a group of nine error generators, regis ter E is

loaded with the relevant error code and control dro ps into the

error handler:

        ADDR. ERROR

        -------------------------------

        4055H Syntax error

        4058H Division by zero

        405BH NEXT without FOR

        405EH Redimensioned array

        4061H Undefined user function

        4064H RESUME without error

        4067H Overflow error

        406AH Missing operand

        406DH Type mismatch

    Address... 406F

    This is the Interpreter error handler, all erro r generators

transfer to here with an error code in register E. VLZADR is

first checked to see if the "VAL" statement handler  has changed

the program text, if so the original character is r estored from

VLZDAT. The current line number is then copied from  CURLIN to

ERRLIN and DOT and the Z80 stack is restored from S AVSTK

(62F0H). The error code is placed in ERRFLG, for us e by the

"ERR" function, and the current program text positi on copied

-131-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

from SAVTXT to ERRTXT for use by the "RESUME" state ment

handler. The error line number and program text pos ition are

also copied to OLDLIN and OLDTXT for use by the "CO NT"

statement handler. ONELIN is then checked to see if  a previous

"ON ERROR" statement has been executed. If so, and providing no

error code is already active, control transfers to the Runloop

(4620H) to execute the BASIC error recovery stateme nts.

    Otherwise the error code is used to count throu gh the error

message table at 3D75H until the required one is re ached. A

CR,LF is issued (7323H) and the screen forced back to text mode

via the TOTEXT standard routine. A BELL code is the n issued and

the error message displayed (6678H). Assuming the I nterpreter

is in program mode, rather than direct mode, this i s followed

by the line number (340AH) and control drops into t he "OK"

point.

- 115 -

5. ROM BASIC INTERPRETER

    Address... 411FH

    This is the re-entry point to the Interpreter M ainloop for a

terminating program. The screen is forced to text m ode via the

TOTEXT standard routine, the printer is cleared (73 04H) and I/O

buffer 0 closed (6D7BH). A CR,LF is then issued to the screen

(7323H), the message "OK" is displayed (6678H) and control

drops into the Mainloop.

    Address... 4134H

    This is the Interpreter Mainloop. CURLIN is fir st set to

FFFFH to indicate direct mode and AUTFLG checked to  see if

"AUTO" mode is on. If so the next line number is ta ken from

AUTLIN and displayed (3412H). The Program Text Area  is then

searched to see if this line already exists (4295H)  and either

an asterisk or space displayed accordingly.

    The ISFLIO standard routine is then used to det ermine

whether a "LOAD" statement is active. If so the pro gram line is

collected from the cassette (7374H), otherwise it i s taken from

the console via the PINLIN standard routine. If the  line is

empty or the CTRL-STOP key has been pressed control  transfers

back to the start of the Mainloop (4134H) with no f urther

action. If the line commences with a line number th is is

converted to an unsigned integer in register pair D E (4769H).

The line is then converted to tokenized form and pl aced in KBUF

(42B2H). If no line number was found at the start o f the line

control then transfers to the Runloop (6D48H) to ex ecute the

statement.

-132-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Assuming the line commences with a line number it is tested

to see if it is otherwise empty and the result temp orarily

saved. The line number is copied to DOT and AUTLIN increased by

the contents of AUTINC, if AUTLIN now exceeds 65530  the "AUTO"

mode is turned off. The Program Text Area is then s earched

(4295H) to find a matching line number or, failing this, the

position of the next highest line number. If no mat ching line

number is found and the line is empty and "AUTO" mo de is off an

"Undefined line number" error is generated (481CH).  If a

matching line number is found and the line is empty  and "AUTO"

mode is on the Mainloop simply skips to the next st atement

(4237H).

    Otherwise any pointers in the Program Text Area  are

converted back to line numbers (54EAH) and any exis ting program

line deleted (5405H). Assuming the new program line  is non-

empty the Program Text Area is opened up by the req uired amount

(6250H) and the tokenized program line copied from KBUF.

    The Program Text Area links are then recalculat ed (4257H),

the Variable Storage Areas are cleared (629AH) and control

transfers back to the start of the Mainloop.

- 116 -

5. ROM BASIC INTERPRETER

    Address... 4253H

    This routine recalculates the Program Text Area  links after

a program modification. The first two bytes of each  program

line contain the starting address of the following line, this

is called the link. Although the link increases the  amount of

storage required per program line it greatly reduce s the time

required by the Interpreter to locate a given line.

    An example of a typical program line is shown b elow, in this

case the line "10 PRINT 9" situated at the start of  the Program

Text Area (8001H):

    +-------------------------------------------+

    ¦ 09H 80H ¦ 0AH 00H ¦ 91H ¦ 20H ¦ 1AH ¦ 00H ¦

    +-------------------------------------------+

Figure 43: Program Line

    In the above example the link is stored in Z80 word order

(LSB,MSB) and is immediately followed by the binary  line

number, also in word order. The statement itself is  composed of

a "PRINT" token (91H), a single space, the number n ine and the

-133-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

end of line character (00H). Further details of the  storage

format can be found in the tokenizing routine (42B2 H).

    Each link is recalculated simply by scanning th rough the

line until the end of line character is found. The process is

complete when the end of the Program Storage Area, marked by

the special link of 0000H, is reached.

    Address... 4279H

    This routine is used by the "LIST" statement ha ndler to

collect up to two line number operands from the pro gram text.

If the first line number is present it is converted  to an

unsigned integer in register pair DE (475FH), if no t a default

value of 0000H is returned. If the second line numb er is

present it must be preceded by a "-" token (F2H) an d is

returned on the Z80 stack, if not a default value o f 65530 is

returned. Control then drops into the program text search

routine to find the first referenced program line.

    Address... 4295H

    This routine searches the Program Text Area for  the program

line whose line number is supplied in register pair  DE.

Starting at the address contained in TXTTAB each pr ogram line

is examined for a match. If an equal line number is  found the

routine terminates with Flag Z,C and register pair BC pointing

to the start of the program line. If a higher line number is

found the routine terminates Flag NZ,NC and if the end link is

reached the routine terminates Flag Z,NC.

- 117 -

5. ROM BASIC INTERPRETER

    Address... 42B2H

    This routine is used by the Interpreter Mainloo p to tokenize

a line of text. On entry register pair HL points to  the first

text character in BUF. On exit the tokenized line i s in KBUF,

register pair BC holds its length and register pair  HL points

to its start.

    Except after opening quotes or after the "REM",  "CALL" or

"DATA" keywords any string of characters matching a  keyword is

replaced by that keyword's token. Lower case alphab etics are

changed to upper case for keyword comparison. The c haracter "?"

is replaced by the "PRINT" token (91H) and the char acter "'" by

":" (3AH), "REM" token (8FH), "'" token (E6H). The "ELSE" token

(A1H) is preceded by a statement separator (3AH). A ny other

miscellaneous characters in the text are copied wit hout

alteration except that lower case alphabetics are c onverted to

upper case. Those tokens smaller than 80H, the func tion tokens,

-134-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

cannot be stored directly in KBUF as they will conf lict with

ordinary text. Instead the sequence FFH, token+80H is used.

    Numeric constants are first converted into one of the

standard types in DAC (3299H). They are then stored  in one of

several ways depending upon their type and magnitud e, the

general idea being to minimize memory usage:

        0BH LSB MSB ................... Octal numbe r

        0CH LSB MSB ................... Hex number

        11H to 1AH .................... Integer 0 t o 9

        0FH LSB ....................... Integer 10 to 255

        1CH LSB MSB ................... Integer 256  to 32767

        1DH EE DD DD DD ............... Single Prec ision

        1FH EE DD DD DD DD DD DD DD ... Double Prec ision

    There is no specific token for binary numbers, these are left

as character strings. This would appear to be a leg acy from

earlier versions of Microsoft BASIC. Any sign prefi xing a

number is regarded as an operator and is stored as a separate

token, negative numbers are not produced during tok enization.

As double precision numbers occupy so much space a line

containing too many, for example PRINT 1#,1#,1# etc . may cause

KBUF to fill up. If this happens a "Line buffer ove rflow" error

is generated.

    Any number following one of the keyword tokens in the table

at 43B5H is considered to be a line number operand and is

stored with a different token:

        0DH LSB MSB ................... Pointer

        0EH LSB MSB ................... Line number

    During tokenization only the normal type (0EH) is generated,

when a program actually runs these line number oper ands are

converted to the address pointer type (0DH).

- 118 -

5. ROM BASIC INTERPRETER

    Address... 43B5H

    This table of tokens is used during tokenizatio n to check

for the keywords which take line number operands. T he keywords

themselves are listed below:

        RESTORE    RUN

        AUTO       LIST

        RENUM      LLIST

        DELETE     GOTO

        RESUME     RETURN

-135-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        ERL        THEN

        ELSE       GOSUB

    Address... 4524H

    This is the "FOR" statement handler. The loop V ariable is

first located and assigned its initial value by the  "LET"

handler (4880H), the address of the loop Variable i s returned

in register pair DE. The end of the statement is fo und (485BH)

and its address placed in ENDFOR. The Z80 stack is then

searched (3FE6H) for any parameter blocks using the  same loop

Variable. For each one found the current ENDFOR add ress is

compared with that of the parameter block, if there  is a match

that section of the stack is discarded. This is don e in case

there are any incomplete loops as a result of a "GO TO" back to

the "FOR" statement from inside the loop.

    The termination operand and optional "STEP" ope rand are then

evaluated and converted to the same type as the loo p Variable.

After checking that stack space is available (625EH ) a twenty-

five byte parameter block is pushed onto the Z80 st ack. This is

made up of the following:

        2 bytes ... ENDFOR address

        2 bytes ... Current line number

        8 bytes ... Loop termination value

        8 bytes ... STEP value

        1 byte  ... Loop type

        1 byte  ... STEP direction

        2 bytes ... Address of loop Variable

        1 byte  ... FOR token (82H)

    The parameter block remains on the stack for us e by the "NEXT"

statement handler until termination is reached, it is then

discarded. The size of the block remains constant e ven though,

for integer and single precision loop Variables, th e full eight

bytes are not required for the termination and STEP  values. In

these cases the least significant bytes are packed out with

garbage.

    It should be noted that the type of arithmetic operation

performed by the "NEXT" statement handler, and henc e the loop

execution speed, depends entirely upon the loop Var iable type

- 119 -

5. ROM BASIC INTERPRETER

and not the operand types. For the fastest program execution

integer type Variables, N% for example, should be u sed.

    Address... 4601H

-136-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the Runloop, each statement handler ret urns here

upon completion so the Interpreter can proceed to t he next

statement. The current Z80 SP is copied to SAVSTK f or error

recovery purposes and the CTRL-STOP key checked via  the ISCNTC

standard routine. Any pending interrupts are proces sed (6389H)

and the current program text position, held in regi ster pair HL

throughout the Interpreter, is copied to SAVTXT.

    The current program character is then examined,  if this is a

statement separator (3AH) control transfers immedia tely to the

execution point (4640H). If it is anything else but  an end of

line character (00H) a "Syntax error" is generated (4055H) as

there is spurious text at the end of the statement.  Register

pair HL is advanced to the first character of the n ew program

line and the link examined, if this is zero the pro gram is

terminated (4039H). Otherwise the line number is ta ken from the

new line and placed in CURLIN. If TRCFLG is non-zer o the line

number is displayed (3412H) enclosed by square brac kets,

control then drops into the execution point.

    Address... 4640H

    This is the Runloop execution point. A return t o the start

of the Runloop (4601H) is pushed onto the Z80 stack  and the

first character taken from the new statement via th e CHRGTR

standard routine. If it is an underline character ( 5FH) control

transfers to the "CALL" statement handler (55A7H). If it is

smaller than 81H, the smallest statement token, con trol

transfers to the "LET" handler (4880H). If it is la rger than

D8H, the largest statement token, it is checked to see if it is

one of the function tokens allowed as a statement ( 51ADH).

Otherwise the handler address is taken from the tab le at 392EH

and pushed onto the stack. Control then drops into the CHRGTR

standard routine to fetch the next program characte r before

control transfers to the statement handler.

    Address... 4666H

    Name...... CHRGTR

    Entry..... HL points to current program charact er

    Exit...... A=Next program character

    Modifies.. AF, HL

    Standard routine to fetch the next character fr om the

program text. Register pair HL is incremented and t he character

placed in register A. If it is a space, TAB code (0 9H) or LF

code (0AH) it is skipped over. If it is a statement  separator

(3AH) or end of line character (00H) the routine te rminates

with Flag Z,NC. If it is a digit from "0" to "9" th e routine

terminates with Flag NZ,C. If it is any other chara cter apart

- 120 -

-137-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

from the numeric prefix tokens the routine terminat es Flag

NZ,NC. If the character is one of the numeric prefi x tokens

then it is placed in CONSAV and the operand copied to CONLO.

The type code is placed in CONTYP and the address o f the

trailing program character in CONTXT.

    Address... 46E8H

    This routine is used by the Factor Evaluator an d during

detokenization to recover a numeric operand when on e of the

prefix tokens is returned by the CHRGTR standard ro utine. The

prefix token is first taken from CONSAV, if it is a nything but

a line number or pointer token the operand is copie d from CONLO

to DAC and the type code copied from CONTYP to VALT YP. If it is

a line number it is converted to single precision a nd placed in

DAC (3236H). If it is a pointer the original line n umber is

recovered from the referenced program line, convert ed to single

precision and placed in DAC (3236H).

    Address... 4718H

    This is the "DEFSTR" statement handler. Registe r E is loaded

with the string type code (03H) and control drops i nto the

general type definition routine.

    Address... 471BH

    This is the "DEFINT" statement handler. Registe r E is loaded

with the integer type code (02H) and control drops into the

general type definition routine.

    Address... 471EH

    This is the "DEFSNG" statement handler. Registe r E is loaded

with the single precision type code (04H) and contr ol drops

into the general type definition routine.

    Address... 4721H

    This is the "DEFDBL" statement handler. Registe r E is loaded

with the double precision type code (08H) and the f irst range

definition character checked (64A7H). If this is no t upper case

alphabetic a "Syntax error" is generated (4055H). I f a "-"

token (F2H) follows the second range definition cha racter is

taken and checked (64A7H), the difference between t he two

determines the number of entries in DEFTBL that are  filled with

the type code.

    Address... 4755H

    This routine evaluates an operand and converts it to an

integer in register pair DE (520FH). If the operand  is negative

an "Illegal function call" error is generated.

-138-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 121 -

5. ROM BASIC INTERPRETER

    Address... 475FH

    This routine is used by the statement handlers shown in the

table at 43B5H to collect a single line number oper and from the

program text and convert it to an unsigned integer in register

pair DE. If the first character in the text is a ". " (2EH) the

routine terminates with the contents of DOT. If it is one of

the line number tokens (0DH or 0EH) the routine ter minates with

the contents of CONLO. Otherwise successive digits are taken

and added to the product, with appropriate multipli cations by

ten, until a non-numeric character is found.

    Address... 479EH

    This is the "RUN" statement handler. If no line  number

operand is present in the program text the system i s cleared

(629AH) and control returns to the Runloop with reg ister pair

HL pointing to the start of the Program Storage Are a. If a line

number operand is present the system is cleared (62 A1H) and

control transfers to the "GOTO" statement handler ( 47E7H).

Otherwise a following filename is assumed, for exam ple RUN

"CAS:FILE", and control transfers to the "LOAD" sta tement

handler (6B5BH);

    Address... 47B2H

    This is the "GOSUB" statement handler. After ch ecking that

stack space is available (625EH) the line number op erand is

collected and placed in register pair DE (4769H). T he seven

byte parameter block is then pushed onto the stack and control

transfers to the "GOTO" handler (47EBH). The parame ter block is

made up of the following:

        2 bytes ... End of statement address

        2 bytes ... Current line number

        2 bytes ... 0000H

        1 byte  ... GOSUB token (8DH)

    The parameter block remains on the stack until a "RETURN"

statement is executed. It is then used to determine  the

original program text position after which it is di scarded.

    Address... 47CFH

    This routine is used by the Runloop interrupt p rocessor

-139-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(6389H) to create a "GOSUB" type parameter block on  the Z80

stack. An interrupt block is identical to a normal block except

that the two zero bytes shown above are replaced by  the address

of the device's entry in TRPTBL. This address will be used by

the "RETURN" statement handler to update the device 's interrupt

status once a subroutine has terminated. After push ing the

parameter block control transfers to the Runloop to  execute the

program line whose address is supplied in register pair DE.

- 122 -

5. ROM BASIC INTERPRETER

    Address... 47E8H

    This is the "GOTO" statement handler. The line number

operand is collected (4769H) and placed in register  pair HL. If

it is a pointer control transfers immediately to th e Runloop to

begin execution at the new program text position. O therwise the

line number is compared with the current line numbe r to

determine the starting position for the program tex t search. If

it is greater the search starts from the end of thi s line

(4298H), if it is smaller it starts from the beginn ing of the

Program Text Area (4295H). If the referenced line c annot be

found an "Undefined line number" error is generated  (481CH).

Otherwise the line number operand is replaced by th e referenced

program line's address and its token changed to the  pointer

type (5583H). Control then transfers to the Runloop  to execute

the referenced program line.

    Address... 481CH

    This is the "Undefined line number" error gener ator.

    Address... 4821H

    This is the "RETURN" statement handler. A dummy  loop

Variable address is placed in register pair DE and the Z80

stack searched (3FE2H) to find the first parameter block not

belonging to a "FOR" loop, this section of stack is  then

discarded. If no "GOSUB" token (8DH) is found at th is point a

"RETURN without GOSUB" error is generated.

    The next two bytes are then taken from the bloc k, if they

are non-zero the block was generated by an interrup t and the

temporary "STOP" condition is removed (633EH). The program text

is then examined, if anything follows the "RETURN" token itself

it is assumed to be a line number operand and contr ol transfers

to the "GOTO" handler (47E8H). Otherwise the old li ne number

and program text address are taken from the block a nd control

returns to the Runloop.

-140-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 485BH

    This is the "DATA" statement handler. The progr am text is

skipped over until a statement separator (3AH) or e nd of line

character (00H) is found. This routine is also the "REM" and

"ELSE" statement handler via the entry point at 485 DH, in this

case only the end of line character acts as a termi nator.

    Address... 4880H

    This is the "LET" statement handler. The Variab le is first

located (5EA4H), its address saved in TEMP and the operand

evaluated (4C64H). If necessary the operand's type is then

changed to match that of the Variable (517AH). Assu ming the

operand is one of the three numeric types it is sim ply copied

- 123 -

5. ROM BASIC INTERPRETER

from DAC to the Variable in the Variable Storage Ar ea (2EF3H).

If the operand is a string type the address of the string body

is taken from the descriptor and checked. If it is in KBUF, as

would be the case for an explicit string in a direc t statement,

the body is first copied to the String Storage Area  and a new

descriptor created (6611H). The descriptor is then freed from

TEMPST (67EEH) and copied to the Variable in the Va riable

Storage Area (2EF3H).

    Address... 48E4H

    This is the "ON ERROR", "ON DEVICE GOSUB" and " ON

EXPRESSION" statement handler. If the next program text

character is not an "ERROR" token (A6H) control tra nsfers to

the "ON DEVICE GOSUB" and "ON EXPRESSION" handler ( 490DH). The

program text is checked to ensure that a "GOTO" tok en (89H)

follows and then the line number operand collected (4769H). The

program text is searched to obtain the address of t he

referenced line (4293H) and this is placed in ONELI N. If the

line number operand is non-zero the routine then te rminates. If

the line number operand is zero ONEFLG is checked t o see if an

error situation already exists (implying that the s tatement is

inside a BASIC error recovery routine). If so contr ol transfers

to the error handler (4096H) to force an immediate error,

otherwise the routine terminates normally.

    Address... 490DH

    This is the "ON DEVICE GOSUB" and "ON EXPRESSIO N" statement

handler. If the next program text character is not a device

token (7810H) control transfers to the "ON EXPRESSI ON" handler

(4943H). After checking the program text for a "GOS UB" token

-141-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(8DH) each of the line number operands required for  a

particular device is collected in turn (4769H). Ass uming a

given line number operand is non-zero the program t ext is

searched to find the address of the referenced line  (4293H) and

this is placed in the device's entry in TRPTBL (785 CH). The

routine terminates when no more line number operand s are found.

    Address... 4943H

    This is the "ON EXPRESSION" statement handler. The operand

is evaluated (521CH) and the following "GOSUB" toke n (8DH) or

"GOTO" token (89H) placed in register A. The operan d is then

used to count along the program text until register  pair HL

points to the required line number operand. Control  then

transfers back to the Runloop execution point (4646 H) to decode

the "GOSUB" or "GOTO" token.

    Address... 495DH

    This is the "RESUME" statement handler. ONEFLG is first

checked to make sure that an error condition alread y exists, if

not a "RESUME without error" is generated (4064H). If a non-

- 124 -

5. ROM BASIC INTERPRETER

zero line number operand follows control transfers to the

"GOTO" handler (47EBH). If a "NEXT" token (83H) fol lows the

position of the error is restored from ERRTXT and E RRLIN, the

start of the next statement is found (485BH) and th e routine

terminates. If there is no line number operand or i f it is zero

the position of the error is found from ERRTXT and ERRLIN and

the routine terminates.

    Address... 49AAH

    This is the "ERROR" statement handler. The oper and is

evaluated and placed in register E (521CH). If it i s zero an

"Illegal function call" error is generated (475AH),  otherwise

control transfers to the error handler (406FH).

    Address... 49B5H

    This is the "AUTO" Statement handler. The optio nal start and

increment line number operands, both with a default  value of

ten, are collected (475FH) and placed in AUTLIN and  AUTINC.

After making AUTFLG non-zero the Runloop return is destroyed

and control transfers directly to the Mainloop (413 4H).

    Address... 49E5H

-142-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the "IF" statement handler. The operand  is evaluated

(4C64H) and, after checking for a "GOTO" token (89H ) or "THEN"

token (DAH), its sign is tested (2EA1H). If the ope rand is non-

zero (true) the following text is executed either b y an

immediate transfer to the Runloop (4646H) or, for a  line number

operand, the "GOTO" handler (47E8H). If the operand  is zero

(false) the statement text is scanned (485BH) until  an "ELSE"

token (A1H) is found not balanced by an "IF" token (8BH) and

execution re-commences.

    Address... 4A1DH

    This is the "LPRINT" statement handler. PRTFLG is set to

01H, to direct output to the printer, and control t ransfers to

the "PRINT" handler (4A29H).

    Address... 4A24H

    This is the "PRINT" statement handler. The prog ram text is

first checked for a trailing buffer number and, if necessary,

PTRFIL set to direct output to the required I/O buf fer (6D57H).

If no more program text exists a CR,LF is issued (7 328H) and

the routine terminates (4AFFH). Otherwise successiv e characters

are taken from the program text and analyzed. If a "USING"

token (E4H) is found control transfers to the "PRIN T USING"

handler (60B1H). If a ";" character is found contro l just

transfers back to the start to fetch the next item (4A2EH). If

a comma is found sufficient spaces are issued to br ing the

current print position, from TTYPOS, LPTPOS or an I /O buffer

- 125 -

5. ROM BASIC INTERPRETER

FCB, to an integral multiple of fourteen. If output  is directed

to the screen and the print position is equal to or  greater

than the contents of CLMLST or if output is directe d to the

printer and it is equal to or greater than 238 then  a CR,LF is

issued instead (7328H). If a "SPC(" token (DFH) is found the

operand is evaluated (521BH) and the required numbe r of spaces

are output. If a "TAB(" token (DBH) is found the op erand is

evaluated (521BH) and sufficient spaces issued to b ring the

current print position, from TTYPOS, LPTPOS or an I /O buffer

FCB, to the required point.

    If none of these characters is found the progra m text

contains a data item which is then evaluated (4C64H ). If the

operand is a string it is simply displayed (667BH).  If it is

numeric it is first converted to text in FBUFFR (34 25H) and a

string descriptor created (6635H). If output is dir ected to an

I/O buffer the resulting string is then displayed ( 667BH). If

output is directed to the screen or printer the cur rent print

-143-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

position, from TTYPOS or LPTPOS, is compared with t he line

length and a CR,LF issued (7328H) if the output wil l not fit on

the line. The maximum line length is 255 for the pr inter and is

taken from LINLEN for the screen. Once the string h as been

displayed control transfers back to the start of th e handler.

    Address... 4AFFH

    This routine zeroes PRTFLG and PTRFIL to return  the

Interpreter's output to the screen.

    Address... 4B0EH

    This is the "LINE INPUT", "LINE INPUT#" and "LI NE" statement

handler. If the following program text character is  anything

other than an "INPUT" token (85H) control transfers  to the

"LINE" statement handler (58A7H). If the following program text

character is a "#" (23H) control transfers to the " LINE INPUT#"

statement handler (6D8FH).

    Any following prompt string is evaluated and di splayed

(4B7BH) and the Variable located (5EA4H) and checke d to ensure

that it is a string type (3058H). The line of text is

collected from the console via the INLIN standard r outine, if

Flag C (CTRL-STOP) is returned control transfers to  the "STOP"

statement handler (63FEH). Otherwise the input stri ng is

analyzed and a descriptor created (6638H), control then

transfers to the "LET" statement handler for assign ment

(4892H). It should be noted that the screen is not forced to

text mode before the input is collected.

    Address... 4B3AH

    This is the plain text message "?Redo from star t", CR, LF

terminated by a zero byte.

- 126 -

5. ROM BASIC INTERPRETER

    Address... 4B4DH

    This routine is used by the "READ/INPUT" statem ent handler

if it has failed to convert a data item to numeric form. If in

"READ" mode (FLGINP is non-zero) a "Syntax error" i s generated

(404FH). Otherwise the message "?Redo from start" i s displayed

(6678H) and control returns to the statement handle r.

    Address... 4B62H

    This is the "INPUT#" Statement handler. The buf fer number is

-144-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

evaluated and PTRFIL set to direct input from the r equired I/O

buffer (6D55H), control then transfers to the combi ned

"READ/INPUT" statement handler (4B9BH).

    Address... 4B6CH

    This is the "INPUT" statement handler. If the n ext program

text character is a "#" control transfers to the "I NPUT#"

statement handler (4B62H). Otherwise the screen is forced to

text mode, via the TOTXT standard routine, and any prompt

string analyzed (6636H) and displayed (667BH). A qu estion mark

is then displayed and a line of text collected from  the console

via the QINLIN standard routine. If this returns Fl ag C (CTRL-

STOP) control transfers to the "STOP" handler (63FE H). If the

first character in BUF is zero (null input) the han dler

terminates by skipping to the end of the statement (485AH),

otherwise control drops into the combined "READ/INP UT" handler.

    Address... 4B9FH

    This is the "READ" statement handler, a large s ection is

also used by the "INPUT" and "INPUT#" statements so  the

structure is rather awkward. Each Variable found in  the program

text is located in turn (5EA4H), for each one the c orresponding

data item is obtained and assigned to the Variable by the "LET"

handler (4893H). When in "READ" mode the data items  are taken

from the program text using the initial contents of  DATPTR

(4C40H). When in "INPUT" or "INPUT#" mode the data items are

taken from the text buffer BUF.

    If the data items are exhausted in "READ" mode an "Out of

DATA" error is generated. If they are exhausted in "INPUT" mode

two question marks are displayed and another line f etched from

the console via the QINLIN standard routine. If the y are

exhausted in "INPUT#" mode another line of text is copied to

BUF from the relevant I/O buffer (6D83H). If the Va riable list

is exhausted while in "INPUT" mode the message "Ext ra ignored"

is displayed (6678H) and the handler terminates (4A FFH). In

"INPUT#" mode no message is displayed while in "REA D" mode

control terminates by updating DATPTR (63DEH). If a  data item

cannot be converted to numeric form (3299H) to matc h a numeric

Variable control transfers to the "?Redo from start " routine

(4B4DH).

- 127 -

5. ROM BASIC INTERPRETER

    Address... 4C2FH

    The is the plain text message "?Extra ignored",  CR, LF

terminated by a zero byte.

-145-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 4C40H

    This routine is used by the "READ" handler to l ocate the

next "DATA" statement in the program text, the addr ess to start

from is supplied in register pair HL. Each program statement is

examined until a "DATA" token (84H) is found whereu pon the

routine terminates (4BD1H). If the end link is reac hed an "Out

of DATA" error is generated. As the search proceeds  the line

number of each program line is placed in DATLIN for  use by the

error handler.

    Address... 4C5FH

    This routine checks that the next character in the program

text is the "=" token (EFH) and then drops into the  Expression

Evaluator. When entered at 4C62H it checks for "(".

    Address... 4C64H

    This is the Expression Evaluator. On entry regi ster pair HL

points to the first character of the expression to be

evaluated. On exit register pair HL points to the c haracter

following the expression, the result is in DAC and the type

code in VALTYP. For a string result the address of the string

descriptor is returned at DAC+2. The descriptor its elf

comprising a single byte for the string length and two bytes

for its address, will be in TEMPST or inside a stri ng Variable.

    An expression is a list of factors (4DC7H) link ed together

by operators with differing precedence levels. To p rocess such

an expression correctly the Expression Evaluator mu st be able

to temporarily stack an intermediate result, if the  next

operator has a higher precedence than the current o perator, and

start afresh on a new calculation. It therefore has  two basic

operations, STACK and APPLY. For example:

        3+250\2^2*3^3+1,

        STACK:    3+   (\ follows)

        STACK:    250\ ( follows)

        APPLY:    2^2=4     (* follows)

        STACK:    4*   ( follows)

        APPLY:    3^3=27    (+ follows)

        APPLY:    4*27=108  (+ follows)

        APPLY:    250\108=2 (+ follows)

        APPLY:    3+2=5     (+ follows)

        APPLY:    5+1=6     (, follows)

    Evaluation terminates when the next operator ha s a precedence

- 128 -

5. ROM BASIC INTERPRETER

-146-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

equal to or lower than the initial precedence and t he stack is

empty. The expression delimiter, shown as a comma i n the

example, is regarded as having a precedence of zero  and so will

always halt evaluation. Normally the Expression Eva luator

starts off with an initial precedence of zero but t he entry

point at 4C67H may be used to supply an alternative  value in

register D. This facility is used by the Factor Eva luator to

restrict the range of evaluation when applying the monadic

negation and "NOT" operators.

    Address... 4D22H

    This routine is used by the Expression Evaluato r to apply an

infix math operator (+-*/ ) to a pair of numeric op erands.

There are separate routines for the relational oper ators

(4F57H) and the logical operators (4F78H). The firs t operand,

its type code, and the operator token are supplied on the Z80

stack, the second operand and its type code are sup plied in DAC

and VALTYP. The types of both operands are first co mpared, if

they differ the lowest precision operand is convert ed to match

the higher. The operands are then moved to the posi tions

required by the math routines. For integers the fir st operand

is placed in register pair DE and the second in reg ister pair

HL. For single precision the first operand is place d in

registers C, B, E, D and the second in DAC. For dou ble precision

the first operand is placed in DAC and the second i n ARG. The

operator token is then used to obtain the required address from

the table at 3D51H, 3D5DH or 3D69H, depending upon the operand

type, and control transfers to the relevant math ro utine.

    Address... 4DB8H

    This routine is used by the Expression Evaluato r to divide

two integer operands. The first operand is containe d in

register pair DE and the second in register pair HL , the result

is returned in DAC. Both operands are converted to single

precision (2FCBH) and control transfers to the sing le precision

division routine (3265H).

    Address... 4DC7H

    This is the Factor Evaluator. On entry register  pair HL

points to the character before the factor to be eva luated. On

exit register pair HL points to the character follo wing the

factor, the result is in DAC and the type code in V ALTYP. A

factor may be one of the following:

  (1) A numeric or string constant

  (2) A numeric or string Variable

  (3) A function

  (4) A monadic operator (+-NOT)

  (5) A parenthesized expression

-147-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The first character is taken from the program t ext via the

- 129 -

5. ROM BASIC INTERPRETER

CHRGTR standard routine and examined. If it is an e nd of

Statement character a "Missing operand" error is ge nerated

(406AH). If it is an ASCII digit it is converted fr om textual

form to one of the standard numeric types in DAC (3 299H).

    If it is upper case alphabetic (64A8H) it is a Variable and

its current value is returned (4E9BH). If it is a n umeric token

the number is copied from CONLO to DAC (46B8H). If it is one of

the FFH prefixed function tokens shown in the table  at 39DEH it

is decoded to transfer control to the relevant func tion handler

(4ECFH). If it is the monadic "+" operator it is si mply skipped

over, only the monadic "-" operator (4E8DH) and mon adic "NOT"

operator (4F63H) require any action.

    If it is an opening quote the following explici t string is

analyzed and a descriptor created (6636H). If it is  an "&" it

is a non-decimal numeric constant and it is convert ed to one of

the standard numeric types in DAC (4EB8H). If it is  not one of

the functions shown below then it must be a parenth esized

expression (4E87H), otherwise a "Syntax error" is g enerated.

The following function tokens are tested for direct ly and

control transferred to the address shown:

        ERR ....  4DFDH   ATTR$ .... 7C43H

        ERL ....  4E0BH   VARPTR ... 4E41H

        POINT ..  5803H   USR....... 4FD5H

        TIME ...  7900H   INSTR .... 68EBH

        SPRITE .  7A84H   INKEY$ ... 7347H

        VDP ....  7B47H   STRING$ .. 6829H

        BASE ...  7BCBH   INPUT$ ... 6C87H

        PLAY ...  791BH   CSRLIN ... 790AH

        DSKI$ ..  7C3EH   FN ....... 5040H

    Address... 4DFDH

    This routine is used by the Factor Evaluator to  apply the

"ERR" function. The contents of ERRFLG are placed i n DAC as an

integer (4FCFH).

    Address... 4E0BH

    This routine is used by the Factor Evaluator to  apply the

"ERL" function. The contents of ERRLIN are copied t o DAC as a

single precision number (3236H).

-148-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 4E41H

    This routine is used by the Factor Evaluator to  apply the

"VARPTR" function. If the function token is followe d by a "#"

the buffer number is evaluated (521BH), the I/O buf fer FCB

located (6A6DH) and its address placed in DAC as an  integer

(2F99H). Otherwise the Variable is located (5F5DH) and its

address placed in DAC as an integer (2F99H).

- 130 -

5. ROM BASIC INTERPRETER

    Address... 4E8DH

    This routine is used by the Factor Evaluator to  apply the

monadic "-" operator. Register D is set to a preced ence value

of 7DH, the factor evaluated (4C67H) and then negat ed (2E86H).

    Address... 4E9BH

    This routine is used by the Factor Evaluator to  return the

current value of a Variable. The Variable is first located

(5EA4H). If it is a string Variable its address is placed in

DAC to point to the descriptor. Otherwise the conte nts of the

Variable are copied to DAC (2F08).

    Address... 4EA9H

    This routine returns the single character point ed to by

register pair HL in register A, if it is a lower ca se

alphabetic it converts it to upper case.

    Address... 4EB8H

    This routine is used by the Factor Evaluator an d the numeric

input routine (3299H) to convert an ampersand ("&")  Prefixed

number from textual form to an integer in DAC. As e ach legal

character is found the product is multiplied by 2, 8 or 16,

depending upon the character which initially follow ed the

ampersand, and the new digit added to it. If the pr oduct

overflows an "Overflow" error is generated (4067H).  The routine

terminates when an unacceptable character is found.

    Address... 4EFCH

    This routine is used by the Factor Evaluator to  process the

FFH prefixed function tokens. If the token is eithe r "LEFT$",

"RIGHT$" or "MID$" the string operand is evaluated (4C62H), the

address of its descriptor pushed onto the Z80 stack  and the

following numeric operand also evaluated (521CH) an d stacked.

Otherwise the function's parenthesized operand is e valuated

(4E87H) and, for "SQR", "RND", "SIN", "LOG", "EXP",  "COS",

-149-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

"TAN" or "ATN" only, converted to double precision (303AH). The

function token is then used to obtain the required address from

the table at 39DEH and control transfers to the fun ction

handler.

    Address... 4F47H

    This routine is used by the numeric input conve rsion routine

(3299H) to test for a "+" or "-" character or token . It returns

register D=0 for positive and register D=FFH for ne gative.

    Address... 4F57H

    This routine is used by the Expression Evaluato r to apply a

- 131 -

5. ROM BASIC INTERPRETER

relational operator (<>= or combinations) to a pair  of

operands. If the operands are numeric the Expressio n Evaluator

first uses the math operator routine (4D22H) to app ly the

general relation operation to the operands. If the operands are

strings the string comparison routine (65C8H) is us ed first.

When control arrives here the relation result is in  register A

and the Z80 Flags:

        Operand 1=Operand 2 ... A=00H, Flag Z,NC

        Operand 1<Operand 2 ... A=01H, Flag NZ,NC

        Operand 1>Operand 2 ... A=FFH, Flag NZ,C

    The Expression Evaluator also supplies a bit ma sk defining the

original operators on the Z80 stack. This has a 1 i n each

position if the associated operation is required: 0 0000<=>. The

mask is applied to the relation result producing ze ro if none

of the conditions is satisfied. This is then placed  in DAC as a

true (-1) or false (0) integer (2E9AH).

    Address... 4F63H

    This routine is used by the Factor Evaluator to  apply the

monadic "NOT" operator. Register D is set to an ini tial

precedence level of 5AH and the expression evaluate d (4C67H)

and converted to an integer (2F8AH). It is then inv erted and

restored to DAC.

    Address... 4F78H

    This routine is used by the Expression Evaluato r to apply a

logical operator ("OR", "AND", "XOR", "EQV" and "IM P") or the

"MOD" and "\" operators to a pair of numeric operan ds. The

-150-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

first operand, which has already been converted to an integer,

is supplied on the Z80 stack and the second is supp lied in DAC.

The operator token (actually its precedence level) is supplied

in register B. After converting the second operand to an

integer (2F8AH) the operator is examined. There are  separate

routines for "MOD" (323AH) and "\" (31E6H) but the logical

operators are processed locally using the correspon ding Z80

logical instructions on register pairs DE and HL. T he result is

stored in DAC as an integer (2F99H).

    Address... 4FC7H

    This routine is used by the Factor Evaluator to  apply the

"LPOS" function to an operand contained in DAC. The  contents of

LPTPOS are placed in DAC as an integer (4FCFH).

    Address... 4FCCH

    This routine is used by the Factor Evaluator to  apply the

"POS" function to an operand contained in DAC. The contents of

TTYPOS are placed in DAC as an integer (2F99).

- 132 -

5. ROM BASIC INTERPRETER

    Address... 4FD5H

    This routine is used by the Factor Evaluator to  apply the

"USR" function. The user number is collected direct ly from the

program text, it cannot be an expression, and the a ssociated

address taken from USRTAB (4FF4H). The following pa renthesized

operand is then evaluated (4E87H) and left in DAC a s the passed

parameter. If it is a string type its storage is fr eed (67D3H).

The current program text position is pushed onto th e Z80 stack

followed by a return to 3297H, the routine at this address will

restore the program text position after the user fu nction has

terminated. Control then transfers to the user addr ess with

register pair HL pointing to the first byte of DAC and the type

code, from VALTYP, in register A. Additionally, for  a string

parameter, the descriptor address is taken from DAC  and placed

in register pair DE.

    The user routine may modify any register except  the Z80 SP

and should terminate with a RET instruction, interr upts may be

left disabled if necessary as the Runloop will re-e nable them.

Any numeric parameter to be returned to the Interpr eter should

be placed in DAC. Strictly speaking this should be the same

numeric type as the passed parameter, however if VA LTYP is

modified the Interpreter will always accept it.

    Returning a string type is more difficult. Usin g the same

method as the Factor Evaluator string functions, wh ich involves

-151-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

copying the string to the String Storage Area and p ushing a new

descriptor onto TEMPST, is complicated and vulnerab le to

changes in the MSX system. A simpler and more relia ble method

is to use the passed parameter to create the space for the

result. This should not be an explicitly stated str ing as the

program text will have to be modified, instead an i mplicit

parameter should be used. This must be done with ca re however,

it is very easy to gain the impression that the Int erpreter has

accepted the string when in fact it has not. Take t he following

example which does nothing but return the passed pa rameter:

        10 POKE &H9000,&HC9

        20 DEFUSR=&H9000

        30 A$=USR(STRING$(12,"!"))

        40 PRINT A$

        50 B$=STRING$(9,"X")

        60 PRINT A$

    At first it seems that the passed string has be en correctly

assigned to A$. When line 60 is reached however it becomes

apparent that A$ has been corrupted by the subseque nt

assignment of a string to B$. What has happened is that the

temporary storage allocated to the passed parameter  was

reclaimed from the String Storage Area before contr ol

transferred to the user routine. This region was th en used to

store the string belonging to B$ thus modifying A$.

- 133 -

5. ROM BASIC INTERPRETER

    This situation can be avoided by assigning the parameter to

a Variable beforehand and then passing the Variable , for

example:

        10 A$=STRING$(12,"!")

        20 A$=USR(A$)

    Line 10 results in twelve bytes of the String S torage Area

being permanently allocated to A$. When the user fu nction is

entered the descriptor, which is pointed to by regi ster pair

DE, will contain the starting address of the twelve  byte region

where the result should be placed. If the returned string is

shorter than the passed one the length byte of the descriptor

may be changed without any side effects. For furthe r details on

string storage see the garbage collector (66B6H).

    A point worth noting is that a "CLEAR" operatio n is not

strictly necessary before a machine language progra m is loaded.

-152-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

The region between the top of the Array Storage Are a and the

base of the Z80 stack is never used by the Interpre ter. A

program can exist in this region provided that the two

enclosing areas do not overlap it.

    Address... 500EH

    This is the "DEFUSR" statement handler. The use r number is

collected directly from the program text, it cannot  be an

expression, and the associated entry in USRTAB loca ted (4FF4H).

The address operand is then evaluated (542FH) and p laced in

USRTAB.

    Address... 501DH

    This is the "DEF FN" and "DEFUSR" statement han dler. If the

following character is a "USR" token (DDH) control transfers to

the "DEFUSR" statement handler (500EH), otherwise t he program

text is checked for a trailing "FN" token (DEH). Th e function

name Variable is located (51A1H) and, after checkin g that the

Interpreter is in program mode (5193H), the current  program

text position is placed there. Each of the Variable s in the

formal parameter list is then located in succession  (5EA4H),

this is simply to ensure that they are created. The  routine

terminates by skipping over the remainder of the st atement

(485BH) as the function body is not required at thi s time.

    Address... 5040H

    This routine is used by the Factor Evaluator to  apply the

"FN" function. The function name Variable is first located

(51A1H) to obtain the address of the function defin ition in the

program text. Each formal Variable from the functio n definition

is located in turn (5EA4H) and its address pushed o nto the Z80

stack. As each one is found the corresponding actua l parameter

is evaluated (4C64H) and pushed onto the stack with  it. If

- 134 -

5. ROM BASIC INTERPRETER

necessary the type of the actual parameter is conve rted to

match that of the formal parameter (517AH)'

    When both lists are exhausted each formal Varia ble address

and actual parameter are popped from the stack in t urn. Each

Variable is then copied from the Variable Storage A rea to PARM2

with its value replaced by the actual parameter. It  should be

noted that, because PARM2 is only a hundred bytes l ong, a

maximum of nine double precision parameters is allo wed. When

all the actual parameters have been copied to PRM2 the entire

contents of PARM1 (the current parameter area) are pushed onto

the Z80 stack and PARM2 is copied to PARM1 (518EH).  Register

-153-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

pair HL is then set to the start of the function bo dy in the

program text and the expression is evaluated (4C5FH ). The old

contents of PARM1 are popped from the stack and res tored.

Finally the result of the evaluation is type conver ted if

necessary to match the function name type (517AH).

    A user defined function differs from a normal e xpression in

only one respect, it has its own set of local Varia bles. These

Variables are created in PARM1 when the function is  invoked and

disappear when it terminates. When a normal Variabl e search is

initiated by the Expression Evaluator the region ex amined is

the Variable Storage Area. However, if NOFUNS is no n-zero,

indicating at least one active user function, PARM1  will be

searched instead, only if this fails will the searc h move on to

the global Variables in the Variable Storage Area. Using a

local Variable area specific to each invocation of a function

means that the same Variable names can be used thro ughout

without the Variables overwriting each other or the  global

Variables.

    It is worth noting that a user defined function  is slower

than an inline expression or even a subroutine. The  search

carried out to find the function name Variable, plu s the large

amount of stacking and destacking, are significant overheads.

    Address... 5189H

    This routine moves a block of memory from the a ddress

pointed to by register pair DE to that pointed to b y register

pair HL, register pair BC defines the length.

    Address... 5193H

    This routine generate an "Illegal direct" error  if CURLIN

shows the Interpreter to be in direct mode.

    Address... 51A1H

    This routine checks the program text for an "FN " token (DEH)

and then creates the function name Variable (5EA9H) . These are

distinguished from ordinary Variables by having bit  7 set in

the first character of the Variable's name.

- 135 -

5. ROM BASIC INTERPRETER

    Address... 51ADH

    Control transfers to this routine from the Runl oop execution

point (4640H) if a token greater than D8H is found at the start

of a statement. If the token is not an FFH prefixed  function

-154-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

token a "Syntax error" is generated (4055H). If the  function

token is one of those which double as statements co ntrol

transfers to the relevant handler, otherwise a "Syn tax error"

is generated. The statements in question are "MID$"  (696EH),

"STRIG" (77BFH) and "INTERVAL" (77B1H). There is ac tually no

separate token for "INTERVAL", the "INT" token (85H ) suffices

with the remaining characters being checked by the statement

handler.

    Address... 51C9H

    This is the "WIDTH" statement handler. The oper and is

evaluated (521CH) and its magnitude checked. If it is zero or

greater than thirty-two or forty, depending upon th e screen

mode held in OLDSCR an "Illegal function call" erro r is

generated (475AH). If it is the same as the current  contents of

LINLEN the routine terminates with no further actio n. Otherwise

the current screen is cleared with a FORMFEED contr ol code

(0CH) via the OUTDO standard routine in case the sc reen is to

be made smaller. The operand is then placed in LINL EN and

either LINL32 or LINL40, depending upon the screen mode held in

OLDSCR, and the screen cleared again in case it has  been made

larger. Because the line length variable to be chan ged is

selected by OLDSCR, rather than SCRMOD, the width c an still be

changed even if the screen is currently in Graphics  Mode or

Multicolour Mode. In this case the change is effect ive when a

return is made to the Interpreter Mainloop or an "I NPUT"

statement is executed.

    Address... 520EH

    This routine evaluates the next expression in t he program

text (4C64H), converts it to an integer (2F8AH) and  places the

result in register pair DE. The magnitude and sign of the MSB

are then tested and the routine terminates.

    Address... 521BH

    This routine evaluates the next operand in the program text

(4C64H) and converts it to an integer (5212H). If t he operand

is greater than 255 an "Illegal function call" erro r is

generated (475AH).

    Address... 5229H

    This is the "LLIST" statement handler. PRTFLG i s set to 01H,

to direct output to the printer, and control drops into the

"LIST" statement handler.

- 136 -

5. ROM BASIC INTERPRETER

-155-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 522EH

    This is the "LIST" statement handler. The optio nal start and

termination line number operands are collected and the starting

position found in the program text (4279H). Success ive program

lines are listed until the end link is found, the C TRL-STOP key

is pressed or the termination line number is reache d, control

then transfers directly to the Mainloop "OK" point (411FH).

Each program line is listed by displaying its line number

(3412H), detokenizing (5284H) and displaying (527BH ) the line

itself and then issuing a CR,LF (7328H).

    Address... 5284H

    This routine is used by the "LIST" statement ha ndler to

convert a tokenized program line to textual form. O n entry

register pair HL points to the first character of t he tokenized

line. On exit the line of text is in BUF and is ter minated by a

zero byte.

    Any normal or FFH prefixed token is converted t o the

corresponding keyword by a simple linear search of the tokens

in the table at 3A72H. Exceptions are made if eithe r an opening

quote character, a "REM" token, or a "DATA" token h as

previously been found. Normally these tokens will b e followed

by plain text anyway, the check is made to stop gra phics

characters being interpreted as tokens. The three b yte sequence

":" (3AH), "REM" token (8FH), " " token (E6H) is co nverted to

the single " " character (27H) and the statement se parator

(3AH) preceding an "ELSE" token (A1H) is scrubbed o ut.

    If one of the numeric tokens is found its value  and type are

first copied from CONLO and CONTYP to DAC and VALTY P (46E8H).

It is then converted to textual form in FBUFFR by t he decimal

(3425H), octal (371EH) or hex (3722H) conversion ro utines. For

octal and hex types the number is prefixed by an am persand and

an "O" or "H" letter. A type suffix, "'" or "#", is  added to

single precision or double precision numbers only i f there is

no decimal part and no exponent part ("E" or "D").

    Address... 53E2H

    This is the "DELETE" statement handler. The opt ional start

and termination line number operands are collected and the

starting position found in the program text (4279H) . If any

pointers exist in the program text they are convert ed back to

line numbers (54EAH). The terminating program line is found by

a search of the program text (4295H), if this addre ss is

smaller than that of the starting program line an " Illegal

function call" error is generated (475AH), otherwis e the

message "OK" is displayed (6678H). The block of mem ory from the

end of the terminating line to the start of the Var iable

Storage Area is copied down to the beginning of the  starting

line and VARTAB, ARYTAB and STREND are reset to the  new (lower)

-156-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 137 -

5. ROM BASIC INTERPRETER

end of the program text. Control then transfers dir ectly to the

end of the Mainloop (4237H) to reset the remaining pointers and

to relink the Program Text Area. Note that, because  control

does not return to the normal "OK" point, the scree n will not

be returned to text mode. If the screen is in Graph ics Mode or

Multicolour mode when a "DELETE" is executed, which  is

admittedly rather unlikely, the system will crash.

    Address... 541CH

    This routine is used by the Factor Evaluator to  apply the

"PEEK" function to an operand contained in DAC. The  address

operand is checked (5439H) then the byte read from memory and

placed in DAC as an integer (4FCFH).

    Address... 5423H

    This is the "POKE" statement handler. The addre ss operand is

evaluated (542FH) then the data operand evaluated ( 521CH) and

written to memory.

    Address... 542FH

    This routine evaluates the next operand in the program text

(4C64H) and places it in register pair DE as an int eger

(5439H).

    Address... 5439H

    This routine converts the numeric operand conta ined in DAC

into an integer in register pair HL. The operand mu st be in the

range -32768 to +65535 and is normally an address a s required

by "POKE", "PEEK", "BLOAD", etc. The operand's type  is first

checked via the GETYPR standard routine, if it is a lready an

integer it is simply placed in register pair HL (2F 8AH).

Assuming the operand is single precision or double precision

its sign is checked, if it is negative it is conver ted to

integer (2F8AH). Otherwise it is converted to singl e precision

(2FB2H) and its magnitude checked (2F21H). If it is  greater

than 32767 and smaller than 65536 then -65536 is ad ded (324EH)

before it is converted to integer (2F8AH).

    Address... 5468H

    This is the "RENUM" statement handler. If a new  initial line

number operand exists it is collected (475FH), othe rwise a

default value of ten of taken. If an old initial li ne number

operand exists it is collected (475FH), otherwise a  default

-157-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

value of zero is taken. If an increment line number  operand

exists it is collected (4769H), otherwise a default  value of

ten is taken.

    The program text is then searched for existing line numbers

equal to or greater than the new initial line numbe r (4295H)

- 138 -

5. ROM BASIC INTERPRETER

and the old initial line number (4295H), an "Illega l function

call" error is generated (475AH) if the new address  is smaller

than the old address. This is to catch any attempt to renumber

high program lines down to existing low ones.

    A dummy renumbering run of the program text is first carried

out to check than no new line number will be genera ted with a

value greater than 65529. This must be done as an e rror midway

through the conversion would leave the program text  in a

confused state. Assuming all is well any line numbe r operands

in the program text are converted to pointers (54F6 H). This

neatly solves the problem of line number references , GOTO 50

for example, as the program text is not moved durin g

renumbering. Starting at the old initial program te xt position

each existing program line number is replaced with its new

value. When the end link is reached any program tex t pointers

are converted back to line number operands (54F1H) and control

transfers directly to the Mainloop "OK" point (411E H).

    Address... 54F6H

    When entered at 54F6H this routine converts eve ry line

number operand in the program text to a pointer. Wh en entered

at 54F7H it performs the reverse operation and conv erts every

pointer in the program text back to a line number o perand.

Starting at the beginning of the Program Text Area each line is

examined for a pointer token (0DH) or a line number  operand

token (0EH) depending upon the mode. In pointer to line number

operand mode the pointer is replaced by the line nu mber from

the referenced program line and the token changed t o 0EH. In

line number operand to pointer mode the program tex t is

searched (4295H) to find the relevant line, its add ress

replaces the line number operand and the token is c hanged to

0DH. If the search is unsuccessful a message of the  form

"Undefined line NNNN in NNNN" is displayed (6678H) and the

conversion process continues. A special check is ma de for the

"ON ERROR GOTO 0" statement, to prevent the generat ion of a

spurious error message, but no check is made for th e similar

"RESUME 0" statement. In this case an error message  will be

displayed, this should be ignored.

-158-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 555AH

    This is the plain text message "Undefined line " terminated

by a zero byte.

    Address... 558CH

    Name...... SYNCHR

    Entry..... HL points to character to check

    Exit...... A=Next program character

    Modifies.. AF, HL

    Standard routine to check the current program t ext

character, whose address is supplied in register pa ir HL,

- 139 -

5. ROM BASIC INTERPRETER

against a reference character. The reference charac ter is

supplied as a single byte immediately following the  CALL or RST

instruction, for example:

        RST 08H

        DEFB ","

    If the characters do not match a "Syntax error"  is generated

(4055H), otherwise control transfers to the CHRGTR standard

routine to fetch the next program character (4666H) .

    Address... 5597H

    Name...... GETYPR

    Entry..... None

    Exit...... AF=Type

    Modifies.. AF

    Standard routine to return the type of the curr ent operand,

determined by VALTYP, as follows:

        Integer..............A=FFH, Flag M,NZ,C

        String...............A=00H, Flag P,Z,C

        Single Precision ... A=01H, Flag P,NZ,C

        Double Precision ... A=05H, Flag P,NZ,NC

    Address... 55A8H

    This is the "CALL" statement handler. The exten ded statement

name, which is an unquoted string up to fifteen cha racters long

terminated by a "(", ":" or end of line character ( 00H), is

first copied from the program text to PROCNM, any u nused bytes

are zero filled. Bit 5 of each entry in SLTATR is t hen examined

for an extension ROM with a statement handler. If a  suitable

-159-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

ROM is found its position in SLTATR is converted to  a Slot ID

in register A and a ROM base address in register H (7E2AH). The

statement handler address is read from ROM location s four and

five (7E1AH) and placed in register pair IX. The Sl ot ID is

placed in the high byte of register pair IY and the  ROM

statement handler called via the CALSLT standard ro utine.

    The ROM will examine the statement name and ret urn Flag C if

it does not recognize it, otherwise it performs the  required

operation. If the ROM call fails the search of SLTA TR continues

until the table is exhausted whereupon a "Syntax er ror" is

generated (4055H). If the ROM call is successful th e handler

terminates.

    Address... 55F8H

    This routine is used by the device name parser (6F15H) when

it cannot recognize a device name found in the prog ram text.

Upon entry register pair HL points to the first cha racter of

the name and register B holds its length. The name is first

copied to PROCNM and terminated by a zero byte. Bit  6 of each

- 140 -

5. ROM BASIC INTERPRETER

entry in SLTATR is then examined for an extension R OM with a

device handler. If a suitable ROM is found its posi tion in

SLTATR is converted to a Slot ID in register A and a ROM base

address in register H (7E2AH). The device handler a ddress is

read from ROM locations six and seven (7E1AH) and p laced in

register pair IX. The Slot ID is placed in the high  byte of

register pair IY, the unknown device code (FFH) in register A

and the ROM device handler called via the CALSLT st andard

routine.

    The ROM will examine the device name and return  Flag C if it

does not recognize it, otherwise it returns its own  internal

code from zero to three. If the ROM call fails the search of

SLTATR continues until the table is exhausted where upon a "Bad

file name" error is generated (6E6BH). If the ROM c all is

successful the ROM's internal code is added to its SLTATR

position, multiplied by a factor of four, to produc e a global

device code' The base code for each entry in SLTATR  is shown

below in hexadecimal. The "SS" and "PS" markers sho w the

corresponding Secondary and Primary Slot numbers, e ach slot is

composed of four pages:

          SS0           SS1           SS2           SS3

    +---------------------------------------------- ---------+

    ¦ 00 04 08 0C ¦ 10 14 18 1C ¦ 20 24 28 2C ¦ 30 34 38 3C ¦ PS0

    +-------------+-------------+-------------+---- ---------¦

    ¦ 40 44 48 4C ¦ 50 54 58 5C ¦ 60 64 68 6C ¦ 70 74 78 7C ¦ PS1

-160-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +-------------+-------------+-------------+---- ---------¦

    ¦ 80 84 88 8C ¦ 90 94 98 9C ¦ A0 A4 A8 AC ¦ B0 B4 B8 BC ¦ PS2

    +-------------+-------------+-------------+---- ---------¦

    ¦ C0 C4 C8 CC ¦ D0 D4 D8 DC ¦ E0 E4 E8 EC ¦ F0 F4 F8 FC ¦ PS3

    +---------------------------------------------- ---------+

Figure 44: Device Codes

    The global device code is used by the Interpret er until the

time comes for the ROM to perform an actual device operation.

It is then converted back into the ROM's Slot ID, b ase address

and internal device code to perform the ROM access.  Note that

the codes from 0 to 8 are reserved for disk drive i dentifiers

and those from FCH to FFH for the standard devices GRP, CRT,

LPT and CAS. With the current MSX hardware structur e these

codes correspond to physically improbable ROM confi gurations

and are therefore safe to be used for specific purp oses by the

Interpreter.

    Address... 564AH

    This routine is used by the function dispatcher  (6F8FH) when

it encounters a device code not belonging to one of  the

standard devices. The device code is first converte d to a

SLTATR position and then to a Slot ID in register A  and ROM

base address in register H (7E2DH). The ROM device handler

- 141 -

5. ROM BASIC INTERPRETER

address is read from ROM locations six and seven (7 E1AH) and

placed in register pair IX. The Slot ID is placed i n the high

byte of register pair IY, the ROM's internal device  code in

DEVICE and the ROM device handler called via the CA LSLT

standard routine.

    Address... 566CH

    This entry point to the macro language parser i s used by the

"DRAW" statement handler, a later entry point (56A2 H) is used

by the "PLAY" statement handler. The command string  is

evaluated (4C64H) and its storage freed (67D0H). Af ter pushing

a zero termination block onto the Z80 stack the len gth and

address of the string body are placed in MCLLEN and  MCLPTR and

control drops into the parser mainloop.

    Address... 56A2H

    This is the macro language parser mainloop, it is used to

process the command string associated with a "DRAW"  or "PLAY"

-161-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

statement' On entry the string length is in MCLLEN,  the string

address is in MCLPTR and the address of the relevan t command

table is in MCLTAB. The command tables contain the legal

command letters, together with the associated comma nd handler

addresses, for each statement. The "DRAW" table is at 5D83H and

the "PLAY" table at 752EH.

    The parser mainloop first fetches the next char acter from

the command string (56EEH). If there are no more ch aracters

left the next string descriptor is popped from the stack

(568CH). If this is zero the parser terminates (570 9H) if

MCLFLG shows a "DRAW" statement to be active, other wise control

transfers back to the "PLAY" statement handler (749 4H).

    Assuming a command character exists the current  command

table is searched to check its legality, if no matc h is found

an "Illegal function call" error is generated (475A H). The

command table entry is then examined, if bit 7 is s et the

command takes an optional numeric parameter. If thi s is present

it is collected and placed in register pair DE (571 CH),

otherwise a default value of one is taken. After pu shing a

return to the start of the parser mainloop onto the  Z80 stack

control transfers to the command handler at the add ress taken

from the command table.

    Address... 56EEH

    This routine is used by the macro language pars er to fetch

the next character from the command string. If MCLL EN is zero

the routine terminates with Flag Z, there are no ch aracters

left. Otherwise the next character is taken from th e address

contained in MCLPTR and returned in register A, if the

character is lower case it is converted to upper ca se. MCLPTR

is then incremented and MCLLEN decrement Ed.

- 142 -

5. ROM BASIC INTERPRETER

    Address... 570BH

    This routine is used by the macro language pars er to return

an unwanted character to the command string. MCLLEN  is

incremented and MCLPTR decremented.

    Address... 5719H

    This routine is used by the macro language pars er to collect

a numeric parameter from the command string. The re sult is a

signed integer and is returned in register pair DE,  it cannot

be an expression. The first character is taken and examined, if

it is a "+" it is ignored and the next character ta ken (5719H).

-162-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

If it is a "-" a return is set up to the negation r outine

(5795H) and the next character taken (5719H). If it  is an "="

the value of the following Variable is returned (57 7AH).

Otherwise successive characters are taken and a bin ary product

accumulated until a non-numeric character is found.

    Address... 575AH

    This routine is used by the macro language pars er "=" and

"X" handlers. The Variable name is copied to BUF un til the ";"

delimiter is found, if this takes more than thirty- nine

characters to find an "Illegal function call" error  is

generated (475AH). Otherwise control transfers to t he Factor

Evaluator Variable handler (4E9BH) and the Variable  contents

are returned in DAC.

    Address... 577AH

    This routine is used by the macro language pars er to process

the "=" character in a command parameter. The Varia ble's value

is obtained (575AH), converted to an integer (2F8AH ) and placed

in register pair DE.

    Address... 5782H

    This routine is used by the macro language pars er to process

the "X" command. The Variable is processed (575AH) and, after

checking that stack space is available (625EH), the  current

contents of MCLLEN and MCLPTR are stacked. Control then

transfers to the parser entry point (5679H) to obta in the

Variable's descriptor and process the new command s tring.

    Address... 579CH

    This routine is used by various graphics statem ents to

evaluate a coordinate pair in the program text. The  coordinates

must be parenthesized with a comma separating the c omponent

operands. If the coordinate pair is preceded by a " STEP" token

(DCH) each component value is added to the correspo nding

component of the current graphics coordinates in GR PACX and

GRPACY, otherwise the absolute values are returned.  The X

- 143 -

5. ROM BASIC INTERPRETER

coordinate is returned in GRPACX, GXPOS and registe r pair BC.

The Y coordinate is returned in GRPACY, GYPOS and r egister pair

DE.

    There are two entry points to the routine, the one which is

used depends on whether the caller is expecting mor e than one

-163-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

coordinate pair. The "LINE" statement, for example,  expects two

coordinate pairs the first of which is the more fle xible. The

entry point at 579CH is used to collect the first c oordinate

pair and will accept the characters "-" or "@-" as representing

the current graphics coordinates. The entry point a t 57ABH is

used for the second coordinate pair and requires an  explicit

operand.

    Address... 57E5H

    This is the "PRESET" statement handler. The cur rent

background colour is taken from BAKCLR and control drops into

the "PSET" handler.

    Address... 57EAH

    This is the "PSET" statement handler. After the  coordinate

pair has been evaluated (57ABH) the current foregro und colour

is taken from FORCLR and used as the default when s etting the

ink colour (5850H). The current graphics coordinate s are

converted to a physical address, via the SCALXY and  MAPXYC

standard routines, and the colour of the current pi xel set via

the SETC standard routine.

    Address... 5803H

    This routine is used by the Factor Evaluator to  apply the

"POINT" function. The current contents of CLOC, CMA SK, GYPOS,

GXPOS, GRPACY and GRPACX are stacked and the coordi nate pair

operand evaluated (57ABH). The colour of the new pi xel is read

via the SCALXY, MAPXYC and READC standard routines and placed

in DAC as an integer (2F99H), the old coordinate va lues are

then popped and restored. Note that a value of -1 i s returned

if the point coordinates are outside the screen.

    Address... 5850H

    This graphics routine is used to evaluate an op tional colour

operand in the program text and to make it the curr ent ink

colour. After checking the screen mode (59BCH) the colour

operand is evaluated (521CH) and placed in ATRBYT. If no

operand exists the colour code supplied in register  A is placed

in ATRBYT instead.

    Address... 5871H

    This graphics routine returns the difference be tween the

contents of GXPOS and register pair BC in register pair HL. If

- 144 -

5. ROM BASIC INTERPRETER

-164-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

the result is negative (GXPOS<BC) it is negated to produce the

absolute magnitude and Flag C is returned.

    Address... 5883H

    This graphics routine returns the difference be tween the

contents of GYPOS and register pair DE in register pair HL. If

the result is negative (GYPOS<DE) it is negated to produce the

absolute magnitude and Flag C is returned.

    Address... 588EH

    This graphics routine swaps the contents of GYP OS and

register pair DE.

    Address... 5898H

    This graphics routine first swaps the contents of GYPOS and

register pair DE (588EH) then swaps the contents of  GXPOS and

register pair BC. When entered at 589BH only the se cond

operation is performed.

    Address... 58A7H

    This is the "LINE" statement handler. The first  coordinate

pair (X1,Y1) is evaluated (579CH) and placed in reg ister pairs

BC,DE. After checking for the "-" token (F2H) the s econd

coordinate pair (X2,Y2) is evaluated (57ABH) and le ft in

GRPACX, GRPACY and GXPOS, GYPOS. After setting the ink colour

(584DH) the program text is checked for a following  "B" or "BF"

option and either the box (5912H), boxfill (58BFH) or linedraw

(58FCH) operation performed. None of these operatio ns affects

the current graphics coordinates in GRPACX and GRPA CY, these

are left at X2,Y2.

    Address... 58BFH

    This routine performs the boxfill operation. Gi ven that the

supplied coordinate pairs define diagonally opposed  points of

the box two quantities must be derived from them. T he

horizontal size of the box is obtained from the dif ference

between X1 and X2, this gives the number of pixels to set per

row. The vertical size is obtained from the differe nce between

Y1 and Y2 giving the number of rows required. Start ing at the

physical address of X1,Y1, and moving successively lower via

the DOWNC standard routine, the required number of pixel rows

are filled in by repeated use of the NSETCX standar d routine.

    Address... 58FCH

    This routine performs the linedraw operation. A fter drawing

the line (593CH) GXPOS and GYPOS are reset to X2,Y2  from GRPACX

and GRPACY.

-165-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 145 -

5. ROM BASIC INTERPRETER

    Address... 5912H

    This routine performs the box operation. The bo x is produced

by drawing a line (58FCH) between each of the four corner

points. The coordinates of each corner are derived from the

initial operands by interchanging the relevant comp onent of the

pair. The drawing sequence is:

  (1) X1,Y2 to X2,Y2

  (2) X1,Y1 to X2,Y1

  (3) X2,Y1 to X2,Y2

  (4) X1,Y1 to X1,Y2

    Address... 593CH

    This routine draws a line between the points X1 ,Y1, supplied

in register pairs BC and DE and X2,Y2, supplied in GXPOS and

GYPOS. The operation of the drawing mainloop (5993H ) is best

illustrated by an example, say LINE(0,0)-(10,4). To  reach the

end point of the line from its start ten horizontal  steps (X2-

X1) and four downward steps (Y2-Y1) must be taken a ltogether.

The best approximation to a straight line therefore  requires

two and a half horizontal steps for every downward step (X2-

X1/Y2-Y1). While this is impossible in practice, as  only

integral steps can be taken, the correct ratio can be achieved

on average.

    The method employed is to add the Y difference to a counter

each time a rightward step is taken. When the count er exceeds

the value of the X difference it is reset and one d ownward step

is taken, this is in effect an integer division of the two

difference values. Sometimes downward steps will be  produced

every two rightward steps and sometimes every three  rightward

steps. The average, however, will be one downward s tep every

two and a half rightward steps. An equivalent BASIC  program is

shown below with a slightly offset BASIC line for c omparison:

        10 SCREEN 0

        20 INPUT"START X,Y";X1,Y1

        30 INPUT"END X,Y",X2,Y2

        40 SCREEN 2

        50 X=X1:Y=Y1:L=X2-X1:S=Y2-Y1:CTR=L/2

        60 PSET(X,Y)

        70 CTR=CTR+S:IF CTR<L THEN 90

        80 CTR=CTR-L:Y=Y+1

        90 X=X+1:IF X<=X2 THEN 60

        100 LINE(X1,Y1+5)-(X2,Y2+5)

        110 GOTO 110

-166-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The above example suffers from three limitation s. The line must

slope downwards, it must slope to the right and the  slope

cannot exceed forty-five degrees from the horizonta l (one

downward step for one rightward step).

- 146 -

5. ROM BASIC INTERPRETER

    The routine overcomes the first limitation by e xamining the

Y1 and Y2 coordinates before drawing commences. If Y2 is greater

than or equal to Y1, showing the line to slope upwa rds or to be

horizontal, both coordinate pairs are exchanged. Th e line is

now sloping downwards and will be drawn from the en d point to

the start.

    The second limitation is overcome by examining X1 and X2

beforehand to determine which way the line is slopi ng. If X2 is

greater than or equal to X1 the line slopes to the right and a

Z80 JP to the RIGHTC standard routine is placed in

MINUPD/MAXUPD (see below) for use by the drawing ma inloop,

otherwise a JP to the LEFTC standard routine is pla ced there.

    The third limitation is overcome by comparing t he X

coordinate difference to the Y coordinate differenc e before

drawing to determine the slope steepness. If X2-X1 is smaller

than Y2-Y1 the slope of the line is less than forty -five

degrees from the horizontal. The simple method show n above for

LINE(0,0)-(10,4) will not work for slopes greater t han forty-

five degrees as the maximum rate of descent is achi eved when

one downward step is taken for every horizontal ste p. It will

work however if the step directions are exchanged. Thus

LINE(0,0)-(4,10) requires one rightward step for ev ery two and

a half downward steps. MINUPD holds a Z80 JP to the  "normal"

step direction standard routine for the drawing mai nloop and

MAXUPD holds a JP to the "slope" step direction sta ndard

routine. For shallow angles MINUPD will vector to D OWNC and

MAXUPD to LEFTC or RIGHTC. For steep angles MINUPD will vector

to LEFTC or RIGHTC and MAXUPD to DOWNC. For steep a ngles the

counter values must also be exchanged, the X differ ence must

now be added to the counter and the Y difference us ed as the

counter limit. The variables MINDEL and MAXDEL are used by the

drawing mainloop to hold these counter values, MIND EL holds the

smaller end point difference and MAXDEL the larger.

    An interesting point is that the reference coun ter, held in

CTR in the above program and in register pair DE in  the ROM, is

preloaded with half the largest end point differenc e rather

than being set to zero. This has the effect of spli tting the

first "stair" in the line into two sections, one at  the start

of the line and one at its end, and improving the l ine's

-167-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

appearance.

    Address... 59B4H

    This graphics routine shifts the contents of re gister pair

DE one bit to the right.

    Address... 59BCH

    This routine generates an "Illegal function cal l" error

(475AH) if the screen is not in Graphics Mode or Mu lticolour

Mode.

- 147 -

5. ROM BASIC INTERPRETER

    Address... 59C5H

    This is the "PAINT" statement handler. The star ting

coordinate pair is evaluated (579CH), the ink colou r set

(584DH) and the optional boundary colour operand ev aluated

(521CH) and placed in BDRATR. The starting coordina te pair is

checked to ensure that it is within the screen (5E9 1H) and is

made the current pixel physical address by the MAPX YC standard

routine. The distance to the right hand boundary is  then

measured (5ADCH) and, if it is zero, the handler te rminates.

Otherwise the distance to the left hand boundary is  measured

(5AEDH) and the sum of the two placed in register p air DE as

the zone width. The current position is then stacke d twice

(5ACEH), first with a termination flag (00H) and th en with a

down direction flag (40H). Control then transfers t o the paint

mainloop (5A26H) with an up direction flag (C0H) in  register B.

    Address... 5A26H

    This is the paint mainloop. The zone width is h eld in

register pair DE, the paint direction, up or down, in register

B and the current pixel physical address is that of  the pixel

adjacent to the left hand boundary. A vertical step  is taken to

the next line, via the TUPC or TDOWNC standard rout ines, and

the distance to the right hand boundary measured (5 ADCH). The

distance to the left hand boundary is then measured  and the

line between the boundaries filled in (5AEDH). If n o change is

found in the position of either boundary control tr ansfers to

the start of the mainloop to continue painting in t he same

direction. If a change is found an inflection has o ccurred and

the appropriate action must be taken.

    There are four types of inflection, LH or RH in cursive,

where the relevant boundary moves inward, and LH or  RH

excursive, where it moves outward. An example of ea ch type is

shown below with numbered zones indicating the orde r of

-168-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

painting during upward movement. A secondary zone i s shown

within each inflective region for completeness:

             +-+   +-+            +----------+   +- ---------+

             ¦ ¦   ¦ ¦            ¦     3    ¦   ¦    3     ¦

        +-+  ¦2¦   ¦3¦  +-+       ¦          ¦   ¦          ¦

        ¦3¦  ¦ ¦   ¦ ¦  ¦2¦       +---+ +--+ ¦   ¦ +--+ +---+

    +---+ +--+ ¦   ¦ +--+ +---+       ¦2¦  ¦ ¦   ¦ ¦  ¦2¦

    ¦          ¦   ¦          ¦       +-+  ¦1¦   ¦1 ¦  +-+

    ¦     1    ¦   ¦    1     ¦            ¦ ¦   ¦ ¦

    +----------+   +----------+            +-+   +- +

    LH Incursion   RH Incursion   LH Excursion   RH  Excursion

Figure 45: Boundary Inflections

    A LH excursion has occurred when the distance t o the left hand

boundary is non-zero, a RH excursion has occurred w hen the

- 148 -

5. ROM BASIC INTERPRETER

current zone width is greater than that of the prev ious line.

Unless the excursion is less than two pixels, in wh ich case it

will be ignored, the current position (the bottom l eft of zone

3 in figure 45) is stacked (5AC2H), the paint direc tion

reversed and painting restarts at the top left of t he excursive

region .

    A RH incursion has occurred when the current zo ne width is

smaller than that of the previous line. If the incu rsion is

total, that is the current zone width is zero, a de ad end has

been reached and the last position and direction ar e popped

(5AIFH) and painting restarts at that point. Otherw ise the

current position and direction are stacked (5AC2H) and painting

restarts at the bottom left of the incursive region .

    A LH incursion is dealt with automatically duri ng the search

for the right hand boundary and requires no explici t action by

the paint mainloop.

    Address... 5AC2H

    This routine is used by the "PAINT" statement h andler to

save the current paint position and direction on th e Z80 stack.

The six byte parameter block is made up of the foll owing:

        2 bytes ... Current contents of CLOC

        1 byte  ... Current direction

        1 byte  ... Current contents of CMASK

-169-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        2 bytes ... Current zone width

    After the parameters have been stacked a check is made that

sufficient stack space still exists (625EH).

    Address... 5ADCH

    This routine is used by the "PAINT" statement h andler to

locate the right hand boundary. The zone width of t he previous

line is passed to the SCANR standard routine in reg ister pair

DE, this determines the maximum number of boundary colour

pixels that may initially be skipped over. The retu rned

skip count remainder is placed in SKPCNT and the nu mber of non-

boundary colour pixels traversed in MOVCNT.

    Address... 5AEDH

    This routine is used by the "PAINT" statement h andler to

locate the left hand boundary. The end point of the  right hand

boundary search is temporarily saved and the starti ng point

taken from CSAVEA and CSAVEM and made the current p ixel

physical address. The left hand boundary is then lo cated via

the SCANL standard routine, which also fills in the  entire

zone, and the right hand end point recovered and pl aced in

CSAVEA and CSAVEM.

- 149 -

5. ROM BASIC INTERPRETER

    Address... 5B0BH

    This routine is used by the "CIRCLE" statement handler to

negate the contents of register pair DE.

    Address... 5B11H

    This is the "CIRCLE" statement handler. After e valuating the

centre coordinate pair (579CH) the radius is evalua ted (520FH),

multiplied (325CH) by SIN(PI/4) and placed in CNPNT S. The ink

colour is set (584DH), the start angle evaluated (5 D17H) and

placed in CSTCNT and the end angle evaluated (5D17H ) and placed

in CENCNT. If the end angle is smaller than the sta rt angle the

two values are swapped and CPLOTF is made non-zero.  The aspect

ratio is evaluated (4C64H) and, if it is greater th an one, its

reciprocal is taken (3267H) and CSCLXY is made non- zero to

indicate an X axis squash. The aspect ratio is mult iplied

(325CH) by 256, converted to an integer (2F8AH) and  placed in

ASPECT as a single byte binary fraction. Register p airs HL and

DE are set to the starting position on the circle p erimeter

(X=RADIUS,Y=0) and control drops into the circle ma inloop.

-170-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 5BBDH

    This is the circle mainloop. Because of the hig h degree of

symmetry in a circle it is only necessary to comput e the

coordinates of the arc from zero to forty-five degr ees. The

other seven segments are produced by rotation and r eflection of

these points. The parametric equation for a unit ci rcle, with T

the angle from zero to PI/4, is:

        X=COS(T)

        Y=SIN(T)

    Direct computation using this equation, or the corresponding

functional form X=SQR(1-Y^2), is too slow, instead the first

derivative is used:

         dx 

        ---- = -Y/X

         dy

    Given that the starting position is known (X=RA DIUS,Y=0), the X

coordinate change for each unit Y coordinate change  may be

computed using the derivative. Furthermore, because  graphics

resolution is limited to one pixel, it is only nece ssary to

know when the sum of the X coordinate changes reach es unity and

then to decrement the X coordinate. Therefore:

        Decrement X when (Y1/X)+(Y2/X)+(Y3/X)+... = > 1

        Therefore decrement when (Y1+Y2+Y3+...)/X = > 1

        Therefore decrement when     Y1+Y2+Y3+... = > X

    All that is required to identify an X coordinat e change is to

totalize the Y coordinate values from each step unt il the X

- 150 -

5. ROM BASIC INTERPRETER

coordinate value is exceeded. The circle mainloop h olds the X

coordinate in register pair HL, the Y coordinate in  register

pair DE and the running total in CRCSUM. An equival ent BASIC

program for a circle of arbitrary radius 160 pixels  is:

        10 SCREEN 2

        20 X=160:Y=0:CRCSUM=0

        30 PSET(X,191-Y)

        40 CRCSUM=CRCSUM+Y :Y=Y+1

        50 IF CRCSUM<X THEN 30

        60 CRCSUM=CRCSUM-X:X=X-1

        70 IF X>Y THEN 30

        80 CIRCLE(0,191),155

        90 GOTO 90

-171-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The coordinate pairs generated by the mainloop are those of a

"virtual" circle, such tasks as axial reflection, e lliptic

squash and centre translation are handled at a lowe r level

(5C06H).

    Address... 5C06H

    This routine is used to by the circle mainloop to convert a

coordinate pair, in register pairs HL and DE, into eight

symmetric points on the screen. The Y coordinate is  initially

negated (5B0BH), reflecting it about the X axis, an d the first

four points produced by successive clockwise rotati ons through

ninety degrees (5C48H). The Y coordinate is then ne gated again

(5B0BH) and a further four points produced (5C48H).

    Clockwise rotation is performed by exchanging t he X and Y

coordinates and negating the new Y coordinate, thus  a point

(40,10) would become (10,-40). Assuming an aspect r atio of 0.5,

for example, the complete sequence of eight points would

therefore be:

  (1)  X,-Y*0.5

  (2) -Y,-X*0.5

  (3) -X, Y*0.5

  (4)  Y, X*0.5

  (5)  Y,-X*0.5

  (6) -X,-Y*0.5

  (7) -Y, X*0.5

  (8)  X, Y*0.5

    It can be seen from the above that, ignoring th e sign of the

coordinates for the moment, there are only four ter ms involved.

Therefore, rather than performing the relatively sl ow aspect

ratio multiplication (5CEBH) for each point, the te rms X*0.5

and Y*0.5 can be prepared in advance and the comple te sequence

generated by interchanging and negating the four te rms. With

the aspect ratio shown above the initial conditions  are set up

so that register pair HL=X, register pair DE= -Y*0. 5, CXOFF=Y

and CYOFF=X*0.5 and successive points are produced by the

- 151 -

5. ROM BASIC INTERPRETER

operations:

  (1) Exchange HL and CXOFF, negate HL.

  (2) Exchange DE and CYOFF, negate DE.

    In parallel with the computation of each circle  coordinate the

number of points required to reach the start of the  segment

-172-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

containing the point is kept in CPCNT8. This will i nitially be

zero and will increase by 2*RADIUS*SIN(PI/4) as eac h ninety

degree rotation is made. As each of the eight point s is

produced its Y coordinate value is added to the con tents of

CPCNT8 and compared to the start and end angles to determine

the appropriate course of action. If the point is b etween the

two angles and CPLOTF is zero, or if it is outside the angles

and CPLOTF is non-zero, the coordinates are added t o the circle

centre coordinates (5CDCH) and the point set via th e SCALXY,

MAPXYC and SETC standard routines. If the point is equal to

either of the two angles, and the associated bit is  set in

CLINEF, the coordinates are added to the circle cen tre

coordinates (5CDCH) and a line drawn to the centre (593CH). If

none of these conditions is applicable no action is  taken other

than to proceed to the next point.

    Address... 5CEBH

    This routine multiplies the coordinate value su pplied in

register pair DE by the aspect ratio contained in A SPECT, the

result is returned in register pair DE. The standar d binary

shift and add method is used but the operation is p erformed as

two single byte multiplications to avoid overflow p roblems.

    Address... 5D17H

    This routine is used by the "CIRCLE" statement handler to

convert an angle operand to the form required by th e circle

mainloop, the result is returned in register pair D E. While the

method used is basically sound, and eliminates one

trigonometric computation per angle, the results pr oduced are

inaccurate. This is demonstrated by the following e xample which

draws a line to the true thirty degree point on a c ircle's

perimeter:

        10 SCREEN 2

        20 PI = 4 * ATN(1)

        30 CIRCLE(100,100),80,,PI/6

        40 LINE(100,100)-(100+80*COS(PI/6),100-80*S IN(PI/6))

        50 GOTO 50

    The result that the routine should produce is t he number of

points that must be produced by the circle mainloop  before the

required angle is reached. This can be computed by first noting

that there will be INT(ANGLE/(PI/4)) forty-five deg ree segments

prior to the segment containing the required angle.  Furthermore

each forty-five segment will contain RADIUS*SIN(PI/ 4) points as

- 152 -

5. ROM BASIC INTERPRETER

this is the value of the terminating Y coordinate. Therefore

-173-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

the number of points required to reach the start of  the segment

containing the angle is the product of these two nu mbers. The

total count is produced by adding this figure to th e number of

points required to cover any remaining angle within  the final

segment, that is RADIUS*SIN(REMAINING ANGLE) points .

    Unfortunately the routine computes the number o f points

within a segment by linear approximation from the t otal segment

size on the mistaken assumption that successive poi nts subtend

equal angles. Thus in the above example the point c ount

computed for the angle is 30/45*(80*0.707107)=37 in stead of the

correct value of forty. The error produced by the r outine is

therefore at a maximum at the centre of each forty- five degree

segment and reduces to zero at the end points.

    Address... 5D6EH

    This is the "DRAW" statement handler. Register pair DE is

set to point to the command table at 5D83H and cont rol

transfers to the macro language parser (566CH).

    Address... 5D83H

    This table contains the valid command letters a nd associated

addresses for the "DRAW" statement commands. Those commands

which takes a parameter, and consequently have bit 7 set in the

table, are shown with an asterisk:

        CMD TO

        -----------

        U*  5DB1H

        D*  5DB4H

        L*  5DB9H

        R*  5DBCH

        M   5DD8H

        E*  5DCAH

        F*  5DC6H

        G*  5DD1H

        H*  5DC3H

        A*  5E4EH

        B   5E46H

        N   5E42H

        X   5782H

        C*  5E87H

        S*  5E59H

    Address... 5DB1H

    This is the "DRAW" statement "U" command handle r. The

operation of the "D", "L", "R", "E", "F", "G" and " H" commands is

very similar so no separate description of their ha ndlers is

given. The optional numeric parameter is supplied b y the macro

language parser in register pair DE. This initial p arameter is

-174-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 153 -

5. ROM BASIC INTERPRETER

modified by a given handler into a horizontal offse t in

register pair BC and a vertical offset in register pair DE. For

example if leftward or upward movement is required the

parameter is negated (5B0BH), if diagonal movement is required

the parameter is duplicated so that equal horizonta l and

vertical offsets are produced. Once the offsets hav e been

prepared control transfers to the line drawing rout ine (5DFFH).

    Address... 5DD8H

    This is the "DRAW" statement "M" command handle r. The

character following the command letter is examined then the two

parameters collected from the command string (5719H ). If the

initial character is "+" or "-" the parameters are regarded as

offsets and are scaled (5E66H), rotated through suc cessive

ninety degree steps as determined by DRWANG and the n added to

the current graphics coordinates (5CDCH) to determi ne the

termination point. If DRWFLG shows the "B" mode to be inactive

a line is then drawn (5CCDH) from the current graph ics

coordinates to the termination point. If DRWFLG sho ws the "N"

mode to be inactive the termination coordinates are  placed in

GRPACX and GRPACY to become the new current graphic s

coordinates. Finally DRWFLG is zeroed, turning the "B" and "N"

modes off, and the handler terminates.

    Address... 5E42H

    This is the "DRAW" statement "N" command handle r, DRWFLG is

simply set to 40H.

    Address... 5E46H

    This is the "DRAW" statement "B" command handle r, DRWFLG is

simply set to 80H.

    Address... 5E4EH

    This is the "DRAW" statement "A" command handle r. The

parameter is checked for magnitude and placed in DR WANG.

    Address... 5E59H

    This is the "DRAW" statement "S" command handle r. The

parameter is checked for magnitude and placed in DR WSCL.

    Address... 5E66H

    This routine is used by the "DRAW" statement

"U", "D", "L", "R", "E", "F", "G", "H" and "M" (in offset mode)

command handlers to scale the offset supplied in re gister pair

-175-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

DE by the contents of DRWSCL. Unless DRWSCL is zero , in which

case the routine simply terminates, the offset is m ultiplied

using repeated addition and then divided by four (5 9B4H). To

eliminate scaling an "S0" or "S4" command should be  used.

- 154 -

5. ROM BASIC INTERPRETER

    Address... 5E87H

    This is the "DRAW" statement "C" command handle r. The

parameter is placed in ATRBYT via the SETATR standa rd routine.

There is no check on the MSB of the parameter so il legal values

such as "C265" will be accepted without an error me ssage.

    Address... 5E91H

    This routine is used by the "PAINT" statement h andler to

check, via the SCALXY standard routine, that the co ordinates in

register pairs BC and DE are within the screen. If not an

"Illegal function call" error is generated (475AH).

    Address... 5E9FH

    This is the "DIM" statement handler. A return i s set up to

5E9AH, so that multiple Arrays can be processed, DI MFLG is made

non-zero and control drops into the Variable search  routine.

    Address... 5EA4H

    This is the Variable search routine. On entry r egister pair

HL points to the first character of the Variable na me in the

program text. On exit register pair HL points to th e character

following the name and register pair DE to the firs t byte of

the Variable contents in the Variable Storage Area.  The first

character of the name is taken from the program tex t, checked

to ensure that it is upper case alphabetic (64A7H) and placed

in register C. The optional second character, with a default

value of zero, is placed in register B, this charac ter may be

alphabetic or numeric. Any further alphanumeric cha racters are

then simply skipped over.   If a type suffix charac ter

("%", "$", "!" or "#") follows the name this is con verted to the

corresponding type code (2, 3, 4 or 8) and placed i n VALTYP.

Otherwise the Variable's default type is taken from  DEFTBL

using the first letter of the name to locate the ap propriate

entry.

    SUBFLG is then checked to determine how any par enthesized

subscript following the name should be treated. Thi s flag is

normally zero but is modified by the "ERASE" (01H),  "FOR"

(64H), "FN" (80H) or "DEF FN" (80H) statement handl ers to force

-176-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

a particular course of action. In the "ERASE" case control

transfers straight to the Array search routine (5FE 8H), no

parenthesized subscript need be present. In the "FO R", "FN" and

"DEF FN" cases control transfers straight to the si mple

Variable search routine (5F08H), no check is made f or a

parenthesized subscript. Assuming that the situatio n is normal

the program text is checked for the characters "(" or "[". If

either is present control transfers to the Array se arch routine

(5FBAH), otherwise control drops into the simple Va riable

search routine.

- 155 -

5. ROM BASIC INTERPRETER

    Address... 5F08H

    This is the simple Variable search routine. The re are four

types of simple Variable each composed of a header followed by

the Variable contents. The first byte of the header  contains

the type code and the next two bytes the Variable n ame. The

contents of the Variable will be one of the three s tandard

numeric forms or, for the string type, the length a nd address

of the string. Each of the four types is shown belo w:

    +-----------------------------+

    ¦ 02H ¦ "A" ¦ "B" ¦ LSB ¦ MSB ¦

    +-----------------------------+

    Integer

    +-----------------------------------+

    ¦ 03H ¦ "A" ¦ "B" ¦ LEN ¦ LSB ¦ MSB ¦

    +-----------------------------------+

    String

    +-------------------------------------+

    ¦ 04H ¦ "A" ¦ "B" ¦ EE ¦ DD ¦ DD ¦ DD ¦

    +-------------------------------------+

    Single Precision

    +---------------------------------------------- -----------+

    ¦ 08H ¦ "A" ¦ "B" ¦ EE ¦ DD ¦ DD ¦ DD ¦ DD ¦ DD  ¦ DD ¦ DD ¦

    +---------------------------------------------- -----------+

    Double Precision

Figure 46: Simple Variables

    NOFUNS is first checked to determine whether a user defined

function is currently being evaluated. If so the se arch is

carried out on the contents of PARM1 first of all, only if this

fails will it move onto the main Variable Storage A rea. A

linear search method is used, the two name characte rs and type

byte of each Variable in the storage area are compa red to the

-177-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

reference characters and type until a match is foun d or the end

of the storage area is reached. If the search is su ccessful the

routine terminates with the address of the first by te of the

Variable contents in register pair DE. If the searc h is

unsuccessful the Array Storage Area is moved upward s and the

new Variable is added to the end of the existing on es and

initialized to zero.

    There are two exceptions to this automatic crea tion of a new

Variable. If the search is being carried out by the  "VARPTR"

function, and this is determined by examining the r eturn

address, no Variable will be created. Instead the r outine

terminates with register pair DE set to zero (5F61H ) causing a

subsequent "Illegal function call" error. The secon d exception

occurs when the search is being carried out by the Factor

Evaluator, that is when the Variable is newly decla red inside

an expression. In this case DAC is zeroed for numer ic types,

and loaded with the address of a dummy zero length descriptor

for a string type, thus returning a zero result (5F A7H). These

- 156 -

5. ROM BASIC INTERPRETER

actions are designed to prevent the Expression Eval uator

creating a new Variable ("VARPTR") is the only func tion to take

a Variable argument directly rather than via an exp ression and

so requires separate protection). If this were not so then

assignment to an Array, via the "LET" statement han dler, would

fail as any simple Variable created during expressi on

evaluation would change the Array's address.

    Address... 5FBAH

    This is the Array search routine. There are fou r types of

Array each composed of a header plus a number of el ements. The

first byte of the header contains the type code, th e next two

bytes the Array name and the next two the offset to  the start

of the following Array. This is followed by a singl e byte

containing the dimensionality of the Array and the element

count list. Each two byte element count contains th e maximum

number of elements per dimension. These are stored in reverse

order with the first one corresponding to the last subscript.

The contents of each Array element are identical to  the

contents of the corresponding simple Variable. The integer

Array AB%(3,4) is shown below with each element ide ntified by

its subscripts, high memory is towards the top of t he page:

    +-----------------------+

    ¦(0,4) (1,4) (2,4) (3,4)¦

    ¦(0,3) (1,3) (2,3) (3,3)¦

    ¦(0,2) (1,2) (2,2) (3,2)¦

    ¦(0,1) (1,1) (2,1) (3,1)¦

    ¦(0,0) (1,0) (2,0) (3,0)¦

-178-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    +-----------------------+

    +---------------------------------------------- -------------+

    ¦     ¦     ¦     ¦  Offset   ¦ Dim ¦   Count   ¦   Count   ¦

    ¦ 02H ¦ "A" ¦ "B" ¦ 2DH   00H ¦ 02H ¦ 05H   00H  ¦ 04H   00H ¦

    +---------------------------------------------- -------------+

Figure 47: Integer Array

    Each subscript is evaluated, converted to an in teger (4755H)

and pushed onto the Z80 stack until a closing paren thesis is

found, it need not match the opening one. A linear search is

then carried out on the Array Storage Area for a ma tch with the

two name characters and the type. If the search is successful

DIMFLG is checked and a "Redimensioned array" error  generated

(405EH) if it shows a "DIM" statement to be active.  Unless an

"ERASE" statement is active, in which case the rout ine

terminates with register pair BC pointing to the st art of the

Array (3297H), the dimensionality of the Array is t hen checked

against the subscript count and a "Subscript out of  range"

error generated if they fail to match. Assuming the se tests are

passed control transfers to the element address com putation

point (607DH).

    If the search is unsuccessful and an "ERASE" st atement is

active an "Illegal function call" error is generate d (475AH),

- 157 -

5. ROM BASIC INTERPRETER

otherwise the new Array is added to the end of the existing

Array Storage Area. Initialization of the new Array  proceeds by

storing the two name characters, the type code and the

dimensionality (the subscript count) followed by th e element

count for each dimension. If DIMFLG shows a "DIM" s tatement to

be active the element counts are determined by the subscripts.

If the Array is being created by default, with a st atement such

as "A(1,2,3)=5" for example, a default value of ele ven is used.

As each element count is stored the total size of t he Array is

accumulated in register pair DE by successive multi plications

(314AH) of the element counts and the element size (the Array

type). After a check that this amount of memory is available

(6267H) STREND is increased the new area is zeroed and the

Array size is stored, in slightly modified form, im mediately

after the two name characters. Unless the Array is being

created by default, in which case the element addre ss must be

computed, the routine then terminates.

    This is the element address computation point o f the Array

search routine. The location of a particular elemen t within an

Array involves the multiplication (314AH) of subscr ipts,

element counts and element sizes. As there are a va riety of

-179-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

ways this could be done the actual method used is b est

illustrated with an example. The location of elemen t (1,2,3) in

a 4*5*6 Array would initially be computed as (((3*5 )+2)*4)+1.

This is then multiplied by the element size (type) and added to

the Array base address to obtain the address of the  required

element. The computation method is an optimized for m which

minimizes the number of steps needed, it is equival ent to

evaluating (3*(4*5))+(2*4)+(1). The element address  is returned

in register pair DE.

    Address... 60B1H

    This is the "PRINT USING" statement handler. Co ntrol

transfers here from the general "PRINT" statement h andler after

the applicable output device has been set up. Upon termination

control passes back to the general "PRINT" statemen t exit point

(4AFFH) to restore the normal video output. The for mat string

is evaluated (4C65H) and the address and length of the string

body obtained from the descriptor. The program text  pointer is

then temporarily saved. Each character of the forma t string is

examined until one of the possible template charact ers is

found. If the character does not belong in a templa te it is

simply output via the OUTDO standard routine. Once the start of

a template is found this is scanned along until a n on-template

character is found. Control then passes to the nume ric output

routine (6192H) or the string output routine (6211H ).

    In either case the program text pointer is rest ored to

register pair HL and the next operand evaluated (4C 64H). For

numeric output the information gained from the temp late scan is

passed to the numeric conversion routine (3426H) in  registers

A, B and C and the resulting string displayed (6678 H). For

- 158 -

5. ROM BASIC INTERPRETER

string output the required character count is passe d to the

"LEFT$" statement handler (6868H) in register C and  the

resulting string displayed (667BH). For either type  of output

the program text and format string are then examine d to

determine whether there are any further characters.  If no

operands exist the handler terminates. If the forma t string has

been exhausted then it is restarted from the beginn ing (60BFH),

otherwise scanning continues from the current posit ion for the

next operand (60f6H).

    Address... 6250H

    This routine is used by the Interpreter Mainloo p and the

Variable search routine to move a block of memory u pwards. A

check is first made to ensure that sufficient memor y exists

-180-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(6267H) and then the block of memory is moved. The top source

address is supplied in register pair BC and the top  destination

address in register pair HL. Copying stops when the  contents of

register pair BC equal those of register pair DE.

    Address... 625EH

    This routine is used to check that sufficient m emory is

available between the top of the Array Storage Area  and the

base of the Z80 stack. On entry register C contains  the number

of words the caller requires. If this would narrow the gap to

less than two hundred bytes an "Out of memory" erro r is

generated.

    Address... 6286H

    This is the "NEW" statement handler. TRCFLG, AU TFLG and

PTRFLG are zeroed and the zero end link is placed a t the start

of the Program Text Area. VARTAB is set to point to  the byte

following the end link and control drops into the r un-clear

routine.

    Address... 629AH

    This routine is used by the "NEW", "RUN" and "C LEAR"

statement handlers to initialize the Interpreter va riables. All

interrupts are cleared (636EH) and the default Vari able types

in DEFTBL set to double precision. RNDX is reset (2 C24H) and

ONEFLG, ONELIN and OLDTXT are zeroed. MEMSIZ is cop ied to

FRETOP to clear the String Storage Area and DATPTR set to the

start of the Program Text Area (63C9H). The content s of VARTAB

are copied into ARYTAB and STREND, to clear any Var iables, all

the I/O buffers are closed (6C1CH) and NLONLY is re set. SAVSTK

and the Z80 SP are reset from STKTOP and TEMPPT is reset to the

start of TEMPST to clear any string descriptors. Th e printer is

shut down (7304H) and output restored to the screen  (4AFFH).

Finally PRMLEN, NOFUNS, PRMLN2, FUNACT, PRMSTK and SUBFLG are

zeroed and the routine terminates.

- 159 -

5. ROM BASIC INTERPRETER

    Address... 631BH

    This routine is used by the "DEVICE ON" stateme nt handlers

to enable an interrupt source, the address of the r elevant

device's TRPTBI. status byte is supplied in registe r pair HL.

Interrupts are enabled by setting bit 0 of the stat us byte.

Bits 1 and 2 are then examined and, if the device h as been

stopped and an interrupt has occurred, ONGSBF is in cremented

-181-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(634FH) so that the Runloop will process it at the end of the

statement. Finally bit 1 of the status byte is rese t to release

any existing stop condition.

    Address... 632EH

    This routine is used by the "DEVICE OFF" statem ent handlers

to disable an interrupt source, the address of the relevant

device's TRPTBL status byte is supplied in register  pair HL.

Bits 0 and 2 are examined to determine whether an i nterrupt has

occurred since the end of the last statement, if so  ONGSBF is

decremented (6362H) to prevent the Runloop from pic king it up.

The status byte is then zeroed.

    Address... 6331H

    This routine is used by the "DEVICE STOP" state ment handlers

to suspend processing of interrupts from an interru pt source,

the address of the relevant device's TRPTBL status byte is

supplied in register pair HL. Bits 0 and 2 are exam ined to

determine whether an interrupt has occurred since t he end of

the last statement, if so ONGSBF is decremented (63 62H) to

prevent the Runloop from picking it up. Bit 1 of th e status

byte is then set.

    Address... 633EH

    This routine is used by the "RETURN" statement handler to

release the temporary stop condition imposed during  interrupt

driven BASIC subroutines, the address of the releva nt device's

TRPTBL status byte is supplied in register pair HL.  Bits 0,

and 2 are examined to determine whether a stopped i nterrupt has

occurred since the subroutine was first activated. If so ONGSBF

is incremented (634FH) so that the Runloop will pic k it up at

the end of the statement. Bit 1 of the status byte is then

reset. It should be noted that any "DEVICE STOP" St atement

within an interrupt driven subroutine will therefor e be

ineffective.

    Address... 6358H

    This routine is used by the Runloop interrupt p rocessor

(6389H) to clear an interrupt prior to activating t he BASIC

subroutine, the address of the relevant device's TR PTBL status

byte is supplied in register pair HL. ONGSBF is dec remented and

bit 2 of the status byte is reset.

- 160 -

5. ROM BASIC INTERPRETER

    Address... 636EH

-182-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by the run-clear routine ( 629AH) to

clear all interrupts. The seventy-eight bytes of TR PTBL and the

ten bytes of FNKFLG are zeroed.

    Address... 6389H

    This is the Runloop interrupt processor. ONEFLG  is first

examined to determine whether an error condition cu rrently

exists. If so the routine terminates, no interrupts  will be

processed until the error clears. CURLIN is then ex amined and,

if the Interpreter is in direct mode, the routine t erminates.

Assuming all is well a search is made of the twenty -six status

bytes in TRPTBL to find the first active interrupt.  Note that

devices near the start of the table will consequent ly have a

higher priority than those lower down. When the fir st active

status byte is found, that is one with bits 0 and 2  set, the

associated address is taken from TRPTBL and placed in register

pair DE. The interrupt is then cleared (6358H) and the device

stopped (6331H) before control transfers to the "GO SUB" handler

(47CFH).

    Address... 63C9H

    This is the "RESTORE" statement handler. If no line number

operand exists DATPTR is set to the start of the Pr ogram

Storage Area. Otherwise the operand is collected (4 769H), the

program text searched to find the relevant line (42 95H) and its

address placed in DATPTR.

    Address... 63E3H

    This is the "STOP" statement handler. If furthe r text exists

in the statement control transfers to the "STOP ON/ OFF/STOP"

statement handler (77A5H). Otherwise register A is set to 01H

and control drops into the "END" statement handler.

    Address... 63EAH

    This is the "END" statement handler. It is also  used, with

differing entry points, by the "STOP" statement and  for CTRL-

STOP and end of text program termination. ONEFLG is  first

zeroed and then, for the "END" statement only, all I/O buffers

are closed (6C1CH). The current program text positi on is placed

in SAVTXT and OLDTXT and the current line number in  OLDLIN for

use by any subsequent "CONT" statement. The printer  is shut

down (7304H), a CR LF issued to the screen (7323H) and register

pair HL set to point to the "Break" message at 3FDC H. For the

"END" statement and end of text cases control then transfers to

the Mainloop "OK" point (411EH). For the CTRL-STOP case control

transfers to the end of the error handler (40FDH) t o display

the "Break" message.

- 161 -

-183-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

    Address... 6424H

    This is the "CONT" statement handler. Unless th ey are zero,

in which case a "Can't CONTINUE" error is generated , the

contents of OLDTXT are placed in register pair HL a nd those of

OLDLIN in CURLIN. Control then returns to the Runlo op to

execute at the old program text position. A program  cannot be

continued after CTRL-STOP has been used to break fr om WITHIN a

statement, via the CKCNTC standard routine, rather than from

between statements.

    Address... 6438H

    This is the "TRON" statement handler, TRCFLG is  simply made

non-zero.

    Address... 6439H

    This is the "TROFF" statement handler, TRCFLG i s simply made

zero.

    Address... 643EH

    This is the "SWAP" statement handler. The first  Variable is

located (5EA4H) and its contents copied to SWPTMP. The location

of this Variable and of the end of the Variable Sto rage Area

are temporarily saved. The second Variable is then located

(5EA4H) and its type compared with that of the firs t. If the

types fail to match a "Type mismatch" error is gene rated

(406DH). The current end of the Variable Storage Ar ea is then

compared with the old end and an "Illegal function call" error

generated (475AH) if they differ. Finally the conte nts of the

second Variable are copied to the location of the f irst

Variable (2EF3H) and the contents of SWPTMP to the location of

the second Variable (2EF3H).

    The checks performed by the handler mean that t he second

Variable, if it is simple and not an Array, must al ways be in

existence before a "SWAP" Statement is encountered or an error

will be generated. The reason for this is that, sup posing the

first Variable was an Array, then the creation of a  second

(simple) Variable would move the Array Storage Area  upwards

invalidating its saved location. Note that the perf ectly legal

case of a simple first Variable and a newly created  simple

second Variable is also rejected.

    Address... 6477H

    This is the "ERASE" statement handler. SUBFLG i s first set

to 01H, to control the Variable search routine, and  the Array

located (5EA4H). All the following Arrays are moved  downward

-184-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

and STREND set to its new, lower value. The program  text is

then checked and, if a comma follows, control trans fers back to

the start of the handler.

- 162 -

5. ROM BASIC INTERPRETER

    Address... 64A7H

    This routine checks whether the character whose  address is

supplied in register pair HL is upper case alphabet ic, if so it

returns Flag NC.

    Address... 64AFH

    This is the "CLEAR" statement handler. If no op erands are

present control transfers to the run-clear routine (62A1H) to

remove all current Variables. Otherwise the string space

operand is evaluated (4756H) followed by the option al top of

memory operand (542FH). The top of memory value is checked and

an "Illegal function call" error generated (475AH) if it is

less than 8000H or greater than F380H. The space re quired by

the I/O buffers (267 bytes each) and the String Sto rage Area is

subtracted from the top of memory value and an "Out  of memory"

error generated (6275H) if there is less than 160 b ytes

remaining to the base of the Variable Storage Area.  Assuming

all is well HIMEM, MEMSIZ and STKTOP are set to the ir new

values and the remaining storage pointers reset via  the run-

clear routine (62A1H). The I/O buffer storage is re -allocated

(7E6BH) and the handler terminates.

    Unfortunately the computation of MEMSIZ and STK TOP, when a

new top of memory is specified, is incorrect result ing in the

top of the String Storage Area being set one byte t oo high.

This can be seen with the following where an illega l string is

accepted:

        10 CLEAR 200,&HF380

        20 A$=STRING$(201,"A")

        30 PRINT FRE("")

    Because there should be an extra DEC HL instruc tion at 64EBH

the new values of MEMSIZ and STKTOP are initially s et one byte

too high. When the run-clear routine is called MEMS IZ is copied

into FRETOP, the top of the String Storage Area, wh ich results

in this being one byte too high as well. Although M EMSIZ and

STKTOP are correctly recomputed when the file point ers are

reset, FRETOP is left with its incorrect value. Whe n the "FRE"

statement is executed in line thirty, and string ga rbage

collection initiated, FRETOP is restored to its cor rect value

-185-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

but, because the string overflows the String Storag e Area by

one byte, the amount of free space displayed is -1 byte. To

correctly set all the system pointers any alteratio n of the top

of memory should be followed immediately by another  "CLEAR"

statement with no operands.

    Address... 6520H

    This routine computes the difference between th e contents of

register pairs HL and DE. It is a duplicate of the short

section of code from 64ECH to 64F1H and is complete ly unused.

- 163 -

5. ROM BASIC INTERPRETER

    Address... 6527H

    This is the "NEXT" statement handler. Assuming further text

is present in the statement the loop Variable is lo cated

(5EA4H), otherwise a default address of zero is tak en. The

stack is then searched for the corresponding "FOR" parameter

block (3FE2H). If no parameter block is found, or i f a "GOSUB"

parameter block is found first, a "NEXT without FOR " error is

generated (405BH). Assuming the parameter block is found the

intervening section of stack, together with any "FO R" blocks it

may contain, is discarded. The loop Variable type i s then taken

from the parameter block and examined to determine the

precision required during subsequent operations.

    The STEP value is taken from the parameter bloc k and added

(3172H, 324EH or 2697H) to the current contents of the loop

Variable which is then updated. The new value is co mpared

(2F4DH, 2F21H or 2F5CH) with the termination value from the

parameter block to determine whether the loop has t erminated

(65B6H). The loop will terminate for a positive STE P if the new

loop value is GREATER than the termination value. T he loop will

terminate for a negative step if the new loop value  is LESS

than the termination value. If the loop has not ter minated the

original program text position and line number are taken from

the parameter block and control transfers to the Ru nloop

(45FDH). If the loop has terminated the parameter b lock is

discarded from the stack and, unless further progra m text is

present in which control transfers back to the star t of the

handler, control transfers to the Runloop to execut e the next

statement (4601H).

    Address... 65C8H

    This routine is used by the Expression Evaluato r to find the

relation (<>=) between two string operands. The add ress of the

first string descriptor is supplied on the Z80 stac k and the

address of the second in DAC. The result is returne d in

register A and the flags as for the numeric relatio n routines:

-186-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        String 1=String 2 ... A=00H, Flag Z,NC

        String 1<String 2 ... A=01H, Flag NZ,NC

        String 1>String 2 ... A=FFH, Flag NZ,C

    Comparison commences at the first character of each string and

continues until the two characters differ or one of  the strings

is exhausted. Control then returns to the Expressio n Evaluator

(4F57H) to place the true or false numeric result i n DAC.

    Address... 65F5H

    This routine is used by the Factor Evaluator to  apply the

"OCT$" function to an operand contained in DAC. The  number is

first converted to textual form in FBUFFR (371EH) a nd then the

result string is created (6607H).

- 164 -

5. ROM BASIC INTERPRETER

    Address... 65FAH

    This routine is used by the Factor Evaluator to  apply the

"HEX$" function to an operand contained in DAC. The  number is

first converted to textual form in FBUFFR (3722H) a nd then the

result string is created (6607H).

    Address... 65FFH

    This routine is used by the Factor Evaluator to  apply the

"BIN$" function to an operand contained in DAC. The  number is

first converted to textual form in FBUFFR (371AH) a nd then the

result string is created (6607H).

    Address... 6604H

    This routine is used by the Factor Evaluator to  apply the

"STR$" function to an operand contained in DAC. The  number is

first converted to textual form in FBUFFR (3425H) t hen analyzed

to determine its length and address (6635H). After checking

that sufficient space is available (668EH) the stri ng is copied

to the String Storage Area (67C7H) and the result d escriptor

created (6654H).

    Address... 6627H

    This routine first checks that there is suffici ent space in

the String Storage Area for the string whose length  is supplied

in register A (668EH). The string length and the ad dress where

the string will be placed in the String Storage Are a are then

-187-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

copied to DSCTMP.

    Address... 6636H

    This routine is used by the Factor Evaluator to  analyze the

character string whose address is supplied in regis ter pair HL.

The character string is scanned until a terminating  character

(00H or ") is found. The length and starting addres s are then

placed in DSCTMP (662AH) and control drops into the  descriptor

creation routine.

    Address... 6654H

    This routine is used by the string functions to  create a

result descriptor. The descriptor is copied from DS CTMP to the

next available position in TEMPST and its address p laced in

DAC. Unless TEMPST is full, in which case a "String  formula too

complex" error is generated, TEMPPT is increased by  three bytes

and the routine terminates.

    Address... 6678H

    This routine displays the message, or string, w hose address

is supplied in register pair HL. The string is anal yzed (6635H)

- 165 -

5. ROM BASIC INTERPRETER

and its storage freed (67D3H). Successive character s are then

taken from the string and displayed, via the OUTDO standard

routine, until the string is exhausted.

    Address... 668EH

    This routine checks that there is room in the S tring Storage

Area to add the string whose length is supplied in register A.

On exit register pair DE points to the starting add ress in the

String Storage Area where the string should be plac ed. The

length of the string is first subtracted from the c urrent free

location contained in FRETOP. This is then compared  with

STKTOP, the lowest allowable location for string st orage, to

determine whether there is space for the string. If  so FRETOP

is updated with the new position and the routine te rminates. If

there is insufficient space for the string then gar bage

collection is initiated (66B6H) to try and eliminat e any dead

strings. If, after garbage collection, there is sti ll not

enough space an "Out of string space" error is gene rated.

    Address... 66B6H

    This is the string garbage collector, its funct ion is to

-188-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

eliminate any dead strings from the String Storage Area. The

basic problem with string Variables, as opposed to numeric

ones, is that their lengths vary. If string bodies were stored

with their Variables in the Variable Storage Area e ven such

apparently simple statements as A$=A$+"X" would req uire the

movement of thousands of bytes of memory and slow e xecution

speeds dramatically. The method used by the Interpr eter to

overcome this problem is to keep the string bodies separate

from the Variables. Thus strings are kept in the St ring Storage

Area and each Variable holds a three byte descripto r containing

the length and address of the associated string. Wh enever a

string is assigned to a Variable it is simply added  to the heap

of existing strings in the String Storage Area and the

Variable's descriptor changed. No attempt is made t o eliminate

any previous string belonging to the Variable, by r estructuring

the heap, as this would wipe out any throughput gai ns.

    If sufficient Variable assignments are made it is inevitable

that the String Storage Area will fill up. In a typ ical program

many of these strings will be unused, that is the r esult of

previous assignments. Garbage collection is the pro cess whereby

these dead strings are removed. Every string Variab le in

memory, including Arrays and the local Variables pr esent during

evaluation of user defined functions, is examined u ntil the one

is found whose string is stored highest in the heap . This

string is then moved to the top of the String Stora ge Area and

the Variable contents modified to point to the new location.

The owner of the next highest string is then found and the

process repeated until every string belonging to a Variable has

been compacted.

- 166 -

5. ROM BASIC INTERPRETER

    If a large number of Variables are present garb age

collection may take an appreciable time. The proces s can be

seen at work with the following program which repea tedly

assigns the string "AAAA" to each element of the Ar ray A$. The

program will run at full speed for the first two hu ndred and

fifty assignments and then pause to eliminate the f ifty dead

strings. A further fifty assignments can then be ma de before a

further garbage collection is required:

        10 CLEAR 1000

        20 DIM A$(200)

        30 FOR N=0 TO 200

        40 A$(N)=STRING$(4,"A")

        50 PRINT".";

        60 NEXT N

        70 GOTO 30

-189-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The String Storage Area is also used to hold th e intermediate

strings produced during expression evaluation. Beca use so many

string functions take multiple arguments, "MID$" ta kes three

for example, the management of intermediate results  is a major

problem. To deal with it a standardized approach to  string

results is taken throughout the Interpreter. A prod ucer of a

string simply adds the string body to the heap in t he String

Storage Area, adds the descriptor to the descriptor  heap in

TEMPST and places the address of the descriptor in DAC. It is

up to the user of the result to free this storage ( 67D0H) once

it has processed the string. This rule applies to a ll parts of

the system, from the individual function handlers b ack through

the Expression Evaluator to the statement handlers,  with only

two exceptions.

    The first exception occurs when the Factor Eval uator finds

an explicitly stated string, such as "SOMETHING" in  the

program text. In this case it is not necessary to c opy the

string to the String Storage Area as the original w ill suffice.

    The second exception occurs when the Factor Eva luator finds a

reference to a Variable. In this case it is not nec essary to

place a copy of the descriptor in TEMPST as one alr eady exists

inside the Variable.

    Address... 6787H

    This routine is used by the Expression Evaluato r to

concatenate two string operands. Control transfers here when a

"+" token is found following a string operand so th e first

action taken is to fetch the second string operand via the

Factor Evaluator (4DC7H). The lengths are then take n from both

string descriptors and added together to check the length of

the combined string. If this is greater than two hu ndred and

fifty-five characters a "String too long" error is generated.

After checking that space is available in the Strin g Storage

Area (6627H) the storage of both operands is freed (67D6H). The

first string is then copied to the String Storage A rea (67BFH)

- 167 -

5. ROM BASIC INTERPRETER

and followed by the second one (67BFH). The result descriptor

is created (6654H) and control transfers back to th e Expression

Evaluator (4C73H)'

    Address... 67D0H

    This routine frees any storage occupied by the string whose

descriptor address is contained in DAC. The address  of the

descriptor is taken from DAC and examined to determ ine whether

-190-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

it is that of the last descriptor in TEMPST (67EEH) , if not the

routine terminates. Otherwise TEMPPT is reduced by three bytes

clearing this descriptor from TEMPST. The address o f the string

body is then taken from the descriptor and compared  with FRETOP

to see if this is the lowest string in the String S torage Area,

if not the routine terminates. Otherwise the length  of the

string is added to FRETOP, which is then updated wi th this new

value, freeing the storage occupied by the string b ody.

    Address... 67FFH

    This routine is used by the Factor Evaluator to  apply the

"LEN" function to an operand contained in DAC. The operand's

storage is freed (67D0H) and the string length take n from the

descriptor and placed in DAC as an integer (4FCFH).

    Address... 680BH

    This routine is used by the Factor Evaluator to  apply the

"ASC" function to an operand contained in DAC. The operand's

storage is freed and the string length examined (68 03H), if it

is zero an "Illegal function call" error is generat ed (475AH).

Otherwise the first character is. taken from the st ring and

placed in DAC as an integer (4FCFH).

    Address... 681BH

    This routine is used by the Factor Evaluator to  apply the

"CHR$" function to an operand contained in DAC. Aft er checking

that sufficient space is available (6625H) the oper and is

converted to a single byte integer (521FH). This ch aracter is

then placed in the String Storage Area and the resu lt

descriptor created (6654H).

    Address... 6829H

    This routine is used by the Factor Evaluator to  apply the

"STRING$" function. After checking for the open par enthesis

character the length operand is evaluated and place d in

register E (521CH). The second operand is then eval uated

(4C64H). If it is numeric it is converted to a sing le byte

integer (521FH) and placed in register A. If it is a string the

first character is taken from it and placed in regi ster A

(680FH). Control then drops into the "SPACE$" funct ion to

create the result string.

- 168 -

5. ROM BASIC INTERPRETER

    Address... 6848H

-191-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by the Factor Evaluator to  apply the

"SPACE$" function to an operand contained in DAC. T he operand

is first converted to a single byte integer in regi ster E

(521FH). After checking that sufficient space is av ailable

(6627H) the required number of spaces are copied to  the String

Storage Area and the result descriptor created (665 4H).

    Address... 6861H

    This routine is used by the Factor Evaluator to  apply the

"LEFT$" function. The first operand's descriptor ad dress and

the integer second operand are supplied on the Z80 stack. The

slice size is taken from the stack (68E3H) and comp ared to the

source string length. If the source string length i s less than

the slice size it replaces it as the length to extr act. After

checking that sufficient space is available (668EH)  the

required number of characters are copied from the s tart of the

source string to the String Storage Area (67C7H). T he source

string's storage is then freed (67D7H) and the resu lt

descriptor created (6654H).

    Address... 6891H

    This routine is used by the Factor Evaluator to  apply the

"RIGHT$" function. The first operand's descriptor a ddress and

the integer second operand are supplied on the Z80 stack. The

slice size is taken from the stack (68E3H) and subt racted from

the source string length to determine the slice sta rting

position. Control then transfers to the "LEFT$" rou tine to

extract the slice (6865H).

    Address... 689AH

    This routine is used by the Factor Evaluator to  apply the

"MID$" function. The first operand's descriptor add ress and the

integer second operand are supplied on the Z80 stac k. The

starting position is taken from the stack (68E6H) a nd checked,

if it is zero an "Illegal function call" error is g enerated

(475AH). The optional slice size is then evaluated (69E4H) and

control transfers to the "LEFT$" routine to extract  the slice

(6869H).

    Address... 68BBH

    This routine is used by the Factor Evaluator to  apply the

"VAL" function to an operand contained in DAC. The string

length is taken from the descriptor (6803H) and che cked, if it

is zero it is placed in DAC as an integer (4FCFH). The length

is then added to the starting address of the string  body to

give the location of the character immediately foll owing it.

This is temporarily replaced with a zero byte and t he string is

converted to numeric form in DAC (3299H). The origi nal

- 169 -

-192-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

character is then restored and the routine terminat es. The

temporary zero byte delimiter is necessary because strings are

packed together in the String Storage Area, without  it the

numeric converter would run on into succeeding stri ngs.

    Address... 68E3H

    This routine is used by the "LEFT$", "MID$" and  "RIGHT$"

function handlers to check that the next program te xt character

is ")" and then to pop an operand from the Z80 stac k into

register pair DE.

    Address... 68EBH

    This routine is used by the Factor Evaluator to  apply the

"INSTR" function. The first operand, which may be t he starting

position or the source string, is evaluated (4C62H)  and its

type tested. If it is the source string a default s tarting

position of one is taken. If it is the starting pos ition

operand its value is checked and the source string operand

evaluated (4C64H). The pattern string is then evalu ated (4C64H)

and the storage of both operands freed (67D0H). The  length of

the pattern string is checked and, if zero, the sta rting

position is placed in DAC (4FCFH). The pattern stri ng is then

checked against successive characters from the sour ce string,

commencing at the starting position, until a match is found or

the source string is exhausted. With a successful s earch the

character position of the substring is placed in DA C as an

integer (4FCFH), otherwise a zero result is returne d.

    Address... 696EH

    This is the "MID$" statement handler. After che cking for the

open parenthesis character the destination Variable  is located

(5EA4H) and checked to ensure that it is a string t ype (3058H).

The address of the string body is then taken from t he Variable

and examined to determine whether it is inside the Program Text

Area, as would be the case for an explicitly stated  string. If

this is the case the string body is copied to the S tring

Storage Area (6611H) and a new descriptor copied to  the

Variable (2EF3H). This is done to avoid modifying t he program

text. The starting position is then evaluated (521C H) and

checked, if it is zero an "Illegal function call" e rror is

generated (475AH). The optional slice length operan d is

evaluated (69E4H) followed by the replacement strin g (4C5FH)

whose storage is then freed (67D0H). Characters are  then copied

from the replacement string to the destination stri ng until

either the slice length is completed or the replace ment string

is exhausted.

    Address... 69E4H

-193-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by various string function s to evaluate

an optional operand (521CH) and return the result i n register

- 170 -

5. ROM BASIC INTERPRETER

E. If no operand is present a default value of 255 is returned.

    Address... 69F2H

    This routine is used by the Factor Evaluator to  apply the

"FRE" function to an operand contained in DAC. If t he operand

is numeric the single precision difference between the Z80

Stack Pointer and the contents of STREND is placed in DAC

(4FC1H). If the operand is a string type its storag e is freed

(67D3H) and garbage collection initiated (66B6H). T he single

precision difference between the contents of FRETOP  and those

of STKTOP is then placed in DAC (4FC1H).

    Address... 6A0EH

    This routine is used by the file I/O handlers t o analyze a

filespec such as "A:FILENAME.BAS". The filespec con sists of

three parts, the device, the filename and the type extension.

On entry register pair HL points to the start of th e filespec

in the program text. On exit register D holds the d evice code,

the filename is in positions zero to seven of FILNA M and the

type extension in positions eight to ten. Any unuse d positions

are filled with spaces.

    The filespec string is evaluated (4C64H) and it s storage

freed (67D0H), if the string is of zero length a "B ad file

name" error is generated (6E6BH). The device name i s parsed

(6F15H) and successive characters taken from the fi lespec and

placed in FILNAM until the string is exhausted, a " ." character

is found or FILNAM is full. A "Bad file name" error  is

generated (6E6BH) if the filespec contains any cont rol

characters, that is those whose value is smaller th an 20H. If

the filespec contains a type extension a "Bad file name" error

is generated (6E6BH) if it is longer than three cha racters or

if the filename is longer than eight characters. If  no type

extension is present the filename may be any length , extra

characters are simply ignored.

    Address... 6A6DH

    This routine is used by the file I/O handlers t o locate the

I/O buffer FCB whose number is supplied in register  A. The

buffer number is first checked against MAXFIL and a  "Bad file

number" error generated (6E7DH) if it is too large.  Otherwise

the required address is taken from the file pointer  block and

-194-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

placed in register pair HL and the buffer's mode ta ken from

byte 0 of the FCB and placed in register A.

    Address... 6A9EH

    This routine is used by the file I/O handlers t o evaluate an

I/O buffer number and to locate its FCB. Any "#" ch aracter is

skipped (4666H) and the buffer number evaluated (52 1CH). The

FCB is located (6A6DH) and a "File not open" error generated

- 171 -

5. ROM BASIC INTERPRETER

(6E77H) if the buffer mode byte is zero. Otherwise the FCB

address is placed in PTRFIL to redirect the Interpr eter's

output.

    Address... 6AB7H

    This is the "OPEN" statement handler. The files pec is

analyzed (6A0EH) and any following mode converted t o the

corresponding mode byte, these are: "FOR INPUT" (01 H), "FOR

OUTPUT" (02H) and "FOR APPEND" (08H). If no mode is  explicitly

stated random mode (04H) is assumed. The "AS'- char acters are

checked and the buffer number evaluated (521CH), if  this is

zero a "Bad file number" error is generated (6E7DH) . The FCB is

then located (6A6DH) and a "File already open" erro r generated

(6E6EH) if the buffer's mode byte is anything other  than zero.

The device code is placed in byte 4 of the FCB, the  open

function dispatched (6F8FH) and the Interpreter's o utput reset

to the screen (4AFFH).

    Address... 6B24H

    This routine is used by the file I/O handlers t o close the

I/O buffer whose number is supplied in register A. The FCB is

located (6A6DH) and, provided the buffer is in use,  the close

function dispatched (6F8FH) and the buffer filled w ith zeroes

(6CEAH). PTRFIL and the FCB mode byte are then zero ed to reset

the Interpreter's output to the screen.

    Address... 6B5BH

    This is the "LOAD", "MERGE" and "RUN filespec" statement

handler. The filespec is analyzed (6A0EH) and then,  for "LOAD"

and "RUN" only, the program text examined to determ ine whether

the auto-run "R" option is specified. I/O buffer 0 is opened

for input (6AFAH) and the first byte of FILNAM set to FFH if

auto-run is required. For "LOAD" and "RUN" only any  program

text is then cleared via the "NEW" statement handle r (6287H).

As this will reset the Interpreter's output to the screen the

-195-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

buffer FCB is again located and placed in PTRFIL (6 AAAH).

Control then transfers directly to the Interpreter Mainloop

(4134H) for the program text to be loaded as if typ ed from the

keyboard. Note that no error checking of any sort i s carried

out on the data read.

    Address... 6BA3H

    This is the "SAVE" statement handler. The files pec is

analyzed (6A0EH) and the program text examined to d etermine

whether the ASCII "A" suffix is present. This is on ly relevant

under Disk BASIC, it makes no difference on a stand ard MSX

machine. I/O buffer 0 is opened for output (6AFAH) and control

transfers to the "LIST" statement handler (522EH) t o output the

program text. Note that no error checking informati on of any

sort accompanies the text.

- 172 -

5. ROM BASIC INTERPRETER

    Address... 6BDAH

    This routine is used by the file I/O handlers t o return the

device code for the currently active I/O buffer. Th e FCB

address is taken from PTRFIL then the device code t aken from

byte 4 of the FCB and placed in register A.

    Address... 6BE7H

    This routine is used by the file I/O handlers t o perform an

operation on a number of I/O buffers. The address o f the

relevant routine is supplied in register pair BC an d the buffer

count in register A. For example if register pair B C contained

6B24H and register A contained 03H buffers 3, 2, 1 and 0 would be

closed. The routine has a slightly different functi on if it is

entered with FLAG NZ. In this case the I/O buffer n umbers are

taken sequentially from the program text and evalua ted (521CH)

before the operation is performed, a typical case m ight be

"#1,#2".

    Address... 6C14H

    This is the "CLOSE" statement handler. Register  pair BC is

set to 6B24H, register A is loaded with the content s of MAXFIL

and the required number of buffers closed (6BE7H).

    Address... 6C1CH

    This routine is used by the file I/O handlers t o close every

I/O buffer. Register pair BC is set to 6B24H, regis ter A is

loaded with the contents of MAXFIL and all buffers closed

-196-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(6BE7H).

    Address... 6C2AH

    This is the "LFILES" statement handler. PRTFLG is made non-

zero, to direct output to the printer, and control drops into

the "FILES" statement handler.

    Address... 6C2FH

    This is the "FILES" statement handler, an "Ille gal function

call" error is generated (475AH) on a standard MSX machine.

    Address... 6C35H

    Control transfers here from the general "PUT" a nd "GET"

handlers (7758H) when the program text contains any thing other

than a "SPRITE" token. A "Sequential I/O only" erro r is

generated (6E86H) on a standard MSX machine.

    Address... 6C48H

    This routine is used by the file I/O handlers t o

- 173 -

5. ROM BASIC INTERPRETER

sequentially output the character supplied in regis ter A. The

character is placed in register C and the sequentia l output

function dispatched (6F8FH).

    Address... 6C71H

    This routine is used by the file I/O handlers t o

sequentially input a single character. The sequenti al input

function is dispatched (6F8FH) and the character re turned in

register A, FLAG C indicates an EOF (End Of File) c ondition.

    Address... 6C87H

    This routine is used by the Factor Evaluator to  apply the

"INPUT$" function. The program text is checked for the "$" and

"(" characters and the length operand evaluated (52 1CH). If an

I/O buffer number is present it is evaluated, the F CB located

(6A9EH) and the mode byte examined. An "Input past end" error

is generated (6E83H) if the buffer is not in input or random

mode. After checking that sufficient space is avail able (6627H)

the required number of characters are sequentially input

(6C71H), or collected via the CHGET standard routin e, and

copied to the String Storage Area. Finally the resu lt

descriptor is created (6654H).

-197-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 6CEAH

    This routine is used by the file I/O handlers t o fill the

buffer whose FCB address is contained in PTRFIL wit h two

hundred and fifty-six zeroes.

    Address... 6CFBH

    This routine is used by the file I/O handlers t o return, in

register pair HL, the starting address of the buffe r whose FCB

address is contained in PTRFIL. This just involves adding nine

to the FCB address.

    Address... 6D03H

    This routine is used by the Factor Evaluator to  apply the

"LOC" function to the I/O buffer whose number is co ntained in

DAC. The FCB is located (6A6AH) and the LOC functio n dispatched

(6F8FH). An "Illegal function call" error is genera ted (475AH)

on a standard MSX machine.

    Address... 6D14H

    This routine is used by the Factor Evaluator to  apply the

"LOF" function to the I/O buffer whose number is co ntained in

DAC. The FCB is located (6A6AH) and the LOF functio n dispatched

(6F8FH). An "Illegal function call" error is genera ted (475AH)

on a standard MSX machine.

- 174 -

5. ROM BASIC INTERPRETER

    Address... 6D25H

    This routine is used by the Factor Evaluator to  apply the

"EOF" function to the I/O buffer whose number is co ntained in

DAC. The FCB is located (6A6AH) and the EOF functio n dispatched

(6F8FH).

    Address... 6D39H

    This routine is used by the Factor Evaluator to  apply the

"FPOS" function to the I/O buffer whose number is c ontained in

DAC. The FCB is located (6A6AH) and the FPOS functi on

dispatched (6F8FH). An "Illegal function call" erro r is

generated (475AH) on a standard MSX machine.

    Address... 6D48H

-198-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Control transfers to this routine when the Inte rpreter

Mainloop encounters a direct statement, that is one  with no

line number. The ISFLIO standard routine is first u sed to

determine whether a "LOAD" statement is active. If input is

coming from the keyboard control transfers to the R unloop

execution point (4640H) to execute the statement. I f input is

coming from the cassette buffer 0 is closed (6B24H)  and a

"Direct statement in file" error generated (6E71H).  This could

happen on a standard MSX machine either through a c assette

error or by attempting to load a text file with no line

numbers.

    Address... 6D57H

    This routine is used by the "INPUT", "LINE INPU T" and

"PRINT" statement handlers to check for the presenc e of a "#"

character in the program text. If one is found the I/O buffer

number is evaluated (521BH), the FCB located and it s address

placed in PTRFIL (6AAAH). The mode byte of the FCB is then

compared with the mode number supplied by the state ment handler

in register C, if they do not match a "Bad file num ber" error

is generated (6E7DH). With "PRINT" the allowable mo des are

output, random and append. With "INPUT" and "LINE I NPUT" the

allowable modes are input and random. Note that on a standard

MSX machine not all these modes are supported at lo wer levels.

Some sort of error will consequently be generated a t a later

stage for illegal modes.

    Address... 6D83H

    This routine is used by the "INPUT" statement h andler to

input a string from an I/O buffer. A return is firs t set up to

the "READ/INPUT" statement handler (4BF1H). The cha racters

which delimit the input string, comma and space for  a numeric

Variable and comma only for a string Variable, are placed in

registers D and E and control transfers to the "LIN E INPUT"

routine (6DA3H).

- 175 -

5. ROM BASIC INTERPRETER

    Address... 6D8FH

    This is the "LINE INPUT" statement handler when  input is

from an I/O buffer. The buffer number is evaluated,  the FCB

located and the mode checked (6D55H). The Variable to assign to

is then located (5EA4H) and its type checked to ens ure it is a

string type (3058H). A return is set up to the "LET " statement

handler (487BH) to perform the assignment and the i nput string

collected.

-199-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Characters are sequentially input (6C71H) and p laced in BUF

until the correct delimiter is found, EOF is reache d or BUF

fills up (6E41H). When the terminating condition is  reached and

assignment is to a numeric Variable the string is c onverted to

numeric form in DAC (3299H). When assignment is to a string

Variable the string is analyzed and the result desc riptor

created (6638H).

    For "LINE INPUT" all characters are accepted un til a CR code

is reached. Note that if this CR code is preceded b y a LF code

then it will not function as a delimiter but will m erely be

accepted as part of the string. For "INPUT" to a nu meric

Variable leading spaces are stripped then character s accepted

until a CR code, a space or a comma is reached. Not e that as

for "LINE INPUT" a CR code will not function as a d elimiter

when preceded by a LF code. In this case however th e CR code

will not be placed in BUF but ignored. For "INPUT" to a string

Variable leading spaces are stripped then character s accepted

until a CR or comma is reached. Note that as for "L INE INPUT" a

CR code will not function as a delimiter when prece ded by a LF

code. In this case however neither code will be pla ced in BUF

both are ignored. An alternative mode is entered wh en the first

character read, after any spaces, is a double quote  character.

In this case all characters will be accepted, and s tored in

BUF, until another double quote delimiter is read.

    Once the input string has been accepted the ter minating

delimiter is examined to see if any special action is required

with respect to trailing characters. If the input s tring was

delimited by a double quote character or a space th en any

succeeding spaces will be read in and ignored until  a non-space

character is found. If this character is a comma or  CR code

then it is accepted and ignored. Otherwise a putbac k function

is dispatched (6F8FH) to return the character to th e I/O

buffer. If the input string was delimited by a CR c ode then the

next character is read in and checked. If this is a  LF code it

will be accepted but ignored. If it is not a LF cod e then a

putback function is dispatched (6F8FH) to return th e character

to the I/O buffer.

    Address... 6E6BH

    This is a group of ten file I/O related error g enerators.

Register E is loaded with the relevant error code a nd control

- 176 -

5. ROM BASIC INTERPRETER

transfers to the error handler (406FH):

        ADDR. ERROR

-200-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        -------------------------------

        6E6BH Bad file name

        6E6EH File already open

        6E71H Direct statement in file

        6E74H File not found

        6E77H File not open

        6E7AH Field overflow

        6E7DH Bad file number

        6E80H Internal error

        6E83H Input past end

        6E86H Sequential I/O only

    Address... 6E92H

    This is the "BSAVE" statement handler. The file spec is

analyzed (6A0EH) and the start address evaluated (6 F0BH). The

stop address is then evaluated (6F0BH) and placed i n SAVEND

followed by the optional entry address (6F0BH) whic h is placed

in SAVENT. If no entry address exists the start add ress is

taken instead. The device code is checked to ensure  that it is

CAS, if not a "Bad file name" error is generated (6 E6BH), and

the data written to cassette (6FD7H). Note that no buffering is

involved, data is written directly to the cassette,  and no

error checking information accompanies the data.

    Address... 6EC6H

    This is the "BLOAD" statement handler. The file spec is

analyzed (6A0EH) and RUNBNF made non-zero if the au to-run "R"

option is present in the program text. The optional  load

offset, with a default value of zero, is then evalu ated (6F0BH)

and the device code checked to ensure that it is CA S, if not a

"Bad file name" error is generated (6E6BH). Data is  then read

directly from cassette (7014H), as with "BSAVE" no buffering or

error checking is involved.

    Address... 6EF4H

    Control transfers to this routine when the "BLO AD" statement

handler has completed loading data into memory. If RUNBNF is

zero buffer 0 is closed (6B24H) and control returns  to the

Runloop. Otherwise buffer 0 is closed (6B24H), a re turn address

of 6CF3H is set up (this routine just pops the prog ram text

pointer back into register pair HL and returns to t he Runloop)

and control transfers to the address contained in S AVENT.

    Address... 6F0BH

    This routine is used by the "BLOAD" and "BSAVE"  handlers to

evaluate an address operand, the result is returned  in register

pair DE. The operand is evaluated (4C64H) then conv erted to an

- 177 -

-201-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

5. ROM BASIC INTERPRETER

integer (5439H).

    Address... 6F15H

    This routine is used by the filespec analyzer t o parse a

device name such as "CAS:". On entry register pair HL points to

the start of the filespec string and register E con tains its

length. If no device name is present the default de vice code

(CAS=FFH) is returned in register A with FLAG Z. If  a legal

device name is present its code is returned in regi ster A with

FLAG NZ.

    The filespec is examined until a ":" character is found then

the name compared with each of the legal device nam es in the

device table at 6F76H. If a match is found the devi ce code is

taken from the table and returned in register A. If  no match is

found control transfers to the external ROM search routine

(55F8H). Note that any lower case characters are tu rned to

upper case for comparison purposes. Thus crt and CR T, for

example, are the same device.

    Address... 6F76H

    This table is used by the device name parser, i t contains

the four device names and codes available on a stan dard MSX

machine:

        CAS ... FFH  LPT ... FEH  CRT ... FDH  GRP ... FCH

    Address... 6F87H

    This table is used by the function dispatcher ( 6F8FH), it

contains the address of the function decoding table  for each of

the four standard MSX devices:

        CAS ... 71C7H  LPT ... 72A6H  CRT ... 71A2H   GRP ... 7182H

    Address... 6F8FH

    This is the file I/O function dispatcher. In co njunction

with the Interpreter's buffer structure it provides  a

consistent, device independent method of inputting or

outputting data. The required function code is supp lied in

register A and the address of the buffer FCB in reg ister pair

HL.

    The device code is taken from byte 4 of the FCB  and examined

to determine whether it is one of the four standard  devices, if

not control transfers to the external ROM function dispatcher

(564AH). Otherwise the address of the device's func tion

decoding table is taken from the table at 6F87H, th e required

function's address taken from it and control transf erred to the

-202-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

relevant function handler.

- 178 -

5. ROM BASIC INTERPRETER

    Address... 6FB7H

    This is the "CSAVE" statement handler. The file name is

evaluated (7098H) followed by the optional baud rat e operand

(7A2DH). The identification block is then written t o cassette

(7125H) with a filetype byte of D3H. The contents o f the

Program Text Area are written directly to cassette as a single

data block (713EH). Note that no error checking inf ormation

accompanies the data.

    Address... 6FD7H

    Control transfers to this routine from the "BSA VE" statement

handler to write a block of memory to cassette. The

identification block is first written to cassette ( 7125H) with

a filetype byte of D0H. The motor is then turned on  and a short

header written to cassette (72F8H) The starting add ress is

popped from the Z80 stack and written to cassette L SB first,

MSB second (7003H). The stop address is taken from SAVEND and

written to cassette LSB first, MSB second (7003H). The entry

address is taken from SAVENT and written to cassett e LSB first,

MSB second (7003H). The required area of memory is then written

to cassette one byte at a time (72DEH) and the cass ette motor

turned off via the TAPOOF standard routine. Note th at no error

checking information accompanies the data.

    Address... 7003H

    This routine writes the contents of register pa ir HL to

cassette with register L first (72DEH) and register  H second

(72DEH).

    Address... 700BH

    This routine reads two bytes from cassette and places the

first in register L (72D4H), the second in register  H (72D4H).

    Address... 7014H

    Control transfers to this routine from the "BLO AD" statement

handler to load data from the cassette into memory.  The

cassette is read until an identification block with  a file type

of D0H and the correct filename is found (70B8H). T he data

block header is then located on the cassette (72E9H ). The

offset value is popped from the Z80 stack and added  to the

start address from the cassette (700BH). The stop a ddress is

-203-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

read from cassette (700BH) and the offset added to this as

well. The entry address is read from cassette (700B H) and

placed in SAVENT in case auto-run is required. Succ essive data

bytes are then read from cassette (72D4H) and place d in memory,

at the start address initially, until the stop addr ess is

reached. Finally the motor is turned off via the TA PIOF

standard routine and control transfers to the "BLOA D"

termination point (6EF4H).

- 179 -

5. ROM BASIC INTERPRETER

    Address... 703FH

    This is the "CLOAD" and "CLOAD?" statement hand ler. The

program text is first checked for a trailing "PRINT " token

(91H) which is how the "?" character is tokenized. The filename

is then evaluated (708CH) and the cassette read unt il an

identification block with a filetype of D3H and the  correct

filename is found (70B8H). For "CLOAD" a "NEW" oper ation is

then performed (6287H) to erase the current program  text. For

"CLOAD?" all pointers in the Program Text Area are converted to

line numbers (54EAH) to match the cassette data.

    The data block header is located on the cassett e and

successive data bytes read from cassette and placed  in memory

or compared with the current memory contents (715DH ). When the

data block has been completely read the message "OK " is

displayed (6678H) and control transfers directly to  the end of

the Interpreter Mainloop (4237H) to reset the Varia ble storage

pointers. For "CLOAD?" reading of the data block wi ll terminate

if the cassette byte is not the same as the program  text byte

in memory. If the address where this occurred is ab ove the end

of the Program Text Area then the handler terminate s with an

"OK" message as before. Otherwise a "Verify error" is

generated.

    Address... 708CH

    This routine is used by the "CLOAD" and "CSAVE"  statement

handlers to evaluate a filename in the program text . The two

handlers use different entry points so that a null filename is

allowed for "CLOAD" but not for "CSAVE". The filena me string is

evaluated (4C64H), its storage freed (680FH) and th e first six

characters copied to FILNAM. If the filename is lon ger than six

characters the excess is ignored. If the filename i s shorter

than six characters then FILNAM is padded with spac es.

    Address... 70B8H

    This routine is used by the "CLOAD" and "BLOAD"  statement

-204-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

handlers and for the dispatcher open function (when  the device

is CAS and the mode is input) to locate an identifi cation block

on the cassette. On entry the filename is in FILNAM  and the

file type in register C, D3H for a tokenized BASIC (CLOAD) file,

D0H for a binary (BLOAD) file and EAH for an ASCII (LOAD or

data) file.

    The cassette motor is turned on and the cassett e read until

a header is found (72E9H). Each identification bloc k is

prefixed by ten file type characters so successive characters

are read from cassette (72D4H) and compared to the required

file type. If the file type characters do not match  control

transfers back to the start of the routine to find the next

header. Otherwise the next six characters are read in (72D4H)

and placed in FILNAM. If FILNAM is full of spaces n o filename

- 180 --

5. ROM BASIC INTERPRETER

match is attempted and the identification block has  been found.

Otherwise the contents of FILNAM and FILNM2 are com pared to

determine whether this is the required file. If the  match is

unsuccessful, and the Interpreter is in direct mode , the

message "Skip:" is displayed (710DH) followed by th e filename.

Control then transfers back to the start of the rou tine to try

the next header. If the match is successful, and th e

Interpreter is in direct mode, the message "Found:"  is

displayed (710DH) followed by the filename and the routine

terminates.

    Address... 70FFH

    This is the plain text message "Found:" termina ted by a zero

byte.

    Address... 7106H

    This is the plain text message "Skip :" termina ted by a zero

byte.

    Address... 710DH

    Unless CURLIN shows the Interpreter to be in pr ogram mode

this routine first displays (6678H) the message who se address

is supplied in register pair HL, followed by the si x characters

contained in FILENAM2.

    Address... 7125H

    This routine is used by the "CSAVE" and "BSAVE"  statement

handlers and for the dispatcher open function (when  the device

-205-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

is CAS and the mode is output) to write an identifi cation block

to cassette. On entry the filename is in FILNAM and  the

filetype in register A, D3H for a tokenized BASIC ( CSAVE) file,

D0H for a binary (BSAVE) file and EAH for an ASCII (SAVE or

data) file. The cassette motor is turned on and a l ong header

written to cassette (72F8H) The filetype byte is th en written

to cassette (72DEH) ten times followed by the first  six

characters from FILNAM (72DEH). The cassette motor is turned

off via the TAPOOF standard routine and the routine  terminates.

    Address... 713EH

    This routine is used by the "CSAVE" statement h andler to

write the Program Text Area to cassette as a single  data block.

All pointers in the program text are converted back  to line

numbers (54EAH) to make the text address independen t. The

cassette motor is turned on and a short header writ ten to

cassette (72F8H) The entire Program Text Area is th en written

to cassette a byte at a time (72DEH) and followed w ith seven

zero bytes (72DEH) as a terminator. The cassette mo tor is then

turned off via the TAPOOF standard routine and the routine

terminates.

- 181 -

5. ROM BASIC INTERPRETER

    Address... 715DH

    This routine is used by the "CLOAD" and "CLOAD? " statement

handlers to read a single data block into the Progr am Text Area

or to compare it with the current contents. On entr y register A

contains a flag to distinguish between the two stat ements, 00H

for "CLOAD" and FFH for "CLOAD?". The cassette moto r is turned

on and the first header located (72E9H). Successive  characters

are read from cassette (72D4H) and placed in the Pr ogram Text

Area or compared with the current contents. If the current

statement is "CLOAD?" the routine will terminate wi th FLAG NZ

if the cassette character is not the same as the me mory

character. Otherwise data will be read until ten su ccessive

zeroes are found. This sequence of zeroes is compos ed of the

last program line end of line character, the end li nk and the

seven terminator zeroes added by "CSAVE". Note that  the routine

will probably terminate during this sequence, when used by

"CLOAD?", as memory comparison is still in progress . This

accounts for the rather peculiar coding of the "CLO AD?" handler

terminating conditions.

    Address... 7182H

    This table is used by the dispatcher when decod ing function

codes for the GRP device. It contains the address o f the

handler for each of the function codes, most are in  fact error

-206-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

generators:

        TO    FUNCTION

        -------------------------------

        71B6H  0, open

        71C2H  2, close

        6E86H  4, random

        7196H  6, sequential output

        475AH  8, sequential input

        475AH 10, loc

        475AH 12, lof

        475AH 14, eof

        475AH 16, fpos

        475AH 18, putback

    Address... 7196H

    This is the dispatcher sequential output routin e for the GRP

device. SCRMOD is first checked and an "Illegal fun ction call"

error generated (475AH) if the screen is in either text mode.

The character to output is taken from register C an d control

transfers to the GRPPRT standard routine.

    Address... 71A2H

    This table is used by the DEVICE DISPATCHER whe n decoding

function codes for the CRT device. It contains the address of

the handler for each of the function codes, most ar e in fact

- 182 -

5. ROM BASIC INTERPRETER

error generators:

        TO    FUNCTION

        -------------------------------

        71B6H  0, open

        71C2H  2, close

        6E86H  4, random

        71C3H  6, sequential output

        475AH  8, sequential input

        475AH 10, loc

        475AH 12, lof

        475AH 14, eof

        475AH 16, fpos

        475AH 18, putback

    Address... 71B6H

    This is the dispatcher open routine for the CRT , LPT and GRP

-207-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

devices. The required mode, in register E, is check ed and a

"Bad file name" error generated (6E6BH) for input o r append.

The FCB address is then placed in PTRFIL, the mode in byte 0 of

the FCB and the routine terminates. Note that the Z 80 RET

instruction at the end of this routine (71C2H) is t he

dispatcher close routine for the CRT, LPT and GRP d evices.

    Address... 71C3H

    This is the dispatcher sequential output routin e for the CRT

device. The character to output is taken from regis ter C and

control transfers to the CHPUT standard routine.

    Address... 71C7H

    This table is used by the dispatcher when decod ing function

codes for the CAS device. It contains the address o f the

handler for each of the function codes, several are  error

generators:

        TO    FUNCTION

        -------------------------------

        71DBH  0, open

        7205H  2, close

        6E86H  4, random

        722AH  6, sequential output

        723FH  8, sequential input

        475AH 10, loc

        475AH 12, lof

        726DH 14, eof

        475AH 16, fpos

        727CH 18, putback

    Address... 71DBH

    This is the dispatcher open routine for the CAS  device. The

- 183 -

5. ROM BASIC INTERPRETER

current I/O buffer position, held in byte 6 of the FCB, and

CASPRV, which holds any putback character are both zeroed. The

required mode, supplied in register E, is examined and a "Bad

file name" error generated (6E6BH) for append or ra ndom modes.

For output mode the identification block is then wr itten to

cassette (7125H) while for input mode the correct

identification block is located on the cassette (70 B8H). The

FCB address is then placed in PTRFIL, the mode in b yte 0 of the

FCB and the routine terminates.

    Address... 7205H

-208-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the dispatcher close routine for the CA S device.

Byte 0 of the FCB is examined and, if the mode is i nput, CASPRV

is zeroed and the routine terminates. Otherwise the  remainder

of the I/O buffer is filled with end of file charac ters (1AH)

and the I/O buffer contents written to cassette (72 2FH). CASPRV

is then zeroed and the routine terminates.

    Address... 722AH

    This is the dispatcher sequential output routin e for the CAS

device. The character to output is taken from regis ter C and

placed in the next free position in the I/O buffer (728BH).

Byte 6 of the FCB, the I/O buffer position, is then

incremented. If the I/O buffer position has wrapped  round to

zero this means that there are two hundred and fift y-six

characters in the I/O buffer and it has to be writt en to

cassette. The cassette motor is turned on, a short header is

written to cassette (72F8H) followed by the I/O buf fer contents

(72DEH), and the motor is turned off via the TAPOOF  standard

routine.

    Address... 723FH

    This is the dispatcher sequential input routine  for the CAS

device. CASPRV is first checked (72BEH) to determin e whether it

contains a character which has been putback, in whi ch case its

contents will be non-zero. If so the routine termin ates with

the character in register A. Otherwise the I/O buff er position

is checked (729BH) to determine whether it contains  any

characters. If the I/O buffer is empty the cassette  motor is

turned on and the header located (72E9H). Two hundr ed and

fifty-six characters are then read in (72D4H), the cassette

motor turned off via the TAPION standard routine an d the I/O

buffer position reset to zero. The character is the n taken from

the current I/O buffer position and the position in cremented.

Finally the character is checked to see if it is th e end of

file character (1AH). If it is not the routine term inates with

the character in register A and FLAG NC. Otherwise the end of

file character is placed in CASPRV, so that succeed ing

sequential input requests will always return the en d of file

condition, and the routine terminates with FLAG C.

- 184 -

5. ROM BASIC INTERPRETER

    Address... 726DH

    This is the dispatcher eof routine for the CAS device. The

next character is input (723FH) and placed in CASPR V. It is

then tested for the end of file code (1AH) and the result

-209-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

placed in DAC as an integer, zero for false, FFFFH for true.

    Address... 727CH

    This is the dispatcher putback routine for the CAS device.

The character is simply placed in CASPRV to be pick ed up at the

next sequential input request.

    Address... 7281H

    This routine is used by the dispatcher close fu nction to

check if there are any characters in the I/O buffer  and then

zero the I/O buffer position byte in the FCB.

    Address... 728BH

    This routine is used by the dispatcher sequenti al output

function to place the character in register A in th e I/O buffer

at the current I/O buffer position, which is then i ncremented.

    Address... 729BH

    This routine is used by the dispatcher sequenti al input

function to collect the character at the current I/ O buffer

position, which is then incremented.

    Address... 72A6H

    This table is used by the dispatcher when decod ing function

codes for the LPT device. It contains the address o f the

handler for each of the function codes, most are in  fact error

generators:

        TO    FUNCTION

        -------------------------------

        71B6H  0, open

        71C2H  2, close

        6E86H  4, random

        72BAH  6, sequential output

        475AH  8, sequential input

        475AH 10, loc

        475AH 12, lof

        475AH 14, eof

        475AH 16, fpos

        475AH 18, putback

    Address... 72BAH

    This is the dispatcher sequential output routin e for the LPT

- 185 -

5. ROM BASIC INTERPRETER

-210-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

device. The character to output is taken from regis ter C and

control transfers to the OUTDLP standard routine.

    Address... 72BEH

    This routine is used by the dispatcher sequenti al input

function to check if a putback character exists in CASPRV, and

if not to return Flag Z. Otherwise CASPRV is zeroed  and the

character tested to see if it is the end of file ch aracter

(1AH). If not it returns with the character in regi ster A and

FLAG NZ,NC. Otherwise the end of file character is placed back

in CASPRV and the routine returns with FLAG Z,C.

    Address... 72CDH

    This routine is used by various dispatcher func tions to

check if the mode in register E is append, if so a "Bad file

name" error is generated (6E6BH).

    Address... 72D4H

    This routine is used by various dispatcher func tions to read

a character from the cassette. The character is rea d via the

TAPIN standard routine and a "Device I/O error" gen erated

(73B2H) if FLAG C is returned.

    Address... 72DEH

    This routine is used by various dispatcher func tions to

write a character to cassette. The character is wri tten via the

TAPOUT standard routine and a "Device I/O error" ge nerated

(73B2H) if FLAG C is returned.

    Address... 72E9H

    This routine is used by various dispatcher func tions to turn

the cassette motor on for input. The motor is turne d on via the

TAPION standard routine and a "Device I/O error" ge nerated

(73B2H) if FLAG C is returned.

    Address... 72F8H

    This routine is used by various dispatcher func tions to turn

the cassette motor on for output, control simply tr ansfers to

the TAPOON standard routine.

    Address... 7304H

    This routine is used by the Interpreter Mainloo p "OK" point,

the "END" statement handler and the run-clear routi ne to shut

down the printer. PRTFLG is first zeroed and then L PTPOS tested

to see if any characters have been output but left hanging in

the printer's line buffer. If so a CR,LF sequence i s issued to

flush the printer and LPTPOS zeroed.

-211-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 186 -

5. ROM BASIC INTERPRETER

    Address... 7323H

    This routine issues a CR,LF sequence to the cur rent output

device via the OUTDO standard routine. LPTPOS or TT YPOS is then

zeroed depending upon whether the printer or the sc reen is

active.

    Address... 7347H

    This routine is used by the Factor Evaluator to  apply the

"INKEY$" function. The state of the keyboard buffer  is examined

via the CHSNS standard routine. If the buffer is em pty the

address of a dummy null string descriptor is return ed in DAC.

Otherwise the next character is read from the keybo ard buffer

via the CHGET standard routine. After checking that  sufficient

space is available (6625H) the character is copied to the

String Storage Area and the result descriptor creat ed (6821H).

    Address... 7367H

    This routine is used by the "LIST" statement ha ndler to

output a character to the current output device via  the OUTDO

standard routine. If the character is a LF code the n a CR code

is also issued.

    Address... 7374H

    This routine is used by the Interpreter Mainloo p to collect

a line of text when input is from an I/O buffer rat her than the

keyboard, that is when a "LOAD" statement is active . Characters

are sequentially input (6C71H) and placed in BUF un til BUF

fills up, a CR is detected or the end of file is re ached. All

characters are accepted apart from LF codes which a re filtered

out. If BUF fills up or a CR is detected the routin e simply

returns the line to the Mainloop. If the end of fil e is reached

while some characters are in BUF the line is return ed to the

Mainloop. When end of file is reached with no chara cters in BUF

then I/O buffer 0 is closed (6D7BH) and FILNAM chec ked to

determine whether auto-run is required. If not cont rol returns

to the Interpreter "OK" point (411EH). Otherwise th e system is

cleared (629AH) and control transfers to the Runloo p (4601H) to

execute the program.

    Address... 73B2H

    This is the "Device I/O error" generator.

-212-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 73B7H

    This is the "MOTOR" statement handler. If no op erand is

present control transfers to the STMOTR standard ro utine with

FFH in register A. If the "OFF" token (EBH) follows  control

transfers with 00H in register A. If the "ON" token  (95H)

follows control transfers with 01H in register A.

- 187 -

5. ROM BASIC INTERPRETER

    Address... 73CAH

    This is the "SOUND" statement handler. The regi ster number

operand, which must be less than fourteen, is evalu ated (521CH)

and placed in register A. The data operand is evalu ated (521CH)

and bit 7 set, bit 6 reset to avoid altering the PS G auxiliary

I/O port modes' The data operand is placed in regis ter E and

control transfers to the WRTPSG standard routine.

    Address... 73E4H

    This is a single ASCII space used by the "PLAY"  statement

handler to replace a null string operand with a one  character

blank string.

    Address... 73E5H

    This is the "PLAY" statement handler. The addre ss of the

"PLAY" command table at 752EH is placed in MCLTAB f or the macro

language parser and PRSCNT zeroed. The first string  operand,

which is obligatory, is evaluated (4C64H), its stor age freed

(67D0H) and its length and address placed in VCBA a t bytes 2, 3

and 4. The channel's stack pointer is initialized t o VCBA+33

and placed in VCBA at bytes 5 and 6' If further tex t is present

in the statement this process is repeated for voice s B and C

until a maximum of three operands have been evaluat ed, after

this a "Syntax error" is generated (4055H). If ther e are less

than three string operands present an end of queue mark (FFH)

is placed in the queue (7507H) of each unused voice . Register A

is then zeroed, to select voice A, and control drop s into the

play mainloop.

    Address... 744DH

    This is the play mainloop. The number of free b ytes in the

current queue is checked (7521H) and, if less than eight bytes

remain, the next voice is selected (74D6H) to avoid  waiting for

the queue to empty. The remaining length of the ope rand string

is then taken from the current voice buffer and, if  zero bytes

remain to be parsed, the loop again skips to the ne xt voice

-213-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

(74D6H). Otherwise the current string length and ad dress are

taken from the voice buffer and placed in MCLLEN an d MCLPTR for

the macro language parser. The old stack contents a re copied

from the voice buffer to the Z80 stack (6253H), MCL FLG is made

non-zero and control transfers to the macro languag e parser

(56A2H).

    The macro language parser will normally scan al ong the

string, using the "PLAY" statement command handlers , until the

string is exhausted. However, if a music queue fill s up during

note generation an abnormal termination is forced b ack to the

play mainloop (748EH) so that the next voice can be  processed

without waiting for the queue to empty. When contro l returns

normally an end of queue mark is placed in the curr ent queue

- 188 -

5. ROM BASIC INTERPRETER

(7507H) and PRSCNT is incremented to show the numbe r of strings

completed. If control returns abnormally then anyth ing left on

the Z80 stack is copied into the current voice buff er (6253H).

Because of the recursive nature of the macro langua ge parser

where the "X" command is involved there may be a nu mber of four

byte string descriptors, marking the point where th e original

string was suspended, left on the Z80 stack at term ination.

Saving the stack contents in the voice buffer means  they can be

restored when the loop gets around to that voice ag ain. Note

that as there are only sixteen bytes available in e ach voice

buffer an "Illegal function call" error is generate d (475AH) if

too much data remains on the stack. This will occur  when a

queue fills up and multiple, nested "X" commands ex ist, for

example:

        10 A$="XB$;"

        20 B$="XC$;"

        30 C$="XD$;"

        40 D$=STRING$(150,"A")

        50 PLAY A$

    There seems to be a slight bug in this section as only fifteen

bytes of stack data are allowed, instead of sixteen , before an

error is generated.

    When control returns from the macro language pa rser register

A is incremented to select the next voice for proce ssing. When

all three voices have been processed INTFLG is chec ked and, if

CTRL-STOP has been detected by the interrupt handle r, control

transfers to the GICINI standard routine to halt al l music and

terminate. Assuming bit 7 of PRSCNT shows this to b e the first

pass through the mainloop, that is no voice has bee n

-214-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

temporarily suspended because of a full queue, PLYC NT is

incremented and interrupt dequeueing started via th e STRTMS

standard routine. PRSCNT is then checked to determi ne the

number of strings completed by the macro language p arser. If

all three operand strings have been completed the h andler

terminates, otherwise control transfers back to the  start of

the play mainloop to try each voice again.

    Address... 7507H

    This routine is used by the "PLAY" statement ha ndler to

place an end of queue mark (FFH) in the current que ue via the

PUTQ standard routine. If the queue is full it wait s until

space becomes available.

    Address... 7521H

    This routine is used by the "PLAY" statement ha ndler to

check how much space remains in the current queue v ia the LFTQ

standard routine. If less than eight bytes remain ( the largest

possible music data packet is seven bytes long) FLA G C is

returned.

- 189 -

5. ROM BASIC INTERPRETER

    Address... 752EH

    This table contains the valid command letters a nd associated

addresses for the "PLAY" statement commands. Those commands

which take a parameter, and consequently have bit 7  set in the

table, are shown with an asterisk:

        CMD  TO

        -----------

        A    763EH

        B    763EH

        C    763EH

        D    763EH

        E    763EH

        F    763EH

        G    763EH

        M*   759EH

        V*   7586H

        S*   75BEH

        N*   7621H

        O*   75EFH

        R*   75FCH

        T*   75E2H

        L*   75C8H

        X    5782H

-215-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    Address... 755FH

    This table is used by the "PLAY" statement "A" to "G"

command handler to translate a note number from zer o to

fourteen to an offset into the tone divider table a t 756EH. The

note itself, rather than the note number, is shown below with

each offset value:

        16 ... A-

        18 ... A

        20 ... A+ or B-

        22 ... B or C-

        00 ... B+

        00 ... C

        02 ... C+ or D-

        04 ... D

        06 ... D+ or E-

        08 ... E or F-

        10 ... E+

        10 ... F

        12 ... F+ or G-

        14 ... G

        16 ... G+

    Address... 756EH

    This table contains the twelve PSG divider cons tants

required to produce the tones of octave 1. For each  constant

- 190 -

5. ROM BASIC INTERPRETER

the corresponding note and frequency are shown:

        3421 ... C  32.698 Hz

        3228 ... C+ 34.653 Hz

        3047 ... D  36.712 Hz

        2876 ... D+ 38.895 HZ

        2715 ... E  41.201 Hz

        2562 ... F  43.662 Hz

        2419 ... F+ 46.243 Hz

        2283 ... G  48.997 Hz

        2155 ... G+ 51.908 Hz

        2034 ... A  54.995 Hz

        1920 ... A+ 58.261 Hz

        1812 ... B  61.773 Hz

    Address... 7586H

    This is the "PLAY" statement "V" command handle r. The

-216-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

parameter, with a default value of eight, is placed  in byte 18

of the current voice buffer without altering bit 6 of the

existing contents. No music data is generated.

    Address... 759EH

    This is the "PLAY" statement "M" command handle r. The

parameter, with a default value of two hundred and fifty-five,

is compared with the existing modulation period con tained in

bytes 19 and 20 of the current voice buffer. If the y are the

same the routine terminates with no action. Otherwi se the new

modulation period is placed in the voice buffer and  bit 6 set

in byte 18 of the voice buffer to indicate that the  new value

must be incorporated into the next music data packe t produced.

No music data is generated.

    Address... 75BEH

    This is the "PLAY" statement "S" command handle r. The

parameter is placed in byte 18 of the current voice  buffer and

bit 4 of the same byte set to indicate that the new  value must

be incorporated into the next music data packet pro duced. No

music data is generated. Because of the PSG charact eristics the

shape and volume parameters are mutually exclusive so the same

byte of the voice buffers is used for both.

    Address... 75C8H

    This is the "PLAY" statement "L" command handle r. The

parameter, with a default value of four, is placed in byte 16

of the current voice buffer where it is used in the  computation

of succeeding note durations. No music data is gene rated.

    Address... 75E2H

    This is the "PLAY" statement "T" command handle r. The

- 191 -

5. ROM BASIC INTERPRETER

parameter, with a default value of one hundred and twenty, is

placed in byte 17 of the current voice buffer where  it will be

used in the computation of succeeding note duration s. ho music

data is generated.

    Address... 75EFH

    This is the "PLAY" statement "O" command handle r. The

parameter, with a default value of four, is placed in byte 15

of the current voice buffer where it is used in the  computation

of succeeding note frequencies. No music data is ge nerated.

    Address... 75FCH

-217-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the "PLAY" statement "R" command handle r. The length

parameter, with a default value of four, is left in  register

pair DE and a zero tone divider value placed in reg ister pair

HL. The existing volume value is taken from byte 18  of the

current voice buffer, temporarily replaced with a z ero value

and control transferred to the note generator (769C H).

    Address... 7621H

    This is the "PLAY" statement "N" command handle r. The

obligatory parameter is first examined, if it is ze ro a rest is

generated (760BH). If it is greater than ninety-six  an "Illegal

function call" error is generated (475AH). Otherwis e twelve is

repeatedly subtracted from the note number until un derflow to

obtain an octave number from one to nine in registe r E and a

note number from zero to eleven in register C. Cont rol then

transfers to the note generator (7673H).

    Address... 763EH

    This is the "PLAY" statement "A" to "G" command  handler. The

note letter is first converted into a note number f rom zero to

fourteen, this extended range being necessary becau se of the

redundancy implicit in the notation. The table at 7 55FH is then

used to obtain the offset into the tone divider tab le and the

divider constant for the note placed in register pa ir DE. The

octave value is taken from byte 15 of the current v oice buffer

and the divider constant halved until the correct o ctave is

reached. The string operand is then examined direct ly (56EEH)

to determine whether a trailing note length paramet er exists.

If so it is converted (572FH) and placed in registe r C. If no

parameter exists the default length is taken from b yte 16 of

the current voice buffer. The duration of the note is then

computed from:

        Duration (Interrupt ticks) = 12,000/(LENGTH *TEMPO)

    With the normal length value (4) and tempo valu e (120) this

gives a note duration of twenty-five interrupt tick s of 20 ms

each or 0.5 seconds. The string operand is then exa mined

- 192 -

5. ROM BASIC INTERPRETER

(56EEH) for trailing "." characters and, for each o ne, the

duration multiplied by one and a half. Finally the resulting

duration is checked and, if it is less than five in terrupt

ticks, it is replaced with a value of five. Thus th e shortest

note that can be generated on a UK machine is 0.10 seconds

-218-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

whatever the tempo or note length.

    The music data packet, which will be three, fiv e or seven

bytes long, is then assembled in bytes 8 to 14 of t he current

voice buffer prior to placing it in the queue. The duration is

placed in bytes 8 and 9 of the voice buffer. The vo lume and

flag byte is taken from byte 18 and placed in byte 10 of the

voice buffer with bit 7 set to indicate a volume ch ange to the

interrupt dequeuing routine. If bit 6 of the volume  byte is set

then the modulation period is taken from bytes 19 a nd 20 and

added to the data packet at bytes 11 and 12. If the  tone

divider value is non-zero then it is added to the d ata packet

at bytes 11 and 12 (without a modulation period) or  bytes 13

and 14 (with a modulation period). Finally the byte  count is

mixed into the three highest bits of byte 8 of the voice buffer

to complete the preparation of the music data packe t.

    If the tone divider value is zero, indicating a  rest, the

contents of SAVVOL are restored to byte 18 of the s tatic

buffer. The music data packet is then placed in the  current

queue via the PUTQ standard routine and the number of free

bytes remaining checked (7521H). If less than eight  bytes

remain control transfers directly to the "PLAY" sta tement

handler (748EH), otherwise control returns normally  to the

macro language parser.

    Address... 7754H

    This is the single precision constant 12,000 us ed in the

computation of note duration.

    Address... 7758H

    This is the "PUT" statement handler. Register B  is set to

80H and control drops into the "GET" statement hand ler.

    Address... 775BH

    This is the "GET" statement handler. Register B  is zeroed,

to distinguish "GET" from "PUT" and the next progra m token

examined. Control then transfers to the "PUT SPRITE " statement

handler (7AAFH) or the Disk BASIC "GET/PUT" stateme nt handler

(6C35H).

    Address... 7766H

    This is the "LOCATE" statement handler. If a co lumn

coordinate is present it is evaluated (521CH) and p laced in

register D, otherwise the current column is taken f rom CSRX. If

- 193 -

5. ROM BASIC INTERPRETER

-219-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

a row coordinate is present it is evaluated (521CH)  and placed

in register E, otherwise the current row is taken f rom CSRY. If

a cursor switch operand exists it is evaluated (521 CH) and

register A loaded with 78H for a zero operand (OFF)  and 79H for

any non-zero operand (ON). The cursor is then switc hed by

outputting ESC, 78H/79H, "5" via the OUTDO standard  routine.

The row and column coordinates are placed in regist er pair HL

and the cursor position set via the POSIT standard routine.

    Address... 77A5H

    This is the "STOP ON/OFF/STOP" statement handle r. The

address of the device's TRPTBL status byte is place d in

register pair HL and control transfers to the "ON/O FF/STOP"

routine (77CFH).

    Address... 77ABH

    This is the "SPRITE ON/OFF/STOP" statement hand ler. The

address of the device's TRPTBL status byte is place d in

register pair HL and control transfers to the "ON/O FF/STOP"

routine (77CFH).

    Address... 77B1H

    This is the "INTERVAL ON/OFF/STOP" statement ha ndler. As

there is no specific "INTERVAL" token (control tran sfers here

when an "INT" token is found) a check is first made  on the

program text for the characters "E" and "R" then th e "VAL"

token (94H). The address of the device's TRPTBL sta tus byte is

placed in register pair HL and control transfers to  the

"ON/OFF/STOP" routine (77CFH).

    Address... 77BFH

    This is the "STRIG ON/OFF/STOP" statement handl er. The

trigger number, from zero to four, is evaluated (7C 08H) and the

address of the device's TRPTBL status byte placed i n register

pair HL. The "ON/OFF/STOP" token is examined and th e TRPTBL

status byte modified accordingly (77FEH). Control t hen

transfers directly to the Runloop (4612H) to avoid testing for

pending interrupts until the end of the next statem ent.

    Address... 77D4H

    This is the "KEY(n) ON/OFF/STOP" statement hand ler. The key

number, from one to ten, is evaluated (521CH) and t he address

of the devices' TRPTBL status byte placed in regist er pair HL.

The "ON/OFF/STOP" token is examined and the TRPTBL status byte

modified accordingly (77FEH). Bit 0 of the TRPTBL s tatus byte,

the ON bit, is then copied into the corresponding e ntry in

FNKFLG for use during the interrupt keyscan and con trol

transfers directly to the Runloop (4612H).

-220-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 194 -

5. ROM BASIC INTERPRETER

    Address... 77FEH

    This routine checks for the presence of one of the interrupt

switching tokens and transfers control to the appro priate

routine: "ON" (631BH), "OFF" (632BH) or "STOP" (633 1H). If no

token is present a "Syntax error" is generated (405 5H).

    Address... 7810H

    This routine is used by the "ON DEVICE GOSUB" s tatement

handler (490DH) to check the program text for a dev ice token.

Unless none of the device tokens is present, in whi ch case Flag

C is returned, the device's TRPTBL entry number is returned in

register B and the maximum allowable line number op erand count

in register C:

        DEVICE     TRPTBL#   LINE NUMBERS

        ------------------------------------

        KEY        00        10

        STOP       10        01

        SPRITE     11        01

        STRIG      12        05

        INTERVAL   17        01

    Additionally, for "INTERVAL" only, the interval  operand is

evaluated (542FH) and placed in INTVAL and INTCNT.

    Address... 785CH

    This routine is used by the "ON DEVICE GOSUB" s tatement

handler (490DH) to place the address of a program l ine in

TRPTBL. The TRPTBL entry number, supplied in regist er B, is

multiplied by three and added to the table base to point to the

relevant entry. The address, supplied in register p air DE, is

then placed there LSB first, MSB second.

    Address... 786CH

    This is the "KEY" statement handler. If the fol lowing

character is anything other than the "LIST" token ( 93H) control

transfers to the "KEY n" statement handler (78AEH).  Each of the

ten function key strings is then taken from FNKSTR and

displayed via the OUTDO standard routine with a CR, LF (7328H)

after each one. The DEL character (7FH) or any cont rol

character smaller than 20H is replaced with a space .

    Address... 78AEH

-221-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the "KEY n", "KEY(n) ON/OFF/STOP", "KEY  ON" and "KEY

OFF" statement handler. If the next program text ch aracter is

"(" control transfers to the "KEY(n) ON/OFF/STOP" s tatement

handler (77D4H). If it is an "ON" token (95H) contr ol transfers

to the DSPFNK standard routine and if it is an "OFF " token

(EBH) to the ERAFNK standard routine. Otherwise the  function

- 195 -

5. ROM BASIC INTERPRETER

key number is evaluated (521CH) and the key's FNKST R address

placed in register pair DE' The string operand is e valuated

(4C64H) and its storage freed (67D0H)' Up to fiftee n characters

are copied from the string to FNKSTR and unused pos itions

padded with zero bytes. If a zero byte is found in the operand

string an "Illegal function call" error is generate d (475AH).

Control then transfers to the FNKSB standard routin e to update

the function key display if it is enabled.

    Address... 7900H

    This routine is used by the Factor Evaluator to  apply the

"TIME" function. The contents of JIFFY are placed i n DAC as a

single precision number (3236H).

    Address... 790AH

    This routine is used by the Factor Evaluator to  apply the

"CSRLIN" function. The contents of CSRY are decreme nted and

placed in DAC as an integer (2E9AH).

    Address... 7911H

    This is the "TIME" statement handler. The opera nd is

evaluated (542FH) and placed in JIFFY.

    Address... 791BH

    This routine is used by the Factor Evaluator to  apply the

"PLAY" function. The numeric channel selection oper and is

evaluated (7C08H). If this is zero the contents of MUSICF are

placed in DAC as an integer of value zero or FFFFH.  Otherwise

the channel number is used to select the appropriat e bit of

MUSICF and this is then converted to an integer as before.

    Address... 7940H

    This routine is used by the Factor Evaluator to  apply the

"STICK" function to an operand contained in DAC. Th e stick

number is checked (521FH) and passed to the GTSTCK standard

routine in register A. The result is placed in DAC as an

-222-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

integer (4FCFH ) .

    Address... 794CH

    This routine is used by the Factor Evaluator to  apply the

"STRIG" function to an operand contained in DAC. Th e trigger

number is checked (521FH) and passed to the GTTRIG standard

routine in register A. The result is placed in DAC as an

integer of value zero or FFFFH.

    Address... 795AH

    This routine is used by the Factor Evaluator to  apply the

- 196 -

5. ROM BASIC INTERPRETER

"PDL" function to an operand contained in DAC. The paddle

number is checked (521FH) and passed to the GTPDL s tandard

routine in register A. The result is placed in DAC as an

integer (4FCFH).

    Address... 7969H

    This routine is used by the Factor Evaluator to  apply the

"PAD" function to an operand contained in DAC. The pad number

is checked (521F) and passed to the GTPAD standard routine in

register A. The result is placed in DAC as an integ er for pads

1, 2, 5 or 6. For pads 0, 3, 4 or 7 the result is p laced in DAC as

an integer of value zero or FFFFH.

    Address... 7980H

    This is the "COLOR" statement handler. If a for eground

colour operand exists it is evaluated (521CH) and p laced in

register E, otherwise the current foreground colour  is taken

from FORCLR. If a background colour operand exists it is

evaluated (521CH) and placed in register D, otherwi se the

current background colour is taken from BAKCLR. If a border

colour operand exists it is evaluated (521CH) and p laced in

BDRCLR. The foreground colour is placed in FORCLR a nd ATRBYT,

the background colour in BAKCLR and control transfe rs to the

CHGCLR standard routine to modify the VDP.

    Address... 79CCH

    This is the "SCREEN" statement handler. If a mo de operand

exists it is evaluated (521CH) and passed to the CH GMOD

standard routine in register A. If a sprite size op erand exists

it is evaluated (521CH) and placed in bits 0 and 1 of RG1SAV,

the Workspace Area copy of VDP Mode Register 1. The  VDP sprite

-223-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

parameters are then cleared via the CLRSPR standard  routine. If

a key click operand exists it is evaluated (521CH) and placed

in CLIKSW, zero to disable the click and non-zero t o enable it.

If a baud rate operand exists it is evaluated and t he baud rate

set (7A2DH). If a printer mode operand exists it is  evaluated

(521CH) and placed in NTMSXP, zero for an MSX print er and non-

zero for a general purpose printer.

    Address... 7A2DH

    This routine is used to set the cassette baud r ate. The

operand is evaluated (521CH) and five bytes copied from CS1200

or CS2400 to LOW as appropriate.

    Address... 7A48H

    This is the "SPRITE" statement handler. If the next

character is anything other than a "$" control tran sfers to the

"SPRITE ON/OFF/STOP" statement handler (77ABH). SCR MOD is then

checked and an "Illegal function call" error genera ted (475AH)

- 197 -

5. ROM BASIC INTERPRETER

if the screen is in 40x24 Text Mode. The sprite pat tern number

is evaluated and its location in the VRAM Sprite Pa ttern Table

obtained (7AA0H). The string operand is then evalua ted (4C5FH)

and its storage freed (67D0H). The sprite size, obt ained via

the GSPSIZ standard routine, is compared with the s tring length

and, if the string is shorter than the sprite, the Sprite

Pattern Table entry is first filled with zeroes via  the FILVRM

standard routine. Characters are then copied from t he string

body to the Sprite Pattern Table via the LDIRVM sta ndard

routine until the string is exhausted or the sprite  is full. If

the string is longer than the sprite size any exces s characters

are ignored.

    Address... 7A84H

    This routine is used by the Factor Evaluator to  apply the

"SPRITE$" function. The sprite pattern number is ev aluated and

its location in the VRAM Sprite Pattern Table obtai ned (7A9FH).

The sprite size, obtained via the GSPSIZ standard r outine, is

then placed in register pair BC to control the numb er of bytes

copied. After checking that sufficient space is ava ilable in

the String Storage Area (6627H) the sprite pattern is copied

from VRAM via the LDIRMV standard routine and the r esult

descriptor created (6654H). Note that as no check i s made on

the screen mode during this function some interesti ng side

effects can be found, see below.

    Address... 7A9FH

-224-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This routine is used by the "SPRITE$" statement  and function

to locate a sprite pattern in the VRAM Sprite Patte rn Table.

The pattern number operand is evaluated (7C08H) and  passed to

the CALPAT standard routine in register A. The patt ern address

is placed in register pair DE and the routine termi nates.

    Note that no check is made on the pattern numbe r magnitude

for differing sprite sizes. Pattern numbers up to t wo hundred

and fifty-five are accepted even in 16x16 sprite mo de when the

maximum pattern number should be sixty-three. As a result VRAM

addresses greater than 3FFFH will be produced which  will wrap

around into low VRAM. With the "SPRITE$" statement this will

corrupt the Character Generator Table, for example:

        10 SCREEN 3,2

        20 SPRITE$(0)=STRING$(32,255)

        30 PUT SPRITE 0,(0,0), ,0

        40 SPRITE$(65)=STRING$(32,255)

        50 GOTO 50

    The above puts a real sprite in the top left of  the screen and

then uses an illegal statement in line 40 to corrup t the VRAM

just to the right of it. The "SPRITE$" function can  also be

manipulated in this way and, as there is no screen mode check,

up to thirty-two bytes of the Name Table can be rea d in 40x24

- 198 -

5. ROM BASIC INTERPRETER

Text Mode, for example:

        10 SCREEN 0,2

        20 PRINT"something"

        30 A$=SPRITE$(64)

        40 PRINT A$

    Address... 7AAFH

    This is the "GET/PUT SPRITE" statement handler,  control is

transferred here from the general "GET/PUT" stateme nt handler

(775BH). Register B is first checked to make sure t hat the

statement is "PUT" and an "Illegal function call" e rror

generated (475AH) if otherwise. SCRMOD is then chec ked and an

"Illegal function call" error generated (475AH) if the screen

is in 40x24 Text Mode. The sprite number operand, f rom zero to

thirty-one, is evaluated (521CH) and passed to the CALATR

standard routine to locate the four byte attribute block in the

Sprite Attribute Table. If a coordinate operand exi sts it is

-225-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

evaluated and the X coordinate placed in register p air BC, the

Y coordinate in register pair DE (579CH).

    The Y coordinate LSB is written to byte 0 of th e attribute

block in VRAM via the WRTVRM standard routine. Bit 7 of the X

coordinate is then examined to determine whether it  is

negative, that is off the left hand side of the scr een. If so

thirty two is added to the X coordinate and registe r B is set

to 80H to set the early clock bit in the attribute block. For

example an X coordinate of -1 (FFFFH) would be chan ged to +31

with an early clock. The X coordinate LSB is then w ritten to

byte 1 of the attribute block via the WRTVRM standa rd routine.

Byte 3 of the attribute block is read in via the RD VRM standard

routine, the new early clock bit is mixed in and it  is then

written back to VRAM via the WRTVRM standard routin e.

    If a colour operand is present it is evaluated (521CH), byte

3 of the attribute block is read in via the RDVRM s tandard

routine the new colour code is mixed into the lowes t four bits

and it is written back to VRAM via the WRTVRM stand ard routine.

If a pattern number operand exists it is evaluated (521CH) and

checked for magnitude against the current sprite si ze provided

by the GSPSIZ standard routine. The maximum allowab le pattern

number is two hundred and fifty-five for 8x8 sprite s and sixty-

three for 16x16 sprites. The pattern number is writ ten to byte

2 of the attribute block via the WRTVRM standard ro utine and

the handler terminates.

    Address... 7B37H

    This is the "VDP" statement handler. The regist er number

operand, from zero to seven, is evaluated (7C08H) f ollowed by

the data operand (521CH). The register number is pl aced in

register C, the data value in register B and contro l

transferred to the WRTVDP standard routine.

- 199 -

5. ROM BASIC INTERPRETER

    Address... 7B47H

    This routine is used by the Factor Evaluator to  apply the

"VDP" function. The register number operand, from z ero to

eight, is evaluated (7C08H) and added to RGOSAV to locate the

corresponding register image in the Workspace Area.  The VDP

register image is then read and placed in DAC as an  integer

(4FCFH).

    Address... 7B5AH

    This is the "BASE" statement handler. The VDP t able number

operand, from zero to nineteen, is evaluated (7C08H ) followed

by the base address operand (4C64H). After checking  that the

-226-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

base address is less than 4000H (7BFEH) the VDP tab le number is

used to locate the associated entry in the masking table at

7BA3H. The base address is ANDed with the mask and an "Illegal

function call" error generated (475AH) if any illeg al bits are

set. The VDP table number is then added to TXTNAM t o locate the

current base address in the Workspace Area and the new base

address placed there. The VDP table number is divid ed by five

to determine which of the four screen modes the tab le belongs

to. If this is the same as the current screen mode the new base

address is also written to the VDP (7B99H).

    Address... 7B99H

    This routine is used by the "BASE" statement ha ndler to

update the VDP base addresses. The current screen m ode, in

register A, is examined and control transfers to th e SETTXT,

SETT32, SETGRP or SETMLT standard routine as approp riate. Note

that this is not a full VDP initialization and that  the four

current table addresses (NAMBAS, CGPBAS, PATBAS and  ATRBAS)

which are the ones actually used by the screen rout ines, are

not updated. This can be demonstrated with the foll owing, where

the Interpreter carries on outputting to the old VR AM Name

Table:

        10 SCREEN 0

        20 BASE(0)=&H400

        30 PRINT"something"

        40 FOR N=1 TO 2000:NEXT

        50 BASE(0)=0

    Note also that this routine contains a bug. Whi le SETTXT is

correctly used for 40x24 Text Mode, SETGRP is used for 32x24

Text Mode and SETMLT for Graphics Mode and Multicol our Mode.

Any "BASE" statement should therefore be immediatel y followed

by a "SCREEN" statement to perform a full initializ ation.

    Address... 7BA3H

    This masking table is used by the "BASE" statem ent handler

to ensure that only legal VDP base addresses are ac cepted. The

- 200 -

5. ROM BASIC INTERPRETER

table number and corresponding Workspace Area varia ble are

shown with each mask:

        MASK   TABLE

        ---------------------

        03FFH  00, TXTNAM

-227-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        003FH  01, TXTCOL

        07FFH  02, TXTCGP

        007FH  03, TXTATR

        07FFH  04, TXTPAT

        03FFH  05, T32NAM

        003FH  06, T32COL

        07FFH  07, T32CGP

        007FH  08, T32ATR

        07FFH  09, T32PAT

        03FFH  10, GRPNAM

        1FFFH  11, GRPCOL

        1FFFH  12, GRPCGP

        007FH  13, GRPATR

        07FFH  14, GRPPAT

        03FFH  15, MLTNAM

        003FH  16, MLTCOL

        07FFH  17, MLTCGP

        007FH  18, MLTATR

        07FFH  19, MLTPAT

    Address... 7BCBH

    This routine is used by the Factor Evaluator to  apply the

"BASE" function. The VDP table number operand, from  zero to

nineteen, is evaluated (7C08H) and added to TXTNAM to locate

the required Workspace Area base address. This is t hen placed

in DAC as a single precision number (3236H).

    Address... 7BE2H

    This is the "VPOKE" statement handler. The VRAM  address

operand is evaluated (4C64H) and checked to ensure that it is

less than 4000H (7BFEH). The data operand is then e valuated

(521CH) and passed to the WRTVRM standard routine i n register A

to write to the required address.

    Address... 7BF5H

    This routine is used by the Factor Evaluator to  apply the

"VPEEK" function to an operand contained in DAC. Th e VRAM

address operand is checked to ensure it is less tha n 4000H

(7BFEH). VRAM is then read via the RDVRM standard r outine and

the result placed in DAC as an integer (4FCFH).

    Address... 7BFEH

    This routine converts a numeric operand in DAC to an integer

(2F8AH) and places it in register pair HL. If the o perand is

- 201 -

5. ROM BASIC INTERPRETER

-228-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

equal to or greater than 4000H, and thus outside th e allowable

VRAM range, an "Illegal function call" error is gen erated

(475AH).

    Address... 7C08H

    This routine evaluates (521CH) a parenthesized numeric

operand and returns it as an integer in register A.  If the

operand is greater than the maximum allowable value  initially

supplied in register A an "Illegal function call" e rror is

generated (475AH).

    Address... 7C16H

    This is the "DSKO$" statement handler. An "Ille gal function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C1BH

    This is the "SET" statement handler. An "Illega l function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C20H

    This is the "NAME" statement handler. An "Illeg al function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C25H

    This is the "KILL" statement handler. An "Illeg al function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C2AH

    This is the "IPL" statement handler. An "Illega l function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C2FH

    This is the "COPY" statement handler. An "Illeg al function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C34H

    This is the "CMD" statement handler. An "Illega l function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C39H

    This routine is used by the Factor Evaluator to  apply the

"DSKF" function to an operand contained in DAC. An "Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

-229-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 202 -

5. ROM BASIC INTERPRETER

    Address... 7C3EH

    This routine is used by the Factor Evaluator to  apply the

"DSKI$" function. An "Illegal function call" error is generated

(475AH) on a standard MSX machine.

    Address... 7C43H

    This routine is used by the Factor Evaluator to  apply the

"ATTR$" function. An "Illegal function call" error is generated

(475AH) on a standard MSX machine.

    Address... 7C48H

    This is the "LSET" statement handler. An "Illeg al function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C4DH

    This is the "RSET" statement handler. An "Illeg al function

call" error is generated (475AH) on a standard MSX machine. L

    Address... 7C52H

    This is the "FIELD" statement handler. An "Ille gal function

call" error is generated (475AH) on a standard MSX machine.

    Address... 7C57H

    This routine is used by the Factor Evaluator to  apply the

"MKI$" function to an operand contained in DAC. An "Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

    Address... 7C5CH

    This routine is used by the Factor Evaluator to  apply the

"MKS$" function to an operand contained in DAC. An "Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

    Address... 7C61H

This routine is used by the Factor Evaluator to app ly the

"MKD$" function to an operand contained in DAC. An "Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

    Address... 7C66H

-230-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

This routine is used by the Factor Evaluator to app ly the

"CVI" function to an operand contained in DAC. An " Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

- 203 -

5. ROM BASIC INTERPRETER

    Address... 7C6BH

    This routine is used by the Factor Evaluator to  apply the

"CVS" function to an operand contained in DAC. An " Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

    Address... 7C70H

    This routine is used by the Factor Evaluator to  apply the

"CVD" function to an operand contained in DAC. An " Illegal

function call" error is generated (475AH) on a stan dard MSX

machine.

    Address... 7C76H

    This routine completes the power-up initializat ion. At this

point the entire Workspace Area is zeroed and only EXPTBL and

SLTTBL have been initialized. A temporary stack is set at F376H

and all one hundred and twelve hooks (560 bytes) fi lled with

Z80 RET opcodes (C9H). HIMEM is set to F380H and th e lowest RAM

location found (7D5DH) and placed in BOTTOM. The on e hundred

and forty-four bytes of data commencing at 7F27H ar e copied to

the Workspace Area from F380H to F40FH The function  key

strings are initialized via the INIFNK standard rou tine, ENDBUF

and NLONLY are zeroed and a comma is placed in BUFM IN and a

colon in KBFMIN. The address of the MSX ROM charact er set is

taken from locations 0004H and 0005H and placed in CGPNT+1 and

PRMPRV is set to point to PRMSTK. Dummy values are placed in

STKTOP, MEMSIZ and VARTAB (their correct values are  not known

yet), one I/O buffer is allocated (7E6BH) and the Z 80 SP set

(62E5H). A zero byte is placed at the base of RAM, TXTTAB is

set to the following location and a "NEW" executed (6287H).

    The VDP is then initialized via the INITIO, INI T32 and

CLRSPR standard routines, the cursor coordinates ar e set to row

11, column 10 and the sign on message "MSX system e tc." is

displayed (6678H). After a three second delay a sea rch is

carried out for any extension ROMs (7D75H) and a fu rther "NEW"

executed (6287H) in case a BASIC program has been r un from ROM.

    Finally the identification message "MSX BASIC e tc." is

-231-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

displayed (7D29H) and control transfers to the Inte rpreter

Mainloop "OK" point 411FH.

    Address... 7D29H

    This routine is used during power-up to enable the function

key display, place the screen in 40x24 Text Mode vi a the INITXT

standard routine, and display (6678H) the identific ation

message "MSX BASIC etc.". The amount of free memory  is then

computed by subtracting the contents of VARTAB from  the

contents of STKTOP and displayed (3412H) followed b y the "Bytes

free" message.

- 204 -

5. ROM BASIC INTERPRETER

    Address... 7D5DH

    This routine is used during power-up to find th e lowest RAM

location. Starting at EF00H each byte is tested unt il one is

found that cannot be written to or an address of 80 00H is

reached. The base address, rounded upwards to the n earest 256

byte boundary, is returned in register pair HL.

    Address... 7D75H

    This routine is used during power-up to perform  an extension

ROM search. Pages 1 and 2 (4000H to BFFFH) of each slot are

examined and the results placed in SLTATR. An exten sion ROM has

the two identification characters "AB" in the first  two bytes

to distinguish it from RAM. Information about its p roperties is

also present in the first sixteen bytes as follows:

    +------------------------+

    ¦ Reserved               ¦  Byte 10-15

    ¦ BASIC Text Address MSB ¦  Byte 9

    ¦ BASIC Text Address LSB ¦  Byte 8

    ¦ DEVICE Address MSB     ¦  Byte 7

    ¦ DEVICE Address LSB     ¦  Byte 6

    ¦ STATEMENT Address MSB  ¦  Byte 5

    ¦ STATEMENT Address LSB  ¦  Byte 4

    ¦ INITIALIZE Address MSB ¦  Byte 3

    ¦ INITIALIZE Address LSB ¦  Byte 2

    ¦       42H (`B')        ¦  Byte 1

    ¦       41H (`A')        ¦  Byte 0

    +------------------------+

Figure 48: ROM Header

    Each page in a given slot is examined by readin g the first two

bytes (7E1AH) and checking for the "AB" characters.  If a ROM is

-232-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

present the initialization address is read (7E1AH) and control

passed to it via the CALSLT standard routine. With a games ROM

there may be no return to BASIC from this point. Th e "CALL"

extended statement handler address is then read (7E 1AH) and bit

5 of register B set if it is valid, that is non-zer o. The

extended device handler address is read (7E1AH) and  bit 6 of

register B set if it is valid. Finally the BASIC pr ogram text

address is read (7E1AH) and bit 7 of register B set  if it is

valid. Register B is then copied to the relevant po sition in

SLTATR and the search continued until no more slots  remain.

    SLTATR is then examined for any extension ROM f lagged as

containing BASIC program text. If one is found its position in

SLTATR is converted to a Slot ID (7E2AH) and the RO M

permanently switched in via the ENASLT standard rou tine. VARTAB

is set to C000H, as it is not known how large the P rogram Text

Area is, TXTTAB is set to 8008H and BASROM made non -zero to

disable the CTRL-STOP key. The system is cleared (6 29AH) and

control transfers to the Runloop (4601H) to execute  the BASIC

program.

- 205 -

5. ROM BASIC INTERPRETER

    Address... 7E1AH

    This routine is used to read two bytes from suc cessive

locations in an extension ROM. The initial address is supplied

in register pair HL and the Slot ID in register C. The bytes

are read via the RDSLT standard routine and returne d in

register pair DE. If both are zero FLAG Z is return ed.

    Address... 7E2AH

    This routine converts the SLTATR position suppl ied in

register B into the corresponding Slot ID in regist er C and ROM

base address in register H. The position is first m odified so

that it runs from 0 to 63 rather than from 64 to 1,  so that

the required information is present in the form:

   7     6     5     4     3     2     1     0

+-----------------------------------------------+

¦  0  ¦  0  ¦  PSLOT #  ¦  SSLOT #  ¦   PAGE #  ¦

+-----------------------------------------------+

Figure 49

    Bits 0 and 1 are shifted into the highest two b its of register

H to form the address. Bits 4 and 5 are shifted to bits 0 and 1

of register C to form the Primary Slot number. Bits  2 and 3 are

shifted to bits 2 and 3 of register C to form the S econdary

-233-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

Slot number and bit 7 of the corresponding EXPTBL e ntry copied

to bit 7 of register C.

    Address... 7E4BH

    This is the "MAXFILES" statement handler. As co ntrol

transfers here when a "MAX" token (CDH) is detected  the program

text is first checked for a trailing "FILES" token (B7H). The

buffer count operand, from zero to fifteen, is then  evaluated

(521CH) and any existing buffers closed (6C1CH). Th e required

number of I/O buffers are allocated (7E6BH), the sy stem is

cleared (62A7H) and control transfers directly to t he Runloop

(4601H).

    Address... 7E6BH

    This is the I/O buffer allocation routine. It i s used during

power-up and by the "MAXFILES" and "CLEAR" statemen t handlers

to allocate storage for the number of I/O buffers s upplied in

register A. Two hundred and sixty-seven bytes are s ubtracted

from the contents of HIMEM for every buffer to prod uce a new

MEMSIZ value. The size of the existing String Stora ge Area

(initially two hundred bytes) is computed by subtra cting the

old contents of STKTOP from the old contents of MEM SIZ, this is

then subtracted from the new MEMSIZ value to produc e the new

STKTOP value. A further one hundred and forty bytes  are

- 206 -

5. ROM BASIC INTERPRETER

subtracted for the Z80 stack and an "Out of memory"  error

generated (6275H) if this address is lower than the  start of

the Variable Storage Area. Otherwise the buffer cou nt is placed

in MAXFIL and MEMSIZ and STKTOP set to their new va lues. The

caller's return address is popped, the Z80 SP set t o the new

position and the return address pushed back onto th e stack.

FILTAB is then set to the start of the I/O buffer p ointer block

and each pointer set to point to the associated FCB . Finally

the address of I/O buffer 0, the Interpreter's "LOA D" and

"SAVE" buffer, is placed in NULBUF and the routine terminates.

    Address... 7ED8H

    This is the plain text message "MSX system" ter minated by a

zero byte

    Address... 7EE4H

    This is the plain text message "version 1.0" CR ,LF

terminated by a zero byte.

    Address... 7EF2H

-234-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This is the plain text message "MSX BASIC " ter minated by a

zero byte.

    Address... 7EFDH

    This is the plain text message "Copyright 1983 by Microsoft"

CR,LF terminated by a zero byte.

    Address... 7F1BH

    This is the plain text message " Bytes free" te rminated by a

zero byte.

    Address... 7F27H

    This block of one hundred and forty-four data b ytes is used

to initialize the Workspace Area from F380H to F40F H.

    Address... 7FB7H

    This seven byte patch fixes a bug in the extern al device

parsing routine (55F8H). It checks for a zero lengt h device

name in register A and changes it to one if necessa ry.

    Address... 7FBEH

    This section of the ROM is unused and filled wi th zero

bytes.

- 207 -

                             6. MEMORY MAP

    A maximum of 32 KB of RAM is available to the B ASIC

Interpreter to hold the program text, the BASIC Var iables, the

Z80 stack, the I/O buffers and the internal workspa ce. A memory

map of these areas in the power-up state is shown b elow:

                      +-----------------------+

                      ¦     Workspace Area    ¦

    HIMEM=F380H-------¦                       ¦

                      +-----------------------¦

                      ¦     I/O Buffer 1      ¦

                      +-----------------------¦

                      ¦         FCB 1         ¦

                      +-----------------------¦

                      ¦     I/O Buffer 0      ¦

-235-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    NULBUF=F177H------¦                       ¦

                      +-----------------------¦

                      ¦         FCB 0         ¦

                      +-----------------------¦

                      ¦     F277H (FCB 1)     ¦

                      +-----------------------¦

    FILTAB=F16AH------¦     F16EH (FCB 0)     ¦

                      +-----------------------¦

                      ¦          00H          ¦

                      +-----------------------¦

    MEMSIZ=F168H------¦                       ¦

    FRETOP=F168H---+  ¦  String Storage Area  ¦

                      ¦                       ¦

    STKTOP=F0A0H------¦                       ¦

                      +-----------------------¦

                      ¦       Z80 Stack       ¦

                      ¦                       ¦

                      +-----------------------+

    STREND=8003H------

                      +-----------------------+

                      ¦  Array Storage Area   ¦

    ARYTAB=8003H------¦                       ¦

                      +-----------------------¦

                      ¦ Variable Storage Area ¦

    VARTAB=8003H------¦                       ¦

                      +-----------------------¦

                      ¦   Program Text Area   ¦

    TXTTAB=8001H------¦                       ¦

                      +-----------------------¦

                      ¦          00H          ¦

                      +-----------------------+

Figure 50: Memory Map 8000H to FFFFH

    The Program Text Area is composed of tokenized program lines

stored in line number order and terminated by a zer o end link,

when in the "NEW" state only the end link is presen t. The zero

byte at 8000H is a dummy end of line character need ed to

synchronize the Runloop at the start of a program.

- 208 -

6. MEMORY MAP

    The Variable and Array Storage Areas are compos ed of string

or numeric Variables and Arrays stored in the order  in which

they are found in the program text. Execution speed  improves

marginally if Variables are declared before Arrays in a program

as this reduces the amount of memory to be moved up wards.

    The Z80 stack is positioned immediately below t he String

Storage Area, the structure of the stack top is sho wn below:

-236-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

          STKTOP-------¦     ¦

                       +-----¦

                       ¦ 00H ¦

     Mainloop SP-------¦ 00H ¦

                       +-----¦

                       ¦ 46H ¦

    Statement SP-------¦ 01H ¦

                       +-----+

Figure 51: Z80 Stack Top

    Whenever the position of the stack is altered, as a result of a

"CLEAR" or "MAXFILES" statement, two zero bytes are  first

pushed to function as a terminator during "FOR" or "GOSUB"

parameter block searches. Assuming no parameter blo cks are

present the Z80 SP will therefore be at STKTOP-2 wi thin the

Interpreter Mainloop and at STKTOP-4 when control t ransfers

from the Runloop to a statement handler.

    The String Storage Area is composed of the stri ng bodies

assigned to Variables or Arrays. During expression evaluation a

number of intermediate string results may also be t emporarily

present under the permanent string heap. The zero b yte

following the String Storage Area is a temporary de limiter for

the "VAL" function.

    The region between the String Storage Area and HIMEM is used

for I/O buffer storage. I/O buffer 0, the "SAVE" an d "LOAD"

buffer, is always present but the number of user bu ffers is

determined by the "MAXFILES" statement. Each I/O bu ffer

consists of a 9 byte FCB, whose address is containe d in the

table under FCB 0, followed by a 256 byte data buff er. The FCB

contains the status of the I/O buffer as below:

       0     1     2     3     4     5     6     7     8

    +---------------------------------------------- -------+

    ¦ Mod ¦ 00H ¦ 00H ¦ 00H ¦ DEV ¦ 00H ¦ POS ¦ 00H  ¦ PPS ¦

    +---------------------------------------------- -------+

Figure 52 : File Control Block

    The MOD byte holds the buffer mode, the DEV byt e the device

code, the POS byte the current position in the buff er (0 to

255) and the PPS byte the "PRINT" position. The rem ainder of

the FCB is unused on a standard MSX machine.

- 209 -

6. MEMORY MAP

Workspace Area

-237-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    The section of the Workspace Area from F380H to  FD99H holds

the BIOS/Interpreter variables. These are listed on  the

following pages in standard assembly language form:

    F380H RDPRIM: OUT (0A8H),A ; Set new Primary Sl ot

    F382H         LD E,(HL)    ; Read memory

    F383H         JR WRPRM1    ; Restore old Primar y Slot

    This routine is used by the RDSLT standard rout ine to switch

Primary Slots and read a byte from memory. The new Primary Slot

Register setting is supplied in register A, the old  setting in

register D and the byte read returned in register E .

    F385H WRPRIM: OUT (0A8H),A ; Set new Primary Sl ot

    F387H         LD (HL),E    ; Write to memory

    F388H WRPRM1: LD A,D       ; Get old setting

    F389H         OUT (0A8H),A ; Restore old Primar y Slot

    F38BH         RET

    This routine is used by the WRSLT standard rout ine to switch

Primary Slots and write a byte to memory. The new P rimary Slot

Register setting is supplied in register A, the old  setting in

register D and the byte to write in register E.

    F38CH CLPRIM: OUT (0A8H),A ; Set new Primary Sl ot

    F38EH         EX AF,AF'    ; Swap to AF for cal l

    F38FH         CALL CLPRM1  ; Do it

    F392H         EX AF,AF'    ; Swap to AF

    F393H         POP AF       ; Get old setting

    F394H         OUT (0A8H),A ; Restore old Primar y Slot

    F396H         EX AF,AF'    ; Swap to AF

    F397H         RET

    F398H CLPRM1: JP (IX)

    This routine is used by the CALSLT standard rou tine to switch

Primary Slots and call an address. The new Primary Slot

Register setting is supplied in register A, the old  setting on

the Z80 stack and the address to call in register p air IX.

    F39AH USRTAB: DEFW 475AH   ; USR 0

    F39CH         DEFW 475AH   ; USR 1

    F39EH         DEFW 475AH   ; USR 2

    F3A0H         DEFW 475AH   ; USR 3

    F3A2H         DEFW 475AH   ; USR 4

    F3A4H         DEFW 475AH   ; USR 5

    F3A6H         DEFW 475AH   ; USR 6

    F3A8H         DEFW 475AH   ; USR 7

    F3AAH         DEFW 475AH   ; USR 8

    F3ACH         DEFW 475AH   ; USR 9

    These ten variables contain the "USR" function addresses. Their

values are set to the Interpreter "Illegal function  call" error

-238-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- 210 -

6. MEMORY MAP

generator at power-up and thereafter only altered b y the

"DEFUSR" statement.

    F3AEH LINL40: DEFB 37

    This variable contains the 40x24 Text Mode scre en width. Its

value is set at power-up and thereafter only altere d by the

"WIDTH" statement.

    F3AFH LINL32: DEFB 29

    This variable contains the 32x24 Text Mode scre en width. Its

value is set at power-up and thereafter only altere d by the

"WIDTH" statement.

    F3B0H LINLEN: DEFB 37

    This variable contains the current text mode sc reen width. Its

value is set from LINL40 or LINL32 whenever the VDP  is

initialized to a text mode via the INITXT or INIT32  standard

routines.

    F3B1H CRTCNT: DEFB 24

    This variable contains the number of rows on th e screen. Its

value is set at power-up and thereafter unaltered.

    F3B2H CLMLST: DEFB 14

    This variable contains the minimum number of co lumns that must

still be available on a line for a data item to be "PRINT"ed,

if less space is available a CR,LF is issued first.  Its value

is set at power-up and thereafter only altered by t he "WIDTH"

and "SCREEN" statements.

    F3B3H TXTNAM: DEFW 0000H   ; Name Table Base

    F3B5H TXTCOL: DEFW 0000H   ; Colour Table Base

    F3B7H TXTCGP: DEFW 0800H   ; Character Pattern Base

    F3B9H TXTATR: DEFW 0000H   ; Sprite Attribute B ase

    F3BBH TXTPAT: DEFW 0000H   ; Sprite Pattern Bas e

    These five variables contain the 40x24 Text Mod e VDP base

addresses. Their values are set at power-up and the reafter only

altered by the "BASE" statement.

    F3BDH T32NAM: DEFW 1800H   ; Name Table Base

    F3BFH T32COL: DEFW 2000H   ; Colour Table Base

    F3C1H T32CGP: DEFW 0000H   ; Character Pattern Base

    F3C3H T32ATR: DEFW 1B00H   ; Sprite Attribute B ase

    F3C5H T32PAT: DEFW 3800H   ; Sprite Pattern Bas e

-239-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    These five variables contain the 32x24 Text Mod e VDP base

addresses. Their values are set at power-up and the reafter only

altered by the "BASE" statement.

- 211 -

6. MEMORY MAP

    F3C7H GRPNAM: DEFW 1800H   ; Name Table Base

    F3C9H GRPCOL: DEFW 2000H   ; Colour Table Base

    F3CBH GRPCGP: DEFW 0000H   ; Character Pattern Base

    F3CDH GRPATR: DEFW 1B00H   ; Sprite Attribute B ase

    F3CFH GRPPAT: DEFW 3800H   ; Sprite Pattern Bas e

    These five variables contain the Graphics Mode VDP base

addresses. Their values are set at power-up and the reafter only

altered by the "BASE" statement.

    F3D1H MLTNAM: DEFW 0800H   ; Name Table Base

    F3D3H MLTCOL: DEFW 0000H   ; Colour Table Base

    F3D5H MLTCGP: DEFW 0000H   ; Character Pattern Base

    F3D7H MLTATR: DEFW 1B00H   ; Sprite Attribute B ase

    F3D9H MLTPAT: DEFW 3800H   ; Sprite Pattern Bas e

    These five variables contain the Multicolour Mo de VDP base

addresses. Their values are set at power-up and the reafter only

altered by the "BASE" statement.

    F3DBH CLIKSW: DEFB 01H

    This variable controls the interrupt handler ke y click:

00H=Off, NZ=On. Its value is set at power-up and th ereafter

only altered by the "SCREEN" statement.

    F3DCH CSRY:   DEFB 01H

    This variable contains the row coordinate (from  1 to CTRCNT) of

the text mode cursor.

    F3DDH CSRX:   DEFB 01H

    This variable contains the column coordinate (f rom 1 to LINLEN)

of the text mode cursor. Note that the BIOS cursor coordinates

for the home position are 1,1 whatever the screen w idth.

    F3DEH CNSDFG: DEFB FFH

    This variable contains the current state of the  function key

display: 00H=Off, NZ=On.

    F3DFH RG0SAV: DEFB 00H

-240-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F3E0H RG1SAV: DEFB F0H

    F3E1H RG2SAV: DEFB 00H

    F3E2H RG3SAV: DEFB 00H

    F3E3H RG4SAV: DEFB 01H

    F3E4H RG5SAV: DEFB 00H

    F3E5H RG6SAV: DEFB 00H

    F3E6H RG7SAV: DEFB F4H

    These eight variables mimic the state of the ei ght write-only

VDP Mode Registers. The values shown are for 40x24 Text Mode.

- 212 -

6. MEMORY MAP

    F3E7H STATFL: DEFB CAH

    This variable is continuously updated by the in terrupt handler

with the contents of the VDP Status Register.

    F3E8H TRGFLG: DEFB F1H

    This variable is continuously updated by the in terrupt handler

with the state of the four joystick trigger inputs and the

space key.

    F3E9H FORCLR: DEFB 0FH     ; White

    This variable contains the current foreground c olour. Its value

is set at power-up and thereafter only altered by t he "COLOR"

statement. The foreground colour is used by the CLR SPR standard

routine to set the sprite colour and by the CHGCLR standard

routine to set the 1 pixel colour in the text modes . It also

functions as the graphics ink colour as it is copie d to ATRBYT

by the GRPPRT standard routine and used throughout the

Interpreter as the default value for any optional c olour

operand.

    F3EAH BAKCLR: DEFB 04H     ; Dark blue

    This variable contains the current background c olour. Its value

is set at power-up and thereafter only altered by t he "COLOR"

statement. The background colour is used by the CLS  standard

routine to clear the screen in the graphics modes a nd by the

CHGCLR standard routine to set the 0 pixel colour i n the text

modes.

    F3EBH BDRCLR: DEFB 04H     ; Dark blue

    This variable contains the current border colou r. Its value is

set at power-up and thereafter only altered by the "COLOR"

-241-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

statement. The border colour is used by the CHGCLR standard

routine in 32x24 Text Mode, Graphics Mode and Multi colour Mode

to set the border colour.

    F3ECH MAXUPD: DEFB C3H

    F3EDH         DEFW 0000H

    These two bytes are filled in by the "LINE" sta tement handler

to form a Z80 JP to the RIGHTC, LEFTC, UPC or DOWNC  standard

routines.

    F3EFH MINUPD: DEFB C3H

    F3F0H         DEFW 0000H

    These two bytes are filled in by the "LINE" sta tement handler

to form a Z80 JP to the RIGHTC, LEFTC, UPC or DOWNC  standard

routines.

- 213 -

6. MEMORY MAP

    F3F2H ATRBYT: DEFB 0FH

    This variable contains the graphics ink colour used by the SETC

and NSETCX standard routines.

    F3F3H QUEUES: DEFW F959H

    This variable contains the address of the contr ol blocks for

the three music queues. Its value is set at power-u p and

thereafter unaltered.

    F3F5H FRCNEW: DEFB FFH

    This variable contains a flag to distinguish th e two statements

in the "CLOAD/CLOAD?" statement handler: 00H=CLOAD,  FFH=CLOAD?.

    F3F6H SCNCNT: DEFB 01H

    This variable is used as a counter by the inter rupt handler to

control the rate at which keyboard scans are perfor med.

    F3F7H REPCNT: DEFB 01H

    This variable is used as a counter by the inter rupt handler to

control the key repeat rate.

    F3F8H PUTPNT: DEFW FBF0H

    This variable contains the address of the put p osition in

-242-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

KEYBUF.

    F3FAH GETPNT: DEFW FBF0H

    This variable contains the address of the get p osition in

KEYBUF.

    F3FCH CS1200: DEFB 53H     ; LO cycle 1st half

    F3FDH         DEFB 5CH     ; LO cycle 2nd half

    F3FEH         DEFB 26H     ; HI cycle 1st half

    F3FFH         DEFB 2DH     ; HI cycle 2nd half

    F400H         DEFB 0FH     ; Header cycle count

    These five variables contain the 1200 baud cass ette parameters.

Their values are set at power-up and thereafter una ltered.

    F401H CS2400: DEFB 25H     ; LO cycle 1st half

    F402H         DEFB 2DH     ; LO cycle 2nd half

    F403H         DEFB 0EH     ; HI cycle 1st half

    F404H         DEFB 16H     ; HI cycle 2nd half

    F405H         DEFB 1FH     ; Header cycle count

    These five variables contain the 2400 baud cass ette parameters.

Their values are set at power-up and thereafter una ltered.

- 214 -

6. MEMORY MAP

    F406H LOW:    DEFB 53H     ; LO cycle 1st half

    F407H         DEFB 5CH     ; LO cycle 2nd half

    F408H HIGH:   DEFB 26H     ; HI cycle 1st half

    F409H         DEFB 2DH     ; HI cycle 2nd half

    F40AH HEADER: DEFB 0FH     ; Header cycle count

    These five variables contain the current casset te parameters.

Their values are set to 1200 baud at power-up and t hereafter

only altered by the "CSAVE" and "SCREEN" statements .

    F40BH ASPCT1: DEFW 0100H

    This variable contains the reciprocal of the de fault "CIRCLE"

aspect ratio multiplied by 256. Its value is set at  power-up

and thereafter unaltered.

    F40DH ASPCT2: DEFW 01C0H

    This variable contains the default "CIRCLE" asp ect ratio

multiplied by 256. Its value is set at power-up and  thereafter

unaltered. The aspect ratio is present in two forms  so that the

"CIRCLE" statement handler can select the appropria te one

-243-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

immediately rather than needing to examine and poss ibly

reciprocate it as is the case with an operand in th e program

text.

    F40FH ENDPRG: DEFB ":"

    F410H         DEFB 00H

    F411H         DEFB 00H

    FE12H         DEFB 00H

    F413H         DEFB 00H

    These five bytes form a dummy program line. The ir values are

set at power-up and thereafter unaltered. The line exists in

case an error occurs in the Interpreter Mainloop be fore any

tokenized text is available in KBUF. If an "ON ERRO R GOTO" is

active at this time then it provides some text for the "RESUME"

statement to terminate on.

    F414H ERRFLG: DEFB 00H

    This variable is used by the Interpreter error handler to save

the error number.

    F415H LPTPOS: DEFB 00H

    This variable is used by the "LPRINT" statement  handler to hold

the current position of the printer head.

    F416H PRTFLG: DEFB 00H

    This variable determines whether the OUTDO stan dard routine

directs its output to the screen or to the printer:  00H=Screen,

01H=Printer.

- 215 -

6. MEMORY MAP

    F417H NTMSXP: DEFB 00H

    This variable determines whether the OUTDO stan dard routine

will replace headered graphics characters directed to the

printer with spaces: 00H=Graphics, NZ=Spaces. Its v alue is set

at power-up and thereafter only altered by the "SCR EEN"

statement.

    F418H RAWPRT: DEFB 00H

    This variable determines whether the OUTDO stan dard routine

will modify control and headered graphics character s directed

to the printer: 00H=Modify, NZ=Raw. Its value is se t at power-

up and thereafter unaltered.

-244-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F419H VLZADR: DEFW 0000H

    F41BH VLZDAT: DEFB 00H

    These variables contain the address and value o f any character

temporarily removed by the "VAL" function.

    F41CH CURLIN: DEFW FFFFH

    This variable contains the current Interpreter line number. A

value of FFFFH denotes direct mode.

    F41EH KBFMIN: DEFB ":"

    This byte provides a dummy prefix to the tokeni zed text

contained in KBUF. Its function is similar to that of ENDPRG

but is used for the situation where an error occurs  within a

direct statement.

    F41FH KBUF:   DEFS 318

    This buffer contains the tokenized form of the input line

collected by the Interpreter Mainloop. When a direc t statement

is executed the contents of this buffer form the pr ogram text.

    F55DH BUFMIN: DEFB ","

    This byte provides a dummy prefix to the text c ontained in BUF.

It is used to synchronize the "INPUT" statement han dler as it

starts to analyze the input text.

    F55EH BUF:    DEFS 259

    This buffer contains the text collected from th e console by the

INLIN standard routine.

    F661H TTYPOS: DEFB 00H

    This variable is used by the "PRINT" statement handler to hold

the current screen position (Teletype!).

- 216 -

6. MEMORY MAP

    F662H DIMFLG: DEFB 00H

    This variable is normally zero but is set by th e "DIM"

statement handler to control the operation of the v ariable

search routine.

    F663H VALTYP: DEFB 02H

-245-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable contains the type code of the ope rand currently

contained in DAC: integer, 3=String, 4=Single Preci sion,

8=Double Precision.

    F664H DORES:  DEFB 00H

    This variable is normally zero but is set to pr event the

tokenization of unquoted keywords following a "DATA " token.

    F665H DONUM:  DEFB 00H

    This variable is normally zero but is set when a numeric

constant follows one of the keywords GOTO, GOSUB, T HEN, etc.,

and must be tokenized to the special line number op erand form.

    F666H CONTXT: DEFW 0000H

    This variable is used by the CHRGTR standard ro utine to save

the address of the character following a numeric co nstant in

the program text.

    F668H CONSAV: DEFB 00H

    This variable is used by the CHRGTR standard ro utine to save

the token of a numeric constant found in the progra m text.

    F669H CONTYP: DEFB 00H

    This variable is used by the CHRGTR standard ro utine to save

the type of a numeric constant found in the program  text.

    F66AH CONLO:  DEFS 8

    This buffer is used by the CHRGTR standard rout ine to save the

value of a numeric constant found in the program te xt.

    F672H MEMSIZ: DEFW F168H

    This variable contains the address of the top o f the String

Storage Area. Its value is set at power-up and ther eafter only

altered by the "CLEAR" and "MAXFILES" statements.

    F674H STKTOP: DEFW F0A0H

    This variable contains the address of the top o f the Z80 stack.

Its value is set at power-up to MEMSIZ-200 and ther eafter only

- 217 -

6. MEMORY MAP

altered by the "CLEAR" and "MAXFILES" statements.

-246-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F676H TXTTAB: DEFW 8001H

    This variable contains the address of the first  byte of the

Program Text Area. Its value is set at power-up and  thereafter

unaltered.

    F678H TEMPPT: DEFW F67AH

    This variable contains the address of the next free location in

TEMPST.

    F67AH TEMPST: DEFS 30

    This buffer is used to store string descriptors . It functions

as a stack with string producers pushing their resu lts and

string consumers popping them.

    F698H DSCTMP: DEFS 3

    This buffer is used by the string functions to hold a result

descriptor while it is being constructed.

    F69BH FRETOP: DEFW F168H

    This variable contains the address of the next free location in

the String Storage Area. When the area is empty FRE TOP is equal

to MEMSIZ.

    F69DH TEMP3: DEFW 0000H

    This variable is used for temporary storage by various parts of

the Interpreter.

    F69FH TEMP8:  DEFW 0000H

    This variable is used for temporary storage by various parts of

the Interpreter.

    F6A1H ENDFOR: DEFW 0000H

    This variable is used by the "FOR" statement ha ndler to hold

the end of statement address during construction of  a parameter

block.

    F6A3H DATLIN: DEFW 0000H

    This variable contains the line number of the c urrent "DATA"

item in the program text.

    F6A5H SUBFLG: DEFB 00H

    This variable is normally zero but is set by th e "ERASE",

- 218 -

-247-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

6. MEMORY MAP

"FOR", "FN" and "DEF FN" handlers to control the pr ocessing of

subscripts by the variable search routine.

    F6A6H FLGINP: DEFB 00H

    This variable contains a flag to distinguish th e two statements

in the "READ/INPUT" statement handler: 00H=INPUT, N Z=READ.

    F6A7H TEMP:   DEFW 0000H

    This variable is used for temporary storage by various parts of

the Interpreter.

    F6A9H PTRFLG: DEFB 00H

    This variable is normally zero but is set if an y line number

operands in the Program Text Area have been convert ed to

pointers.

    F6AAH AUTFLG: DEFB 00H

    This variable is normally zero but is set when "AUTO" mode is

turned on.

    F6ABH AUTLIN: DEFW 0000H

    This variable contains the current "AUTO" line number.

    F6ADH AUTINC: DEFW 0000H

    This variable contains the current "AUTO" line number

increment.

    F6AFH SAVTXT: DEFW 0000H

    This variable is updated by the Runloop at the start of every

statement with the current location in the program text. It is

used during error recovery to set ERRTXT for the "R ESUME"

statement handler and OLDTXT for the "CONT" stateme nt handler.

    F6B1H SAVSTK: DEFW F09EH

    This variable is updated by the Runloop at the start of every

statement with the current Z80 SP for error recover y purposes.

    F6B3H ERRLIN: DEFW 0000H

    This variable is used by the error handler to h old the line

number of the program line generating an error.

    F6B5H DOT:    DEFW 0000H

-248-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable is updated by the Mainloop and th e error handler

with the current line number for use with the "." p arameter.

- 219 -

6. MEMORY MAP

    F6B7H ERRTXT: DEFW 0000H

    This variable is updated from SAVTXT by the err or handler for

use by the "RESUME" statement handler.

    F6B9H ONELIN: DEFW 0000H

    This variable is set by the "ON ERROR GOTO" sta tement handler

with the address of the program line to execute whe n an error

occurs.

    F6BBH ONEFLG: DEFB 00H

    This variable is normally zero but is set by th e error handler

when control transfers to an "ON ERROR GOTO" statem ent. This is

to prevent a loop developing if an error occurs ins ide the

error recovery statements.

    F6BCH TEMP2:  DEFW 0000H

    This variable is used for temporary storage by various parts of

the Interpreter.

    F6BEH OLDLIN: DEFW 0000H

    This variable contains the line number of the t erminating

program line. It is set by the "END" and "STOP" sta tement

handlers for use with the "CONT" statement.

    F6C0H OLDTXT: DEFW 0000H

    This variable contains the address of the termi nating program

statement.

    F6C2H VARTAB: DEFW 8003H

    This variable contains the address of the first  byte of the

Variable Storage Area.

    F6C4H ARYTAB: DEFW 8003H

    This variable contains the address of the first  byte of the

Array Storage Area.

-249-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F6C6H STREND: DEFW 8003H

    This variable contains the address of the byte following the

Array Storage Area.

    F6C8H DATPTR: DEFW 8000H

    This variable contains the address of the curre nt "DATA" item

in the program text.

- 220 -

6. MEMORY MAP

    F6CAH DEFTBL: DEFB 08H     ; A

    F6CBH         DEFB 08H     ; B

    F6CCH         DEFB 08H     ; C

    F6CDH         DEFB 08H     ; D

    F6CEH         DEFB 08H     ; E

    F6CFH         DEFB 08H     ; F

    F6D0H         DEFB 08H     ; G

    F6D1H         DEFB 08H     ; H

    F6D2H         DEFB 08H     ; I

    F6D3H         DEFB 08H     ; J

    F6D4H         DEFB 08H     ; K

    F6D5H         DEFB 08H     ; L

    F6D6H         DEFB 08H     ; M

    F6D7H         DEFB 08H     ; N

    F6D8H         DEFB 08H     ; O

    F6D9H         DEFB 08H     ; P

    F6DAH         DEFB 08H     ; Q

    F6DBH         DEFB 08H     ; R

    F6DCH         DEFB 08H     ; S

    F6DDH         DEFB 08H     ; T

    F6DEH         DEFB 08H     ; U

    F6DFH         DEFB 08H     ; V

    F6E0H         DEFB 08H     ; W

    F6E1H         DEFB 08H     ; X

    F6E2H         DEFB 08H     ; Y

    F6E3H         DEFB 08H     ; Z

    These twenty-six variables contain the default type for each

group of BASIC Variables. Their values are set to d ouble

precision at power-up, "NEW" and "CLEAR" and therea fter altered

only by the "DEF" group of statements.

    F6E4H PRMSTK: DEFW 0000H

    This variable contains the base address of the previous "FN"

parameter block on the Z80 stack. It is used during  string

garbage collection to travel from block to block on  the stack.

-250-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F6E6H PRMLEN: DEFW 0000H

    This variable contains the length of the curren t "FN" parameter

block in PARM1.

    F6E8H PARM1 : DEFS 100

    This buffer contains the local Variables belong ing to the "FN"

function currently being evaluated.

    F74CH PRMPRV: DEFW F6E4H

    This variable contains the address of the previ ous "FN"

parameter block. It is actually a constant used to ensure that

string garbage collection commences with the curren t parameter

block before proceeding to those on the stack.

- 221 -

6. MEMORY MAP

    F74EH PRMLN2: DEFW 0000H

    This variable contains the length of the "FN" p arameter block

being constructed in PARM2

    F750H PARM2:  DEFS 100

    This buffer is used to construct the local Vari ables owned by

the current "FN" function.

    F7B4H PRMFLG: DEFB 00H

    This variable is used during a Variable search to indicate

whether local or global Variables are being examine d.

    F7B5H ARYTA2: DEFW 0000H

    This variable is used during a Variable search to hold the

termination address of the storage area being exami ned.

    F7B7H NOFUNS: DEFB 00H

    This variable is normally zero but is set by th e "FN" function

handler to indicate to the variable search routine that local

Variables are present.

    F7B8H TEMP9:  DEFW 0000H

    This variable is used for temporary storage by various parts of

the Interpreter.

-251-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F7BAH FUNACT: DEFW 0000H

    This variable contains the number of currently active "FN

functions.

    F7BCH SWPTMP: DEFS 8

    This buffer is used to hold the first operand i n a "SWAP"

statement.

    F7C4H TRCFLG: DEFB 00H

    This variable is normally zero but is set by th e "TRON"

statement handler to turn on the trace facility.

    F7C5H FBUFFR: DEFS 43

    This buffer is used to hold the text produced d uring numeric

output conversion.

    F7F0H DECTMP: DEFW 0000H

    This variable is used for temporary storage by the double

- 222 -

6. MEMORY MAP

precision division routine.

    F7F2H DECTM2: DEFW 0000H

    This variable is used for temporary storage by the double

precision division routine.

    F7F4H DECCNT: DEFB 00H

    This variable is used by the double precision d ivision routine

to hold the number of non-zero bytes in the mantiss a of the

second operand.

    F7F6H DAC:    DEFS 16

    This buffer functions as the Interpreter's prim ary accumulator

during expression evaluation.

    F806H HOLD8:  DEFS 65

    This buffer is used by the double precision mul tiplication

routine to hold the multiples of the first operand.

-252-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    F847H ARG:    DEFS 16

    This buffer functions as the Interpreter's seco ndary

accumulator during expression evaluation.

    F857H RNDX:   DEFS 8

    This buffer contains the current double precisi on random

number.

    F85FH MAXFIL: DEFB 01H

    This variable contains the number of currently allocated user

I/O buffers. Its value is set to 1 at power-up and thereafter

only altered by the "MAXFILES" statement.

    F860H FILTAB: DEFW F16AH

    This variable contains the address of the point er table for the

I/O buffer FCBs.

    F862H NULBUF: DEFW F177H

    This variable contains the address of the first  byte of the

data buffer belonging to I/O buffer 0.

    F864H PTRFIL: DEFW 0000H

    This variable contains the address of the curre ntly active I/O

buffer FCB.

- 223 -

6. MEMORY MAP

    F866H FILNAM: DEFS 11

    This buffer holds a user-specified filename. It  is eleven

characters long to allow for disc file specs such a s

"FILENAME.BAS".

    F871H FILNM2: DEFS 11

    This buffer holds a filename read from an I/O d evice for

comparison with the contents of FILNAM.

    F87CH NLONLY: DEFB 00H

    This variable is normally zero but is set durin g a program

"LOAD". Bit 0 is used to prevent I/O buffer 0 being  closed

during loading and bit 7 to prevent the user I/O bu ffers being

-253-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

closed if auto-run is required.

    F87DH SAVEND: DEFW 0000H

    This variable is used by the "BSAVE" statement handler to hold

the end address of the memory block to be saved.

    F87FH FNKSTR: DEFS 160

    This buffer contains the ten sixteen-character function key

strings. Their values are set at power-up and there after only

altered by the "KEY" statement.

    F91FH CGPNT:  DEFB 00H     ; Slot ID

    F920H         DEFW 1BBFH   ; Address

    These variables contain the location of the cha racter set

copied to the VDP by the INITXT and INIT32 standard  routines.

Their values are set to the MSX ROM character set a t power-up

and thereafter unaltered.

    F922H NAMBAS: DEFW 0000H

    This variable contains the current text mode VD P Name Table

base address. Its value is set from TXTNAM or T32NA M whenever

the VDP is initialized to a text mode via the INITX T or INIT32

standard routines.

    F924H CGPBAS: DEFW 0800H

    This variable contains the current text mode VD P Character

Pattern Table base address. Its value is set from T XTCGP or

T32CGP whenever the VDP is initialized to a text mo de via the

INITXT or INIT32 standard routines.

    F926H PATBAS: DEFW 3800H

    This variable contains the current VDP Sprite P attern Table

- 224 -

6. MEMORY MAP

base address. Its value is set from T32PAT, GRPPAT or MLTPAT

whenever the VDP is initialized via the INIT32, INI GRP or

INIMLT standard routines.

    F928H ATRBAS: DEFW 1B00H

    This variable contains the current VDP Sprite A ttribute Table

base address. Its value is set from T32ATR, GRPATR or MLTATR

whenever the VDP is initialized via the INIT32, INI GRP or

-254-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

INIMLT standard routines.

    F92AH CLOC:   DEFW 0000H   ; Pixel location

    F92CH CMASK:  DEFB 80H     ; Pixel Mask

    These variables contain the current pixel physi cal address used

by the RIGHTC, LEFTC, UPC, TUPC, DOWNC, TDOWNC, FET CHC, STOREC,

READC, SETC, NSETCX, SCANR and SCANL standard routi nes. CLOC

holds the address of the byte containing the curren t pixel and

CMASK defines the pixel within that byte.

    F92DH MINDEL: DEFW 0000H

    This variable is used by the "LINE" statement h andler to hold

the minimum difference between the end points of th e line.

    F92FH MAXDEL: DEFW 0000H

    This variable is used by the "LINE" statement h andler to hold

the maximum difference between the end points of th e line.

    F931H ASPECT: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler to hold

the current aspect ratio. This is stored as a singl e byte

binary fraction so an aspect ratio of 0.75 would be come 00C0H.

The MSB is only required if the aspect ratio is exa ctly 1.00,

that is 0100H.

    F933H CENCNT: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler to hold

the point count of the end angle.

    F935H CLINEF: DEFB 00H

    This variable is used by the "CIRCLE" statement  handler to hold

the two line flags. Bit 0 is set if a line is requi red from the

start angle to the centre and bit 7 set if one is r equired from

the end angle.

    F936H CNPNTS: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler to hold

the number of points within a forty-five degree seg ment.

- 225 -

6. MEMORY MAP

    F938H CPLOTF: DEFB 00H

-255-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable is normally zero but is set by th e "CIRCLE"

statement handler if the end angle is smaller than the start

angle. It is used to determine whether the pixels s hould be set

"inside" the angles or "outside" them.

    F939H CPCNT:  DEFW 0000H

    This variable is used by the 'CIRCLE" statement  handler to hold

the point count within the current forty-five degre e segment,

this is in fact the Y coordinate.

    F93BH CPCNT8: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler to hold

the total point count of the present position.

    F93DH CRCSUM: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler as the

point computation counter.

    F93FH CSTCNT: DEFW 0000H

    This variable is used by the "CIRCLE" statement  handler to hold

the point count of the start angle.

    F941H CSCLXY: DEFB 00H

    This variable is used by the "CIRCLE" statement  handler as a

flag to determine in which direction the elliptic s quash is to

be applied: 00H=Y, 01H=X.

    F942H CSAVEA: DEFW 0000H

    This variable is used for temporary storage by the SCANR

standard routine.

    F944H CSAVEM: DEFB 00h

    This variable is used for temporary storage by the SCANR

standard routine.

    F945H CXOFF:  DEFW 0000H

    This variable is used for temporary storage by the "CIRCLE"

statement handler.

    F947H CYOFF:  DEFW 0000H

    This variable is used for temporary storage by the "CIRCLE"

statement handler.

- 226 -

-256-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

6. MEMORY MAP

    F949H LOHMSK: DEFB 00H

    This variable is used by the "PAINT" statement handler to hold

the leftmost position of a LH excursion.

    F94AH LOHDIR: DEFB 00H

    This variable is used by the "PAINT" statement handler to hold

the new paint direction required by a LH excursion.

    F94BH LOHADR: DEFW 0000H

    This variable is used by the "PAINT" statement handler to hold

the leftmost position of a LH excursion.

    F94DH LOHCNT: DEFW 0000H

    This variable is used by the "PAINT" statement handler to hold

the size of a LH excursion.

    F94FH SKPCNT: DEFW 0000H

    This variable is used by the "PAINT" statement handler to hold

the skip count returned by the SCANR standard routi ne.

    F951H MOVCNT: DEFW 0000H

    This variable is used by the "PAINT" statement handler to hold

the movement count returned by the SCANR standard r outine.

    F953H PDIREC: DEFB 00H

    This variable is used by the "PAINT" statement handler to hold

the current paint direction: 40H=Down, C0H=Up, 00H= Terminate.

    F954H LFPROG: DEFB 00H

    This variable is normally zero but is set by th e "PAINT"

statement handler if there has been any leftwards p rogress.

    F955H RTPROG: DEFB 00H

    This variable is normally zero but is set by th e "PAINT"

statement handler if there has been any rightwards progress.

    F956H MCLTAB: DEFW 0000H

    This variable contains the address of the comma nd table to be

used by the macro language parser. The "DRAW" table  is at 5D83H

and the "PLAY" table at 752EH.

    F958H MCLFLG: DEFB 00H

-257-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable is zero if the macro language par ser is being

- 227 -

6. MEMORY MAP

used by the "DRAW", statement handler and non-zero if it is

being used by "PLAY".

    F959H QUETAB: DEFB 00H     ; AQ Put position

    F95AH         DEFB 00H     ; AQ Get position

    F95BH         DEFB 00H     ; AQ Putback flag

    F95CH         DEFB 7FH     ; AQ Size

    F95DH         DEFW F975H   ; AQ Address

    F95FH         DEFB 00H     ; BQ Put position

    F960H         DEFB 00H     ; BQ Get position

    F961H         DEFB 00H     ; BQ Putback flag

    F962H         DEFB 7FH     ; BQ Size

    F963H         DEFW F9F5H   ; BQ Address

    F965H         DEFB 00H     ; CQ Put position

    F966H         DEFB 00H     ; CQ Get position

    F967H         DEFB 00H     ; CQ Putback flag

    F968H         DEFB 7FH     ; CQ Size

    F969H         DEFW FA75H   ; CQ Address

    F96BH         DEFB 00H     ; RQ Put position

    F96CH         DEFB 00H     ; RQ Get position

    F96DH         DEFB 00H     ; RQ Putback flag

    F96EH         DEFB 00H     ; RQ Size

    F96FH         DEFW 0000H   ; RQ Address

    These twenty-four variables form the control bl ocks for the

three music queues (VOICAQ, VOICBQ and VOICCQ) and the RS232

queue. The three music control blocks are initializ ed by the

GICINI standard routine and thereafter maintained b y the

interrupt handler and the PUTQ standard routine. Th e RS232

control block is unused in the current MSX ROM.

    F971H QUEBAK: DEFB 00H     ; AQ Putback charact er

    F972H         DEFB 00H     ; BQ Putback charact er

    F973H         DEFB 00H     ; CQ Putback charact er

    F974H         DEFB 00H     ; RQ Putback charact er

    These four variables are used to hold any unwan ted character

returned to the associated queue. Although the putb ack facility

is implemented in the MSX ROM it is currently unuse d.

    F975H VOICAQ: DEFS 128     ; Voice A queue

    F9F5H VOICBQ: DEFS 128     ; Voice B queue

-258-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FA75H VOICCQ: DEFS 128     ; Voice C queue

    FAF5H RS2IQ:  DEFS 64      ; RS232 queue

    These four buffers contain the three music queu es and the RS232

queue, the latter is unused.

    FB35H PRSCNT: DEFB 00H

    This variable is used by the "PLAY" statement h andler to count

- 228 -

6. MEMORY MAP

the number of completed operand strings. Bit 7 is a lso set

after each of the three operands has been parsed to  prevent

repeated activation of the STRTMS standard routine.

    FB36H SAVSP: DEFW 0000H

    This variable is used by the "PLAY" statement h andler to save

the Z80 SP before control transfers to the macro la nguage

parser. Its value is compared with the SP on return  to

determine whether any data has been left on the sta ck because

of a queue-full termination by the parser.

    FB38H VOICEN: DEFB 00H

    This variable contains the current voice number  being processed

by the "PLAY" statement handler. The values 0, 1 an d 2

correspond to PSG channels A, B and C.

    FB39H SAVVOL: DEFW 0000H

    This variable is used by the "PLAY" statement " R" command

handler to save the current volume setting while a zero-

amplitude rest is generated.

    FB3BH MCLLEN: DEFB 00H

    This variable is used by the macro language par ser to hold the

length of the string operand being parsed.

    FB3CH MCLPTR: DEFW 0000H

    This variable is used by the macro language par ser to hold the

address of the string operand being parsed.

    FB3EH QUEUEN: DEFB 00H

    This variable is used by the interrupt handler to hold the

number of the music queue currently being processed . The values

-259-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

0, 1 and 2 correspond to PSG channels A, B and C.

    FB3FH MUSICF: DEFB 00H

    This variable contains three bit flags set by t he STRTMS

standard routine to initiate processing of a music queue by the

interrupt handler. Bits 0, 1 and 2 correspond to VO ICAQ, VOICBQ

and VOICCQ.

    FB40H PLYCNT: DEFB 00H

    This variable is used by the STRTMS standard ro utine to hold

the number of "PLAY" statement sequences currently held in the

music queues. It is examined when all three end of queue marks

have been found for one sequence to determine wheth er

dequeueing should be restarted.

- 229 -

6. MEMORY MAP

    FB41H VCBA:   DEFW 0000H   ; Duration counter

    FB43H         DEFB 00H     ; String length

    FB44H         DEFW 0000H   ; String address

    FB46H         DEFW 0000H   ; Stack data address

    FB48H         DEFB 00H     ; Music packet lengt h

    FB49H         DEFS 7       ; Music packet

    FB50H         DEFB 04H     ; Octave

    FB51H         DEFB 04H     ; Length

    FB52H         DEFB 78H     ; Tempo

    FB53H         DEFB 88H     ; Volume

    FB54H         DEFW 00FFH   ; Envelope period

    FB56H         DEFS 16      ; Space for stack da ta

    This thirty-seven byte buffer is used by the "P LAY" statement

handler to hold the current parameters for voice A.

    FB66H VCBB:   DEFS 37

    This buffer is used by the "PLAY" statement han dler to hold the

current parameters for voice B, its structure is th e same as

VCBA.

    FB8BH VCBC:   DEFS 37

    This buffer is used by the "PLAY" statement han dler to hold the

current parameters for voice C, its structure is th e same as

VCBA.

    FBB0H ENSTOP: DEFB 00H

    This variable determines whether the interrupt handler will

-260-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

execute a warm start to the Interpreter upon detect ing the keys

CODE, GRAPH, CTRL and SHIFT depressed together: 00H =Disable,

NZ=Enable.

    FBB1H BASROM: DEFB 00H

    This variable determines whether the ISCNTC and  INLIN standard

routines will respond to the CTRL-STOP key: 00H=Ena ble,

NZ=Disable. It is used to prevent termination of a BASIC ROM

located during the power-up ROM search.

    FBB2H LINTTB: DEFS 24

    Each of these twenty-four variables is normally  non-zero but is

zeroed if the contents of the corresponding screen row have

overflowed onto the next row. They are maintained b y the BIOS

but only actually used by the INLIN standard routin e (the

screen editor) to discriminate between logical and physical

lines.

    FBCAH FSTPOS: DEFW 0000H

    This variable is used to hold the cursor coordi nates upon entry

- 230 -

6. MEMORY MAP

to the INLIN standard routine. Its function is to r estrict the

extent of backtracking performed when the text is c ollected

from the screen at termination.

    FBCCH CURSAV: DEFB 00H

    This variable is used to hold the screen charac ter replaced by

the text cursor.

    FBCDH FNKSWI: DEFB 00H

    This variable is used by the CHSNS standard rou tine to

determine whether the shifted or unshifted function  keys are

currently displayed: 00H=Shifted, 01H=Unshifted.

    FBCEH FNKFLG: DEFS 10

    Each of these ten variables is normally zero bu t is set to 01H

if the associated function key has been turned on b y a "KEY(n)

ON" statement. They are used by the interrupt handl er to

determine whether, in program mode only, it should return a

character string or update the associated entry in TRPTBL.

    FBD8H ONGSBF: DEFB 00H

-261-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable is normally zero but is increment ed by the

interrupt handler whenever a device has achieved th e conditions

necessary to generate a program interrupt. It is us ed by the

Runloop to determine whether any program interrupts  are pending

without having to search TRPTBL.

    FBD9H CLIKFL: DEFB 00H

    This variable is used internally by the interru pt handler to

prevent spurious key clicks when returning multiple  characters

from a single key depression such as a function key .

    FBDAH OLDKEY: DEFS 11

    This buffer is used by the interrupt handler to  hold the

previous state of the keyboard matrix, each byte co ntains one

row of keys starting with row 0.

    FBE5H NEWKEY: DEFS 11

    This buffer is used by the interrupt handler to  hold the

current state of the keyboard matrix. Key transitio ns are

detected by comparison with the contents of OLDKEY after which

OLDKEY is updated with the current state.

    FBF0H KEYBUF: DEFS 40

    This buffer contains the decoded keyboard chara cters produced

by the interrupt handler. Note that the buffer is o rganized as

- 231 -

6. MEMORY MAP

a circular queue driven by GETPNT and PUTPNT and co nsequently

has no fixed starting point.

    FC18H LINWRK: DEFS 40

    This buffer is used by the BIOS to hold a compl ete line of

screen characters.

    FC40H PATWRK: DEFS 8

    This buffer is used by the BIOS to hold an 8x8 pixel pattern.

    FC48H BOTTOM: DEFW 8000H

    This variable contains the address of the lowes t RAM location

used by the Interpreter. Its value is set at power- up and

thereafter unaltered.

-262-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FC4AH HIMEM:  DEFW F380H

    This variable contains the address of the byte following the

highest RAM location used by the Interpreter. Its v alue is set

at power-up and thereafter only altered by the "CLE AR"

statement.

    FC4CH TRPTBL: DEFS 3       ; KEY 1

    FC4FH         DEFS 3       ; KEY 2

    FC52H         DEFS 3       ; KEY 3

    FC55H         DEFS 3       ; KEY 4

    FC58H         DEFS 3       ; KEY 5

    FC5BH         DEFS 3       ; KEY 6

    FC5EH         DEFS 3       ; KEY 7

    FC61H         DEFS 3       ; KEY 8

    FC64H         DEFS 3       ; KEY 9

    FC67H         DEFS 3       ; KEY 10

    FC6AH         DEFS 3       ; STOP

    FC6DH         DEFS 3       ; SPRITE

    FC70H         DEFS 3       ; STRIG 0

    FC73H         DEFS 3       ; STRIG 1

    FC76H         DEFS 3       ; STRIG 2

    FC79H         DEFS 3       ; STRIG 3

    FC7CH         DEFS 3       ; STRIG 4

    FC7FH         DEFS 3       ; INTERVAL

    FC82H         DEFS 3       ; Unused

    FC85H         DEFS 3       ; Unused

    FC88H         DEFS 3       ; Unused

    FC8BH         DEFS 3       ; Unused

    FC8EH         DEFS 3       ; Unused

    FC91H         DEFS 3       ; Unused

    FC94H         DEFS 3       ; Unused

    FC97H         DEFS 3       ; Unused

    These twenty-six three byte variables hold the current state of

the interrupt generating devices. The first byte of  each entry

contains the device status (bit 0=On, bit 1=Stop, b it 2=Event

- 232 -

6. MEMORY MAP

active) and is updated by the interrupt handler, th e Runloop

interrupt processor and the "DEVICE 0=ON/OFF/STOP" and "RETURN"

statement handlers. The remaining two bytes of each  entry are

set by the "ON DEVICE GOSUB" statement handler and contain the

address of the program line to execute upon a progr am

interrupt.

    FC9AH RTYCNT: DEFB 00H

    This variable is unused by the current MSX ROM.

-263-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FC9BH INTFLG: DEFB 00H

    This variable is normally zero but is set to 03 H or 04H if the

CTRL-STOP or STOP keys are detected by the interrup t handler.

    FC9CH PADY:   DEFB 00H

    This variable contains the Y coordinate of the last point

detected by a touchpad.

    FC9DH PADX:   DEFB 00H

    This variable contains the X coordinate of the last point

detected by a touchpad.

    FC9EH JIFFY:  DEFW 0000H

    This variable is continually incremented by the  interrupt

handler. Its value may be set or read by the "TIME"  statement

or function.

    FCA0H INTVAL: DEFW 0000H

    This variable holds the interval duration set b y the "ON

INTERVAL" statement handler.

    FCA2H INTCNT: DEFW 0000H

    This variable is continually decremented by the  interrupt

handler. When zero is reached its value is reset fr om INTVAL

and, if applicable, a program interrupt generated. Note that

this variable always counts irrespective of whether  an

"INTERVAL ON" statement is active.

    FCA4H LOWLIM: DEFB 31H

    This variable is used to hold the minimum allow able start bit

duration as determined by the TAPION standard routi ne.

    FCA5H WINWID: DEFB 22H

    This variable is used to hold the LO/HI cycle d iscrimination

duration as determined by the TAPION standard routi ne.

- 233 -

6. MEMORY MAP

    FCA6H GRPHED: DEFB 00H

    This variable is normally zero but is set to 01 H by the CNVCHR

-264-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

standard routine upon detection of a graphic header  code.

    FCA7H ESCCNT: DEFB 00H

    This variable is used by the CHPUT standard rou tine ESC

sequence processor to count escape parameters.

    FCA8H INSFLG: DEFB 00H

    This variable is normally zero but is set to FF H by the INLIN

standard routine when insert mode is on.

    FCA9H CSRSW:  DEFB 00H

    If this variable is zero the cursor is only dis played while the

CHGET standard routine is waiting for a keyboard ch aracter. If

it is non-zero the cursor is permanently displayed via the

CHPUT standard routine.

    FCAAH CSTYLE: DEFB 00H

    This variable determines the cursor style: 00H= Block,

NZ=Underline.

    FCABH CAPST:  DEFB 00H

    This variable is used by   the interrupt handle r to hold the

current caps lock status: 00H=Off, NZ=On.

    FCACH KANAST: DEFB 00H

    This variable is used to hold the keyboard Kana  lock status on

Japanese machines and the DEAD key status on Europe an machines.

    FCADH KANAMD: DEFB 00H

    This variable holds a keyboard mode on Japanese  machines only.

    FCAEH FLBMEM: DEFB 00H

    This variable is set by the file I/O error gene rators but is

otherwise unused.

    FCAFH SCRMOD: DEFB 00H

    This variable contains the current screen mode:  0=40x24 Text

Mode, 1=32x24 Text Mode, 2=Graphics Mode, 3=Multico lour Mode.

    FCB0H OLDSCR: DEFB 00H

    This variable holds the screen mode of the last  text mode set.

- 234 -

-265-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

6. MEMORY MAP

    FCB1H CASPRV: DEFB 00H

    This variable is used to hold any character ret urned to an I/O

buffer by the cassette putback function.

    FCB2H BDRATR: DEFB 00H

    This variable contains the boundary colour for the "PAINT"

statement handler. Its value is set by the PNTINI s tandard

routine and used by the SCANR and SCANL standard ro utines.

    FCB3H GXPOS:  DEFW 0000H

    This variable is used for temporary storage of a graphics X

coordinate.

    FCB5H GYPOS:  DEFW 0000H

    This variable is used for temporary storage of a graphics Y

coordinate.

    FCB7H GRPACX: DEFW 0000H

    This variable contains the current graphics X c oordinate for

the GRPPRT standard routine.

    FCB9H GRPACY: DEFW 0000H

    This variable contains the current graphics Y c oordinate for

the GRPPRT standard routine.

    FCBBH DRWFLG: DEFB 00H

    Bits 6 and 7 of this variable are set by the "D RAW" statement

"N" and "B" command handlers to turn the associated  mode on.

    FCBCH DRWSCL: DEFB 00H

    This variable is used by the "DRAW" statement " S" command

handler to hold the current scale factor.

    FCBDH DRWANG: DEFB 00H

    This variable is used by the "DRAW" statement " A" command

handler to hold the current angle.

    FCBEH RUNBNF: DEFB 00H

    This variable is normally zero but is set by th e "BLOAD"

statement handler when an auto-run "R" parameter is  specified.

    FCBFH SAVENT: DEFW 0000H

-266-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    This variable contains the "BSAVE" and "BLOAD" entry address.

- 235 -

6. MEMORY MAP

    FCC1H EXPTBL: DEFB 00H     ; Primary Slot 0

    FCC2H         DEFB 00H     ; Primary Slot 1

    FCC3H         DEFB 00H     ; Primary Slot 2

    FCC4H         DEFB 00H     ; Primary Slot 3

    Each of these four variables is normally zero b ut is set to 80H

during the power-up RAM search if the associated Pr imary Slot

is found to be expanded.

    FCC5H SLTTBL: DEFB 00H     ; Primary Slot 0

    FCC6H         DEFB 00H     ; Primary Slot 1

    FCC7H         DEFB 00H     ; Primary Slot 2

    FCC8H         DEFB 00H     ; Primary Slot 3

    These four variables duplicate the contents of the four

possible Secondary Slot Registers. The contents of each

variable should only be regarded as valid if EXPTBL  shows the

associated Primary Slot to be expanded.

    FCC9H SLTATR: DEFS 4       ; PS0, SS0

    FCCDH         DEFS 4       ; PS0, SS1

    FCD1H         DEFS 4       ; PS0, SS2

    FCD5H         DEFS 4       ; PS0, SS3

    FCD9H         DEFS 4       ; PS1, SS0

    FCDDH         DEFS 4       ; PS1, SS1

    FCE1H         DEFS 4       ; PS1, SS2

    FCE5H         DEFS 4       ; PS1, SS3

    FCE9H         DEFS 4       ; PS2, SS0

    FCEDH         DEFS 4       ; PS2, SS1

    FCF1H         DEFS 4       ; PS2, SS2

    FCF5H         DEFS 4       ; PS2, SS3

    FCF9H         DEFS 4       ; PS3, SS0

    FCFDH         DEFS 4       ; PS3, SS1

    FD01H         DEFS 4       ; PS3, SS2

    FD05H         DEFS 4       ; PS3, SS3

    These sixty-four variables contain the attribut es of any

extension ROMs found during the power-up ROM search . The

characteristics of each 16 KB ROM are encoded into a single byte

so four bytes are required for each possible slot. The encoding

is:

        Bit 7 set=BASIC program

-267-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

        Bit 6 set=Device handler

        Bit 5 set=Statement handler

    Note that the entries for page 0 (0000H to 3FFF H) and page 3

(C000H to FFFFH) will always be zero as only page 1  (4000H to

7FFFH) and page 2 (8000H to BFFFH) are actually exa mined. The

MSX convention is that machine code extension ROMs are placed

in page 1 and BASIC program ROMs in page 2.

- 236 -

6. MEMORY MAP

    FD09H SLTWRK: DEFS 128

    This buffer provides two bytes of local workspa ce for each of

the sixty-four possible extension ROMs.

    FD89H PROCNM: DEFS 16

    This buffer is used to hold a device or stateme nt name for

examination by an extension ROM.

    FD99H DEVICE: DEFB 00H

    This variable is used to pass a device code, fr om 0 to 3, to an

extension ROM.

The Hooks

    The section of the Workspace Area from FD9AH to  FFC9H

contains one hundred and twelve hooks, each of whic h is filled

with five Z80 RET opcodes at power-up. These are ca lled from

strategic locations within the BIOS/Interpreter so that the ROM

can be extended, particularly so that it can be upg raded to

Disk BASIC. Each hook has sufficient room to hold a  far call to

any slot:

        RST 30H

        DEFB Slot ID

        DEFW Address

        RET

    The hooks are listed on the following pages tog ether with the

address they are called from and a brief note as to  their

function.

    FD9AH HKEYI:  DEFS 5       ; 0C4AH Interrupt ha ndler

    FD9FH HTIMI:  DEFS 5       ; 0C53H Interrupt ha ndler

    FDA4H HCHPU:  DEFS 5       ; 08C0H CHPUT standa rd routine

    FDA9H HDSPC:  DEFS 5       ; 09E6H Display curs or

-268-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FDAEH HERAC:  DEFS 5       ; 0A33H Erase cursor

    FDB3H HDSPF:  DEFS 5       ; 0B2BH DSPFNK stand ard routine

    FDB8H HERAF:  DEFS 5       ; 0B15H ERAFNK stand ard routine

    FDBDH HTOTE:  DEFS 5       ; 0842H TOTEXT stand ard routine

    FDC2H HCHGE:  DEFS 5       ; 10CEH CHGET standa rd routine

    FDC7H HINIP:  DEFS 5       ; 071EH Copy charact er set to VDP

    FDCCH HKEYC:  DEFS 5       ; 1025H Keyboard dec oder

    FDD1H HKYEA:  DEFS 5       ; 0F10H Keyboard dec oder

    FDD6H HNMI:   DEFS 5       ; 1398H NMI standard  routine

    FDDBH HPINL:  DEFS 5       ; 23BFH PINLIN stand ard routine

    FDE0H HQINL:  DEFS 5       ; 23CCH QINLIN stand ard routine

    FDE5H HINLI:  DEFS 5       ; 23D5H INLIN standa rd routine

    FDEAH HONGO:  DEFS 5       ; 7810H "ON DEVICE G OSUB"

    FDEFH HDSKO:  DEFS 5       ; 7C16H "DSKO$"

    FDF4H HSETS:  DEFS 5       ; 7C1BH "SET"

    FDF9H HNAME:  DEFS 5       ; 7C20H "NAME"

- 237 -

6. MEMORY MAP

    FDFEH HKILL:  DEFS 5       ; 7C25H "KILL"

    FE03H HIPL:   DEFS 5       ; 7C2AH "IPL"

    FE08H HCOPY:  DEFS 5       ; 7C2FH "COPY"

    FE0DH HCMD:   DEFS 5       ; 7C34H "CMD"

    FE12H HDSKF:  DEFS 5       ; 7C39H "DSKF"

    FE17H HDSKI:  DEFS 5       ; 7C3EH "DSKI$"

    FE1CH HATTR:  DEFS 5       ; 7C43H "ATTR$"

    FE21H HLSET:  DEFS 5       ; 7C48H "LSET"

    FE26H HRSET:  DEFS 5       ; 7C4DH "RSET"

    FE2BH HFIEL:  DEFS 5       ; 7C52H "FIELD"

    FE30H HMKI$:  DEFS 5       ; 7C57H "MKI$"

    FE35H HMKS$:  DEFS 5       ; 7C5CH "MKS$"

    FE3AH HMKD$:  DEFS 5       ; 7C61H "MKD$"

    FE3FH HCVI:   DEFS 5       ; 7C66H "CVI"

    FE44H HCVS:   DEFS 5       ; 7C6BH "CVS"

    FE49H HCVD:   DEFS 5       ; 7C70H "CVD"

    FE4EH HGETP:  DEFS 5       ; 6A93H Locate FCB

    FE53H HSETF:  DEFS 5       ; 6AB3H Locate FCB

    FE58H HNOFO:  DEFS 5       ; 6AF6H "OPEN"

    FE5DH HNULO:  DEFS 5       ; 6B0FH "OPEN"

    FE62H HNTFL:  DEFS 5       ; 6B3BH Close I/O bu ffer 0

    FE67H HMERG:  DEFS 5       ; 6B63H "MERGE/LOAD"

    FE6CH HSAVE:  DEFS 5       ; 6BA6H "SAVE"

    FE71H HBINS:  DEFS 5       ; 6BCEH "SAVE"

    FE76H HBINL:  DEFS 5       ; 6BD4H "MERGE/LOAD"

    FE7BH HFILE:  DEFS 5       ; 6C2FH "FILES"

    FE80H HDGET:  DEFS 5       ; 6C3BH "GET/PUT"

    FE85H HFILO:  DEFS 5       ; 6C51H Sequential o utput

    FE8AH HINDS:  DEFS 5       ; 6C79H Sequential i nput

    FE8FH HRSLF:  DEFS 5       ; 6CD8H "INPUT$"

    FE94H HSAVD:  DEFS 5       ; 6D03H "LOC", 6D14H  "LOF",

                               ; 6D25H "EOF", 6D39H  "FPOS"

-269-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FE99H HLOC:   DEFS 5       ; 6D0FH "LOC"

    FE9EH HLOF:   DEFS 5       ; 6D20H "LOF"

    FEA3H HEOF:   DEFS 5       ; 6D33H "EOF"

    FEA8H HFPOS:  DEFS 5       ; 6D43H "FPOS"

    FEADH HBAKU:  DEFS 5       ; 6E36H "LINE INPUT# "

    FEB2H HPARD:  DEFS 5       ; 6F15H Parse device  name

    FEB7H HNODE:  DEFS 5       ; 6F33H Parse device  name

    FEBCH HPOSD:  DEFS 5       ; 6F37H Parse device  name

    FEC1H HDEVN:  DEFS 5       ; This hook is not u sed.

    FEC6H HGEND:  DEFS 5       ; 6F8FH I/O function  dispatcher

    FECBH HRUNC:  DEFS 5       ; 629AH Run-clear

    FED0H HCLEA:  DEFS 5       ; 62A1H Run-clear

    FED5H HLOPD:  DEFS 5       ; 62AFH Run-clear

    FEDAH HSTKE:  DEFS 5       ; 62F0H Reset stack

    FEDFH HISFL:  DEFS 5       ; 145FH ISFLIO stand ard routine

    FEE4H HOUTD:  DEFS 5       ; 1B46H OUTDO standa rd routine

    FEE9H HCRDO:  DEFS 5       ; 7328H CR,LF to OUT DO

    FEEEH HDSKC:  DEFS 5       ; 7374H Mainloop lin e input

    FEF3H HDOGR:  DEFS 5       ; 593CH Line draw

    FEF8H HPRGE:  DEFS 5       ; 4039H Program end

    FEFDH HERRP:  DEFS 5       ; 40DCH Error handle r

    FF02H HERRF:  DEFS 5       ; 40FDH Error handle r

- 238 -

6. MEMORY MAP

    FF07H HREAD:  DEFS 5       ; 4128H Mainloop "OK "

    FF0CH HMAIN:  DEFS 5       ; 4134H Mainloop

    FF11H HDIRD:  DEFS 5       ; 41A8H Mainloop dir ect statement

    FF16H HFINI:  DEFS 5       ; 4237H Mainloop fin ished

    FF1BH HFINE:  DEFS 5       ; 4247H Mainloop fin ished

    FF20H HCRUN:  DEFS 5       ; 42B9H Tokenize

    FF25H HCRUS:  DEFS 5       ; 4353H Tokenize

    FF2AH HISRE:  DEFS 5       ; 437CH Tokenize

    FF2FH HNTFN:  DEFS 5       ; 43A4H Tokenize

    FF34H HNOTR:  DEFS 5       ; 44EBH Tokenize

    FF39H HSNGF:  DEFS 5       ; 45D1H "FOR"

    FF3EH HNEWS:  DEFS 5       ; 4601H Runloop new statement

    FF43H HGONE:  DEFS 5       ; 4646H Runloop exec ute

    FF48H HCHRG:  DEFS 5       ; 4666H CHRGTR stand ard routine

    FF4DH HRETU:  DEFS 5       ; 4821H "RETURN"

    FF52H HPRTF:  DEFS 5       ; 4A5EH "PRINT"

    FF57H HCOMP:  DEFS 5       ; 4A54H "PRINT"

    FF5CH HFINP:  DEFS 5       ; 4AFFH "PRINT"

    FF61H HTRMN:  DEFS 5       ; 4B4DH "READ/INPUT"  error

    FF66H HFRME:  DEFS 5       ; 4C6DH Expression E valuator

    FF6BH HNTPL:  DEFS 5       ; 4CA6H Expression E valuator

    FF70H HEVAL:  DEFS 5       ; 4DD9H Factor Evalu ator

    FF75H HOKNO:  DEFS 5       ; 4F2CH Factor Evalu ator

    FF7AH HFING:  DEFS 5       ; 4F3EH Factor Evalu ator

    FF7FH HISMI:  DEFS 5       ; 51C3H Runloop exec ute

-270-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

    FF84H HWIDT:  DEFS 5       ; 51CCH "WIDTH"

    FF89H HLIST:  DEFS 5       ; 522EH "LIST"

    FF8EH HBUFL:  DEFS 5       ; 532DH Detokenize

    FF93H HFRQI:  DEFS 5       ; 543FH Convert to i nteger

    FF98H HSCNE:  DEFS 5       ; 5514H Line number to pointer

    FF9DH HFRET:  DEFS 5       ; 67EEH Free descrip tor

    FFA2H HPTRG:  DEFS 5       ; 5EA9H Variable sea rch

    FFA7H HPHYD:  DEFS 5       ; 148AH PHYDIO stand ard routine

    FFACH HFORM:  DEFS 5       ; 148EH FORMAT stand ard routine

    FFB1H HERRO:  DEFS 5       ; 406FH Error handle r

    FFB6H HLPTO:  DEFS 5       ; 085DH LPTOUT stand ard routine

    FFBBH HLPTS:  DEFS 5       ; 0884H LPTSTT stand ard routine

    FFC0H HSCRE:  DEFS 5       ; 79CCH "SCREEN"

    FFC5H HPLAY:  DEFS 5       ; 73E5H "PLAY" state ment

    The Workspace Area from FFCAH to FFFFH is unuse d. (on MSX 1 )

- 239 -

                                  INDEX

"ABS" 97                             CLIKFL 57, 231

Angles 152                           CLIKSW 57, 197 , 212

ARG 90, 223                          CLINEF 152, 22 5

Array storage 155, 162, 208          Clipping 70

ARYTAB 137, 208, 220                 CLMLST 126, 21 1

"ASC" 168                            "CLOAD" 180

ASPCT1 77, 215                       CLOC 70, 225

ASPEC2 77, 215                       "CLOSE" 173

ASPECT 150, 225                      CLPRIM 31, 210

"ATN" 93                             "CLS" 41

ATRBAS 34, 225                       CMASK 70, 225

ATRBYT 69, 72, 76, 144, 214          "CMD" 202

"ATTR$" 203                          CNPNTS 150, 22 5

AUTFLG 116, 219                      CNSDFG 49, 212

AUTINC 116, 219                      Coincidence 9,  52

AUTLIN 116, 219                      "COLOR" 197

-271-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

"AUTO" 125                           Colours 12, 39 , 40, 77

                                     CONLO 121, 217

BAKCLR 39, 213                       Control codes 44

"BASE" 200, 201                      CONSAV 121, 21 7

BASROM 32, 86, 230                   "CONT" 162

Baud rate 79, 197                    CONTXT 121, 21 7

BDRATR 77, 235                       CONTYP 121, 21 7

BDRCLR 40, 213                       Coordinates, g raphic 70, 143

"BEEP" 60                            Coordinates, t ext 42, 47, 51

"BIN$" 165                           "COPY" 202

"BLOAD" 177                          "COS" 92

BOTTOM 204, 232                      CPCNT8 152, 22 6

Boundary inflections 148             CPLOTF 150, 22 6

"BSAVE" 177                          Crash 30

BUF 85, 127, 176, 216                CRCSUM 151, 22 6

                                     CRTCNT 47, 51,  211

"CALL" 140                           CS1200 197, 21 4

Caps LED 6, 57                       CS2400 197, 21 4

CAPST 57, 234                        "CSAVE" 179

CASPRV 184, 235                      CSAVEA 78, 149 , 226

Cassette input 24, 81                CSAVEM 78, 149 , 226

Cassette motor 6, 65, 78             CSCLXY 150, 22 6

Cassette output 6, 79                "CSNG" 100

"CDBL" 100                           "CSRLIN" 196

CENCNT 150, 225                      CSRSW 45, 234

CGPBAS 34, 224                       CSRX 43, 212

CGPNT 38, 204, 224, 256              CSRY 43, 212

Character set 38, 84, 256            CSTCNT 150, 22 6

"CHR$" 168                           CSTYLE 45, 85,  234

"CINT" 99                            CTRL-STOP 32, 33, 42, 57, 59

"CIRCLE" 150                         CURLIN 56, 115 , 116, 216

"CLEAR" 163                          CURSAV 46, 231

- i1 -

INDEX

Cursor 13, 32, 42, 43, 46            Expander 4

"CVD" 204                            Extension ROM 30, 140, 178, 205

"CVI" 203                            Expression Eva luator 128

"CVS" 204                            EXPTBL 5, 32, 236

CXOFF 152, 226

CYOFF 152, 226                       Factor Evaluat or 129

                                     FBUFFR 106, 13 7, 222

DAC 90, 223                          "FIELD" 203

"DATA" 123                           File Control B lock 66, 209

Data areas 26                        "FILES" 173

DATLIN 115, 128, 218                 Filespec 171

-272-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

DATPTR 161, 220                      FILNAM 171, 18 0, 224

Dead key 56, 58                      FILNM2 181, 22 4

"DEFDBL" 121                         FILTAB 208, 22 3

"DEFFN" 134                          "FIX" 101

"DEFINT" 121                         FLGINP 127, 21 9

"DEFSNG" 121                         "FN" 134

"DEFSTR" 12I                         FNKFLG 56, 231

DEFTBL 121, 221                      FNKSTR 65, 224

"DEFUSR" 134                         "FOR" 119

"DELETE" 137                         FORCLR 40, 213

Dequeueing 60                        "FPOS" 175

DEVICE 142, 237                      "FRE" 171

Device 140, 171, 178                 FRETOP 159, 20 8, 218

"DIM" 155                            FSTPOS 84, 88,  230

DIMFLG 155, 217                      FUNACT 159, 22 2

DOT 115, 219                         Function addre sses 110, 130

"DRAW" 153                           Function key d isplay 49, 53

DRWANG 154, 235                      Function keys 56, 58, 65

DRWFLG 154, 235

DRWSCL 154, 235                      "GET" 193

"DSKF" 202                           GETPNT 33, 59,  214

"DSKI$" 203                          "GOSUB" 122

"DSKO$" 202                          "GOTO" 123

                                     Graphic charac ters 42

Editor 84                            Graphic output  69

Edit keys 85                         GRPACX 69, 143 , 235

"ELSE" 123, 125                      GRPACY 69, 143 , 235

"END" 161                            GRPATR 36, 212

ENDFOR 119, 218                      GRPHED 42, 234

ENSTOP 53, 230                       GRPNAM 36, 212

"EOF" 175                            GRPPAT 36, 212

"ERASE" 162                          GXPOS 144, 235

"ERL" 130                            GYPOS 144, 235

"ERR" 130

ERRFLG 115, 130, 215                 HEADER 79, 215

ERRLIN 115, 125, 130, 219            "HEX$" 165

"ERROR" 125                          HIMEM 163, 204 , 206, 232

Error generators 115, 176            Hooks 30, 204,  237

Error handler 115

Error messages 113                   "IF" 125

ERRTXT 115, 125, 220                 "INKEY$" 187

ESCCNT 43, 234                       "INP" 114

"EXP" 94                             "INPUT" 127

- i2 -

INDEX

"INPUT$" 174                         LPTPOS 83, 125 , 132, 215

Input, keyboard 53, 59               "LSET" 203

INSFLG 85, 234

"INSTR" 170                          Macro parser 1 42

-273-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

"INT" 101                            Mainloop 116

INTCNT 52, 233                       Math constants  97

Interrupt mode 32                    Math operators  112

Interrupts 9, 52, 56, 161            MAXDEL 147, 22 5

"INTERVAL" 194                       MAXFIL 171, 22 3

INTFLG 32, 57, 233                   "MAXFILES" 206

INTVAL 52, 233                       MAXUPD 147, 21 3

I/O Buffer 66, 125, 130, 171         MCLFLG 142, 18 8, 227

I/O Dispatcher 178                   MCLLEN 142, 18 8, 229

"IPL" 202                            MCLPTR 142, 18 8, 229

                                     MCLTAB 142, 18 8, 227

Japanese 4, 26, 58, 88               MEMSIZ 159, 16 3, 208, 217

JIFFY 52, 196, 233                   "MERGE" 172

Joystick 24, 52, 63                  "MID$" 169, 17 0

                                     MINDEL 147, 22 5

KANAMD 33, 234                       MINUPD 147, 21 3

KANAST 58, 234                       "MKD$" 203

Kansas City 79                       "MKI$" 203

KBUF 116, 118, 216                   "MKS$" 203

"KEY" 195                            MLTATR 36, 212

Keyboard 5, 53, 55, 66               MLTNAM 36, 212

KEYBUF 33, 231                       MLTPAT 36, 212

Key click 6, 57, 58                  "MOTOR" 187

Key numbers 54                       MOVCNT 149, 22 7

Keywords, BASIC 110                  MUSICF 52, 62,  229

"KILL" 202                           Music packet 6 1, 193

"LEFT$" 169                          NAMBAS 34, 224

"LEN" 168                            "NAME" 202

"LET" 123                            "NEW" 159

"LFILES" 173                         NEWKEY 53, 231

"LINE" 145                           Newton-Raphson  93

"LINE INPUT" 126                     "NEXT" 164

Line numbers 117, 118, 119, 122      NLONLY 159, 22 4

Links 117                            NOFUNS 135, 15 6, 222

LINL32 34, 211                       NTMSXP 83, 197 , 216

LINL40 34, 211                       NULBUF 208, 22 3

LINLEN 34, 211                       Numeric output  106

LINTTB 39, 84, 230                   Numeric types 104

LINWRK 46, 232

"LIST" 137                           "OCT$" 164

"LLIST" 136                          OLDKEY 33, 53,  231

"LOAD" 172                           OLDLIN 115, 16 2, 220

"LOC" 174                            OLDSCR 34, 136 , 234

"LOCATE" 193                         OLDTXT 60, 115 , 159, 162, 220

"LOF" 174                            "ON" 124

"LOG" 93                             ONEFLG 124, 15 9, 220

LOWLIM 81, 233                       ONELIN 115, 12 4, 159, 220

"LPOS" 132                           ONGSBF 56, 160 , 231

"LPRINT" 125                         "OPEN" 172

- i3 -

INDEX

-274-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

"OUT" 114                            "RESUME" 124

Output, Interpreter 82               "RETURN" 123

Output, screen 43, 69                RGOSAV 35, 212

                                     "RIGHT$" 169

"PAD" 197                            "RND" 94

Paddle 25, 64                        RNDX 94, 159, 223

PADX 65, 233                         "RSET" 203

PADY 65, 233                         "RUN" 122

Page 3                               RUNBNF 177, 23 5

"PAINT" 148                          Runloop 120

PARM1 135 156, 221

PARM2 135 222                        "SAVE" 172

PATBAS 34, 224                       SAVENT 179, 23 5

PATWRK 69, 232                       SAVSTK 115, 12 0, 159, 219

"PDL" 196                            SAVTXT 120, 21 9

"PEEK" 138                           SCNCNT 52, 214

"PLAY" 188, 196                      "SCREEN" 197

PLYCNT 62, 189, 229                  SCRMOD 34, 136 , 234

"POINT" 144                          Secondary Slot  4, 30, 32

Pointers 118, 139                    "SET" 202

"POKE" 138                           "SGN" 98

Polynomial 95                        "SIN" 92

"POS" 132                            SKPCNT 149, 22 7

Power-up 32, 204                     Slot ID 29, 14 0, 205

Precedence 112, 129                  SLTATR 140, 20 5, 236

"PRESET" 144                         SLTTBL 32, 236

Primary Slot 3, 30, 32, 66           "SOUND" 188

"PRINT" 125                          "SPACE$" 169

Printer 33, 41, 83                   "SPRITE" 194, 197, 198

PRMLEN 159, 221                      Sprites 9, 18,  37, 199

PRMLN2 159, 222                      "SQR" 93

PRMSTK 159, 221                      Stack space 15 9

PROCNM 140, 237                      Standard routi nes 26

Program storage 117, 208             Statement addr esses 109, 136

PRSCNT 188 228                       STATFL 52, 213

PRTFLG 83, i25, 215                  "STICK" 196

"PSET" 144                           STKTOP 159, 16 3, 209, 217

PSG 21, 33, 34, 60, 190              "STOP" 161, 19 4

PTRFIL 66, 125, 223                  "STR$" 165

"PUT" 193                            STREND 137, 20 8, 220

PUTPNT 33, 59, 214                   "STRIG" 194, 1 96

                                     "STRING$" 168

QUEBAK 68, 228                       String storage  133, 163, 166, 168

QUETAB 34, 67, 228                   SUBFLG 155, 21 8

Queue 60, 67, 68, 189                "SWAP" 162

QUEUEN 62, 229                       SWPTMP 162, 22 2

QUEUES 68, 214

                                     T32ATR 34, 211

RDPRIM 30 210                        T32CGP 34, 211

"READ" 12;                           T32NAM 34, 211

"REM" 123                            T32PAT 34, 211

"RENUM" 138                          "TAN" 93

REPCNT 53, 214                       TEMPPT 159, 21 8

"RESTORE" 161                        TEMPST 124, 21 8

-275-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- i4 -

INDEX

"TIME" 196

Tokens 111, 117, 118, 121, 137

Touchpad 25, 64

TRCFLG 120, 222

TRGFLG 52, 213

"TROFF" 162

"TRON" 162

TRPTBL 32, 56, 160, 194, 232

TTYPOS 43, 125, 132, 216

TXTCGP 34, 211

TXTNAM 34 211

TXTTAB 117, 204, 208, 218

Types 140

"USR" 133

USRTAB 133, 210

"VAL" 169

VALTYP 104, 217

Variable storage 135, 155, 208

"VARPTR" 130

VARTAB 137, 208, 220

VCBA 34, 61, 67, 230

"VDP" 199, 200

VDP Address Register 8, 40

VDP Mode Registers 9, 35

VDP Modes 10, 13, 34, 41

VDP Status Register 9, 52, 65

VDP Timing 39

"VPEEK" 201

"VPOKE" 201

VLZADR 115, 216

VLZDAT 115, 216

"WAIT" 114

Wait state 81

Warm start 53

"WIDTH" 136

WINWID 81, 233

Workspace Area 32, 208

WRPRIM 30, 210

Z80 Clock 81

-276-



D:\downloads\msx\aredbook\aredbook.txt viernes, 08 de enero de 2010 9:25

- i5 -

-277-


