

TOSHIBA HOME COMPUTER MODEL HX-10
MSX BASIC REFERENCE MANUAL

NOTICE
The contents of this manual are subject to change without prior notice.

When using a special application program or computation procedure on the HX-10, it is advisable
that the execution sequence, intermediate results, and final results be checked out carefully.

We are not responsible for any financial loss or lost profit which might result from the use of
the computer.

MSX is a registered trademark of MICROSOFT CORPORATION.

(© 1984 by TOSHIBA CORPORATION

PREFACE

This manual gives you detailed reference information for MSX
BASIC, the programming language for the Toshiba HX-10 home com-
puter. It is designed to let you look up the definitions and descriptions
of MSX BASIC syntax, commands, statements and functions.

For operation details of the computer, refer to the ““Toshiba Home
Computer Owner’s Manual.”’

For programming techniques or introductory information, read the
books written about MSX BASIC.

CONTENTS

CHAPTER T.: SYNTAX ix i sovns s sersin o meilenas ihinies 56 s 1
is: INTRODUCTION TO MSX BASIC : i ioi6h o S8 dil i i sis tie s 2
1 WHAT IS MSX BASIC? . . . it i it ettt et e et e eee 2

2 BASIC LANGUAGEt it et e e e e e e 2

3 BASIC-PROGRAMI:. sorsvece o smeimetls o Sa@els o8 e Glommess S shmae & 2

(1) PROGRAM LINE: ..isoviaie s soammns s smwsnage fie sposaisieds o6 Seememie 2

2} MULTI STATEMENT o:: on svtaamies o sams s e weiehn s swentas 2

4 EXECUTION MODES: -z v sranivarensi tu eivies o6 o sl &0 sanwmders 3

(1) COMMAND MODE' 5o5%: in aastn o seEs % i aanls o8 jlardess s 3

(2) DIREGCT MODE . izidn in s vwmns 55 e smsem: Sesimenms o sueveis 3

{3) PROGRAM MODE:: ssician i 2o 8 hianes & wenhs & sensss 3

(4) STOPPING OR PAUSING EXECUTION 3

5 CHARACTER SET USABLE IN BASICttt 4

I, PROGRAMMINGt e et et e e e e et e e 5
1 PROGRAM ENTRY . . .o oo musmmoisiors ane stoisiois sie o soeisions o seissens o 5

2 PROGRAM CHECK . c..invaswnrans wonies wis siaiesiiaers st suale/os o uaieas s 6

3 PROGRAM EDITING:ccivn arvammmen ab aniaaatem o oot &5 Shteaeme 7

4 PROGRAM EXECUTION = o apsnvss 3 saimeh i% v Gas o Saiee § 9

5 ERROR: CORRECTION: .5 & scvssiais o6 saismn ie Fesmans oo vanssa 10

6 PROGRAM SAVING: ::osnes i Soens & Seass o6 o6 oeiss i samsn 10
IIl. CONSTANTS AND VARIABLES it it eeee s 1"
1 DATA TYPES iss s scsnomss s simmsioias o piaisteieross wiiessiiiehy 8 soRewans 1

2 CONSTANTS: .ave v sonvmae st sevansaions s Falemmaats Seaemven sy weisieiee 1

(1) NUMERICCONSTANTS: « cioiswan: o wanterns v sravominiens sasaeraiens o 12

1) 1nteger CONSEANT:: ii-av: =6 Sauns o waleiis s SGASewn i S & 12

2] Single-precision:Real Cons@dnt o o vavien e avie e 8% dimiens § 12

3) Double-precision Real Constantv v ininnennnnn 13

(2) CHARACTER CONSTANTttt ittt it e ettt et et seenns 13

3 VARIABLE:. o 5 oo wanerams s sSoisnasnes sse oOumimieol S ISramive Hermamses 3 14

(1) NARIABLE TNPES v sv scoverane ine oo suanatnne oin sijaiaselass W) semSiei & 14

(2) VARIABLE NAME: . o5 sivvsaams o% colar i sioneresds sueeisiaiers 15

(3] ARBRAY VARIABLE . i cumvanan of siiess o6 Sastetss s s 16

(4) VARIABLE AREA ON MEMORY: /.. iinnives s waiieves Sateeviss § 16

(B) 'SYSTEM VARIABLE :: i suian i chnmnig o6 sondnnG Soaazes 5 17

(6) TYPE'CONVERSION . i ssinanins 8 snnies o iRnms i iasdwes s 17

IVe OPERATIONS .. & snaines o o50an & M 55050 8 Saiisnen 56 seasss 18
1 EXPRESSION . .0 siesuics sk 5558 o0 st busliviie i3 Sactiaiinl caalaies 8 19

2 ARITHMETIC EXPRESSSIONttt ettt e e aeean s 20

3 RELATIONAL EXPRESSIONttt e e eee e 20

4 VOGICALIEXPRESSION oo oo s onranmemns o e e sEasmramay & 21

5 STRING EXPRESSION .cix carnmmws e Sunmmims aamiasem i simeens s 22

6 CUNCTION .:.-: i crvaniveon swanss@n v shataiinda aereeieais e sasiasias § 22

7 ORDER OF PRIORITY. OF OPERATIONS ...i i vaaavi s os wwvevass svs o 22

V.. ‘SCREEN:CONTROL: « ¢ i o misiams sl smimmyme s s el fox s 23
1 SCREEN: TVPES. :ciaismiishesimsnlaaamemionis s opieamais s aims s s ississ 23

2 CHARACTER PATTERN SCREEN . .o v aisnavaiiva wviieisieviia slorasbiava 24

1) 0X28 TEXT MODE . ;s avisss e wamis@iaai svasmrar e 25

(2) 32X 24 TEXT MODE uoiviin ovniaviais sl el s v b6 o5 i 25

(3) HIGH-RESOLUTION GRAPHIC MODE 26

(4) MULTICOLOUR:MODE 55 s vmitiin i s vs ap oaiving i smms 26

3 SPRITESCREEN! , oo oo mmiors s mesomemmo iyine G oo Sus onhismeis bogs ot e G BAs 27

B COLOURECODIE o oo o/t s em e S ST s e Aoy A e A S et s 28

5 HOW' TO SPECIEY: COORDINATES :swii:s sammvamininsicarv i ionsyomvesazsiiass 28

V1. SOUND FEATURES .&uivir. ciiiaimes odiemiles:s e s i i le b i susmis vslaaess 29
1 BSG o mitn a2 SIR T T SR R 29

2 MUSIC PLAY USING THE PLAY STATEMENTot venens 29

3 SOUND EFFECTS USING THE SOUND STATEMENT 33

M. (BIEE oo ot fiowmsts i i, S0 e sy e ran o v S S i P R s S e (o SIS 37
1 SPECIEYANG A FILE. o civio.iv ssarmmmminuiiond smmmued e ssniapin soee, Sasiaess 37

(1) DEVICE NAME ... ;i ai i s i sl s s me s wmse e ssamnie 37

{2) FILENAME s . oimvinanaie u s i 646 s R s sie shevapie v esasmis 37

2 PROGRAM 'EILE . coi oo aimnesst s s el sismis Gt A et s s i s 38

3 RATACEILE ossnmsiiei i, 8600 i s st S aaie sy st e 38

(1) OPENING A EILE 5. o o oo cmn @i i 0 uishmim cos=sremlionons o siosialilaing 4 38

(2) EILENUMBER: ... couvome ovi0mimmmenme,smnioms blefend=sdo e, smmmorsin senrens o 38

{3) - CLOSING ASEIUE < vreinze. o 10 raenmmr o oo e ST aatefisiamnms; s pianondiols 38

XUE: INTERRUPTS :.:anitiod stammn oy s mmy seni: S8 saiomiem i Sees i 39
IX.: MAGHINE EANGUAGE .ot e o Sivesissina vulsi s vp s 40
CHAPTER Z. EANGQUAGE DESCRIPTION .vcisi v svaampmesponss s vesms 43
GEIAFTER S REFPERENGE oo s Some i ibies e sumves 135
1 CHARACTER CODE TABLE . uiveants,aisimass oo s s aisems 136
CONTROL: CODE i: % st s ciss e asistsdai s e 137

2 MEMORYCMAR S ... oo oiisinns o oana ot i massesiagons mmareas i dras i aaissae s 138

3 SLOTS w5050 Grime e A AT T AT OV AT el A 139

4 LQINIAR: isonimin, ovadntoronstTon s ummit o e AR oo e S A ahr e e 140

5 ERROR CODELIST & sumunad o et o imS il i s 141

6 INDEX TO BASIC LANGUAGE FUNCTIONS 144

CHAPTER 1

SYNTAX

I

INTRODUCTION TO MSX BASIC

WHAT IS MSX BASIC?

MSX BASIC is a powerful and versatile “’standard’’ application language designed to offer soft-
ware-level compatibility for different MSX micro-systems. It makes a wide variety of software
packages written in MSX BASIC available to use on your HX-10 computer, and enables you to
exchange software with your friends who have different MSX machines.

MSX BASIC is an extended version of Standard BASIC, version 4.5, developed by MICROSOFT
CORPORATION.

BASIC LANGUAGE

The BASIC language consists of commands, statements, and functions. There is, however, no
definite boundary between commands and statements,

® Commands are used for controlling program entry, execution, editing, and manage-
ment, chiefly in the Direct mode.

® Statements are the basic elements of a BASIC program, and are used to tell the
computer what it should do. Statements in a program are, as a rule,
preceded by line numbers.

® Functions allow you to do arithmetic operations or to manipulate numeric or
character strings. They are used in statements.

BASIC Program

A BASIC program is a set of statements and/or commands arranged in the proper order to solve
a specific problem or do a certain job. Your computer executes statements and commands in,
as a rule, the ascending order of line numbers attached to them.

(1) Program line
Each program line consists of a line number and one, or more, statement or command.
It is the simplest descriptive element for a BASIC program.
n nnnstatement
(n n nn=line number)
® Up to 255 characters, including the line number, may be used to write a single program
line.
® The line number must be an integer between 0 and 65529.

(2) Multi statements
Each program line consists, as a rule, of one statement or command. If you wish to lessen
program lines, you can use more than one statement or command in a program line, by
separating them with colons (:).

nnnnn statement : statement : statement

It is not possible, however, to continue a program line following the statements listed below:
REM, END, RETURN, GOTO
If specified, any statement or command, following these statements will be ignored.

4. EXECUTION MODES

(1)

(2)

(3)

(4)

Command mode

When the computer is in the command mode (command wait state), it {s ready to execute
entered commands or statements or to input program lines,

The computer is placed in the command mode (“Ok’’ appears on the screen) whenever it is
switched on or it has completed or stopped program execution.

Direct mode

If you type in a command or statement with no line number attached to it when your com-
puter is in the command mode the computer executes it immediately after you press the
RETURN key. This type of execution is called the Direct mode.

Program mode

If you type in statements or commands following line numbers, the computer assumes they
are program lines and stores them in its internal memory for later execution.

The execution of a stored program can be initiated by using the RUN command or GOTO or
GOSUB statement.

This type of execution is called the Program mode.

Stopping or pausing execution

Simultaneously pressing the CTRL and STOP keys stops program execution in the Direct or
Program mode, and returns the computer to the command mode,

Operating the STOP key during execution in Program mode will pause the execution (while
program execution is being paused, only the STOP key remains operative). To restart pro-
gram execution, press the STOP key a second time. If you simultaneously press the CTRL
and STOP keys when program execution is being paused, the\ computer will return to the
command mode.

5. CHARACTER SET USABLE IN BASIC

Characters usable in BASIC programs include uppercase alphabetic, lowercase alphabetic, alpha-
symbol, numeric, and graphic characters. For more details, refer to the ““Character Code Table"’
in chapter 3, Section 1.

In addition to the meanings specified in statements, alphasymbol characters also have the follow-
ing special meanings or functions:

T (PIUS) %ot e e Arithmetic operator for addition, or the positive sign.
= AU oo avesasese snanssa Arithmetic operator for subtraction, the negative sign, or a
range specification symbol (used in the LIST or other state-
ments).
¥ lanterisk) s s aniaiiiee Arithmetic operator for multiplication,
/: Blmh) civsssEinaEets Arithmetic operator for division.
X\ {backalash) ;s iaidnie . Arithmetic operator representing integer quotient.
S (|1) R R Arithmetic operator for exponentiation.
=: HOQUBN) . aisrnsir G anRe Relational operator for equal, or the assignment symbol.
2 (QrONter) .oiveein e Relational operator representing greater than,
< MI888) . ianmsaReaTRe Relational operator representing less than.
((left parenthesis) Symbol to help specify the priority order of arithmetic opera-
tions,
) (right parenthesis) Symbol to help specify the priority order of arithmetic opera-
tions.
% (pereent) . v vz daieen Variable type declaration symbol, for integer type.
! (exclamation mark) Variable type declaration symbol, for single-precision real
type.
F: H{SharP): iivomistic B Variable type declaration symbol, for double-precision real
type.
S ACONAF) conesnis uaiaies Variable type declaration symbol, for character type.
(ampersand) o s Used in &H, &0, or &B, to represent a hex, octal, or binary
constant, respectively.
(period) s ainmivnisians The last execution line for BASIC (used in the AUTO, LIST,
or LLIST statement), or the decimal point.
{EDION) v seraoit S khnimvane Separator in multi-statement lines.
& EMICOION) e s stsnies Separator for variables or data in statements (PRINT state-
ment, etc.)
o COMMBY wwivis ws. onianaiss Separator for variables or data in statements (PRINT, DATA,
or other statements).
? (questionmark) Used in place of a PRINT statement.
: (apostrophe) Denotes a remark (used in place of a REM statement).
(quotation mark) Character constant specification symbol.
(BIaNK): oo ssvrmarmssdnain Space

I1

PROGRAMMING

PROGRAMMING PROCEDURE

The following steps are usually required for MSX BASIC programming. For details on keyboard
operation, refer to the “Toshiba Home Computer Owner’s Manual."”

1)
2)
3)
4)
5)
6)

Program entry
Program check
Program editing
Program execution
Error correction
Program saving

[Example]
The following program allows you to determine the product (C) of two numeric values A and B:

10
20
30
40
50

INPUT A
INPUT B
C=AxB
PRINT C
END

1. PROGRAM ENTRY

1)

When entering a new program into your computer, clear the previous program, if any, from
memory by executing the NEW command.

2) Type in the program line by line, with ascending line numbers preceding the program lines.

3) Be sure to press the RETURN key at the end of each line. (If the RETURN key is not
pressed, the program line you have just typed in will not be stored in memory.)

[Example]

The key strokes required to enter the program given in the previous example are as follows:

(N] (€] [w) (eruay
WEIOMMNE)(YE (] fEew
(200N ELEC) ()R
(BB /) (e) FEnm
@ROFERLONFTO(C]) R
ERJOEIN () Fevw

The AUTO command lets the computer generate the automatic line numbering sequence if it is
executed prior to program entry. It allows you to avoid having to type in a line number for each
program line and to speed up programming.

The AUTO command may be executed just after executing the NEW command.

Type: (4] (U] [T](0] [rervan] ,
or [[F2] remwy

To clear the AUTO command function, simultaneously press the CTRL and STOP keys.

2. PROGRAM CHECK

1)

2)

After completing program entry, use the LIST command to display all of the program lines
on the screen, and verify that each line has been properly entered,

If you use a printer attached to the HX-10 computer, use the LLIST command to print a
listing of the program on it.

To display program lines, type: m@
or
To print program lines, type: (W](s](T] [Remun]
If part of the program list overflows the screen, you can specify a specific range of program

lines you wish to display. For more details, refer to the LIST and LLIST command descrip-
tions in Chapter 2, “LANGUAGE DESCRIPTION.”

[Example]
Press RETURN| to list the program lines on the screen, and verify correct program entry.

Screen:

LIST

10 INPUT A
20 INPUT B
30 C=Ax%xB
40 PRINT C
50 END

Ok

=

3. PROGRAM EDITING

Any portion of any program line listed on the screen can be edited by positioning the cursor to

the character location to be edited. This screen edit capability is implemented by the screen

editor.

1) Use the LIST command to display the portion of your program where the program line to be
edited exists.

2) Place the cursor on the position where the character to be edited is located.

3) Execute the desired edit operation, such as delete, insert, or amend.

4) With the cursor left positioned on the line just edited, press the RETURN key.

Note 1: An edit operation is completed only if the RETURN key is pressed on the line just
edited.

Note 2: If you change a line number and press the RETURN key, the new line number is
added to the program, but the old line number and the characters following it will
remain in memory as they are.

Purpose Edit operation Edit Example
PRIMTE You wish to re-
place “M" with
Correcting a character on 1)} Use the cursor control keys “N" (I denotes
a displayed line. ([=][==]4](T)) to posi- the cursor.)
tion the cursor on the PRIBEIT The cursor is posi-
character to be corrected. tioned on the “M"
with thel]Ejkey.
(Example) 2) Type the correct character, PRINE The correct cha-
Changing PRIMT to racter (N) is
PRINT. typed. The cursor
shifts to the next
location.
3) Press the key.
PRIXNTHR You wish to
delete the X,
Deleting a character 1) Use the cursor control keys | PRIBINT Position the
from a displayed to position the cursor on cursor on the X.
line. the character to be deleted.
(Example) 2) Press the [pe] key. PRINNT Press the
Deleting X from PRIXNT key.
to obtain PRINT. 3) Press the key.

Purpose

Edit operation

Edit Example

PRNTE The letter | is
missing.
Inserting a character intoa | 1) Use the cursor control key PRMNT Position the
displayed line. to position the cursor to the cursor to the
character location where a insertion location
character is to be inserted. using =] key.
(Example) 2) Press the [Ns| key, PRNT Press (M) to
Changing PRNT to PRINT select the Insert
by inserting an |. mode.
3) Type the character to be PRI_r:{T Type in the letter
inserted. | from the key-
board.

4) Press the @ key again, PRINNT Press @ again to
clear the Insert
mode.

5) Press the key.

Amending an entire 1) Type in the correct pro- Type in the correct program
program line. gram line using the same line, such as 40 PRINT C
line number as the program :
line to be corrected.
2) Press the key.
The entire program line is
replaced with the correct
one.
Deleting an entire 1) Type in the line number Type, for example, 10
program line. of the line to be deleted. to delete the line
numbered 10.
2) Press the key.

Deleting more than
one program line.

1)

Execute the DELETE
command.

To delete the program lines

between line numbers 20 and

60, type DELETE 20 — 60

(GIE

Inserting a new line
between two existing
lines (with line numbers
n and m).

1)

Type in the program line
to be inserted, with a line
number between (but not
equal to) nand m
preceding it.

Renumbering program
lines.

1)

Execute the RENUM
command.

To renumber the program
lines in an increment of 10

beginning with 100, type

RENUM 100, 10 [RETURN).

PROGRAM EXECUTION

1) After completing program editing, use the cursor control keys (E@L—U[_T_]) to
position the cursor on a row where no program line exists. Or simultaneously press the
SHIFT and HOME keys to erase the screen. These keys only erase the screen; they don't
clear the program you just entered from memory.

2) Use the RUN command to start program execution,

Type: @@@ :
or (5]

3) To stop program execution, simultaneously press the CTRL and STOP keys.

[Example]
Try to determine the product of two numbers A and B, assuming A=5 and B=4
Display Key operation
{Program to determine the Simultaneously press [SHIFT | and
product of two numbers)
B (CURSOR) Press| F5 |.
RUN
: B Press @ then .
?t b
' = Press then [RETURN|.
? 4
20 (The product of A and B appears on the
Ok screen.)

When execution of the program in the previous example is completed, the screen will appear as
follows:

RUN

5. ERROR CORRECTION

e Error in direct mode

1)

2)
3)

If an error occurs while in the Direct mode, the computer will return to the Command
mode, with the pertinent error message showing on the screen.

Example: Syntax error
{Error message)

Most errors occurring in the Direct mode are due to a command entry error,
Try the correct command entry again.

e Error in program mode

1)

2)

3)

If an error occurs while in the Program mode, program execution will be suspended and
the computer will return to the Command mode, with the pertinent error message appear-
ing on the screen, along with the line number where the error occurred.

Example: Syntax error 10
(Error message) in (Line number)

Trace the location of the error by using the error message as a guide. For error message
meanings, refer to the “Error Code Table’” in Chapter 3, Section 6.
After locating the error, correct it by referring to Section 3 (program editing).

6. PROGRAM SAVING

1)

2)

3)

Save your program on a cassette tape by using the CSAVE or SAVE command before
turning your computer off. Once the computer is turned off, the program no longer exists in
the internal memory.

Programs saved on a cassette tape can be loaded into your computer by using the CLOAD,
LOAD, or MERGE command.

For details on connecting your cassette recorder to the computer, or on the program saving
procedure, refer to the "’ Toshiba Home Computer Owner’s Manual.”

o5 [

[CONSTANTS AND VARIABLES

1. DATA TYPES

BASIC handles both numeric values and characters as data. Numeric values are classified into the
following type:

Numeric value _E Integer
Real number —|: Single-precision real number
Double-precision real number

Character string

e Numeric values
Numeric values usable in BASIC programs are positive or negative integers, real numbers,
and zero.
® Integers
Between —32768 and +32767
® Real numbers
Include single- and double-precision real numbers:

Single precision real number:

A real number with six significant figures, ranging between —9.99999E +62 and
+9.99999E+62. The valid range for the exponent is between E+62 and E—64. The mini-
mum positive value expressible with a single-precision real number is, therefore, 1.0E—64.

Double precision real number:

A real number with 14 significant figures, ranging between —9.9999999999999+62 and
+9.9999999999999E+62. The valid range of the exponent is between E+62 and E—64.
The minimum positive value expressible with a double-precision real number is, therefore,
1.0E-64.

e Character string: A string of up to 255 characters.

2. CONSTANTS

Constants are fixed or invariable values or data items used in programs. They include the follow-
ing types:

~ Numeric constant Integer constant Decimal constant
Hexadecimal constant
Octal constant

Binary constant

Real constant —[Single-precision real constant T Fixed point constant
Floating point constant

Double-precision real constant —[Fixed point constant
Floating point constant

~ Character constant

—41=

(1) NUMERIC CONSTANTS

A negative numeric constant must always be prefixed with a negative sign (—). A positive
numeric constant, however, does not have to be prefixed with a positive sign (+).

1) Integer constant

Integer constants may be expressed in decimal, hexa-decimal, octal, or binary notation.

Decimal constant:

Hexadecimal constant:

Octal constant:

Binary constant:

2) Single-precision real constant

Fixed-point real
constant:

A decimal integer value ranging between —32768 and
+32767.

An integer or real number between —32768 and +32767,
suffixed with ' % . For real numbers, all decimal places
are truncated,

(Example) 123 =567 12.7%

A hexadecimal number is expressed with the characters
0 ~9and A~ F, prefixed with a &H, and ranges between
&HO and &HFFFF. Capital letters A through F corres-
pond to 10 through 15 in decimal notation.

Hex &HO through &H7FFF are 0 through 32767 in
decimal; hex &HB8000 through &HFFFF are —32768
through —1 in decimal.

(Example) &HFF: 255 in decimal
&HFFFE: =2 in decimal

An octal number is expressed with the characters 0
through 7, prefixed with a &0, and ranges between
&00 and &0177777.

Octal *00 through &Q77777 are 0 through 32767 in
decimal; octal &0100000 through &0177777 are —32768
through —1 in decimal.

(Example) &0377: 255 in decimal
&0177776: -2 in decimal

A binary number is expressed by zeros and ones,
prefixed with a &B, and ranges between &BO and
&B1111111111111111 (16 ones).

Binary &BO0 through &B111111111111111 (15 ones) are
0 through 32767 in decimal; &B1000000000000000
through &B1111111111111111 (16 ones) are —32768
through =1 in decimal.

(Example) &B11111111: 255 in decimal
&B1111111111111110: -2 in decimal

A real number having six or less significant figures. A real
number with more than six significant figures is a double-
precision real number.

A real number or integer suffixed with an exclamation
mark (!). If it has seven or more significant figures,
the 7th significant figure is rounded to the nearest whole
number,

(Example) 9.87 0.0000345
44.44986869! (the 7th significant figure,
6, is rounded, resulting in 44.4499.)

=49

Floating-point real ® Consists of a mantissa having six or less significant figures
constant: and an exponent represented by using an E., The valid
range is from -9.99999E+62 to +9.99999E+62, and the
valid range of the exponent is from +62 to —64. A float-
ing-point value with more than six significant figures in its
mantissa is a double-precision floating point-real constant.

1.234E +23

(Example) :
Exponent Mantissa

3) Double-precision real constant

Fixed-point real ® A real number with 7 to 14 significant figures. If a real
constant: number contains 15 or more significant figures, the 15th
significant figure is rounded to the nearest whole number;
the resulting real number contains 14 significant figures.
® A real number or integer suffixed with a sharp (#).
If a real number contains 15 or more significant figures,
the 15th significant figure is rounded to the nearest whole
number; the resulting real number has 14 significant

figures.
(Example) 9.873333345
2344555555500
44 .449%
Floating-point real ® Consists of a mantissa having 7 to 14 significant
constant: figures and an exponent represented by using an E.

The available range is between —9.9999999999999E
+62 and +9.9999999999999E+62. The valid range of
the exponent is between +62 and —64.

1.2345678E _ 123

(Example)
B Exponent Mantissa

® When the exponent is represented by a ’D’ instead of an
“E", the floating point real constant is a double-precision
real number, even if its mantissa has 6 or less significant
figures. The valid range is between —9.9999999999999D
+62 and +9.9999999999999D+62. The valid range of
the exponent is between +62 and —64.

1.23D +23
Exponent Mantissa

(Example)

(2) CHARACTER CONSTANT

A character constant consists of a string of not more than 255 characters enclosed in quota-

tion marks (“). :

® A pair of quotation marks (* ") with nothing enclosed between them is called a blank
constant, and is treated as one of the character constants.

® A pair of quotation marks (* ‘') with one or more spaces enclosed between them repre-
sents a blank character constant, and is discriminated from a blank constant.

® A numeric string enclosed in quotation marks, such as ‘123", is treated not as a numeric
value but as a character constant. So arithmetic operations are not possible with it.

(Example) “PASOPIA"

—y3-

3. VARIABLE

A variable is an assigned memory location used to store a data value. It has its own variable name
composed of a character or group of characters that refers to the data which is variable.

You can assign a value to a variable by executing an assignment (LET), INPUT, or READ state-
ment (a location for the variable is set aside in memory, and the value is transferred to the
variable).

If a variable is referred to before a value is assigned to it, zero will be returned for a numeric
variable, and a blank constant will be returned for a character variable.

(1) VARIABLE TYPE
Variables are classified into the following types depending on the data which is assigned to
the variable. Only a specific data type can be assigned to a specific variable type.
A variable to which only one value can be assigned is called a simple variable, or, simply, a
variable. A variable to which more than one value can be assigned is called an array variable.

Simple variable —— Numeric variable —E Integer type
(variable) Real type —E Single-precision real type
Double-precision real type
L— Character variable (character type)
Array variable ——— Numeric variable Integer type
—E Real type T Single-precision real type
Double-precision real type

“— Character variable (character type)

==

(2) VARIABLE NAME

A variable name is specified with one or two alphanumeric characters and one type declara-
tion symbol. The following gives some rules on variable naming.

1)

2)

3)

4)

5)

6)

The first character of a variable name must always be an alphabetic character. The
second character may be either an alphabetic or numeric character.

Example: A3=2 Value 2 is assigned to variable A3.
3A=2 3A is not regarded as a variable.

If more than two characters are used to name a variable, only the first two characters
are valid, with the third and subsequent characters ignored.

Example: A3BC=2 Value 2 is assigned to variable A3.
All graphic symbols or blanks used in a variable name are ignored.

Example: A 3=2 Value 2 is assigned to variable A3.
A 3=2 Value 2 is assigned to variable A3.

Lowercase alphabetic characters used to name a variable are all converted into the
corresponding uppercase alphabetic characters in the variable name.

Example: a3=2 Value 2 is assigned to variable A3.

No reserved word (such as command, statement, function or operator names reserved
for BASIC) can be used or contained in variable names. For details on reserved words,
refer to the “‘Reserved Word List’* in Chapter 3, Section 2.

Example: AUTO3=2 The variable name “AUTO3" is not usable as it contains
a reserved word “AUTO",

Suffix a variable name with a type declaration symbol to declare the variable type.

% for integer type variables.

| for single-precision real-type variables.

or no symbol for double-precision real-type variables.
$ for character variables.

® Variables with the same variable name but different type symbols are regarded by
the computer as different variables.

Example: A%, A! , and A are all different variables.

® When a variable name has no type symbol suffix, it is regarded by the system as a
double-precision, real-type variable. A variable whose type is declared in a program
by a DEFINT (define integer), DEFSNG (define single), DEFDBL (define double),
or DEFSTR (define string) statement is regarded to have the respective variable type
which is declared by those statements.

Example: A# is the same variable as A. If DEFINT A is specified in a program,
A% is the same as A.

(3) ARRAY VARIABLE
Sets of data can be handled more easily by using subscripted variables and arrays. We call
a set of subscripted variables with the same name an array, and the individual variables array
variables (elements).

Format: Variable name (subscript) One dimensional array
Variable name (subscript, subscript) Two dimensional array
Variable name (subscript, subscript, subscript - - -) n dimensional array
(n numbers)

1) The dimension of an array is represented by the number of subscripts enclosed in paren-
theses (and separated by commas) following a variable name.
Up to 255 dimensions are available.

2) Subscripts may range from zero to the maximum number of memory locations availa-
ble.

3) The size (number of elements) and dimension of an array are specified with a DIMEN-
SION (DIM) statement.

Example: 10 DIM A (5,2)
This DIM statement declares a two-dimensional array named A, in which
up to (5+1) x (2+1)=18 subscripted variables can be used.

® Array with up to three-dimensions can be used without declaring them in a DIM
statement. At this time, memory locations for eleven variables (0 to 10) are auto-
matically set aside for each dimension.

(4) MEMORY LOCATIONS (CAPACITY) AVAILABLE TO EACH VARIABLE TYPE

Variable Simple variable Array variable
Integer type 5 5+2 %{number of elements) + 2% (dimension) + 1
Mingle preciian 7 5+4 % (number of elements) + 2 %(dimension) + 1
real type
Doubi-presision 1" 5+8 %(number of elements) + 2% (dimension) + 1
real type
6 + (number of 5+3 % (number of elements) + 2% (dimension) + 1
Character string characters in the + (total number of characters in strings contained
string) in the elements)

=T

(5) SYSTEM VARIABLE
MSX BASIC has the following system variables reserved for itself:

(6)

TIME: This variable refers to the initial value of an interval timer which in-

crements by one at 1/50 second intervals. The timer can be preset by
assigning the desired value to this variable,

SPRITES(n): This character array refers to sprite patterns.

VDP (n): This array refers to the register value in the VDP.

TYPE CONVERSION

One numeric data type may be converted into another numeric data type as needed (con-
version between numeric and character data is accomplished by the STRS or VAL function).

1)

2)

If a numeric value of a certain type is transferred to a variable of another numeric type,
a value converted according to the variable type is assigned to the variable.

Example: A%=1.234 Integer 1 is assigned to variable A%.

For logical operations, all values are converted to integer type, and the results are also
obtained in integer type.

Example: A=NOT 1.234 Real value 1.234 is converted into integer 1, and the
result of the NOT operation on 1 is assigned to
variable A.

® When a real value is converted to an integer, all decimal places are trancated.
If the result of rounding exceeds the valid range of integers (—32768 to +32767),
an error will occur,

® When a double-precision real number is converted to a single-precision real number,
the 7th significant figure is rounded to the nearest whole number, resulting in a 6-
digit real number.

ol

IV OPERATIONS

1.

EXPRESSION

An expression is a combination of constants, variables, and/or functions connected by operators.
A single constant, variable, or function with no operator may also be called an expression.

1) Numeric expressions and string expressions
The result of an operation specified by an expression is either a numeric value or a character
string. Expressions which produce numeric results are called numeric expressions, while
those which produce character strings are called string expressions.

2) Numeric expression types

Numeric expressions are classified further into arithmetic, relational, and logical expressions.
These types of expressions all produce numeric results.

Numeric expression

— Arithmetic expression

Relational expression

——— Logical expression
String expression

-—18—

2. ARITHMETIC EXPRESSION

An arithmetic expression consists of one or more numeric constants, numeric variables, numeric
functions, and/or numeric expressions connected by arithmetic operators. It always produces a
numeric result.

(1

(2)

(3)

(4)

Arithmetic operator Operation Entry format

+ Addition X+Y
- Subtraction X-Y
* Multiplication X k.Y
/ Division XY
A Power XAY
- Negative sign -X
\ Integer division X\Y

MOD Remainder X MOD Y

Integer division

® For integer division (\), all real numbers are converted to integers, by rounding the
first decimal place to the nearest whole number, before division is done.
® The quotient of integer division is an integer, with all decimal places truncated.

Example: A=11.24\3 Integer 3 is assigned to variable A.

® The remainder of integer division is an integer and is obtained by use of the MOD opera-
tor.

Example: A=11.24 MOD 3 Integer 2 is assigned to variable A.

Division by zero
If division by zero is attempted, an error will occur. The error message ‘‘Division by zero””
appears on the screen, and the computer returns to the command mode.

Power of zero

The power of zero results, as a rule, in zero.

The zero'th power of zero (0AQ) is one (1).

The negative number'th power of zero results in an error. The error message ““Division by
zero'’ appears on the screen, and the computer returns to the command mode.

Overflow

If the result of an assignment or arithmetic operation exceeds the valid numeric range of the
variable to which the result is transferred, an overflow will occur. The message ““Overflow"’
apperas on the screen, and the computer returns to the command mode.

-19—

3. RELATIONAL EXPRESSION

A relational expression consists of numeric values or character strings connected by relational
operators. It always produces a numeric result: —1 for true, and O for false.
Relational expressions are chiefly used for comparing two data values in the |IF statement.

Relation operator Meaning Entry format
=" Equal X=Y
<>or>< Not equal b 2 Lo B4
< X is smaller than Y XY
> X is larger than Y X>Y
<=or= X is equal to or smaller than Y X<=Y
>=o0or=> X is equal to or larger than Y X>=Y

Examples: |IF X=Y THEN 100 ELSE 200
If X equals Y, control is passed to the line numbered 100. Otherwise, it is passed
to the line numbered 200.

A=X=Y

The first equal (=) sign is an assignment symbol, while the second equal sign is a
relational operator. If X equals Y,.the value —1 is assigned to variable A, If X
does not equal Y, then the value O is assigned to A.

(1) Comparison of character strings
In a relational expression, two character strings are compared character-by-character, begin-
ning with the first character in both strings. Two character strings are equal when every cha-
racter in one string is identical to its counterpart in the other string. |If two character strings
are not equal, the one containing the larger character code is identified as the larger. If
two character strings have different lengths, the longer string is identified as the larger.
Blanks contained in strings are counted in calculating the lengths of strings.

Examples: ““ABCDEF" equals “ABCDEF"
““AA" is smaller than “AB"”
"“"ABCDEF" is larger than “ABCDE"
“AA " is larger than “AA "
“A A" is smaller than “AA "

(2) Comparison of a numeric value with a character string is not possible. Numeric values are

always compared with numeric values, and character strings are always compared with
character strings.

=20-

4. LOGICAL EXPRESSION

A logical expression can contain one or more numeric constants, numeric variables, numeric
functions and/or numeric expressions connected by logical operators. It always produces an
integer result.

Logical expressions are used to compare more than one relational expression, chiefly in an IF
statement, or to perform bit manipulation or Boolean operations.

Logical operator Meaning Entry format
NOT Negation (not) NOT X
AND Logical product (and) X AND Y
OR Logical sum (or) XORY
XOR Exclusive or X XOR Y
IMP Implication X IMP Y
EQV Equivalence X EQV Y

Example: 10IF X> 10 AND X< 100 THEN 100
If the value of variable X is more than 10 and less than 100, control is passed to the
line numbered 100.

10 IF X>100R Y <100 THEN 100
If the value of variable X is more than 10 or the value of variable Y is less than 100,
control is passed to the line numbered 100.

(1) Truth tables for logical operations

X NOT X X|[Y [XAND Y XORY X XOR Y X IMP Y X EQV Y

1 0 1 1 1 1 0 1 1

0 1 110 0 1 1 0 0
0|1 0 1 1 1 0
0|0 0 0 0 1 1

(2) Logical operation
Every logical operation is performed after all numeric values between —32768 and 32767
are converted into their two’s complement. |If a logical operation is attempted on a value
outside this range, an error will occur.
A logical operation is performed on each bit of the operands.
Example: A=7 OR 8
The two's complement of values 7 and 8 are &B111 and &B1000, respectively.

The result of a logical OR operation on these values is &B1111 (15 in decimal).
So value 15 is assigned to variable A,

==

5. STRING EXPRESSION

A string expression consists of more than one character string linked with one or more plus
(+) sign. The result of a string expression is always a character string.
Example: A$="ABC" : B$="DE" : C$=A%$+B$

The character string ABCDE is assigned to variable CS$.

6. FUNCTION

MSX BASIC provides a set of previously programmed functions that simplify writing many
kinds of programs. They return the results of special functional operations (e.g. square root,
absolute value, trigonometric functions, etc.) for given data (arguments). Functions may also be
used for numeric or character string manipulation.

(1) Numeric functions and string functions
Functions are classified into numeric functions and
string functions depending on whether they return
numeric values or character strings.

I: Numeric function
String function

(2) Built-in functions and user-defined functions
In addition to the functions already built into MSX
BASIC, there are also functions programmable by the EBuilt-in function
user (user-defined functions). User-defined functions
are defined with the DEF FN statement.

User-defined function

(3) Real numbers used in arguments
Arguments specified with integers or single-precision real numbers are all treated as double-
precision real numbers in the operations of functions.

(4) Integers used in arguments
Arguments specified with integers or single-precision real numbers are truncated, in general,
into integers (with all decimal places rounded off) for operations of functions.

7. ORDER OF PRIORITY OF OPERATIONS

1. Operations enclosed in parentheses 10. Logical operation (NOT)
2. Functions 11. Logical operation (AND)
3. Power(AN) 12. Logical operation(OR)
4. Negative sign (=) 13. Logical operation (XOR)
5. Multiplication (*) and division (/) 14. Logical operation (EQV)
6. Integer division (\) 15. Logical operation (IMP)
7. Remainder (MOD)

8. Addition (+) and subtraction (=)

9. Relational operations (<, >, =, etc.)

Operations with the same priority are executed from left to right.

—22—

V SCREEN CONTROL

i

SCREEN TYPES

MSX BASIC can handle three screen types: i.e. one character pattern screen, up to 32 sprite
screens, and one border.

| —t+—Border
[
Character pattern screen
=
-——]-_———No. 31
J—NO. 2 Sprite screens
|~ No. 1
No. 0

Character pattern screen
This screen includes text and graphic modes, and allows you to list program lines, display
messages, and draw various graphic figures or backgrounds.

Sprite screens
These screens allow you to display preprogrammed graphic patterns at specified locations on
the screen to let you make animated pictures.

Border
This screen allows you to specify desired colours. It is not possible to display text or graphic
information on this screen.

Screen type priority order

The sprite screens have the highest priority on the monitor, the character pattern screen has
the next, and the border has the lowest priority.

Among the sprite screens, screen No. 0 has the highest priority, and a descending order of
priority is assigned to all the remaining screens.

When more than one screen is on the monitor, the screen with a lower priority is hidden
behind the screen with a higher priority. This eliminates the need for invisible line treatment
in your program.

—23—

2. CHARACTER PATTERN SCREEN

The character pattern screen is used for text and graphic modes, and each mode is subdivided
into two submodes. These modes and submodes are specified with the SCREEN statement.

Character capacity

Nos S (initial value) fiaktion e
Max. 40 columns x 24 rows
40 x 24 Text (24 rows x 37 columns) 2 No
Text mode

. Max. 32 columns x 24 rows
_ X
SEERY e (24 rows x 29 columns) -

High-resolution

¥ 256 x 192 Yes
graphic

Graphic mode

Multicolour - 64 x 48 Yes

® The character pattern screen modes and submodes can be specified with the integers O
through 3 placed after the SCREEN statement:

5 R R e 40 x 24 Text mode (SCREEN 0)
Wi e i iiarers 32 x 24 Text mode (SCREEN 1)
@ Veimiis S e T High-resolution graphic mode (SCREEN 2)
3 ampea el B, < Multicolour mode (SCREEN 3)

® Text mode is used for displaying characters and text symbols, and allows you to list program
lines or view data. In text mode the following commands and statement are usable for screen
control:

PRINT, PRINT USING, WIDTH, LOCATE, CSRLIN, and POS.

® Graphic mode allows you to draw graphic figures or symbols on the screen. Characters and
text symbols can also be displayed in this mode.
In graphic mode the following commands and statements are usable for screen control:

CIRCLE, DRAW, LINE, PAINT, PSET, PRESET, and POINT.

When displaying characters or text symbols in this mode, use the PRINT# statement. The
INPUT statement is not valid in graphic mode.

® The CLS and COLOR statements are usable in both text and graphic modes.
® No sprite screen is usable when the 40 x 24 text mode is selected.

® Power-on default is the 40 x 24 text mode in which up to 37 characters can be displayed per
row.

24—

(1) 40 x 24 TEXT MODE (SCREEN 0)

® The maximum capacity per screen is 24 rows of 40 characters each, whereas the default
capacity is 24 rows of 37 characters each. The number of characters per row can be speci-
fied with the WIDTH statement.

® Each character cell consists of a 6 x 8 dot matrix. In the 40 x 24 Text mode, therefore,
parts of graphic symbols may be lacking, since they require an 8 x 8 dot matrix.

® Up to two colours are specifiable: one for the text, and the other for the background.
® The sprite screen is not available in this mode.

® Graphic mode statements or commands (e.g. CIRCLE, DRAW, etc.) are not available in
this mode.

(0,0) (39,0)

(0, 23) (23, 39)

(2) 32 x 24 TEXT MODE (SCREEN 1)

® The maximum capacity per screen is 24 rows of 32 characters each, whereas the default
capacity is 24 rows of 29 characters each. The number of characters per row can be
specified with the WIDTH statement.

® Each character cell consists of an 8 x 8 dot matrix.
® Up to three colours are specifiable for text, background, and border,

® Graphic mode statements or commands (CIRCLE, DRAW, etc.) are not available in this
mode.

(0,0) (31,0)

(0, 23) (31,23)

—-25—

(3) HIGH-RESOLUTION GRAPHIC MODE (SCREEN 2)

This mode allows you to draw various graphic figures using a 256 x 192 point configura-
tion per screen.

Once the computer returns to the command mode at the completion or abortion of
program execution, the Text mode will be automatically selected.

Text mode statements (such as PRINT) or the INPUT statement are not usable in this
mode.

When you wish to display characters or text symbols on the graphic screen, use the
OPEN statement to open a file on the graphic screen (“GRP:”), then use the PRINT#
statement to print the desired characters or symbols. In this case, the top left corner of
the first character corresponds to the last reference point (LP) on the graphic screen,
which is specifiable with the PRESET statement.

Up to two colours are specifiable for each 8-dot area at a time. This means that only two
colours can be specified in the area between (0, 0) and (8, 0). If a third colour is specified
within this area, all points in the area will be turned into the third colour.

(0,0) (255, 0) (0, 0) (8,0)
W|W|[B|W|B|W|W|W |BIk|BIk|BIk|BIk|BIk|BIk
R|IG|G|R|R/R/R|R|W|W|W|W|BIk|BIk
|
| |
“ - J
Up to two colours are specified for each 8 dot area.
(0, 191) (255, 191)

(4) MULTICOLOUR MODE (SCREEN 3)

(0,0)

This mode allows you to draw multicolour graphics using a 64 x 48 block (4 x 4 points
per block) configuration. While display operation is controlled block-by-block, display
location is specified by point.

Once the computer returns to the command mode at the completion or abortion of
program execution, Text mode will be automatically selected.

Text mode statements (PRINT, etc.) or the INPUTstatement are not usable in this mode.

When you wish to display characters or text symbols on the multicolour graphic screen,
use the OPEN statement to open a file on the graphic screen (“GRP’’), then use the
PRINT# statement to input the desired characters or symbols into the file.

Up to 16 colours are specifiable for each block.

(255, 0) 4 4

A=A
o

g

Up to 16 colours can be specified for each

block comprised of 4 x 4 points.

(0, 191) (255, 191)

—26—

3. SPRITE SCREEN

The sprite screen allows you to display and move userdefined sprite figures on the screen. First
use the SPRITES variable to define the desired sprite figure, then use the PUT SPRITE state-
ment to display it on the screen,

(1)

(2)

SPRITE FIGURE SIZE

Each sprite figure can be specified with an 8 x 8 or 16 x 16 dot matrix. When it is displayed
on the screen, the height and width of each figure can be expanded by two in each direction.
The figure size and expansion attribute are specified with the SCREEN statement.

NUMBER OF DEFINABLE SPRITE FIGURES
® The number of definable sprite figures depends on the figure sizes.

Figure size Definable figures Figure size on display
8 x 8 points
8x8 256 types
16 x 16 points
16 x 16 points
16 x 16 64 types
32 x 32 points

(3)

® Up to 32 sprite figures can be displayed per screen, and up to 4 figures can be displayed
on each row. If five or more sprite figures are specified per row, the 5th and subsequent
figures will not appear on the screen.

SPRITE INTERRUPT

If two sprite figures conflict (overlap) with each other, it causes an interrupt to the CPU.

You need not check for conflict of figures in your program.

The Sprite interrupt is made available by:

® Specifying the first line of the interrupt service routine to which control is to be passed
when a sprite interrupt occurs:

ON SPRITE GOSuUB
® Specifying whether the sprite interrupt is to be enabled, disabled, or held:

SPRITE ON Enables interrupt
SPRITE OFF Disables interrupt
SPRITE STOP Holds interrupt

If a conflict of sprite figures occurs after the SPRITE ON statement has been executed,
it causes a sprite interrupt. Control is passed to the interrupt service routine whose first
line number was specified by the ON SPRITE GOSUB statement.

., .

4. COLOUR CODES

Colour codes are use to specify display colours. Numbers O through 15 are assigned to display

colours as follows:

OF 5 A Clear

1 simseens Black

L R Green

< AT Light green
B e Dark blue
AT N Light blue
B e Deep red
R Sky blue

5. HOW TO SPECIFY COORDINATES

B e Red

Qv wvavess Bright red
0 Yellow
Y sy 8 Light yellow
V&iwmmanes Dark green
j 1< CE—— Purple
| [Grey
[|- — White

Screen coordinates specified in graphic statements (CIRCLE, LINE, PAINT, PSET, PRESET,

and POINT) or the PUT SPRITE statement
nates.

Absolute coordinate (x,vy)

include absolute coordinates and relative coordi-

Specifies an absolute point on the screen referred to by the
x and y values.

Relative coordinate STEP (x, y)

Specifies a point on the screen which is apart from the last
reference point LP by the lengths specified by the x and y
values of each coordinate. The LP refers to the last coordinate
point specified by a graphic statement, and has an initial
value of (0, 0).

o,

VI SOUND FEATURES

y E

PROGRAMMABLE SOUND GENERATOR (PSG)

The PSG is a simplified music synthesizer designed to let you output tones to the internal
speaker by using the PLAY or SOUND statement.

FEATURES OF THE PSG

1) Contains three independent audio channels (A, B, C) to simultaneously output up to three
different tones. This allows you to play three-tone cords.

2) Capable of delivering a noise tone to each channel, as well as the musical tones, which lets
you produce sound effects for your video games.

3) The “envelope’ feature is available to vary the output tone level along the time axis. It
allows you to add colour or beat to output tones.

MUSIC PLAY USING THE PLAY STATEMENT

The PLAY statement uses music macro commands to let the computer play music.
PLAY string expression A, string expression B, string expression C

String expressions A, B, and C represent music macro commands for channels A, B, and C,
respectively. For details on the PLAY statement format, refer to Chapter 2, “LANGUAGE
DESCRIPTION."”

The following music macro commands are available:

(1) MACRO COMMANDS TO SPECIFY NOTES

Ato G These commands specify the seven whole notes in an octave scale in the order
C,D,E,F, G, A and B.
#+4+- Used to specify the pitch of a note; to sharp or flat a note. To sharp a note,

use “#' or “+", such as A# or A+; to flat a note use "=, such as A—.
Example: PLAY “F#’,“G", “C"

O integer This command specifies which octave out of eight available octaves is to be
used, by using an integer between 1 and 8. This is specified in front of the
notes (A ~ G), such as 05. The default value is O4. Once this command is
specified, it remains valid until another octave command is subsequently
specified. This command is valid only on the channel for which it is speci-

fied.
Example: PLAY “O4CDEFGABOSCDEFGAB”
N integer This command specifies a specific pitch in the full eight octaves, by using an

integer between 0 and 96. N1 specifies O1C#, and N95 specifies O8B. NO
denotes a rest. Every integer increment raises the pitch a half tone.

Example: PLAY "“N36N38N40N41N43N45N47N48"

(2) MACRO COMMAND TO SPECIFY DURATION

L integer

This command is used to specify the duration (1/integer) of a note and for
all the notes that follow. The valid range for the integer is from 1 to 64. The
command default is L4.

L1 Whole note

L2 Half note

L4 Quarter note

L8 Eight note

L64 Sixty-fourth note

Once a duration command is specified, it remains valid until another duration
command is subsequently specified. The duration command is valid only on
the channel for which it is specified.
Example: PLAY “L1CDEFGAB”

When you wish to specify a specific note for a specific duration or rest, place
the pertinent integer just following the desired note command, such as A16.

Example: PLAY “C1DEFGAB”
If a duration or rest command is followed by a period (.), the corresponding
note is played 1.5 times as long. If two consecutive periods (..) are specified,

the preceding note is played 2.25 times as long; if three consecutive periods
(...) are specified, the note is played 3.375 times as long.

Example: PLAY ““L1C.”, “C1.”, “C1C2"

(3) MACRO COMMAND TO SPECIFY REST

R integer

This command specifies the duration (1/integer) of a rest. If only R is speci-
fied, it is assumed to be R4,

R1 Whole rest

R2 Half rest

R4 Quarter rest

R8 Eighth rest

R64 Sixty-fourth rest

Example: PLAY “CDEF1FGABRCDEFGAB”

(4) MACRO COMMAND TO SPECIFY TEMPO

T integer

This command specifies the number of quarter notes to be played in one
minute, for all the notes that follow. The valid range for the integer is from
32 to 255. The command default is T120.

Once a tempo is specified, it remains valid until another tempo is subsequent-
ly specified. This command is valid only on the channel for which it is speci-
fied.

Example: PLAY “T240CDEFGABT60CDEFGAB"

(5) MACRO COMMAND TO SPECIFY LOUDNESS

(6)

V integer

The Envelope commands include the S and M command. The S command is used to specify
the waveform, or envelope, according to which the loudness of the note is varied. The M
command is used to specify the period of the envelope. You can control the tonal colour of

This command specifies the loudness of the tones that follow. The valid
range for the integer is from 0 to 15, with the default value being 8. Once this
command is specified, it remains valid until another loudness command is
subsequently specified. The loudness command is valid only on the channel
for which it is specified, and causes the envelope command, if specified, to be

invalid.
Example: PLAY "“V15CDEFGABVB8CDEFGAB”
MACRO COMMANDS TO SPECIFY TONAL COLOURS

your music by combining these commands.

Once the Envelope command is specified, the Loudness command, V, is made invalid.
The Envelope command is valid on all three of the audio channels. This means only one
envelope pattern and period can be specified for all three of the channels at a time.

S integer

M integer

This command specifies an envelope pattern. The valid range of the integer
is from 0 to 15, with which the following eight envelope patterns can be

specified.:
Entogor value | Envelope pattern .
0~3.9 {

i

L

- I B AN ANANANANANAN AN
M N =

4~7.157 {] A _S_ =
8
10 { I\W

2 A
% s‘

14 2SN

This command specifies the period of an envelope. The valid range of the

. 7
~+Time

integer is from 1 to 65535.

Loudness

Example: PLAY “SOM10000CDEFGAB”

sy

(7) MUSIC MACRO COMMANDS ASSIGNED TO VARIABLES

X Character variable; This variable causes the PLAY statement to play music according
to the music macro commands assigned to this variable. It must
be followed by a semicolon (;).

Example: A$=""CDEFG" :B$="AB" : PLAY''XA$;XB$"

= numeric variable This variable may be used in

place of an integer specified in a

music macro command. It must be followed by a semicolon | ;).

Example: 10 For J=3TOG6
20 PLAY"0=J,CDEFGAB"”

30 NEXT
40 END
[DRILL] Let's play the first four bars of the “Wild Roses’’ by Schubert:

J=60

ama

7V
)|
=
10 PLAY "“04T60SOM10000", “O4T60S0", “O4T60S0""
20 PLAY "L8BBBB", “LBGGGG", “L8DDDD" 1st bar
30 PLAY “L1605DCCO4BA4", L16BAAGE4", “"L16F+EEDC4" 2nd bar
40 PLAY “L8AABOSC”, “L8F+F+GA", “L8BDDEF+" 3rd bar
50 PLAY "“O5D4GR8", “A405DR8", “F+4BR8" 4th bar

60 END

10 PLAY ““04T60SOM10000" 04
T60

SOM10000

20 PLAY “L8BBBB” L8
BBBB

30 PLAY “L1605DCCCO4BA4" L16
05
DCCC
04
A4

= =

Specifies the 4th octave.

Sets the tempo to 60 quarter
notes per minute.

Specifies the envelope to simulate
a piano sound.

Specifies eighth notes.
Plays the B note four times.

Specifies sixteenth notes.
Specifies the 5th octave.

Plays D, C, C, and C notes.
Specifies the 4th octave.

Plays a quarter note of A pitch.

3. SOUND EFFECTS USING THE SOUND STATEMENT
The SOUND statement lets you load values into the registers of the programmable sound genera-

tor (PSG). Appropriate combinations of several SOUND statements allows the PSG to create
various sound effects which are not available with the PLAY statement alone.

SOUND register number, integer expression

This statement causes the value of the integer expression to be loaded into the specified PSG
register. For more details on the SOUND statement format, refer to Chapter 2, “LANGUAGE
DESCRIPTION".

(1) PSG REGISTERS
The PSG contains 16 registers, of which 14 registers are available to the user.

Register . Bit
Function
No. b7 | b6 | b5 | ba | b3 [b2 | b1 | bO

0 FT (A)

Frequency on CH.A
1 J CT (A)
2 FT (B)

Frequency on CH.B
3 CT (B)
4

Frequency on CH.C
5 CT (C)
6 Noise frequency NP

Tone
7 Output channel select
1 0 B c | B] A

8 Loudness on CH.A M L (A)
9 Loudness on CH.B M L (B)
10 Loudness on CH.C M L (C)
"

Envelope period
12
13 Envelope pattern EP

(2) HOW TO USE THE PSG?
The PSG can produce up to three tone signals and one noise signal at a time. It outputs
them to the internal speaker through the three audio channels (A, B, C) to create various
sound effects.
The tone for each channel is specified by loading the desired pitch, or frequency, data into
register O through 5. :
Noise frequency data is loaded into register 6.
Register 7 is used to select one of the three tone channels to be output, and determine
whether the output channel delivers a tone, a noise or a combination of tone and noise.
While there is only one noise source available, it may be output to any desired channel
together with the tone signals.
Registers 8, 9, and 10 are used to set the loudness levels on the three channels. Either a
constant loudness or loudness varying according to a specific envelope pattern can be
selected with these registers. When an envelope is specified, the envelope pattern is loaded
into register 13, and the envelope period is loaded into registers 11 and 12.

1) Tone frequency setup
To set up a tone frequency, first determine the TP value (up to 12 bits) obtained from
the following formula, then divide the TP value into high order 4 bits (CT) and low
order 8 bits (FT), as follows:

TP=1789772.5/(16%F)
CT=TP\ 256 High order 4 bits of TP
FT=TP MOD 256 Low order 8 bits of TP

The FT and CT for channels A, B, and C are loaded into registers 0 and 1, 2 and 3, and
4 and 5, respectively. In registers 1, 3, and 5, only the low order 4 bits are meaningful.

2)

3)

4)

Noise frequency setup
To set up a noise frequency (in Hertz), load a five-bit value, NP, determined from the
following formula, into register 6:

NP=1789772.5/(16%F)

Only the low order five bits of register 6 are meaningful, with the high order three bits
meaningless.

Channel select

To select the output channel, set a zero into the bit of register 7 that corresponds to
that output channel.

Register 7 bit configuration Set 0 into the bit corresponding to the output channel.

b7 [b6 | bS5 | b4 | b3 | b2 [b1 | bO

110X X [X X | X]X

L Channel A outputs tone.
t————Channel B outputs tone,
Channel C outputs tone.

Channel A outputs noise.

Channel B outputs noise.

Channel C outputs noise.

The most significant 2 bits of this register are used to specify the input/output direction
of the general-purpose 1/0O ports, which have nothing to do with the sound output
function.

Loudness setup

The loudness levels on channels A, B, and C are set up with registers 8, 9, and 10,
respectively.

Whether a constant loudness or varying (envelope) loudness is to be used can be speci-
fied for each channel by using bit 4 on each register. The most significant 3 bits of each
register have no meaning.

Bit configuration on registers 8,9, and 10,

b7 | b6 | b5 | b4 | b3 | b2 | b1 | bO
O|O|O | X |[X |X |[X]|X

Specifies loudness, L (0 to 15).
Set to 1 for envelope.
Set to O for constant level.

£36=

5) Specifying the envelope pattern and period
The tone output on the channel for which an envelope is specified by registers 8,9, or
10 varies at the period specified by registers 11 and 12, and according to the envelope
pattern specified by register 13. The following eight envelope patterns are specifiable
with the least significant 4 bits of register 13.

. 4LSB's P —
b3| b2| b1| bl

O O | X | % N (
(o 8 I N i % 7] {
110]10]0 | NANANDNNNNNY
110 0(1 B (
11981 10| KA
1 10| 19 i D |
1{1]0]0]| ALY
4 A I I ©) P B
BEERIE IR . TaVaTal,
BENEFESN i

—

—+Time

The envelope period, T (in sec.), can be specified by loading the value of TP (up to 16
bits) determined from the following formula, into registers 11 and 12: low-order 8 bits
(FT) into register 11 and the high-order 8 bits (CT) into register 12.

TP= 1789772. 5%T/256

CT=TP\ 256 High order 8 bits
FT=TP MODE 256 Low order 8 bits
[DRILL] Create a gun shot sound.
10 SOUND 6,15 Set the noise frequency.
20 SOUND 7, &B10000111 Specifies channels A, B, and C for noise output.

20 SOUND 8, &B00010000 Specifies the envelope for channel A.
40 SOUND 9, &B00010000 Specifies the envelope for channel B.

50 SOUND 10, &B00010000 Specifies the envelope for channel C.
60 SOUND 11,0: SOUND 12, 16 Specifies the envelope period.

70 SOUND 13,0 Specifies the envelope pattern.

80 END

Vi FILE

A file is a set of related records, data, or program steps usually stored on a storage medium (such as
cassette tape). Each file has its own name to discriminate it from all other files. The concept of a file

may be applicable to various input/output devices and their media, including cassette tape.

1. SPECIFYING A FILE

A file is specified with a device name and a file name as follows. Program or data is input to or
output from the specified file on the specified device.

"“DEVICE NAME FILE NAME”

® A file may also be specified with character variables or character expressions, as well as

character strings enclosed in quotation marks.
® The device or file name is defaultable.

(1) Device name

The device name must specify the input/output device used for file access.

Usable mode
1/0 device Device name
INPUT OUTPUT
Cassette recorder CAS : (o] (o]
Text mode screen CRT: X @)
Graphic mode screen GRP : X (0]
Printer LPT: X (o]

® The display screen can also be treated as an output device, in which case the screen is

used chiefly for displaying characters or text symbols in Graphic mode.
® The device name may be specified with either uppercase or lowercase characters.
® The CSAVE or CLOAD statement requires no device name specification.

(2) File name

The file name specification is needed when accessing a cassette tape file. No file name is

needed for accessing any file other than a cassette tape file.
® A file name must be a string of no more than six characters.

If a file name contains less than six characters, the remaining locations are filled with

blanks.

If a file name exceeds six characters, the seventh and all subsequent characters are ig-

nored.

® A file name should not contain a colon (:) or the numeric characters 0 and 255 (&HFF).

=, .

2. PROGRAM FILE

The following commands are used for saving or loading program files:

CSAVE Saves a program to a cassette tape file,

CLOAD Loads a program, which was saved with the CSAVE command, from a
cassette tape file.

SAVE Saves a program of ASCI| form to a file on a specified device.

LOAD Loads a program of ASCII form from a file on a specified device.

MERGE Merges an ASCII program file with the program currently in memory.

BSAVE Saves a machine code program to a specified device.

BLOAD Loads a machine code program from a specified device.

3. DATA FILE

(1)

(2)

(3)

Open a File

When accessing a data file, you must open the file in advance by using an OPEN statement.
The OPEN statement specifies the device name, file name to be opened, input/output
direction, and file number. Internally the OPEN statement causes a file control block (to be
used for 1/0 operations) to be set aside in memory.

File number

A file number represents the device and file names specified in the OPEN statement. The
PRINT# or INPUT# statement accesses the file whose file number is specified following
these statements.

The available range of file number is specified by the MAXFILES statement. The initial
value of a file number is one (1).

Closing a file
When 1/0 access to a file is completed, you must close the file by using the CLOSE state-
ment. |f the file is left open, you cannot open another file using the same file number.

Vii INTERRUPTS

The purpose of an interrupt is to tell the computer’s CPU that it must suspend whatever it is doing,
process the event or data being input, then continue its suspended operations. If an interrupt signal
is not available, the main program will always have to check to see if an event or external logic is
requesting service. With an interrupt signal, however, you have only to specify interrupt service
routine names and interrupt enable statements at the beginning of the main program. This eliminates
the need for a service request check program and speeds execution of the main program.

Possible Causes of Interrupts Interrupt Service Statements

Errorinterrupt: ;: vavangs o i siieiasn a8 Suveeds § ON-ERROR GOTO
Function key interrupt ON KEY GOSuUB

Stop key interrupt e ON STOP GOSuUB
Sprite conflict interrupt ON SPRITE GOSUB
Joystick trigger interrupt, ON STRIG GOSuB
(Space bar interrupt)

Interval timer interrlpt v ox o siiezen o o i d ON INTERVAL GOSuB

The interrupt priority order is from the top to the bottom of this list.

Example: In the following program, control branches to line 1000 when the Space bar is
pressed:
When using interrupts (Program) When not using interrupts (Program)
10 ON STRIG GOSUB 1000 10 TIME=0
20 STRIG (0) ON 20 FOR I=TO 5000
30 TIME=0 30 PRINT T, TIME-T
40 FOR I=1 TO 5000 40 T=TIME
50 PRINT T, TIME-T 50 K$=INKEYS$
60 T=TIME 60 IF K$=" " THEN GOSUB 1000
70 NEXT 70 NEXT
80 END 80 END
1000 PRINT ““SPACE ON" 1000 PRINT "SPACE ON"
1010 RETURN 1010 RETURN

X MACHINE LANGUAGE

(1) DEVELOPMENT OF A MACHINE-LANGUAGE PROGRAM

The HX-10 computer uses a ZBOA processor for its CPU. So you must uses Z80 machine
code for your machine language programs. For details on machine code, read the books
written about the Z80 Machine Language.

(2)

1)

2)
3)

4)

Use the CLEAR statement to set aside a memory area to be used for the machine code
program.

Create your machine language program by using the POKE and PEEK statements.

To save your machine language program on cassette tape, use the BSAVE statement.
To load it into memory, use the BLOAD statement.

Your machine language program can be run with the DEFUSR statement and the USR
function.

Note: A small bug in your machine code program can make the system unrecover-
able from an error state, and you will have to temporarily turn off the system
before continuing. It is strongly advisable that you save your machine code
program on a cassette before executing it.

ARGUMENT TRANSFER USING THE USR FUNCTION
USR number, argument

1)

2)

Data is transferred between a BASIC program and machine language program with
arguments. A machine language program uses the A and HL or DE registers to read
argument data.

The A register value is 2, 3, 4, or 8 depending on the argument type.

When transferring the result of machine-language program execution to a BASIC pro-
gram, the result must have the same format as the argument, and if it is a character
string, must have the same string length as the argument. The resultant data must have
the same address as that of the operand data which was transferred from the BASIC
program,

A cegister value Argument type
2 Integer
3 Character string
4 Single-precision real number
8 Double-precision real number

3) The HL or DE register value specifies the address of the data to be transferred. The
address specification format differs depending on argument type:

® |nteger
An integer is represented in two-byte binary form, and is stored in memory in the
order low-order byte and high-order byte, starting with the address specified by
(HL register value + 2).

0 1 2 3
Low High
order order
byte byte

| o= HL register value

® Single-precision real number
A single-precision real number is represented by one byte for the exponent and three
bytes for the mantissa (4 bytes in all), and is stored in memory in the order exponent
and mantissa, starting with the address specified by the HL register value.
The MSB of the exponent part specifies the sign (0 for positive, 1 for negative) of
the number, and the remaining seven bits represent the exponent, from E+62 to
E-64.
The mantissa is represented by a six-digit binary coded decimal.

0 1 2 3
Expo- Man-
nent tissa :

t— HL register value

® Double-precision real number:
A double-precision real number is represented by one byte for the exponent and
seven bytes for the mantissa (8 bytes in all), and is stored in memory in the order of
exponent and mantissa, starting with the address specified by the HL register value.

0 1 2 3 4 5 6 7
Expo- : Man- » .
nent ! i tissa 3

= HL register value

® Character string
For a character string, the length and the low- and high- order bytes of the address
where the character string is located are stored in memory, in the order in which
they are written, starting with the address identified by the DE register value,

0 1 2
String Low High
length order order
byte byte
I L I Character string
DE register value

—f]

—42—

CHAPTER 2

LANGUAGE DESCRIPTION

EXPLANATORY NOTES ON FORMAT

Square brackets [] Denote an optional item.
Example

AUTO [beginning line number] [, increment]

AUTO

AUTO beginning line number

AUTO ,increment

AUTO beginning line number, increment

..... repetition Denotes any number of repetitions within one line,
Example

Constant [, constant:]
Constant

Constant, constant
Constant, constant, constant
etc.

Integer expression When “integer expression’’ is specified, a numeric ex-
pression (including a numeric variable or constant) may
be specified. If a double- or single-precision real num-
ber is contained in the expression, the value of the ex-
pression is converted to an integer before execution,
however.

Example

CHRS$ (integer expression)

AS$ = CHRS (65.23) “*A” is assigned to variable AS.

A% = CHRS (X) Double precision real type vari-
ables are also valid.

—43—-

A B S (Absolute) Function

Function
Format

Descriptions

Example

The ABS function returns to the program the absolute value of an expression.

ABS (numeric expression)

1)

2)

10
20
30
40

The ABS function returns the absolute value of the numeric expression that
follows it.

The result is always returned as a double-precision real number, regardless of
the type of the numeric expression.

A=—1:B%=1

AA = ABS (A) : BB = ABS (B%)
PRINT AA, BB

END

ASC ascn Function

Function The ASC function returns the ASCI| code for the character that follows it.

Format ASC (string expression)

Descriptions 1) The ASC function returns to the program the ASCII code for the first char-
acter of the string expression that follows it. The second and all remaining
characters in the &xpression are ignored.

2) If the string expression is a null string (**), an error will result (lllegal func-
tion call),

3) When the string expression is a graphic symbol, the ASCIl code for the
graphic character header (&H01) is returned.

Example 10 AS$="ABC"”

20 PRINT ASC (AS), ASC(“D")
30 END
AT N (Arc Tangent) Function

Function This function returns the arctangent of a number.

Format ATN (numeric expression)

Descriptions 1) The ATN function returns the arctangent of the numeric expression that
follows it.

2) The result is returned in radians, between =/2 and 7/2.
3) The result is always returned as a double-precision real number, regardless

of the type of the numeric expression.

AUTO

Command

Function
Format

Descriptions

Example

This command generates an automatic line numbering sequence.

AUTO [first line number] [, increment]

1)

2)

3)

4)

5)

6)

When this command is input and the RETURN key is pressed, the first
line number (10 when both first line number and increment are omitted)
appears on the screen. Each time you enter a program line and press the
RETURN key, a new line number with the specified increment appears in
the next line position. It allows you to avoid having to type a line number
for each program line.

The line number must be an integer between 0 and 65529, and the incre-
ment must be a positive integer.

When the first line number specification is omitted, a zero is assumed for
it. When the increment is omitted, a ten(10) is assumed for it. When both
the first line number and increment options are omitted, a 10 is assumed for
both of them.

To clear the AUTO command function, simultaneously press the CTRL and
STOP keys. The system returns to command mode, with the prompt “Ok"
appearing on the screen.

If a line number which already exists in the program currently in memory is
generated, an asterisk (%) will appear following the line number.

If you type a program line following the asterisk, and press the RETURN
key, the old program line in memory will be replaced with the new program
line just typed in. If you just press the RETURN key without entering a
program line following the asterisk, the old program line in memory will
remain as it is.

The screen editor functions (edit functions using the cursor) are also avail-
able when the AUTO command is active.

AUTO 1000, 10

—45—

BASE

Function

Function
Format

Descriptions

The BASE function returns the first address of the tables in the VRAM.
BASE (integer expression)

1) This function returns the first address of the table (within the VRAM)
specified by the integer expression that follows it.

2) The allowable range of the integer expression is from 0 to 19. The speci-
ficable tables are listed:

TeSymens 40 x 24 Text | 32 x 24 Text High-resolution Multicolour
raphic

Table name "

Name table 0 5 10 15

Colour table Not used 6 n Not used

Pattern generator

table 2 7 12 17

Sprite attribute

table Not used 8 13 18

Sprite pattern

table Not used 9 14 19
BEEP Statement

Function
Format

Description

The BEEP statement causes an internal buzzer to sound.
BEEP

This statement outputs a “‘pip’’ tone to the internal speaker for approximately
0.04 sec.

BIN$ (&inays)

Function

Function
Format

Description

Example

This function converts a numeric value into a binary character string.
BINS (integer expression)

The BINS function converts the integer expression that follows it into a char-
acter string of binary notation.

10 AS = BINS (16)

20 PRINT AS
30 END

Character string 10000 is assigned to variable AS.

—46—

BLOAD

Command

Function
Format

Descriptions

Example

This command causes a memory image file to be loaded into memory.
BLOAD “device name [file name]"’[, R] [, offset]

1)

2)

3)

4)

5)

The BLOAD command is used to load a machine language program or data
file (which was saved with the BSAVE command) into memory.

When the file name is omitted for cassette tape files, the first file on the
tape is loaded.

When the R option is specified, execution of the loaded machine language
program is initiated from the execution start address specified in the B
SAVE command, immediately after the program is loaded.

When an offset is specified, program or data is loaded into an address area
whose first and last addresses are the sum of the offset and the addresses
specified in the BSAVE command.

Since the BLOAD command causes a machine code program or data to be
loaded into any location in memory, endless execution of the BLOAD com-
mand, or program runaway, may occur if the program or data is loaded into
the work area or file control block. Pay special note of the offset value and
the-addresses specified in the BSAVE command.

BLOAD"CAS:SAMPLE”,&H1000 Only offset is specified.
BLOAD"CAS:SAMPLE",R Only R option is specified.
BLOAD"”CAS:SAMPLE"”,R,&H1000 Both offset and R option

are specified.

BSAVE

Command

Function

Format

Descriptions

Example

The BSAVE command saves portions of the computer’s memory on a specified
device.

BSAVE "'device name [file name] ", first address, last address [,execution start
address)

1)

2)

This command saves the memory image contents of the portion of the
memory between the first and last addresses specified in it.

If the R option is specified in the BLOAD command, execution of the pro-
gram loaded by the BLOAD command is automatically initiated from the
execution start address specified in this command. When the execution start
address is omitted, the first address is assumed for it.

BSAVE”CAS:SAMPLE",&HD000,&HD 1000
BSAVE“CAS:SAMPLE”,&HD000,&HD1000,&HDO0A

=47

CALL

Statement

Function This statement calls an extended statement.
Formats CALL extended statement name
CALL extended statement name (argument, [,argument--])
— extended statement name [(argument [,argument--])]
Descriptions 1) The CALL statement calls an extended statement, written in machine langu-
age, from an extended ROM cartridge.
2) An underscore (—) is usable in place of CALL.
3) For details on extended statements, refer to the MSX software specifica-
tions document.
Examples CALL SAMPLE
CALL SAMPLE (“A",""123",“XX")
C D B L (Convert to Double) Function
Function This function converts single or double precision real number that follows it to
a double precision real number.
Format CDBL (numeric expression)
Descriptions 1) The CDBL function converts the value (integer or single-precision real num-
ber) of the expression that follows it to a double precision real number.
2) The number of significant figures of the values does not change before or
after conversion.
Example A#=CDBL(B%)

C H R $ (Character $) Function

Function This function converts an ASCII code to its character equivalent.

Format CHR$(integer expression)

Descriptions 1) The CHRS$ function returns the character, symbol, or control code for the
ASCII code specified by the integer expression that follows it.

2) For the ASCII code list, refer to Chapter 3, Section 1, ‘‘Character Code

Table.”

Example A$=CHR$(&H41) Character ‘A" is assigned to the variable A$.

C I N T (Convert to Integer) Function
Function This function converts a numeric expression to an integer.
Format CINT (numeric expression)

Descriptions 1) The CINT function converts the value of the numeric expression that
follows it to an integer, by truncating the decimal places of the value.
2) If the result of the conversion is outside the range from —32768 to +32767,
an error will result.
Example A% = CINT(B#

CIRCLE

Statement

Function This statement is used to draw circles or ellipses on a graphic screen.

Formats CIRCLE (X coordinate, Y coordinate), radius [, colour code]
CIRCLE (X coordinate, Y coordinate), radius,[colour code], begin angle
CIRCLE (X coordinate, Y coordinate), radius,[colour code], [begin angle],

end angle

CIRCLE (X coordinate, Y coordinate), radius,[colour code], [begin angle],

[end angle], ratio of Y radius to X radius

Coordinates (X coordinate, Y coordinate) may also be specified with the relative
coordinate specification using STEP (X coordinate, Y coordinate).

Descriptions 1)

2)

3)

4)

5)

The CIRCLE statement causes a circle, arc, or ellipse to be drawn on a
graphic screen, with its center located at the specified coordinates, and
using the colour specified by the colour code.

The colour code must be an integer from 0 to 15.

When the colour code is omitted, the colour specified by the COLOR state-
ment is used for drawing.

The begin and end angles must be specified by numeric expressions in
radians, ranging from — 27 to 2m.

When the begin and end angles are omitted, 0 and 27 are assumed for them,
respectively, and causes a circle to be drawn on the screen.

When negative values are specified for the begin and end angles, the absolute
value of the angles are used for drawing, and a fan shape (with the center of
the arc linked to each end of the arc by straight lines) will be drawn on the
screen.

The ratio of Y radius to X radius must be specified with a numeric expres-
sion.

When the ratio specification is omitted, 1.0 is assumed for it, and causes an
arc of the specified radius to be drawn on the screen.

When the ratio, radius along the Y axis/radius along the X axis, is specified,
an ellipse with the specified ellipticity is drawn on the screen.

The radius specified in the statement refers to the larger of the Y and X
radii.

When the specified ratio is smaller than one, the specified radius refers to
the Y radius.

When the specified ratio is larger than one, the specified radius refers to the
X radius.

If the coordinates are specified by using the relative coordinate specifica-
tion, STEP(X coordinate, Y coordinate), the center of a circle or arc is given
by the distance from the last reference point (LP).

When the CIRCLE statement is executed, the LP is set to the center co-
ordinates.

Example 10
20
30
40

60
70
80

COLOR 15,5 : SCREEN 2

P =3.1415927

CIRCLE (20, 20), 20, 1 Draws a circle.
CIRCLE (860, 60), 20,,0,P Draws a half circle.
CIRCLE (100, 100), 20, 1,—P/2,—P Draws a fan figure.
CIRCLE (140, 140), 20.,,, 2 Draws an ellipse.
CIRCLE (180, 180), 20,,,, 1/2

GOTO 80

CLEAR Statement
Function This statement initializes all variables and sets the size of the user's area in mem-
ory.
Format CLEAR [string area size [, upper limit address of memory]]
Descriptions 1) The CLEAR statement frees all memory used for data without erasing the

program currently in memory.

It sets all numeric variables to zero and all string variables to null (* **).

All open files are closed.

The contents of the statements which begin with a DEF (DEF FN, DEF
USR, DEFINT, DEFSNG, DEFDBL, DEFSTR, etc.) are all made invalid.
All definitions of arrays are cleared.

FOR NEXT loops are discontinued.

Control is not returned from subroutines by the RETURN statement.

2) The size of the string area (in which character strings assigned to string vari-
ables are stored) must be specified by an integer expression, in bytes.
The initial default size is 200 bytes.

3) The upper limit address of the user’s area in memory must be specified by
an integer expression, in bytes. For mapping in the memory, see Chapter
3, Section 3, ""Memory Map"'.
The area between the specified upper limit address and &HF380 is not ac-
cessible to the BASIC program for its program or data area, and the machine
code program written in this area will not be destroyed.
The initial default value of the upper limit is &HF380, which is equal to the
maximum available address.

Example 10 CLEAR 1000, &HE000

CLOAD

Command

Function

Format

Description

Examples

This command allows the user to load a program file from cassette tape into
memory.

CLOAD [“file name”’]

1)

The CLOAD command is used to load a specified program file from a cas-
sette tape into the computer’'s memory.

When the specified file is found, the computer displays a message ““Found:
file name'” on its screen, and starts the loading operation. When the loading
operation is completed, the prompt “Ok’’ appears on the screen.

Each time a file other than the specified one is found, the computer will dis-
play ““Skip: file name."”

2) The file name must be six or less alphanumeric characters. If seven or more
characters are used for a file name, the seventh and all remaining characters
are ignored.

When the file name is omitted, the file which is first found will be loaded.

3) When the CLOAD command is executed, all programs and variables previ-
ously in memory are cleared, and all open files are closed.

4) The data transfer rate for the CLOAD command need not be specified. It
is automatically set to the rate at which the save operation was performed.

CLOAD""SAMPLE"

CLOAD

C L OA D ? (Verify) Command

Function

Format

Descriptions

Examples

This command allows the user to compare a program on cassette tape with
one in memory, for verification.

CLOAD? [“file name”’]

1)

2)

The CLOAD? command is used to verify that the program currently in
memory agrees with one in a cassette file, by comparing them while reading
from the cassette file. If the two programs completely agree with each
other, Ok’ will appear on the screen. If not ““Verify error’’ will appear on
it.

This command is generally used immediately after the CSAVE command is
executed, to verify that the program was properly saved on cassette tape.

CLOAD?
CLOAD? "SAMPLE"”

=6i=

CLOSE

Statement

Function This statement causes all, or specified, open devices and files to be closed.

Format CLOSE [[#] file number [,[#] file number ---]]

Descriptions 1) The CLOSE statement causes the file specified by the file number to be
closed.
The file number used for file closing may be used for specifying another file
to be opened.

2) More than one file can be closed at a time by specifying their file numbers
in a single CLOSE statement.

3) When the file number is omitted, all open files are closed.

4) |If the CLOSE statement is executed for a file which was opened for data
output, all data remaining in the buffer is output to that file.

"To properly complete an output operation to a file, the file must be closed.

5) The END, RUN, NEW, or CLEAR statements also cause open files to be
closed.

Examples CLOSE #1
CLOSE 1,3
C L S (Clear Screen) Statement
Function This statement clears the screen.
Format CLS
Descriptions 1) The CLS statement clears all characters and graphic figures from the screen,
except for sprite figures.

2) On a text mode screen, the CLS statement does not clear the function indi-
cators in the bottom area of the screen, and causes the cursor to be position-
ed at the home position (0, 0).

3) On a graphic mode screen, execution of the CLS statement causes the back-
ground colour to be changed to the colour specified by the COLOR state-
ment.

The location of the last reference point (LP) does not change before or after
the execution of this statement.
Example CLS

—52—

COLOR

Statement

Function

Formats

Descriptions

Example

This

statement specifies display colours.

COLOR foreground colour [, background colour]
COLOR [foreground colour] , background colour
COLOR [foreground colour], [background colour], border colour

1)

The COLOR statement is used to specify foreground colour (for characters
or graphics), background colour, and/or border colour on the screen.

2) Foreground colour

On a text mode screen the colour for characters on the screen is specified
by the foreground colour. Once the COLOR statement is executed, all the
characters currently on the screen turn the colour specified by the fore-
ground colour.
On a graphic mode screen, the foreground colour specifies the colour of
each graphic figure. This colour specification is valid when the colour code
is omitted in Graphic statements (PSET, LINE, CIRCLE, DRAW, PAINT,
etc.).

3) Background colour

On a text mode screen, the execution of the COLOR statement immediate-
ly affects the background colour.
On a graphic mode screen, the background colour is affected when a CLS
statement is executed after the COLOR statement. The COLOR statement
affects the background colour before a CLS statement is executed if the
colour code is omitted in the PRESET statement.

4) Border colour
Border colour specifies the colour for the border area (where no character
or graphic figure can be displayed) outside the background.

5) Colour codes are used for specifying the foreground, background, and bor-
der colours. The power-on default values of colour codes are 15, 4, and 4,
respectively.

Colour codes

0 Clear 8 Red

1 Black 9 Bright red

2 Green 10 Yellow

3 Light green 11 Light yellow
4 Dark blue 12 Dark green
5 Light blue 13 Purple

6 Dark red 14 Grey

7 Sky blue 15 White

COLOR 10, 15,1

C 0 N T (Continue) Command

Function This command is used to resume execution of a program after a break.
Format CONT
Descriptions 1) The CONT command is used to resume execution of a program which was

broken by simultaneous operation of the CTRL and STOP keys, execution
of a STOP or END statement, or an error generation.

2) In general, this command is used in program debugging. After breaking pro-
gram execution with a STOP statement, you can check the values of vari-
ables, by executing a PRINT command in Direct mode, or modify them by
using the LET statement, before resuming program execution with the
CONT command.

3) If the program contents have been modified during a break period, the
CONT command will not resume program execution.

Example CONT

C OS (Cosine) Function

Function This function returns the trigonometric cosine of a number.
Format COS (numeric expression)
Descriptions 1) The COS function returns the trigonometric cosine value of the numeric ex-

pression that follows it.

2) The value of the numeric expression must be in radians.

3) The result is always a double-precision real number regardless of the numer-
ic expression type.

Example A =CO0S(1.73)

—54—

CSAVE

Command

Function
Format

Descriptions

Examples

This command is used to save a program file on a cassette tape.
CSAVE ““file name" [, baud rate)

1) The CSAVE command causes programs to be transferred from memory to
cassette tape.
Saved programs can be reloaded into memory with the CLOAD command.
Immediately after saving a program, use the CLOAD? command to verify
that the program has been properly saved.
2) The file name must be six or less alphanumeric characters. If it exceeds six
characters, the seventh and all remaining characters are ignored.
3) The baud rate may be used to specify the data transfer rate, with an integer
of 1 or 2.
When 1 is specified: 1200 baud
When 2 is specified: 2400 baud
When the baud rate is omitted, the baud rate previously specified in the
SCREEN statement or CSAVE command is used. The initial default value of
the baud rate is 1200 baud.

CSAVE"SAMPLE"
CSAVE“SAMPLE", 2

C S N G (Convert to Single) _ Function

Function

Format

Descriptions

This function converts an integer or double precision real number to a single pre-
cision real number.

CSNG (numeric expression)

1) The CSNG function converts the numeric expression that follows it to a sin-
gle precision real number.

2) When the value of the numeric expression contains seven or more significant
figures, the seventh significant figure is rounded to the nearest whole num-
ber.

C S R L I N (Cursor Line) Function

Function
Format

Descriptions

Example

This function returns the value of the vertical coordinate of the screen cursor.
CSRLIN

1) CSRLIN returns the row number of a text mode screen on which the cursor
is currently located.

2) The result is always an integer between 0 and 23, 0 being assigned to the
first row.

PRINT CSRLIN

—55—

DATA

Statement

Function

Format

Descriptions

Example

This statement stores numeric and string constants (to be accessed by a READ
statement) within a program.

DATA constant [, constant.--]

1)

2)

3)

4)

5)

6)

The DATA statement stores numeric and string constants within a program.
These constants are accessed by a READ statement within the same pro-
gram.
The DATA statement is a non-executable statement, and may be located on
any program line.
More than one constant is specifiable in a DATA statement by separating
them with commas (,), as long as the program line containing the DATA
statement does not exceed 255 characters.
Constants specified in a DATA statement may be either numeric or string
constants.
Numeric constants may be of any type.
Quotation marks (') may be omitted from string constants when placed in a
DATA statement. It is not allowed, however, to omit quotation marks when
the string contains commas (,), colons (:), or semicolons (;) within it, or
when there are one or more blanks at the first or last position of the string.
The type of the constants placed in a DATA statement must match the type
of variables placed in the corresponding READ statement.
If numeric constants are read by string variables, the numeric constants
are regarded as string constants.
If string constants are read by numeric variables, an error will result.
The type of numeric constants (integer, single-precision real number,
double-precision real number) need not match that of numeric variables
to which the former are assigned. Type conversion occurs when con-
stants are read into variables.
More than one DATA statement may be used in a program.
The READ statement reads constants beginning with those stored in the
DATA statement which is on the line with the smallest line number.
The RESTORE statement allows you to read constants from a DATA state-
ment on the specified line.

DATA 1.23, &HEQ,SAMPLE, "X : X"

—56—

DEF FN (pefine Function) Statement

Function

Format

Descriptions

Example

This statement defines and names a user-defined function.

DEF FN function name [(argument [, argument--])] = expression of the func-

1)

2)

3)

4)

10
20
30

tion
The DEF FN function assigns the expression of the function specified on
the right part to the function name specified on the left part.
When the “FN function name' is called, the defined expression of the func-
tion is operated to return the result.
The function name and its type are specified in the same way as a variable
name and its type.
The type of the function name must match the type of the expression of
the function.
The variable names assigned to arguments correspond to the variables with
the same names used in the expression of the function.
These variables are not affected by manipulation of variables with the same
names used in other portions of the same program.
If there is a variable name in the expression of the function which does not
correspond to a variable assigned to an argument, the value of the variable
with the same name in other portions of the program is assigned to the
variable for the argument.
This function is not usable in Direct mode.

DEF FNS(X, Y) = SQR(X*X + Y*Y)
A =FNS(4, 3) : PRINT A
END

D E F U S R (Define User) Statement

Function
Format

Descriptions

Example

This statement defines the first address of a machine-code subroutine.
DEF USR [number] = first address

1)

2)

The DEF USR statement defines the first address of a machine code sub-
routine called by the USR function.

The number may range from 0 to 9, which allows for specification of up
to ten machine-code subroutines.

When the number is omitted, zero is assumed for it.

DEF USR = &HF100

-

DEFDBL (pefine Double) Statement

Function

Formats

Descriptions

Example

This statement is used to declare that the variables that follow it are double-
precision real type variables.

DEFDBL alphabetic character-alphabetic character [, alphabetic character-
alphabetic character:-]
DEFDBL alphabetic character [, alphabetic character-:-]

1) The DEFDBL statement is used to declare that the variables whose names
begin with the specified alphabetic character or with a character in the spe-
cified range of alphabetic characters and have no type declaration symbols
following them, are double-precision real type variables.

Alphabetic character-alphabetic character:
The variables whose names begin with a character in the specified range
of alphabetic characters are defined as double-precision real type.
Alphabetic character
The variables whose names begin with the specified alphabetic charac-
ter are defined as double-precision real type.

2) Variable names with type declaration symbols (%, !, # or $) have the types

specified by those symbols.

DEFDBL A, D-F Variables AB, D, E1, and so forth are defined as double-
precision real type.

DEFINT (et iotge) | Siamaiit

Function

Formats

Descriptions

Examples

This statement is used to declare integer type variables.

DEFINT alphabetic character-alphabetic character [, alphabetic character-
alphabetic character.--]
DEFINT alphabetic character [, alphabetic character -]

1) The DEFINT statement is used to declare that the variables whose names
begin with the specified character or with a character in the specified range
of characters and have no type declaration symbols, are integer type vari-
ables.

Alphabetic character-alphabetic character:
The variables whose names begin with a character in the specified range
of alphabetic characters are defined as integer type.

Alphabetic character:
The variables whose names begin with the specified alphabetic character
are defined as integer type.

2) Variable names with type declaration symbols (%, !, #, or $) have the types
specified by those symbols.

DEFINT A, D-F Variables AB, D, E1, and so forth are defined as integer
type.

—58—

D E F S N G (Define Single) Statement

Function

Formats

Descriptions

Example

This statement is used to declare single-precision real type variables.

DEFSNG alphabetic character-alphabetic character [, alphabetic character-
alphabetic character---]
DEFSNG alphabetic character [, alphabetic character:--]

1) The DEFSNG statement is used to declare that the variables whose names
begin with the specified character or with a character in the specified range
of characters and have no type declaration symbols, are single-precision real
type.

Alphabetic character-alphabetic character:
The variables whose names begin with a character in the specified range
of alphabetic characters are defined as single-precision real type.
Alphabetic character:
The variables whose names begin with the specified alphabetic character
are defined as single-precision real type.

2) Variables with type declaration symbols (%, !, # or $) have the types speci-

fied by those symbols.

DEFSNG A, D—F Variables AB, D, E1, and so forth are defined as single-
precision real type.

D E F ST R (Define String) Statement

Function

Formats

Descriptions

Example

This statement is used to declare string variables.

DEFSTR alphabetic character-alphabetic character [, alphabetic character-
alphabetic character--:]
DEFSTR alphabetic character [, alphabetic character---]

1) The DEFSTR statement is used to declare that the variables whose names
begin with the specified character or with a character in the specified range
of characters and have no type declaration symbols, are string variables.

Alphabetic character-alphabetic character:

The variables whose names begin with a character in the specified range of
alphabetic characters are defined as string variables.

Alphabetic character:

The variables whose names begin with the specified alphabetic character are
defined as string variables.

2) Variables with type declaration symbols (%, !, #, or $) have the types speci-
fied by those symbols.

DEFSTR A, D—F Variables AB, D, E1, and so forth are defined as string vari-
ables.

D E L ET E Command
Function This command erases program lines.
Formats DELETE line number

DELETE [begin line number] —end line number

Descriptions 1)

2)

3)

The DELETE command deletes the specified program line or specified range
of program lines.

When a line number is specified following this command, only the specified
line is deleted.

When the begin and end line numbers are specified, the program lines be-
tween and including the begin and end line numbers are deleted.

When only an end line number (—end line number) is specified, all program
lines between and including the first program line and the specified end pro-
gram line are deleted.

If a period (.) is used instead of a line number, the last execution line is spe-
cified. The last execution line refers to the program line which was last ex-
ecuted by BASIC. When program execution stopped due to an error state-
ment, the last execution line is the program line on which the error occur-
red.

After the LIST or LLIST command is executed, the last execution line re-
fers to the line specified last.

If the DELETE command is used in program mode, the system returns to
the Command mode after executing it.

Examples DELETE 10 Deletes program line 10
DELETE 10-50 Deletes program lines between and including 10 and 50.
DELETE -50 Deletes all the program lines from the first line to line 50.

Dl M (Dimension) Statement

Function

Formats

Descriptions

Examples

This statement specifies the maximum values for array variable subscripts and al-
locates appropriate storage.

DIM variable name (max. value of subscript [, max. value of subscript--])
DIM variable name (max. value of subscript [, max. value of subscript-])

2)

3)

4)
5)

6)

7)

[, variable name (max. value of subscript [, max. value of subscript--])

i)

The DIM statement specifies the maximum values for array variable sub-
scripts and allocates appropriate storage for data assigned to arrange vari-
ables.

Array variables specified in a DIM statement may be subscripted from zero
to the maximum values of subscripts specified in the statement.

When an array not defined in the DIM statement is used, the subscripts that
can be used are from 0 to 10.

The maximum value of subscripts may be specified with an integer expres-
sion in a range between 0 and the maximum available memory location.

If the maximum value of subscripts exceeds the maximum available mem-
ory capacity, an error will occur when the DIM statement is executed for
numeric arrays. For string arrays, an error will occur when the DIM state-
ment is executed or when the character string transferred to array variables
exceeds the available string area in memory.

For the memory areas available to variables, refer to Chapter 1, Section 3,
“CONSTANTS AND VARIABLES.”

The size of the unused memory area is returned by the FRE function.

up to 255 subscripts (dimensions) are specifiable.

It is not possible to redefine an array which is already defined in a DIM
statement.

All variables, immediately after defined in the Dim statement, have a value
of zero for numeric variables, and null (*) for string variables.

Arrays can be deleted by the ERASE or CLEAR statement.

When memory area runs short, unnecessary arrays may be deleted with
these statements. When initializing array variables or updating the maximum
value of subscripts, temporarily delete the pertinent array, then redefine it
with the DIM statement.

DIM A (25, 3)
DIM A(3), B(5, 8, 7)

DRAW

Statement

Function
Format

Descriptions

This statement is used to draw figures on a graphic screen.

DRAMW string expression

1) The DRAW statement lets the computer draw various graphic figures on the
screen using graphic macro commands specified by the string expression.
Graphic macro commands are chiefly used for shifting a reference point,
which functions like a paint brush.

2) The string expression consists of one or more graphic macro commands.

3) Graphic macro commands include the following:

U distance
D distance
L distance
R distance
E distance
F distance

G distance

H distance

Shifts the reference point (RP) the specified distance up-
ward.

Shifts the RP the specified distance downward.

Shifts the RP the specified distance to the left.

Shifts the RP the specified distance to the right.

Shifts the RP diagonally the specified distance to the
upper right direction.

Shifts the RP diagonally the specified distance to the
lower right direction.

Shifts the RP diagonally the specified distance to the
lower left direction.

Shifts the RP diagonally the specified distance to the
upper left direction.

M horizontal coordinate, vertical coordinate

A angle

C colour code

S scale factor

X string variable

= numeric variable

Shifts the RP to the specified coordinates.

If the horizontal and vertical coordinates are signed
(with + or —), they specify relative coordinates.

Shifts the RP without drawing its locus.

Shifts the RP while drawing its locus.

After being shifted, the RP designates a start point for
another locus.

Rotates the figures drawn by the U, D, L, R, E, F, G,
H, or M (for relative coordinates only) commands in
90 deg. increments.

The angle is specified with an integer from 0 to 3: 0
for O deg., 1 for 90 deg., 2 for 180 deg., and 3 for 270

deg.

Draws figures using the colour specified by the colour
code.

The distance specified in the U, D, L, R, E, F, G, H, and
M commands is multiplied by the scale factor value.

The scale factor can only be an integer from 1 to 255.

Causes the computer to execute the graphic macro com-
mands assigned to the string variable.

Allows the use of the numeric variable for distance,
angle, colour code, scale factor, and so forth.

—62—

END

Statement

Function This statement is used within a program to stop program execution.

Format END

Description The END statement stops program execution, closes open files, and returns the
system to Command mode.

EOF (End of File) Function

Function This function returns a value indicating whether the end of a file has been reach-
ed or not.

Format EOF (file number)

Descriptions 1) The EOF function returns the value —1 or O to indicate whether or not data

to be read into memory remains in the file specified by the file number.
-1 End of file reached.
0 End of file not reached.

2) The file specified by the file number must be opened by the OPEN state-

ment for input mode.

ERASE

Statement

Function
Format

Descriptions

Example

This statement is used to erase an array or arrays from storage.

ERASE array name [, array name---]

1) The ERASE statement causes an array or arrays to be erased from mem-

ory.

2) This statement may be used to erase unnecessary arrays from memory to

increase available memory space.
3) Erased arrays can be redefined by the DIM statement.

ERASE A, B

E R L (Error Line) Function

Function

Format

Descriptions

This function returns the number of the program line on which an error occur-
red.

ERL

1) The ERL function is chiefly used in an error service routine specified in the
ON ERROR GOTO statement.

2) In an IF statement, this function must be placed on the left side of a rela-
tional operator (with a line number placed on the right side of the
operator.) The line number in the |F statement is automatically renumbered
when the RENUM command is executed, provided the line number is on the
right side of the relational operator.

3) If an errqr occurred when the system is in Direct mode, the function returns
a value of 65535.

Examples PRINT ERL
IF ERL =120 THEN PRINT”"ERROR"
E R R (Error Number) Function
Function This function returns an error code.
Format ERR
Descriptions 1) The ERR function is chiefly used in an error service routine specified in the
ON ERROR GOTO statement.
2) For error codes, refer to Chapter 3, Section 6, “Error Code Table.”
Example PRINT ERR

IF ERR=4 THEN PRINT”ERROR 4"

ERROR

Statement

Function
Format

Description

This statement causes the system to generate an error deliberately.
ERROR error code

The ERROR statement is used to deliberately generate an error for error simula-
tion.

E X P (Exponential) Function

Function
Format

Descriptions

Example

This function returns the power of “‘e’’, the base for natural logarithms.
EXP (numeric expression)

1) The EXP function returns the power of “e”, the base for natural logarithms,
using the value of the numeric expression as an exponent.

2) The value of the numeric expression must be in the range from
—147.3654459516 to 145.0628605862.

3) The result is always a double-precision real number, regardless of the numer-
ic expression type.

PRINT EXP (2.4)

FIX

Function

Function
Format

Descriptions

This function returns the integer part of a value.
FIX (numeric expression)

1) The FIX function returns the integer part of the value of the numeric ex-
pression, by truncating all the decimal places of the value.
2) The FIX and INT functions return different integers for a negative value.
F1X(=1.3) returns —1
INT(=1.3) returns =2

—65—

F 0 R Statement

Function This statement executes a series of instructions within a loop formed by FOR
and NEXT statements the specified number of times.

Format FOR numeric variable = initial value TO final value [STEP increment]
Descriptions 1) The FOR statement must always be followed by a NEXT statement to com-
plete a loop.

2) The FOR-NEXT execution loop functions as follows:
When the FOR statement is executed, the initial value is assigned to the
numeric variable, and each time the NEXT statement in the loop is encoun-
tered, the increment is added to the value of the numeric variable.
When the value of the numeric variable equals or exceeds the final value,
control proceeds with the statement following the NEXT statement. If it
does not reach the final value, control returns to the statement following
the FOR statement.
Example
10 FOR I=A TO=-3%A STEP-1
20 PRINTI
30 NEXTI
40 END
3) The initial value, final value and increment are specified with numeric ex-
pressions.
The increment may be a negative value. If it is, control proceeds with the
statement following the NEXT statement when the value of the numeric
variable is equal to or less than the final value.
Example
10 A=2
20 FORI=ATO=-3%ASTEP-1
30 PRINTI
40 NEXT |
50 END
If zero is specified for the increment, the FOR-NEXT loop becomes a perm-
anent loop.
When ““STEP increment’’ is omitted, +1 is assumed for the increment.
Example
10 FORI=1TO 10
20 PRINTI
30 NEXTI
40 END
4) The FOR-NEXT loop is executed only once in the following cases.
The increment is a positive value, and the initial value is larger than the final
value.
The increment is a negative value, and the initial value is a smaller than the
final value.
5) The numeric variable must be a simple variable. If an array is specified for
the numeric variable, an error will result.

6)

7)

One FOR-NEXT loop may include another FOR-NEXT loop (nesting).

The larger FOR-NEXT loop must completely include the smaller FOR-
NEXT loop. If part of the smaller loop is outside the larger loop, an error
will result.

Example

Complete nestin~ Crossed loop (error)
10 FORI=1T05 — 10 FORI=1TOS5

20 FORJ=1TO03 20 FORJ=1TO03 —
30 PRINTI,J ' 30 PRINT I, J

40 NEXTJ 40 NEXTI

50 NEXT| ——— 50 NEXTJ

60 END 60 END

If a CLEAR or MAXFILES statement is executed inside a FOR-NEXT loop,
the loop will be discontinued.

FRE

Function

Function

Format

Descriptions

Examples

This function returns the size of the unused memory area.

FRE (numeric expression)
FRE (string expression)

1)

2)

3)

4)

The numeric or string expression is a dummy, and may have any value. The

result is returned in bytes.

FRE (numeric expression).
Returns the size of the free area within the user area. The free area is a
portion of the user area not used for storing a program or data.

FRE (string expression):
Returns the size of the unused area within the string area. When execut-
ing the FRE (string expression), delete unnecessary character strings
from the string area to expand the available string area.

For memory mapping, refer to Chapter 3, Section 3, “‘Memory Map."”

PRINT FRE (0)
PRINT FRE (")

e

GOSUB

Statement
Function This statement calls a subroutine.
Format GOSUB line number
Descriptions This statement allows a branch to the subroutine whose first line is specified by

the line number that follows it.

A RETURN statement placed in the subroutine causes control to be returned to
the statement following the GOSUB statement in the main program.

<Subroutine>
A subroutine is an independent set of instructions which is always terminat-

1)
2)

3)

4)
5)

Example 10
20
30
40
100
110
120
200
210
220
230
240

ed with a RETURN statement.

Subroutines can be called from any location in the main program any num-

ber of times to perform the same operation repeatedly.

One subroutine can call another subroutine. This is called multiple sub-

routines in nesting.

Each time a subroutine is nested, the corresponding memory area (stack) is

used. Nesting is allowed as long as stack area is available.

More than one RETURN statement may exist in a subroutine.
If a CLEAR or MAXFILES statement is executed in a subroutine, the RE-
TURN statement in the subroutine will not be able to return control to the

main program.

GOSuUB 100

1=0 : GOSUB 200
=1 :GOSUB 200
END

. Subroutine
PRINT “SUB100"
RETURN
,Subroutine
PRINT ““SUB200"
IF1=1THEN RETURN
GOSuUB 100
RETURN

GOTO

Statement

Function

Format

Description

Example

This statement creates a branch to the specified line, where execution continues.

GOTO line number
GO TO line number (up to one space allowed between GO and TO.)

1) The GOTO statement creates a branch to the program line specified, where
execution will continue.

2) If a GOTO statement is executed in Direct mode, program execution will
be initiated from the specified line.
Unlike the RUN command, the GOTO statement does not initialize vari-
ables nor close files.

10 GOTO 100
20 PRINT “20"
100 PRINT “100"
110 END

H EX$ (Hex $) Function

Function

Format

Description

Example

This function converts the value following it to a character string of hexadecimal
notation.

HEXS (integer expression)

The HEXS function converts the value of the integer expression to a character
string of hex notation.

A$=HEXS$(41)

IF

Statement

Function

Formats

Descriptions

This statement is used to make conditional decisions.

IF numeric expression THEN statement [:statement---] [ELSE statement [:state-
ment---]]

IF numeric expression THEN statement [:statement---] [ELSE line number]

IF numeric expression THEN line number [ELSE statement [:statement---]]

IF numeric expression THEN line number [ELSE line number]

IF numeric expression GOTO line number [ELSE statement [:statement---]]
|F numeric expression GOTO line number [ELSE line number]

1) The IF statement decides the route of programming flow based upon the
results of a numeric expression. When the numeric expression is a relation-
al or logical expression, decision is made based upon true or false.

2) When the value of the numeric expression is other than zero or the condi-
tion in the relational expression is satisfied (true), the statement that fol-
lows the THEN is executed, or the program branches to the line number
that follows the THEN or GOTO.

Example

3)

10 A=1:B=-1

20 IFA=-1THENPRINT”A=1"

30 IF B THENPRINT “B<>0"

40 END

When the value of the numeric expression is zero or the condition given by
the relational expression is not satisfied (false), the statement that follows
ELSE is executed or the program branches to the line number specified in
the ELSE clause.

When there is no ELSE clause, control is passed to the next line.

Examples

a)

10 A=1:B=0

20 IF A=0THENPRINT”A=0" ELSE PRINT"A< >0"

30 IF B THEN PRINT “B< >0"

40 PRINT 40"

50 END

The THEN or ELSE clause in an |IF statement may contain another |F state-
ment (nesting).

The number of THEN clauses may differ from the number of ELSE clauses.
Each ELSE clause is paired with the nearest THEN clause.

Example
lIF AS ="X" THEN IF B$="Y"” THEN PRINT"”Y"”ELSE PRINT"“X" ELSE 100
l L 1 J

=1

5)

In relational expressions, relational operators (=, < >, <. >, =<, or =>)
are used to compare the magnitudes of numeric values or character strings.
In logical expressions, logical operators (AND, OR, NOT, etc.) are used to
logically correlate more than one relational expression.

For details on relational and logical expressions, refer to Chapter 1, Section
4, “OPERATIONS.”

Example

10
20
30

40
50

100
110

INPUT “Y/N/E ?”;A$

IF AS="E"” THEN 40

IF AS<>"Y"” OR AS< > “N" THEN PRINT “Input Miss=".
;A$:GOTO 10 ELSE 100

PRINT “End"

END

IF AS="Y"” THEN PRINT “Yes"":GOTO 10

IF A$="N" THEN PRINT"No"”:GOTO 10

=70=

INKEY S

Function
Function This function is used to read a character from the keyboard.
Format INKEYS
Descriptions 1) The INKEY$ function returns the character of the depressed key on the

keyboard.

If no key is depressed, it returns a null string (** ‘).

Each time a key is pressed, the character of the key is transferred to the
computer’s keyboard buffer. When the INKEY$ function is executed, it
reads the last transferred keyboard character from the buffer,

Therefore the INKEY$ function may read a character which was transfer-
red to the buffer prior to the execution of the function.

2) If no key has been pressed, the INKEYS, when executed, does not wait for
key entry, but passes control to the next statement.
If you want the computer to wait for a key entry, you have to make a pro-
gram which tests for a key entry.
3) The INEKYS$ function does not display the character of the pressed key on
the screen.
Example 10 IF INKEYS$S< >"" THEN 10 Clears the keyboard buffer.
20 K$=INKEYS
30 IFK$=""THEN 20 Waited for a key entry.
40 PRINT “KEY =",K$
50 IFK$="E” THEN 100
60 GOTO 20
100 END
I N P (Input) Function
Function This function is used to read data from an 1/0 port.
Format INP (port address)
Descriptions 1) The INP function reads one byte of data from the port with the specified
port address.
2) The port address must be an integer ranging from 0 to 2565.
3) For details on port addresses, refer to Chapter 3, Section 5, ““1/0 Map."
Example 10 A= INP(&HAS)
20 AS$=BINS(A)
30 PRINT RIGHTS$(”0000000” +AS, 8)
40 END

==

INPUT

Statement

Function

Format

Descriptions

Example

This statement is used to input numbers or strings from the keyboard into vari-
ables.

INPUT(“phrase’”;] variable [, variable:-:]

1)

2)

3)

a)
5)

6)

7)

8)

9)

10
20
30
40
50

70

The INPUT statement, when executed, prints a phrase, question mark (?)
and a blank on the screen, and waits for data (numbers or strings) entry
from the keyboard.

When information is entered from the keyboard, it is displayed following

the blank. When the RETURN key is pressed, the information is transfer-

red to the specified variable.

The entered information may be edited with the screen edit keys before

the RETURN key is pressed.

If only the RETURN key is pressed, with no information entered from the

keyboard, the value of the variable remains the same as it was before the

INPUT statement was executed.

If the variable is first used in the INPUT statement, however, operation of

the RETURN key will assign zero to numeric variables, and a null string

(** *) to string variables.

Blanks preceding and/or succeeding entered information are ignored.

When the phrase (including quotes is omitted, only a question mark (?)

and a blank will appear when the INPUT statement is executed.,

When you wish to input more than one data item into corresponding vari-

ables, each data item must be separated by a comma {(,).

When the number of input data items does not match the number of speci-

fied variables, the following will happen:

* When the number of data items is less than the number of variables:
Two question marks (??) will appear on the screen, prompting
continued data entry.

When the number of data items exceeds the number of variables:

The message ““Extra ignored’’ will appear on the screen, signify-
ing that the extra data is ignored, and execution will continue.

If a character string is transferred to a numeric variable, the message *Redo

from start” will appear on the screen, and the system waits for data reentry

from the keyboard.

Quotation marks () may be omitted from a character string to be input to

a string variable.

However, if the character string contains at least one comma, or has blanks

at the first or last character position or positions of the string, the string

must be enclosed in quotes.

If the INPUT statement is executed while in Graphic mode, the system will

automatically return to Text mode.

INPUT “ABC"A$
PRINT AS
INPUT B

PRINT B

INPUT C, D, ES
PRINT CD:ES
END

-

72—

INPUT#

Statement
Function This statement reads data items from a file and assigns them to program vari-
ables.
Format INPUT# file number, variable [, variable --.]
Descriptions 1) The INPUT# statement reads data item (numeric values or character strings)

from the file specified by the file number, and assigns them to the specified
variables.

2) The file specified by the file number must first be opened by an OPEN
statement for input mode.
3) The data items readable with the INPUT# statement are those recorded in
the file by the PRINT# statement.
4) The variable types must match the corresponding data item types,
Example INPUT#1, A, B

INPUTS

Function

Function This function returns a string of a specified number of characters read from the
keyboard or from a specified file.

Formats INPUTS (integer expression, [#] file number)
INPUTS (integer expression)

Descriptions 1)

2)

3)

Example 10
20
30

When INPUTS (integer expression, [#] file number) is specified:

The INPUTS function returns a character string whose length is specified
by the integer expression, and which is read from the file specified by the
file number.

When INPUTS (integer expression) is specified:

The function returns a character string whose length is specified by the
integer expression, and which is read from the keyboard.

Once the specified string length is returned, execution proceeds with the
next statement without requiring RETURN key operation.

The character string entered from the keyboard will not appear on the
screen.

This function can read any character code except the CTRL and STOP key
codes. Included in the readable character codes are the CR (&HOD) or LF
(&HOA) codes.

AS = INPUTS(2)
PRINT AS
END

73—

l N ST R (Instring) Function

Function This function returns the location of a specified character in a specified string.
Format INSTR ([integer expression,] string expression 1, string expression 2)
Descriptions 1) The INSTR function searches for the string specified by string expression

2 within the string specified by string expression 1 and returns the location
of the first character of the former string.

2) The integer expression specifies the first character location where searching
will begin.

The value of the integer expression must be an integer ranging from 1 to
255. When it is omitted, searching starts with the first character location on
string 1.

3) |If string 2 was not found in string 1 of the value of the integer expression
exceeds the number of characters contained in string 1, the INSTR function
will return zero.

Example 10 A$="ABCDEFGABC”

20 BS="FG”

30 A=INSTR(AS, BS)

40 B =INSTR(3, AS, “ABC")

50 PRINTA,B

60 END

INT (integer) Function

Function This function returns an integer which does not exceed the value of a numeric

expression.

Format INT (numeric expression)

Descriptions 1) The INT function returns an integer which does not exceed the value of the
numeric expression that follows it, by truncating all decimal places of the
expression value.

2) For negative values, the INT and FIX functions return different integers.

For positive values, they return the same integer, however.
A=INT(=1.23) —2 is assigned to variable A.
A=FIX(-1.23) =1 is assigned to variable A.

—74—

INTERVAL ON Statement

Function
Format

Description

This statement enables interrupts from an interval time.
INTERVAL ON

Once the INTERVAL ON statement is executed, the interrupt service routine
specified in the ON INTERVAL GOSUB statement is executed each time the
interval specified in the same statement elapses.

INTERVAL OFF Statement

Function
Format

Description

This statement disables interrupts from an interval timer.
INTERVAL OFF

Once the INTERVAL OFF statement is executed, interrupts from an interval
timer are disabled (the interrupt service routine specified in the ON INTERVAL
GOSUB statement will not be executed when the interval specified in the same
statement has elapsed).

INTERVAL STOP Statement

Function
Format

Descriptions

This statement holds up an interrupt from an interval timer.
INTERVAL STOP

1) The INTERVAL STOP statement holds up interval timer interrupts (whose
interval is specified in the ON INTERVAL GOSUB statement) until the
INTERVAL ON statement is executed.

Once a specified interval elapses after the INTERVAL STOP statement has
been executed, a subsequent execution of the INTERVAL ON statement
initiates the execution of the interrupt service routine.

2) The INTERVAL STOP statement holds up the execution of the INTER-
VAL ON statement. If no INTERVAL ON statement has been executed,
interrupts are not held up but ignored.

—76—

KEY

Command

Function
Format

Descriptions

Example

This command designates a character string to any of the function keys.
KEY integer expression, string expression.

1) The KEY command assigns the contents of the character string expression
to the function key specified by the integer expression.

2) The value of the integer expression must be an integer from 1 to 10, which
corresponds to the function key numbers.

3) Up to 15 characters may be used for a string; all extra characters will be
ignored.
When placing a control code in the string expression, it must be preceded by
a plus (+) sign and a CHRS function.

KEY 2, “SCREEN 0"+CHRS$ (&HOD)

KEY LIST Command

Function
Format

Description

This command lists all of the function key designations on the screen.
KEY LIST

The KEY LIST command lists all of the character strings assigned to the func-
tion keys, on a text mode screen.

K EY 0 N Statement

Function
Format

Descriptions

This statement prints the function key designations at the bottom of the screen.
KEY ON

1) The KEY ON statement is used to print the first five characters of strings
assigned to function keys, at the bottom of the screen.

2) Normally the key designations for function keys 1 through 5 are printed;
when the SHIFT key is pressed and held, those for function keys 6 through
10 are printed.

KEY OFF Statement

Function

Format

Description

This statement turns off the function key designation printout at the bottom of
the screen.

KEY OFF

The KEY OFF statement is used to erase the function key destinations at the
bottom of the screen.

[-

KEY (n)ON Statement

Function
Format

Descriptions

This statement is used to enable function key interrupts.

KEY (integer expression) ON

1)

2)

If the function key specified by the integer expression is pressed after the
KEY(n) ON statement has been executed, the program branches to the in-
terrupt service routine specified in the ON KEY GOSUB statement.
When KEY (n) ON is valid, all function key designations are ignored.

KEY (I"I) OFF Statement

Function
Format

Description

This statement is used to disable function key interrupts.

KEY (integer expression) OFF

Once the KEY(n) OFF statement is executed, no interrupt will occur when the
function key specified by the integer expression is pressed.

KEY (n) STOP Statement

Function
Format

Descriptions

This statement is used to hold up function key interrupts.

KEY (integer expression) STOP

1)

2)

3)

The KEY (n) STOP statement is used to hold up an interrupt caused by pres-
sing the function key specified by the integer expression, until a KEY(n)
ON statement is subsequently executed.

If the specified function key is pressed after the KEY(n) STOP statement
has been executed, the interrupt service routine will be executed when the
KEY(n) ON statement is subsequently executed.

The KEY(n) STOP statement is used to hold up execution of the KEY(N)
ON statement. When no KEY(n) ON statement has been executed, inter-
rupts are not held up but ignored.

Once the KEY(n) STOP statement is executed, the key designation for the
specified function key will be ignored.

-

LEFTS

Function

Function This function returns a specified number of characters from a character string,

starting with the leftmost character.

Format LEFTS$ (string expression, number of characters)

Descriptions 1) The LEFTS$ function returns the specified number of characters from the
character string specified by the string expression, starting with the left-
most character of the string.

2) When the specified number of characters is equal to or larger than the
number of characters in the string, all the characters of the string will be
returned.

3) When zero is specified for the number of characters, a null string (")
will be returned.

4) The graphic character header (&HO01) for a graphic symbol is counted as a
character. This means that a graphic symbol must be counted as two charac-
ters.

Example AS= LEFTS$("ABCDEF",3) “ABC" is assigned to variable AS.

LEN (Lengtn) Function

Function This function returns the length of a string.

Format LEN (string expression)

Descriptions 1) The LEN function returns the total number of characters in the character
string specified by the string expression that follows it.

2) A control code or blank is also counted as a character.

3) The graphic character header (&HO01) for graphic symbols is also counted as
a character. This means that each graphic symbol must be counted as two
characters.

Example 10 A$="ABC” + CHRS$(&HO0D)

20 A=LEN(AS):B=LEN("©")
30 PRINTA,B
40 END

LET

Statement

Function

Format

Descriptions

This statement is used to assign the value of an expression to a variable.

LET variable = expression
Variable = expression

1) The LET statement assigns the value of the expression to the variable.

2) LET is not necessary.

3) It is not possible to assign the value of a string expression to a numeric
variable or the value of a numeric expression to a string variable.

<78

Example

10
20
30
40

LETA=10

LET AS = "ABC"
B=20

PRINT A, AS, B
END

LINE

Statement

Function

Formats

Descriptions

Example

This statement is used to draw straight lines or rectangles on a graphic screen.

LINE [(coordinate X, coordinate Y,)] -(coordinate X,, coordinate Y,)[,colour

code]

LINE [(coordinate X,, coordinate Y,)]-(coordinate X,, coordinate Y,),[col-

our code] , B

LINE [(coordinate X,, coordinate Y,)]-(coordinate X,, coordinate Y,), [col-

our code], BF

Relative coordinate specifications, STEP (X,, Y,) and STEP (X,, Y,) are usable
in place of coordinates (X;, Y,) and (X;, Y,), respectively.

1)

2)

3)

4)

5)

6)

10
20

The LINE statement allows you to draw straight lines or rectangles on a

graphic screen, using the colour specified by the colour code.

When B or BF are A straight line is drawn between the two coordinate

omitted- points (X, Yy)and (X;, Y;).

When B is specified: A rectangle, with its opposite corners located at co-
ordinate points (X, Y,) and (X,, Y,), is drawn on
the screen,

When BF is specified: A rectangle, with its opposite corners located at co-
ordinate points (X,, Y,) and (X,, Y,), is drawn on
the screen and the enclosed area is painted with the
colour specified by the colour code.

When the colour code is omitted, the colour specified in the COLOR state-

ment is assumed.

When the begin point (X,, Y,) is omitted, the last reference point (LP) is

assumed for it.

If the begin point (X,, Y,) is specified with relative coordinates, it refers to

the LP as the origin.

If the end point (X;, Y,) is specified with relative coordinates, it refers to

the LP as the origin.

After the LINE statement is executed, the LP is located at the end point

(%5, Y5).

The X coordinate point may be specified with an integer from 0 to 255,

while the Y coordinate point may be specified with an integer from 0 to

191.

If a coordinate point outside the above ranges is specified, 0 or 255 is as-

sumed for the X coordinate point, and 0 or 191 is assumed for the Y co-

ordinate point.

SCREEN Draws a straight line
LINE (10, 10)-(50, 50), 1 Draws a rectangle.
LINE (60, 60)-(100, 100), , B Draws a rectangle and paints it.

=70

40 LINE (110, 110)-(150, 150), 1, BF Draws a rectangle and paints it.

50 LINE STEP (10,—40)-STEP (40, 40), 1, BF
Specified with relative coordinates.

60 GOTO 60

LINE INPUT Statement

Function: This statement reads a character string from the keyboard and places it in a
string variable.

Format: LINE INPUT [“comment”;] string variable.

Descriptions: 1) The LINE INPUT statement prints the comments on the screen and waits
for entry of a character string from the keyboard.

2) When a string is typed in, it is printed after the semicolon. Operation of the
RETURN key assigns the string to the string variable.

The printed string can be edited with the screen edit keys before the RE-
TURN key is pressed.

3) If only the RETURN key is pressed, with no string typed in, a null string
(** ") will be read into the variable.

4) Unlike the INPUT statement, the LINE INPUT statement prints no ques-
tion mark (?) following the comment, and transfers commas (,) or quotes
(") to the string variable.

5) If the LINE INPUT statement is executed on a graphic screen, correct
data will not be read into the variable, and the screen will not be returned
to the text mode.

Example: 10 LINE INPUT"“ABC";AS$
20 PRINT A%
30 END

LINE INPUT # Statement

Statement: This statement reads a character string from a file and places it in a string varia-
ble.

Format: LINE INPUT# file number; string variable.

Descriptions: 1) The LINE INPUT# statement reads a character string from the file specified

by the file number. All characters upto the CR (&HOD) and LF (&HOA)
codes or only the CR code are assigned to the variable.

2) Only a combination of CR and LF codes, arranged in the order in which
they are written, or a CR code is regarded as a delimiter. A combination of
LF and CR codes appearing in this order is not regarded as a delimiter.

3) When the characters string read from a file exceeds 254 characters, the first
254 characters are read into the first string variable, and the extra characters
are assigned to a second variable.

4) Data written to a file with the PRINT# statement uses CR and LF codes as
delimiters, and hence can beread with the LINE INPUT# statement.

5) ASCII files created with the SAVE command contain CR and LF codes as
delimiters at the end of each line, and hence may be read as string variables.

—80—

LIST

Command

Functions:
Formats:

Descriptions:

Example:

This command displays program lines currently in memory.

LIST [line number]
LIST [begin line number] — end line number.
LIST beging line number — [end line number].

1) The LIST command displays all program lines between and including the
begin and end line numbers on a text mode screen.

2) When only LIST is used by itself: Displays all program lines.

When LIST line number is specified: Displays only the specified pro-
gram line,

When LIST —end line number is Displays program lines from the

specified: first line of the program up to
and including the end line number.

When LIST begin line number— Displays program lines from the

is specified: begin line number through the last

line of the program.

3) |If a period (.) is used in place of a line number, the last execution line will
be displayed on the screen. The last execution line refers to the line which
was last executed by BASIC. If program execution has halted due to an
error statement, the last execution line is the line on which the error
occurred. When the LIST or LLIST statement is executed, the last exe-
cution line refers to the line which was last specified.

4) To temporarily stop a list operation, press the STOP key. To resume a list
operation, press the STOP key a second time.

5) To suspend a list operation and return to the command mode, simultaneous-
ly press the CTRL and STOP keys.

LIST
LIST 100
LIST 100—-200

LLIST

Command

Functions:

Formats:

Description:

Example:

This command lists program lines on a printer.

LLIST [line number]
LLIST [begin line number]-end line number
LLIST begin line number — [end line number]

The LLIST command is identical to the LIST command, with the exception that
all lines specified are output to an attached printer.

LLIST 100-200

—81—

LOAD

Command

Function:
Format:

Descriptions:

Example:

This command reads as ASCI| form program file into memory.
LOAD"device name [file name]”[, R]

1)
2)

3)

4)

The LOAD command retrieves a program (ASCII file) which was saved by
the SAVE command, and reads it into memory.

Execution of the LOAD command clears previous programs or variables
from memory, and closes open files.

When the R option is specified, program execution is automatically started
immediately after the program is read into memory. In this case, open files
are not closed.

When the file name is omitted, the program file which is first found will be
read.

LOAD"CAS:SAMPLE"
LOAD”CAS:SAMPLE", R

LOCATE —

Function:

Format:

Descriptions:

Example:

This statement positions the cursor to the point specified on the screen.

LOCATE column position
LOCATE [column position], row position
LOCATE [column position], [row position], cursor switch

1)

2)

3)

4)

10
20

The LOCATE statement positions the cursor at the specified position on a
text mode screen.

Column positions range from 0 to 39, 0 being assigned to the leftmost
column.

If a column position exceeding the maximum screen width specified by the
SCREEN or WIDTH statement is specified, the position identified by the
maximum screen width will be assumed.

When the column position is omitted, the previous column position is
assumed.

Row positions range from 0 to 23, 0 being assigned to the top row.

If a value exceeding the last row position is specified, the last row position
will be assumed.

The last row position is 22 when the function key designations are printed
on the screen, and is 23 when they are not on the screen.

When the row position is omitted, the current row position is assumed.

The cursor switch, specified with a numeric expression having a value of 1
or 0, is used to turn the screen cursor on and off.

When the switch value is zero, no cursor appears on the screen except when
the system waits for key entry. When the switch value is one, the cursor
always appears on the screen.

The initial default value is 0.

LOCATE 10, 10:INPUT AS

LOCATE 10 : PRINT AS$
END

L OG (Logarithm) Function

Function: This function returns the natural logarithm of a numeric expression.
Format: LOG (numeric expression)
Descriptions: 1) The LOG function returns the natural logarithm (using “‘e’* as its base) of
the numeric expression that follows it.
2) The value of the numeric expression must be larger than zero.
3) The result is always returned as a double-precision real number regardless of
the numeric expression type.
Example: A=LOG (1.23)
L P OS (Printer Head Position) Function
Function: This function returns the printer head position.
Format: LPOS (expression)
Descriptions: 1) The LPOS function returns the head position of the printer buffer in
memory. It does not refer to the physical head position.
2) The expression is a dummy, and may have any value.
Example: A=LPOS (X)

L P R I NT Statement

Function:

Formats:

Descriptions:

Example:

This statement outputs data (numeric values or character strings) to the printer.

LPRINT
LPRINT expression [;expression ---] [;]
LPRINT expression [,expression][,]

1) The LPRINT statement outputs the numbers or strings derived from the
expressions to an attached printer.

2) When specifying more than one expression in an LPRINT statement,
separate them with commas (,) or semicolons (;).

3) When only LPRINT is used, with no expression specified, only a line feed
operation will occur when the statement is executed.

4) |If the LPRINT statement is not followed by a comma or semicolon, the out-
put data will be followed by a CR code (&HOD) and a LF code (&HOA).

5) The handling of commas, semicolons and data is identical to the PRINT
statement, except that the data is sent to the printer,

10 LPRINT “ABC"”;123;
20 LPRINT “CDE”
30 END

LPRINT USING Statement

Function: This statement is used to output numbers or strings to the printer using a speci-
fic format.
Format: LPRINT USING format string; expression [;expression -][; |

LPRINT USING format string; expression [,expression -«] [,]

Descriptions: 1) The LPRINT USING statement outputs the numbers or string derived from
the expressions to an attached printer, using a specific format.

2) When specifying more than one expression in an LPRINT USING state-
ment, separate them with commas (,) or semicolons (;).

3) If the LPRINT USING statement is not followed by a comma or semicolon,
the output data is terminated with a CR code (&HOD) and a LF code
(&HOA).

4) The handling of commas, semicolons and data is identical to the PRINT
statement, except that the data is sent to the printer.

5) Format specification is identical to that for the PRINT USING statement.
For more details refer to the PRINT USING statement.

Example: 10 LPRINT USING “\\ #### ","ABC"";123;
20 LPRINT USING “\\"; “CDE"
30 END

MAXFILES Statement

Function: This statement specifies the maximum number of files.
Format: MAXFILES=integer expression
Descriptions: 1) The MAXFILES statement is used to specify the maximum number of files,

2)

3)

4)

as used in an OPEN statement, using an integer expression.

All files up to the specified maximum number can be opened at a time.

The number that can be specified with the integer expression ranges from 0

to 15.

The initial value of the integer expression is one. If the value of the integer

expression is zero, no file can be opened with an OPEN statement.

Similar to the CLEAR statement, this statement initializes all variables.
Numeric variables are initialized to zero; string variables are initialized
to null (" “).

All open files are closed.

All of the contents defined in the statements beginning with DEF

(DEF FN, DEF USR, DEFINT, DEFSNG, DEFDBL, and DEFSTR)

are made invalid.

All arrays are cleared.

FOR NEXT loops are discontinued.

Control is not returned from a subroutine by the RETURN statement.
When the MAXFILES statement is executed, a file control block specified
by (the value of the integer expression + 1) is set aside in memory.

A space of 267 bytes is set aside for each file control block.

Example: MAXFILES=10

MERGE

Command
Function: This command reads an ASCI| program file and merges it with the program
currently in memory.
Format: MERGE ““device name [file name] "
Descriptions: 1) The MERGE command reads an ASCI| program file which was recorded by

the SAVE command, and merges it with the program currently in memory.

2) When the file name is omitted, the ASCI| program file which is first found
will be read.

3) |If the program in a file contains the same line number as that in the pro-
gram currently in memory, the program line in the program file replaces the
one in memory.

Example: MERGE “CAS:SAMPLE"

—85—

MID$

Function

Function:
Format:

Descriptions:

Example:

This function returns the specified part of the given string to the screen.

MIDS$ (string expression, position [, number of characters])

1) The MID$ function returns the specified number of characters, beginning
with the specified character position, from the string specified by the

string expression.

2) The position is specified by an integer expression whose value is 1 through

255.

If the specified position exceeds the number of strings a null (*) will be

returned.

3) The number of characters is specified with an integer expression whose

value ranges from 0 to 255.

When the number of characters is omitted, the character at the specified

position and all the characters to the right, will be returned.

When zero is specified for the number of characters, a null (* ") will be

returned.

4) The graphic character header (&HO1) in a graphic symbol is counted as a
character. This means that each graphic symbol occupies two character

positions.

10 A$="012345689ABCDEF"

20 B$=MIDS$ (A$, 2, 1) : C$=MIDS$ (AS, 4)
30 PRINT BS, C$

40 END

—86—

MID$

Statement

Function:

Format:

Descriptions:

Example:

This statement replaces the specified part of the given string with another
string.

MIDS$ (string variable, position [, number of characters])=string expression

1) The MID$ statement is used to replace a specified number of characters
in a specified character string by a string variable having the same number of
characters as specified by the string expression, beginning with the speci-
fied character position. The number of characters assigned to the string
variable must not change before or after replacement.

2) The character position is specified by an integer expression whose value
ranges from 1 to 255.

The character position must not exceed the number of characters assigned
to the string variable.

3) The number of characters to be replaced is specified by an integer expres-
sion whose value ranges from 0 to 255.

When the number of characters is omitted or exceeds the number of cha-
racters in the string expression, the numbers of characters to be replaced
is identical to the number in the string expression.

When the number of characters to be replaced is smaller than the number
of characters in the string expression, the characters in the variable are re-
placed with the corresponding number of characters in the string expres-
sion beginning with the leftmost character of the expression.

4) When the value (position+number of characters=1) exceeds the number of
characters in the string variable, the extra characters are ignored.

5) The graphic character header (&HO1) for a graphic symbol is counted
as a character. This means that each graphic symbol occupies two character
positions.

10 A$="012345689"

20 MIDS (AS, 2, 4)="AAAAAAA"
30 PRINT AS

40 END

M OTO R Statement

Function:

Formats:

Descriptions:

This statement is used to turn the cassette recorder’s motor on and off.
MOTOR ON

MOTOR OFF

MOTOR

1) The MOTOR statement controls motor operation in an attached cassette
recorder, which has been placed in the Play or Record mode.

2) MOTOR ON: Starts the motor.
MOTOR OFF: Stops the motor.
MOTOR: Stops the motor if it is turning, and starts it if it is
stationary.

g7

NEXT

Statement

Function:

Format:
Descriptions:

Example:

This statement is used with a FOR statement to form an execution loop in a
program.
NEXT [numeric variable [, numeric variable -]]

1) The NEXT statement is used with the FOR statement in which the same
numeric variable is placed.

2) When more than one numeric variable is placed in this statement, it forms
execution loops with the corresponding number of FOR statements. In this
case, the numeric variables in the NEXT statement must be arranged so that
the first variable corresponds to the nearest FOR statement, the second
variable corresponds to the next to the nearest FOR statement, and so
forth.

3) When numeric variables are omitted, the NEXT statement is paired with
the nearest FOR statement.

10 FOR I=1TO5

20 FOR J=1T03 No cross loop
30 FOR K=1TO2

40 PRINT I,J, K :NEXT K, J, |

50 FOR X=1TO4:PRINT X

60 NEXT

70 END

NEW

Command

Function:
Format:

Descriptions:

This command deletes the program currently in memory and clears all variables.
NEW

1) The NEW command deletes the program currently in memory and clears
all variables.
Open files are closed.
The contents of the statements beginning with DEF (DEF FN, DEF
USR, DEFINT, DEFSNG, DEFDBL, or DEFSTR) are made invalid.
All arrays are cleared.
2) The NEW command is often used prior to beginning a program.

OCTS

Function

Function:
Format:

Description:

Example:

This function converts a numeric value into a string of octal notation characters.

OCTS$ (integer expression)

The OCTS function returns a string to the screen that is equal to the octal
value of the decimal integer expression that follows it.

10 A$=0CTS$ (16) 20" is assigned to variable AS.
20 PRINT AS$
30 END

ON ERROR GOTO —

Function:
Format:

Descriptions:

Example:

This statement is used to specify the first line number of an error service routine.
ON ERROR GOTO line number

1)

2)

3)

4)

The ON ERROR GOTO statement enables interrupts caused by errors.
If an error occurs, it causes execution to branch to the error service routine
whose first line number is specified by itself.

Once this statement is executed, the BASIC system does not take care of
the error (no error message appears, nor does the system return to the
command mode). .
An error service routine contains the ERR or ERL functions for error
processing, and terminates with a RESUME statement.

If an error occurs within an error service routine, no interrupt occurs, but an
error message appears on the screen and the system returns to the command
mode.

When an ON ERROR GOTO 0 statement is executed, interrupts caused by
errors are disabled, and all errors are taken care of by the BASIC system,
Once this statement is executed, error interrupts remain enabled even after
program execution is completed. This means that an interrupt caused by an
error which occurred after the system returned to the command mode, will
cause the specified error service routine to be executed.

Interrupts enabled by an ON ERROR GOTO statement are not disabled
until another ON ERROR GOTO statement, RUN command, or CLEAR
statement is executed, To disable error interrupts within the current pro-
gram, the ON ERROR GOTO 0 statement must be executed before the
program is terminated.

ON ERROR GOTO 1000

ON GOSUB Statement

Function:
Formats:

Descriptions:

Example:

This statement causes execution to branch to a specified subroutine.

ON integer expression GOSUB line number [, line number - |
ON integer expression GOSUB [[line number], -] line number

1) The ON GOSUB statement causes execution to branch to the subroutine
with the specified first line number whose position in the statement is
specified by the integer expression.

2) When the value of the integer expression is zero or the line number in the
specified position is omitted, execution branches to no subroutine, but
proceeds with the statement after the ON GOSUB statement.

ON X GOSuB 100, , 55

When X=1, the subroutine beginning with line 100 is executed.
When X=2, execution proceeds with the next statement.

When X=3, the subroutine beginning with line 55 is executed.
When X=4, execution proceeds with the next statement.

O N G OTO Statement

Function:
Formats:

Descriptions:

Example:

This statement creates a branch to a specified line.

ON integer expression GOTO line number [, line number ---]
ON integer expression GOTO [[line number], -+] line number

1) The ON GOTO statement causes execution to branch to the specified line
number whose position in the statement is specified by the integer expres-
sion,

2) When the value of the integer expression is zero or the line number in the
specified position is omitted, execution proceeds with the statement after
the ON GOTO statement.

ON X GOTO 100, , 55

When X=1, execution branches to line 100.

When X=2, execution proceeds with the next statement.
When X=3, execution branches to line 55.

When X=4, execution proceeds with the next statement.

ON INTERVAL GOSUB Statement

Function:

Format:

Descriptions:

Example:

This statement specifies the first line of an interval timer interrupt service rou-
tine.

ON INTERVAL=interval time GOSUB line number

1) The ON INTERVAL GOSUB statement is used to specify the time interval

at which interrupts are requested from the interval timer, and the first line
number of an interval timer interrupt service routine.
When an interval timer interrupt is enabled by the INTERVAL ON state-
ment, the interval timer requests an interrupt at specified time intervals,
causing execution to branch to the interrupt service routine whose first
line number is specified in the statement.

2) The time interval can be set in 1/50 second increments, and is specified
with an integer expression whose value ranges from 1 to 65535. Interval
count down starts when the ON INTERVAL GOSUB statement is exe-
cuted.

3) A return from the subroutine is accomplished by a RETURN statement

placed in the subroutine.
While the interrupt service routine is being executed, the system is placed
in the INTERVAL STOP (interrupt hold) state. When a RETURN state-
ment is executed, the system returns to the INTERVAL ON (interrupt
enable) state.

4) While the interrupt service routine specified by any of the following state-
ments is being executed, the system is placed in the INTERVAL STOP
(interrupt hold) state until execution of the subroutine is completed:

ON ERROR GOTO ON KEY GOSuB
ON STOP GOSuUB ON SPRITE GOSuUB
ON STRIG GOSUB

10 ON INTERVAL=50GOSUB 100
20 TIME=0

30 INTERVAL ON

40 GOTO 40

100 PRINT TIME/50

110 RETURN

7. [

ON KEY GOSUB Statement

Function:

Formats:

Descriptions:

Example:

This statement specifies the first line number of an interrupt service routine
whose execution is initiated by a function key operation.

ON KEY GOSUB line number [, line number --.]
ON KEY GOSUB [[line number], -] line number

1) The ON KEY GOSUB statement is used to specify the first line number of
an interrupt service routine whose execution is initiated by a function key
operated after a KEY(n) ON statement has been executed in the same
program. Execution branches to the routine with the specified first line
number,

2) Line numbers in the statement are arranged in the order of function key
numbers, so different line numbers may be specified for each function key.
Up to ten line numbers may be specified in this statement by separating
them with commas (,).

When any line number is omitted, the corresponding function key will not
cause an interrupt when operated,

3) A returning from an interrupt service routine is accomplished by a RE-
TURN statement placed in the subroutine. While an interrupt service
routine is being executed, the system is placed in the KEY(n) STOP (inter-
rupt hold) state. When a RETURN statement is executed the system returns
to the KEY(n) ON (interrupt enable) state.

4) While an interrupt service routine caused by an ON ERROR GOTO state-
ment is being executed, the system is placed in the KEY(n) STOP (inter-
rupt hold) state until execution of the subroutine is completed.

10 ON KEY GOSUB 100, ,, 200

20 KEY (1) ON

30 KEY (4) ON

40 GOTO 40

100 PRINT “F1"

110 RETURN

200 PRINT “F4"

210 RETURN

—92—

ON SPRITE GOSUB Statement

Function:

Format:

Descriptions:

Example:

This statement specifies the first line number of a sprite interrupt service rou-
tine,

ON SPRITE GOSUB line number

1)

2)

3)

10
20
30
40
50
60
70
80
90

The ON SPRITE GOSUB statement is used to specify the first line number
of an interrupt service routine whose execution is initiated when two sprite
figures overlap on the screen.

A sprite interrupt occurs when a sprite figure drawn with the PUT SPRITE
statement (after the SPRITE ON statement has been executed) overlaps
another sprite figure on the screen, causing execution to branch to the
specified interrupt service routine.

A return from an interrupt service routine is accomplished by a RETURN
statement placed in the subroutine. While an interrupt service routine is
being executed, the system is placed in the SPRITE STOP (interrupt hold)
state. When a RETURN statement is executed, the system returns to the
SPRITE ON (interrupt enable) state.

While the interrupt service routine specified by any of the following state-
ments is being executed, the system is placed in the SPRITE STOP (inter-
rupt hold) state until execution of the subroutine is completed:

ON ERROR GOTO ON KEY GOSuUB
ON STOP GOSuB

SCREEN 2

ON SPRITE GOSUB 100
SPRITE ON

SPRITES(0)=STRINGS (8, 255)
FOR 1=0 TO 300

PUT SPRITE O, (1, 200—1), 1
PUT SPRITE 1, (200-1,1),8,0
NEXT

END

100 RETURN 50

—03-—

ON STOP GOSUB Statement

Function: This statement specifies the first line of an interrupt service routine which is
initiated by an interrupt caused by the operation of the CTRL and STOP keys.

Format: ON STOP GOSUB line number

Descriptions: 1) The ON STOP GOSUB statement is used to specify the first line number

of an interrupt service routine whose execution is initiated by an interrupt
caused by the simultaneous operation of the CTRL and STOP keys.

If the CTRL and STOP keys are simultaneously pressed after a STOP ON
statement has been executed, an interrupt occurs causing execution to
branch to an interrupt service routine with the specified first line number.

2) A return from an interrupt service routine is done by a RETURN statement
placed in the routine. .

While an interrupt service routine is being executed, the system is placed in
the STOP STOP (interrupt hold) state. When a RETURN statement is
executed, the system returns to the STOP ON (interrupt enable) state.

3) While the interrupt service routine specified in any of the following state-
ments is being executed, the system is placed in the STOP STOP (interrupt
hold) state until execution of the routine is completed:

ON ERROR GOTO ON KEY GOSuUB

4) Erroneous execution of this statement may cause a program runaway,
which can be stopped only by turning the computer off. Make sure the
programming for this statement is correct.

Example: 10 ON STOP GOSUB 100

20 STOP ON

30 K$=INKEYS

40 IF K$="E'" THEN 200

50 GOTO 30

100 PRINT 100"

110 RETURN

200 STOP OFF

210 END

—94—

ON STRIG GOSUB Statement

Function:

Formats:

Descriptions:

Example:

This statement specifies the first line of an interrupt service routine to which
execution branches when an interrupt is caused by operation of the Space bar on
the keyboard or a Trigger button on a joystick.

ON STRIG GOSUB line number [, line number -]
ON STRIG GOSUB [[line number], -+] line number

1)

2)

3)

a)

The ON STRIG GOSUB statement is used to specify the first line number
of an interrupt service routine to which execution branches when an inter-
rupt is caused by operation of the Space bar on the keyboard or any of the
trigger buttons on a joystick.
If the Space bar on the keyboard or a Trigger button on a joystick is pressed
after a STRIG(n) ON statement has been executed, an interrupt occurs,
causing execution to branch to the interrupt service routine whose first
line is specified in this statement.
Up to five line numbers are specifiable in this statement. Trigger numbers 0
through 4 correspond to line numbers in the order in which they are speci-
fied in this statement,
0 Space bar on the keyboard.
1 1st trigger button on the joystick connected to JOYSTICK
socket 1.
2 1st trigger button on the joystick connected to JOYSTICK
socket 2.
3 2nd trigger button on the joystick connected to JOYSTICK
socket 1.
4 2nd trigger button on the joystick connected to JOYSTICK
socket 2,
Line numbers are separated by commas (,).
If any line number is omitted, the corresponding trigger will not cause an
interrupt.
A returning from an interrupt service routine is accomplished by a RE-
TURN statement placed in the routine. While an interrupt service routine is
being executed, the system is placed in the STRIG(n) STOP (interrupt
hold) state. When a RETURN statement is executed, the system returns to
the STRIG(n) ON (interrupt enable) state.
While the interrupt service routine specified in any of the following state-
ments is being executed, the system is placed in the STRIG(n) STOP (inter-
rupt hold) state until execution of tthe routine is completed:
ON ERROR GOTO ON KEY GOSuB
ON STOP GOSuUB ON SPRITE GOSuB

10 ON STRIG GOSUB 100, 200, 300

20 STRIG (0)ON:STRIG(1)ON:STRIG(2)ON
30 GOTO 30

100 PRINT “SPACE” : RETURN

200 PRINT “JOY 1 " : RETURN

300 PRINT “JOY 2 : RETURN

—95—

OPEN

Statement

Function:
Format:

Descriptions:

Example:

This statement is used to open a file for data 1/0.
OPEN “‘device name [file name] ”” [FOR mode] AS [#] file number

1) The OPEN statement opens a file with the specified file name, and assigns
the specified file number to it. The file, once opened, may be used for
data input or output by using the INPUT# or PRINT# statements. When

file access is completed, a file should be closed with the CLOSE statement.
2) The FOR clause is used to specify data input or output:
FOR INPUT Input mode
FOR QUTPUT Qutput mode

3) The file number is specified with an integer ranging from 1 to 15. It must

not exceed the value specified in the MAXFILES statement.
It is not allowed to use the file number of an already opened file.

4) The OPEN statement is used for data input/output to or from cassette tape

files or for printing characters or text symbols on a graphic screen.

10 SCREEN 3

20 OPEN “GRP:""AS 1
30 PRESET (10, 10)

40 PRINT# 1, “SAMPLE"
50 CLOSE

60 GOTO 60

ouT

Statement

Function:
Format:

Descriptions:

This statement is used to output one byte of data to an /0 port.
OUT port address, integer expression

1) The OUT statement is used to output one byte of data, specified by the
integer expression, to the 1/0 port with the specified port address.

2) The port address is specified with an integer expression whose value ranges
from 0 to 255.

3) For details on port addresses, refer to Chapter 3, Section 5, “1/0 Map."”

4) Erroneous execution of the QUT statement may cause a program runaway
which can be stopped only by turning the system off.

PAD

Function

Function:
Format:

Descriptions:

This statement returns the status of an attached touch pad.
PAD (integer expression)

1) The PAD function returns the status of a touch pad (connected to one of
the JOYSTICK sockets) which is specified by the integer expression.

2) The value of the integer expression specifies the JOYSTICK socket to which
the touch pad is connected, and the status type to be returned.

0-3 Specifies JOYSTICK socket 1.

4-7 Specifies JOYSTICK socket 2.

Oor4 Returns =1 when the touch pad is pressed.
Returns 0 when the touch pad is not pressed.

lorb Returns the X coordinate of the pressed point on the
touch pad.

2o0rb6 Returns the Y coordinate of the pressed point on the
touch pad.

3or7 Returns —1 when the switch on the touch pad is
pressed.

Returns 0 when the switch is not pressed.

— g7

PAINT

Statement

Function:
Formats:

Descriptions:

Example:

This statement is used to paint a specified area on the screen.

PAINT (X coordinate, Y coordinate) [, paint colour [, boundary colour]]
PAINT (X coordinate, Y coordinate), [paint colour], boundary colour

Reltive coordinates STEP (X, Y) may be used in place of absolute coordinates
X Y)

1) The PAINT statement is used to paint the entire area enclosed by boundary
lines (of the specified boundary colour(, and in which the specified coordi-
nate point is located, using the specified paint colour.

When in the high resolution graphic mode, boundary colour is not speci-
fiable. The colour specified for the paint colour is also used for the
boundary colour.

2) The boundary and paint colours are both specified with colour codes.

When the boundary colour is omitted, the colour used for the paint colour
is also used for the boundary colour.

When the paint colour is omitted, the colour specified in the COLOR
statement is used for it.

3) If relative coordinates, STEP (X, Y), are used, the coordinate point is re-
lative to the last reference point (LP).

4) If the specified coordinate point is located in the border area on the screen
or at a point where the same colour as the boundary colour is specified,
painting of the specified area will not occur.

10 SCREEN 2

20 CIRCLE (100, 100), 50, 8
30 PAINT (70,70),8

40 GOTO 40

P D L (Paddle) Function

Function:
Format:

Descriptions:

This function returns the current paddle status.
PDL (integer expression)

1) The PDL function returns the status of the paddle whose number is speci-
fied by the integer expression.

2) Up to 12 paddles can be connected to the JOYSTICK sockets on the
computer. The JOYSTICK socket to be used is specified with the value of
the integer expression:

When the valueis 1,3,5,7,9, or 11: JOYSTICK socket 1.
When the value is 2, 4, 6, 8, 10, or 12: JOYSTICK socket 2.
3) The result returned is an integer from 0 to 255.

—-98—

PEEK

Function

Function:
Format:
Descriptions:

Example:

This function returns the contents of a specific memory location.
PEEK (address)

1)
2)

3)

The PEEK function returns the contents of the memory address specified.
The address must be specified with an integer expression whose value ranges
from &HO to &HFFFF (-32768 to +32767).

For details on the memory, refer to Chapter 3, Section 3, “Memory Map."”

X=PEEK (&HFFFF)

PLAY

Statement

Function:
Format:
Descriptions:

This statement is used to play music.

PLAY string expression A [, string expression B [, string expression C]]

1)

2)

3)

4)

The PLAY statement is used to play music according to the music macro
commands specified by the string expressions.
String expressions A, B, and C specify the music macro commands for
audio channels A, B, and C, respectively.
Example: PLAY ‘“C”, “E","G"
Each string expression consists of a string of one or more music macro
commands.
When the value of a string expression is null (*“ *), no tone will be output
on the corresponding channel.
The music macro commands include the following.

Commands specifying pitch A~G, #,+,-,0,N

Command specifying notes L

Command specifying rest R
Command specifying temp E
Command specifying loudness V
Commands specifying tonal colour S,M

For more details, see Chapter 1, Section 6, SOUND FEATURES.

—-99—

PLAY

Function

Function:
Format:
Descriptions:

Example:

This function returns values indicating whether music is being played or not.
PLAY (integer expression)

1) The PLAY function returns values indicating whether or not the specified
audio channel is playing music using the PLAY statement.
When the value is —=1: Playing.
When the value is 0: Not playing
2) The value of the integer expression selects the audio channel to be tested:
0 Tests whether any of channels A, B, or C is playing or not.
1 Tests channel A.
2 Tests channel B.
3 Tests channel C.

10 PLAY “C”

20 PRINT PLAY (1)
30 GOTO 10

POINT

Function

Function:

Formats:

Descriptions:

Example:

This function returns the colour code of a specified coordinate point.

POINT (X coordinate, Y coordinate)
POINT STEP (X coordinate, Y coordinate)

1) The POINT function returns the colour code of the specified coordinate
point on a graphic screen.

2) If the coordinate point is specified with a relative coordinate specifica-
tion, STEP (X, Y), the coordinate point refers to the last reference point
(LP) as the origin.

The LP remains unchanged after the POINT function is executed.

10 SCREEN 2

20 PSET (10,10),1

30 A=POINT (10, 10)

40 CIRCLE {10,10),50, A
50 GOTO 50

-100-

POKE

Statement

Function: This statement writes one byte of data into a specific memory location.
Format: POKE address, integer expression
Descriptions: 1) The POKE statement is used to write data, given by the integer expression,
into the specified memory address.
2) The address must be specified by an integer expression whose value ranges
from &HO to &HFFFF (—-32768 to +32767).
3) For details on memory mapping, refer to Chapter 3, Section 3, “Memory
Map."”
4) Erroneous execution of this statement can cause a program runaway, from
which the system can be recovered only by turning it off,
Example: POKE &HC100, &H1F
P OS (Cursor Position) Function
Function: This function returns the current column position of the screen cursor.
Format: POS (expression)
Descriptions: 1) The POS function returns the current column position of the screen cursor
on a text mode screen.
It returns zero when the cursor is located at the leftmost position on the
screen.
2) The expression is a dummy, and may have any value,
Example: PRINT POS(0)

P R ES ET (Point Reset) Statement

Function:

Formats:

Descriptions:

Example:

This statement is used to update the colour of the specified coordinate point.

PRESET (X, Y) [, colour code]
PRESET STEP (X, Y) [, colour code]

1)

2)

3)

10
20
30
40
50

The PRESET statement is used to replace the colour of the specified coordi-
nate point with the colour specified by the colour code, on a graphic screen,
When the colour code is omitted, the background colour specified in the
COLOR statement is specified for the coordinate point,

If the coordinate point is specified with a relative coordinate specification,
STEP (X, Y), it refers to the last reference point (LP) as the origin.

After the PRESET statement is executed, the LP is located at the speci-
fied coordinate point.

SCREEN 2

LINE (10, 10) — (100, 100), 1, BF
FOR I=0 TO 150

PRESET (I, 30)

NEXT

GOTO 60

-101-

PRINT

Statement

Function:
Formats:

Descriptions:

Example:

This statement is used to display data on the screen.

PRINT

PRINT expression [; expression -][;]

PRINT expression [, expression -] [,]

A question mar (?) is usable in place of PRINT.

1)

2)

3)

4)

5)

10
20
30
40

The PRINT statement is used to display data (numeric values or strings)
specified by the expression on a text mode screen.
Data print formats are as follows:
For a numeric expression: A printed number is preceded by a blank
(for a positive number) or a negative sign
(=), and is followed by another blank.
For a string expression: The specified characters are printed left-
justified.
When only a PRINT statement is specified, with the expression omitted,
a single blank row will be printed.
More than one expression may be specified in a PRINT statement, by
separating them with commas (,) or semicolons (;).
Data print format differs depending on the delimiter used:
® When commas are used as delimiters:
Rows are divided into display fields, each 14 columns long, and every
data item is printed left-justified in a separate display field. |If a data
item contains more than 14 characters (including a blank as the last
location of a numeric data item), it continues into the next display
field.
® When semicolons are used as delimiters:
One data item is immediately followed by another data item. For
numeric data, each data item is preceded by a blank or negative sign
(=) and is followed by a blank.
Whether a PRINT statement is followed by a comma, semicolon, or nothing
affects the location of data printed by the next PRINT or PRINT USING
statement:
® When followed by nothing:
A line feed operation occurs, at the end of the first PRINT statement,
and data for the subsequent PRINT statement is printed in the next row.
® When followed by a comma: No line feed operation occurs, and data
for the subsequent PRINT statement is printed in the next display
field and subsequent fields on the same row.
® When followed by a semicolon:
No line feed operation occurs, and data for the first PRINT statement is
immediately followed by that for the next PRINT statement.

PRINT 123, “ABC"

PRINT 123; “ABC"; 123,4: “A"; "'B"
PRINT 123;4,5,6,78;

PRINT “ABC"”

END

-102-

PRINT USING Statement

Function:

Formats:

Descriptions:

This statement is used to display data on a text mode screen by using specific
print formats.

PRINT USING format control string; expression [; expression -] [;]
PRINT USING format control string expression [, expression ---] [,]
A question mark (?) may be used in place of PRINT.

1)

2)

3)

4)

The PRINT USING statement is used to print data (numeric values or
strings) given by the expressions on a text mode screen, using the print
format specified by the format control string.
More than one expression may be specified in a PRINT USING statement,
by separating them with commas (,) or semicolons (;). However, the for-
mat control string must always be separated from the following expression
by a semicolon.
Display fields are specified by the format control string, and do not depend
on the delimiter type (comma or semicolon) used.
Whether a PRINT USING statement is followed by a comma, semicolon,
or nothing affects the location of the data printed by the next PRINT or
PRINT USING statement:
® When followed by nothing:
A line feed opration occurs, and data for the subsequent PRINT or
PRINT USING statement is printed in the next row.
® When followed by a comma or semicolon: No line feed operation occurs,
and data for the first PRINT USING statement is immediately followed
by that for the next PRINT USING or PRINT statement.
While the format control string may be specified with string variables or
string constants, different control symbols must be used for different types
of data to be printed:
Control symbols for numeric data:

(sharp) ; (period)

+ (plus) — (minus)

* (asterisk) £ (Pound symbol)
A (hat)

Control symbols for string data:
| (exclamation mark) \ (back slash)
& (ampersand)
If any character other than the format control symbols listed above is
used in a format control string, that character will be printed either pre-
ceding or succeeding the printed data.
Example: PRINT USING “X=##f Y=###", 12,456

—-103-

5)

When a numeric data item to be printed contains an integer part having a
number of digits exceeding that specified by the format control string, the
printed data will be preceded by a per cent (%) symbol.

Example:
(Printout):

Format control

String for numeric data

#... #

T
#e-#
#o-# B P
-
+#.. L F E - #
#eo-#4
. SUPRE . S - BRI -
Wi
- DAL
*kH .. H#H
*kft . H L H# L #

—104—

PRINT USING “##"; 123

%123

Description
Each sharp (#) corresponds to a digit of the
number to be printed. When the number of
sharps exceeds that of data digits, the data
is right justified when printed.
Example: PRINT USING " #H&F"";
123,456
A period (.) specifies the position of the
decimal point in printed data. The number
of decimal places to be printed corresonds
to the number of sharps (#) specified follow-
ing the period (.). When the number of
sharps for the decimal places exceeds the
number of decimal places in the printed
data, the remaining decimal places in the
data will be filled with zeros.
Example: PRINT USING "“##- ##";
1.234;56
When a comma (,) is placed in # - . . #,
. # ... # any position of a string of sharps
(#) for the integer part, the integer part of
the printed data is delimited by commas
(,) at three-digit intervals.

Example: PRINT USING

" R #

123456
Printed data is preceded by a sign (+ or =).
Example: PRINT USING

“OEEE #7123, 4,567
Printed data is followed by a sign (+ or =).
Example: PRINT USING

O Y 12.3-4,567
Negative numbers in printed data are follow-
ed by a minus sign (-).
Example: PRINT USING

. " 12.3,-4,567
When the integer digits of a data item to
be printed are less than the number of sharps
in the integer part, the remaining significant
Example: PRINT USING

kiR " 12; 123456

Format control
EEH#. .. #
EEH.. H . H#...#

*kf# .. #
*xft. . H. #.. 8

#- - F AN
Heoo o He HAAA

String for string data
|

n blanks

—105—-

Description

When a format control string is preceded by
two Pound signs (££), the printed data is
preceded by a single Pound sign (£).
Example: PRINT USING

“LEFRREE 12, 12345
When a format control string is preceded by
two asterisks and one Pound sign (xxf£),
printed data is preceded by a Pound sign (£),
and the first vacant digits in the integer part,
if any, are filled with asterisks.
Example: PRINT USING

“ax L 12, 12345
When a format control string is followed
by four hats (A), the data printed is ex-
pressed as a floating point number using an
E symbol.
Example: PRINT USING

"R FHHEANAN'; 1.2345678

Prints the leftmost character of string data.
Example: PRINT USING “!";

“ABCDE""
Prints characters whose number is equal to
the number of blanks enclosed in two
“back slash’ marks (\) plus two. When
the length of the string to be printed exceeds
the number of specified digits, the extra
characters in the string will not be printed.
When it is less than the number of speci-
fied digits, the remaining digits will be filled
with blanks.
Example: PRINT USING

“\\";"”AB"”; “ABCDEFG";

“ABC”
When ampersands (&) are specified, all
the specified strings are printed.
Example: PRINT USING

"RHHHBHHH; " ABC=";

1; "=X+"; 456

PRINT #

Statement

Function:

Descriptions:

This statement is used to output data to a specific file.

PRINT# file number

PRINT# file number, expression [; expression - | [;]
PRINT# file number, expression [, expression -] [,]
A question mar (?) may be used in place of PRINT.

1)
2)

3)

4)

5)

The PRINT# statement is used to output data (numbers or strints) speci-
fied by expressions to a file specified by the file number.
The file number must specify a file which was opend by an OPEN state-
ment for output mode.
The output formats are identical to those for the PRINT statement:
A numeric data item is preceded by a blank (for a positive value) or a
minus sign (=) (for a negative value), and the numerals are converted
to a string, which is followed by a blank.
For a string, all the characters in the string are output.
More than one expression may be specified in a PRINT# statement, by
separating them with commas (,) or semicolons (;).
The data output format depends on the delimiter type used, and is identical
to that for the PRINT statement, except that the PRINT# statement
outputs data to a file.
When numeric data items are separated by commas, they are put into fields,
and each data item may be followed by blanks.
When strings are separated by semicolons, they are continuously output
to a file. When the file is read by an INPUT# or LINE INPUT# statement,
the strings are put into a single string.
If you wish to separate one string from another in the string data read with
the INPUT# statement, separate them with commas when outputting with
the PRINT# statement.
If you wish the same for string data read with the LINE INPUT# statement,
separate each string with CR (&HOD) and LF (&HOA) codes when out-
putting with the PRINT# statement.
When the PRINT# statement is followed by no comma or semicolon at its
end, the output data will be followed by a CR (&HOD) and a LF (&HOA)
codes.
When a comma or semicolon is placed at the end of a PRINT# statement,
no CR or LF code will be output. The output format is identical to that of
the PRINT statement, except that the PRINT# statement outputs data not
to the screen but to a file.

—106—

Exampels:

QOutputting data to a cassette tape file:

10
20
30
40
50
60

OPEN “CAS:SAMPEL” FOR OUTPUT AS 1
PRINT#1,12.3;4.56

PRINT#1, “ABC”; “DEF"; “,"”"; "GH;"”"
PRINT# “IJK”

CLOSE

END

Inputting data from the cassette tape file:

10
20
30
40
50

OPEN "“CAS:SAMPLE “FOR INPUT AS 1
INPUT#1, A, B:PRINT A, B

INPUT#1, C$:PRINT C$

LINE INPUT#1, D$:PRINT D$

END

PRINT # USING

Statement

Function:

Formats:

Descriptions:

Example:

This statement outputs data (numbers or strings) to a specified file, using a
specific format.

PRINT# file number USING format control string;
PRINT# file number USING format control string;

A question mark (?) may be used in place of PRINT#.

1)

2)

3)

expression [; expression ---][;]

expression [, expression -][,]

The PRINT# USING statement is used to output the data (numbers or
strings) specified by the expressions to the file specified by the file number,

using a specified format.

The data output format is identical to that for the PRINT# statement,
except that the PRINT# USING statement requires format specification.
The format specifications are identical to that for the PRINT USING state-

ment.

PRINT #1 USING "\ \##5 ", “ABC"; 123

-107-

P S ET (Point Set) Statement

Function: This statement is used to draw a point at a specified position on the display
screen.
Formats: PSET (X coordinate, Y coordinate) [, colour code]
PSET STEP (X coordinate, Y coordinate) [, colour code]
Descriptions: 1) The PSET statement is used to draw a point at a specified coordinate point
on a graphic screen, in the colour specified by the colour code.
2) When the colour code is omitted, the colour specified in the COLOR
statement is assumed.
3) When the relative coordinate specification, STEP (X, Y), is used, it refers
to the last reference point (LP) as the origin.
When the PSET statement is executed, the LP is relocated to the specified
coordinate point.
Example: 10 SCREEN 2
20 FOR I=0TO 255 STEP 2
30 PSET (I,50),1
40 NEXT
50 GOTO 50

—108—

PUT SPRITE Statement

Function: This statement is used to draw a sprite figure on the screen.

Formats: PUT SPRITE sprite screen number, (X, Y) [. colour code

[, sprite figure number]]

PUT SPRITE sprite screen number, (X, Y), [colour code], Sprite figure number
The relative coordinate specification, STEP (X, Y), may be used in place of the
absolute coordinate specification, (X, Y).

Descriptions: 1)

2)

3)

4)

5)
6)

Example: 10
20

40

The PUT SPRITE statement is used to draw a sprite figure defined in the
SPRITES statement, at a specified coordinate point on a sprite screen with
the specified sprite screen number.
The sprite screen number is specified with an integer from 0 to 31.
Up to 32 sprite screens are available, each assigned one of the numbers
from 0 to 31.
Only one sprite figure can be drawn on each sprite screen, and up to
32 sprite figures (screens) can be shown on the display at a time.
However, the number of sprite figures that can be drawin in each row
is limited to four.
A sprite screen with a smaller number has a higher priority; a sprite screen
with a larger number is hidden behind the one with a smaller number when
overlapped.
The X coordinate is specified with an integer expression whose value is in
the range from =32 to 255; Y coordinate is specified with another integer
expression whose value is in the range from =32 to 191.
When the coordinate point is specified with relative coordinates,
STEP (X, Y), it refers to the last reference point (LP) as the origin.
Once the PUT SPRITE statement is executed, the LP is relocated to
the specified coordinate point.
To clear a sprite figures from the screen:
Specify 208 for the Y coordinate. The sprite figure on the sprite screen
with the specified screen number will be cleared, as well as all the
sprites on the higher screens.
If you specify 209 for the Y coordinate, and only the sprite figure
on the sprite screen with the specified screen number is cleared.
When the colour code is omitted, the current display colour is assumed.
Sprite figure numbers correspond to those defined in the SPRITESS state-
ment.
When the sprite figure number is omitted, the number of the sprite figure
currently shown on the specified sprite screen will be assumed. The initial
value of the sprite figure number is equal to the specified sprite screen
number.

SPRITES (0)=STRINGS (8, 255)
PUT SPRITE 1, (100, 100), 1,0
PUT SPRITE 0, (105, 105), , 8
END

—109—

READ

Statement

Function:

Format:
Descriptions:

Example:

This statement is used to read a value from a DATA statement and assign it to a
variable.

READ variable [, variable -]

1)

2)

3)

4)

5)

10
20

40
50

The READ statement is used to read constants from a DATA statement in
sequential order, and assigns them to a variable or variables.

The variable type in the READ statement must match the constant type
in the DATA statement from which data is to be read.

When the number of variables in the READ statement exceeds the number
of constants in the DATA statement, the constants in the next DATA state-
ment are assigned to the extra variables in the READ statement.

If there is no next DATA statement, an error will result.

When the number of variables in the READ statement is less than the
number of constants in the DATA statement, the extra constants in the
DATA statement will be assigned to variables in the next READ statement.
The first READ statement in a program reads data from the first DATA
statement in the program (with the smallest line number).

The RESTORE statement allows the user to specify the DATA statement
from which the READ statement begins to read data.

DATA ABC, 123, 4.56

DATA 789, DE, “G Y

READ X$, X:PRINT X$; X

READ Y, Z, Y$, Z$:PRINT Y;Z;Y$; Z$
END

R E M (Remark) Statement

Function:
Formats:

Descriptions:

Example:

This statement is used to explain the reason for a portion of a program.
REM [string]

1)

2)

10
20

[string]
The REM statement is not executed. Remarks that follow the REM state-
ment are not displayed or acted upon during a program run,
This statement is used to explain the reason for a portion of a program.

REM *** SAMPLE PROGRAM
GOTO 100

100 * CHECK ROUTINE
110 END

-110-

R EN U M (Renumber) - Command

Function: This command is used to renumber program lines.

Formats: RENUM [new line number [, old line number [, incrment]]]
RENUM [new line number], , increment

Descriptions: 1)

2)

3)
4)

The RENUM command is used to renumber an old line number and all
subsequent line numbers into a new numbering sequence beginning with the
new line number and having the specified increment.
When only RENUM is used by itself:
It automatically numbers the lines in increments of 10, beginning with
the first line of the program.
When the new line number is omitted:
Renumbering begins with line number 10.
When the old line number is omitted:
Renumbering begins with the first line of the program.
When the increment is omitted:
Lines are numbered in increments of 10.
This command is unable to make branches in the program.
When executed, line numbers specified in GOTO, GOSUB, ON GOTO,
ON GOSUB, and ERL statements are also renumbered.

Example: RENUM
RENUM 1000, , 100

RESTORE Statement

Function: This statement is used to specify the line number of a DATA statement from
which data is to be first read by a READ statement.

Format: RESTORE [line number]

Descriptions: 1) A READ statement placed after a RESTORE statement reads data from the

2)

Example: 10
20
30
40
100
120
130
140

DATA statement whose line number is specified in the RESTORE state-
ment.

When the line number is omitted, the READ statement starts reading
data from the DATA statement with the smallest line number.

RESTORE 130: READ A, B:PRINT A;B
READ C, D, E:PRINT C;D;E

RESTORE :READ A$:PRINT A$

END

DATA LINE 100

DATA 1.23

DATA 130

DATA 140, 10, 20, 30, 40, 50

-111-

RESUME Statement

Function: This statement is placed in an error service routine to return execution to the
main program,
Formats: RESUME [0]

RESUME NEXT
RESUME line number

Descriptions: 1) The RESUME statement is used in an error service routine specified by an
ON ERROR GOTO statement. When it is executed, execution returns to
the main program.

2) When RESUME alone or RESUME 0 is specified:

Execution returns to the line where the error occurred, and the same
statement is retried.

When RESUME NEXT is specified:
Execution returns to the statement after the statement where the error
occurred.

When “RESUME line number’’ is specified:
Execution returns to the line with the specified line number.

R ET U R N Statement

Function: This statement is used to return from a subroutine.
Format: RETURN [line number]
Descriptions: 1) The RETURN statement is used in a subroutine specified by a GOSUB

or ON GOSUB statement, or in an interrupt service routine, to return
execution to a program line specified by the line number.

2) When the line number is omitted, execution returns to the statement after
the GOSUB statement.

3) More than one RETURN statement may exist in a subroutine.

Example: 10 X=1:GOSUB 100
20 X=2:GOSUB 100
30 END
100 PRINT X

110 IF X=2 THEN RETURN
120 RETURN 20

-112-

RIGHTS

Function

Function:

Format:

Descriptions:

Example:

This function returns a desired number of characters from a character string,
starting with the rightmost position of the string.

RIGHTS$ (string expression, number of characters)

1)

2)

3)

4)

10
20
30
40

The RIGHT$ function returns the specified number of characters from
the specified character string, starting with the rightmost position of the
string.

When the specified number of characters exceeds the number of characters
in the string, all the characters in the string will be returned.

When the specified number of characters is zero, a null (*) will be re-
turned.

The graphic character header (&H01) in a graphic symbol is counted as a
character. This means that each graphic symbol occupies two character
positions.

A$="ABCDF"”
B$=RIGHTS (AS, 3)
PRINT BS

END

R N D (Random) Function

Function:
Format:

Descriptions:

Example:

This function returns a random number between 0 and 1.

RND (numeric expression)

1)

2)

3)

10
20
30
40

The RND function returns a random number between (but not including)
Oand 1.
When the value of the numeric expression is positive:
The same sequence of random numbers is generated each time the
program is run.
When the value of the numeric expression is 0:
The previous generated random number is returned.
When the value of the numeric expression is negative:
Different sequences of random numbers are generated depending on the
value of the expression.
A positive value is normally used for the value of the numeric expression. So
that, the same sequence of random values is generated each time the pro-
gram is run, unless the random number generator is receded.
To change the sequence of random numbers, execute the X=RND(-TIME)
function to select another sequence, then execute the RND (positive value).
The variable X is a dummy, and may be any number.

X=RND (-TIME)

A=RND (1) :A=INT (20%A) +5
PRINT A; :LOCATE A:PRINT "'*"
GOTO 20

-113-

RUN

Command

Function:
Format:

Descriptions:

Examples:

This command begins program execution.
RUN (line number)

1) The RUN command is used to begin program execution from the specified
line number.
When this command is executed, all variables are cleared, and all open
files are closed.
2) When the line number is omitted, execution starts with the first line of the
program.

RUN
RUN 1000

SAVE

Command

Function:
Format:
Descriptions:

Example:

This command is used to save an ASCI| form program to a specified file.
SAVE “device name [file name]"

1) The SAVE command is used to save an ASCII code program to the file
specified by the file name on the device specified by the device name,

2) An ASCII| code program is a memory image program in which program lines
are stored in the form of ASCII character codes. It is characterized by the
following:

A file space larger than that required for the CSAVE command.
Programs to be merged with the MERGE command must both be in
ASCII form.

Since an ASCII program file can be treated as a data file, each program
line can be assigned to a variable by using the LINE INPUT# statement.
By CR (&HOD) and LF (&HOA) codes at the end of each line of the
ASCII program.

An end code (&H1A) at the end of the file.

3) When saving to a cassette tape file, the data transfer rate may be specified
with the SCREEN statement.

SAVE “CAS:SAMPLE"

—114—

SCREEN

Statement
Function: This statement is used to specify screen modes, sprite figure sizes, key click tone,
data transfer rates for cassette files, and printer specifications.
Formats: SCREEN screen mode

SCREEN [screen mode], sprite size

SCREEN [screen mode], [sprite size], key click switch

SCREEN [screen mode], [sprite size], [key click switch], cassette baud rate
SCREEN [screen mode], [sprite size], [key click switch], [cassette baud rate],
printer switch

Descriptions: 1)

2)

3)

4)

Screen mode
Specifies the display screen modes. For more details on screen modes, see
Chapter 1, Section 5, “SCREEN SETTING.”
Screen mode is specified with an integer expression whose value is from
Oto3:
0 Text mode of 40 columns x 24 rows (initial value is 37 columns x
24 rows.)
1 Text mode of 32 columns x 24 rows (initial value is 29 columns x
24 rows.)
2 High-resolution graphic mode
3 Multicolour mode
Sprite size
Specifies the sizes of sprite figures defined in the SPRITES variable, and the
display magnification for the sprite figures displayed by the PUT SPRITE
statement. Sprite size is specified with an integer expression whose value is
from 0 to 3:
0 Displays sprite cells in a 8 x 8 dot configuration as they are
(8 x 8).
1 Magnifies 8 x 8 dot sprite figures into double size (16 x 16 dots)
when printing on the screen.
2 Displays sprite cells in a 16 x 16 dot configurarion as they are
(16 x 16).
3 Magnifies 16 x 16 dot sprite figures into double size (32 x 32
dots) when printing on the screen,
Key click switch
Turns on and off the echo-back key click tone.
The switch is specified with an integer expression whose value is 0 or 1:
0 Key click switch is off.
1 Key click switch is on.
Cassette baud rate
Specifies the baud rate at which data is transferred to a cassette tape file by
a CSAVE, BSAVE or SAVE command, or a PRINT# statement.
When a file is read from cassette, the baud rate is automatically set, and
need not be set in the SCREEN statement.
Cassette baud rate is specified with an integer expression whose value is
lor2:
1 1200 baud
2 2400 baud

—-115-

6) Printer switch
Specifies whether an attached printer is an MSX printer or no.
Printer switch is specified with an integer expression whose value is 0 or 1:
0 MSX type printer attached.
1 Non-MSX type printer attached.

-116—

SGN

Function

Function:
Format:

Description:

Example:

This function returns the polarity of a value.
SGN (numeric expression)

The SGN function returns the polarity of the value of the numeric expression
that follows it, with the integers —1,0, and 1.

When -1 The value is negative.

When 0 The value is zero.

When 1 The value is positive.

10 A=SGN (-1.34)
20 B=SGN (0)

30 C=SGN (4.56)
40 PRINT A;B,.C
50 END

SIN

Function

Function:
Format:
Descriptions:

This function returns the trigonometric sine of a number.
SIN (numeric expression)

1) The SIN function calculates the trigonometric sine of the value of the
numeric expression that follows it.

2) The value of the numeric expression must be in radians.

3) The result is always returned as a double-precision real number regardless
of the numeric expression type.

-117-

SOUND

Statement
Function: This statement is used to load values into registers of the programmable sound
generator (PSG).
Format: SOUND register number, integer expression
Descriptions: 1) The SOUND statement is used to load the value of the numeric expression

into the PSG register with the specified register number.

Combinations of more than one SOUND statement provides for various
sound effects which are not available with the PLAY statement alone.
2) Register number is specified with an integer expression whose value is from

0to 13.
The PSG has 16 registers, from which 14 registers may be used to load
values.
F Bit
Rogister Function
No. b7[bs[bs]u]bs[h2]b1]w
0 FT (A)
Frequency on CH.A
1 CT (A)
2
Frequency on CH.B
3 CT (B)
4
Frequency on CH.C
5 CT (C)
6 Noise frequency NP
Tone
7 Output channel select
1 0 c B A c | B T A
8 Loudness on CH.A M L (A)
9 Loudness on CH.B M L (B)
10 Loudness on CH.C M L (C)
1 FT (E)
Envelope period
12 CT (E)
13 Envelope pattern T EP

-118-

SPACE $ Function

Function: This function returns a specified length of blanks.
Format: SPACES (integer expression)
Descriptions: 1) The SPACES$ function returns a null string whose length is specified by the

integer expression that follow it.
2) The value of the integer expression must be an integer from 0 to 255.

Example: A$=SPACES (5)
PRINT "“AB’'; SPACESS (5); “CD”

S P C (Space) Function

Function: This function outputs a null string of specified length to the screen or printer.
Format: SPC (integer expression)
Descriptions: 1) The SPC function is used in output statements, such as LPRINT or PRINT,

to output a null string whose length is specified by the integer expression
that follows it.

2) This function is only used in output statements, and cannot be used in
assignment statements, such as LET.

3) The value of the integer expression must be an integer from 0 to 255.

Example: PRINT “AB"; SPC (5); “CD""

-119-

SPRITE ON Statement

Function This statement is used to enable sprite interrupts.
Format SPRITE ON
Description The SPRITE ON statement is used to enable interrupts caused by sprite figure

clashes on the screen.

If a sprite figure clash occurs on the screen after the SPRITE ON statement has
been executed, an interrupt occurs, causing execution to branch to the inter-
rupt service routine specified in the ON SPRITE GOSUB statement.

=3 S : R
SPRITE OFF Statement

Function This statement is used to disable sprite interrupts.

Format SPRITE OFF

Description After the SPRITE OFF statement is executed, no interrupt will occur if sprite

figure clashes occur on the screen.

SPRITE STOP | PV

Function This statement is used to hold sprite interrupts.
Format SPRITE STOP
Description 1) The SPRITE STOP statement is used to hold interrupts caused by sprite

figure clashes, until the SPRITE ON statement is subsequently executed.
If a sprite figure clash occurs on the screen after the SPRITE STOP state-
ment has been executed, an interrupt will occur when the SPRITE ON
statement is subsequently executed, causing execution to branch to the
interrupt service routine specified in the ON SPRITE GOSUB statement.

2) If no SPRITE ON statement has been executed before the SPRITE STOP
statement is executed, interrupts are not held but ignored.

—-120—-

S P R |TE$ System Variable

Function This system variable is used to define a sprite figure.

Format SPRITES (integer expression) = string expression

Descriptions 1) The SPRITES variable is used to define the sprite figure specified by the
string expression for the sprite whose number is specified by the integer
expression.

2) The range of the integer expression value differs depending on the sprite
figure size specified in the SCREEN statement

Sprite size in SCREEN Figure size Integer expression range
statement
Oor1 8 x 8 points 0"V 255
20r3 16 x 16 points 0"\v32

3) The string expression uses 8 characters to specify a sprite figure with a size
of 8 x 8 points, and 32 characters for one with a size of 16 x 16 points.

® String expression for 8 x 8 point size:
Each row (comprised of 8 points) of a sprite figure matrix is represent-
ed by a bit pattern.
i.e. a screen point is turned on with a set bit, and is turned off with a
reset bit.
Eight characters are used to represent an entire sprite figure matrix.

CHR$ (&B00011000)
CHRS$ (&B00111100)
CHRS$ (&B01111110)
CHRS$ (&B11111111)
CHR$ (&B00011000)
CHRS (&B00011000)
CHR$ (&B00011000)
CHRS (&B00011000)

® String expression for 16 x 16 point size:
A sprite figure is divided into four sections of 8 x 8 points each, and
these sections are arranged as shown in the following figures. Since the
matrix in each section is represented by 8 characters, 32 characters are
required to represent the four matrix sections,

-121-

Example

10

30
40

60
70

100
110
120
130
140
150
160
170

SCREEN 1,1

i

FORI=0TO7

READ D$

P$=P$ + CHR$ (VAL (” &B" + D$)
NEXT

SPRITES (0) = P$

PUT SPRITE 0, (50, 50), 1
END

DATA 00011000

DATA 00111100
DATAO01111110

DATA 11111111

DATA 00011000

DATA 00011000

DATA 00011000

DATA 00011000

-122-

S Q.R (Square Root) Function

Function
Format

Descriptions

Example

This function returns the square root of a number.

SQR (numeric expression)

1)

2)
3)

A=

The SQR function returns the square root of the value of the numeric ex-
pression that follows it.

The value of the numeric expression must be larger than zero.

The result is always returned as a double-precision real number regardless of
the numeric expression type.

SQR(4)

STICK

Function

Function
Format

Descriptions

Example

This function returns the direction of joystick operation.

STICK (integer expression)

1)

2)

3)

10
20
30

The STICK function returns the direction of operation of the joystick spe-
cified by the integer expression, or which cursor control key is being press-
ed.

The value of the integer expression is 0, 1, or 2, specifying the joystick
or cursor control key to be tested-

0 Cursor control key or keys on the keyboard.

1 Joystick connected to JOYSTICK socket 1

2 Joystick connected to JOYSTICK socket 2

The returned result is an integer from 1 to 8, representing the direction of
operation. When the joystick is not operated, the function returns zero.

When two cursor control keys with orthogonal directions are simultaneously
operated, the function returns a value indicating a diagonal direction of ope-
ration.

For instance, simultaneous operation of the @ and E] keys causes
the function to return 2.

A =STICK (0) : B=STICK (1)
PRINTA ;B
GOTO 10

—-123-

STOP

Statement

Function

Format

Descriptions

Example

This statement stops program execution and returns the system to the command
mode.

STOP
1) The STOP statement is used to stop program execution and returns the
system to the command mode, with the following message shown on the
screen:
BREAK in nnnn
(line number)

2) Unlike the END statement, the STOP statement does not close open files.
3) Program execution stopped by a STOP statement can be resumed with the

CONT statement.
10 PRINT A"
20 STOP

—124—

STOP ON Statement

Function

Format

Description

This statement is used to enable an interrupt caused by the simultaneous opera-
tion of the CTRL and STOP keys.

STOP ON

After the STOP ON statement is executed, an interrupt occurs when the CTRL
and STOP keys are simultaneously pressed, causing execution to branch to the
interrupt service routine specified in the ON STOP GOSUB statement.

'STOP OFF P

Function

Format

Description

This statement is used to disable an interrupt caused by the simultaneous opera-
tion of the CTRL and STOP keys.

STOP OFF

After the STOP OFF statement is executed, simultaneous operation of the
CTRL and STOP keys will not cause an interrupt.

STOP STOP S

Function

Format

Descriptions

This statement is used to hold an interrupt caused by the simultaneous operation
of the CTRL and STOP keys.

STOP STOP

1) The STOP STOP statement is used to hold an interrupt caused by the simul-

taneous operation of the CTRL and STOP keys, until the STOP ON state-
ment is subsequently executed.
If the CTRL and STOP keys are simultaneously operated after the STOP
STOP statement has been executed, an interrupt will occur when the STOP
ON statement is subsequently executed, causing execution to branch to the
interrupt service routine specified in the ON STOP GOSUB statement.

2) If no STOP ON statement has been executed before the STOP STOP state-
ment is executed, interrupts will not be held but ignored.

-125—

STRIG (stick Triggen Funetion

Function This function returns values indicating whether a trigger button on the joysticks
is operated or not.

Format STRIG (integer expression)

Descriptions 1) The STRIG function returns values indicating whether the trigger button on

2)

3)

Example 10
20
30

the joystick, or the Space bar on the keyboard, specified by the integer ex-
pression, is pressed or not.

The value of the integer expression can only be from 0 to 4, and specifies
the Space bar on the keyboard or one of the trigger buttons on a joystick
connected to either of the JOYSTICK sockets:

Space bar on the keyboard

1st trigger button on the joystick connected to JOYSTICK socket 1

1st trigger button on the joystick connected to JOYSTICK socket 2.
2nd trigger button on the joystick connected to JOYSTICK socket 1.
4 2nd trigger button on the joystick connected to JOYSTICK socket 2.
The returned result is the integer =1 or 0.

When =1 the button is pressed

When 0 the button is not pressed.

A =STRIG (0) : B=STRIG (1)
PRINT A ;B
GOTO 10

WN -0

—-126—

STRIG (n) ON Statement

Function

Format

Descriptions

This statement is used to enable interrupts caused by trigger button operations
on a joystick.

STRIG (integer expression) ON

1)

2)

If any of the trigger buttons on the joystick specified by the integer expres-
sion, or the Space bar on the keyboard, is pressed after the STRIG(n) ON
statement is executed, an interrupt occurs causing execution to branch to
the interrupt service routine specified to branch to the interrupt service
routine specified by the ON STRIG GOSUB statement.

The meanings of the integer expression value are the same as those described
for the STRIG function.

STRIG (n) OFF Statement

Function

Format

Descriptions

This statement is used to disable interrupts caused by trigger button operations
on a joystick.

STRIG (integer expression) OFF

1)

2)

The STRIG(n) OFF statement is used to disable interrupts caused by the
operation of a trigger button on a joystick or the Space bar on the keyboard.
After the STRIG(n) OFF statement is executed, no interrupt will occur if
a trigger button on the joystick specified by the integer expression, or the
Space bar on the keyboard, is operated.

The meanings of the integer expression value are the same as those described
for the STRIG function.

STRIG (n) STOP Statement

Function

Format

Descriptions

This statement is used to hold an interrupt caused by a trigger button opera-
tion on a joystick.

STRIG (integer expression) STOP

1)

2)

3)

The STRIG(n) STOP statement is used to hold an interrupt caused by the
operation of a trigger button on the joystick specified by the integer ex-
pression, or of the Space bar on the keyboard, until a STRIG(n) ON state-
ment is subsequently executed.

If a trigger button on the specified joystick, or the Space bar on the key-
board, is pressed after the STRIG(n) STOP statement has been executed,
an interrupt will occur when the STRIG(n) ON statement is subsequently
executed, causing execution to branch to the interrupt service routine.

If no STRIG(n) ON statement has been executed before the STRIG(n)
STOP statement is executed, interrupts will not be held but ignored.

The meanings of the integer expression value are the same as those de-
scribed for the STRIG function.

-127-

STRS

Function

Function
Format

Descriptions

Example

This function converts a number into a string.
STR$ (numeric expression)

1) The STRS$ function returns a string representing the decimal value of the
numeric expression that follows it.
2) The numeric expression may be of any type.

A$ = STR$ (123.45)
B$ = STRS (&HFF)

STRINGs Function

Function

Formats

Descriptions

This function returns a specified length of a string of the same character which is
specified.

STRINGS (integer expression, string expression)
STRINGS (integer expression, character code)

1) The STRINGS function returns a string (whose length is specified by the
integer expression) of the first character of the string expression or of the
character given by the character code.

2) The value of the integer expression must be from 0 to 255.

3) Only the first character of the string expression is meaningful; the second

and all remaining characters are ignored.
A graphic character header (&HO01) in a graphic symbol is counted as a cha-
racter. So if a graphic symbol is placed in the first position of the string ex-
pression, a string of the character whose character code is &HO01 will be re-
turned.

A$ = STRINGS (10, “ABC")
A$ = STRINGS (10, &H41)

SWAP

Statement

Function
Format

Descriptions

Examples

This statement exchanges the values of two variables.
SWAP variable 1, variable 2

1) The SWAP statement exchanges the value of variable 1 with that of vari-
able 2.

2) The type of variable 1 must match that of variable 2.
It is not possible to exchange values between a numeric variable and a string
variable,
For numeric variables, values can be exchanged between two variables of
the same type: integer type, single-precision real type, or double-precision
real type.

SWAP A.B
SWAP A%, B%
SWAP AS, BS
SWAP A(5), B
—128—

TAB

Function

Function

Format

Descriptions

Example

This function returns, to the screen or printer, blanks to the specified column
position.

TAB (integer expression)

1)

2)

The TAB function is used in output statements, such as PRINT or LPRINT
to output blanks to the screen or printer, beginning with the current cursor
position to the specified column position.

This function is not usable in assignment statements such as LET.

PRINT ABC “ ; TAB (10) ; “CDE"

TAN (Tangent) Function

Function
Format

Descriptions

This function returns the trigonometric tangent of a number.

TAN (numeric expression)

1)

2)
3)

The TAN function returns the trigonometric tangent of the value of the
numeric expression that follows it.

The numeric expression value must be in radians.

The result is always returned as a double-precision real number regardless of
the numeric expression type.

TIME

System Variable

Function

Format

Descriptions

Examples

This variable is used to return, or set up the value of the internal clock (interval
timer).

TIME

1)

The TIME variable is assigned the value of an internal interval timer, which
is incremented by one at approximately 1/50 second intervals.

2) The interval timer can be preset by assigning the desired value to the TIME
variable,

3) The timer stops while data is being input from or output to a cassette file.
Since the timer counts interrupts in approximately 1/50 second intervals
from the VDP, it stops when 1/O operation is performed to a cassette file,
during which VDP interrupts are disabled.

A=TIME

TIME=0

—-129-

T R 0 N (Trace On) Command

Function This command is used to trace program execution step-bystep.
Format TRON
Descriptions 1) The TRON command causes the program line just executed to be printed on

2)

a text mode screen, with the line number of that program line enclosed in
square brackets [].
To clear the Trace mode, execute the TROFF or NEW command.

Example TRON

TROFF (Trace OFF) Command

Function This command is used to clear the Trace mode.
Format TROFF
Description The TROFF command is used to clear the trace mode which was selected with

the TRON command.

U S R (User) Function
Function This function causes a machine language subroutine to be executed.
Format USR [number] (argument)
Descriptions 1) The USR function causes a machine language subroutine to be executed

2)

3)

a)

Examples A=
B=

from the execution start address defined in the DEFUSR statement.

The number is an integer from 0 to 9, which corresponds to the number de-
fined in the DEFUSR statement. When no number is specified, zero is as-
sumed for it.

The argument must be specified. So a dummy argument must be used if no
argument transfer is needed.

Erroneous execution of this function may cause a program runaway, from
which the system can be recovered only by turning it off.

USR (“ABC")
USR2 (0)

2130=

VAL (Value) Function

Function This function returns the numeric value of a string.
Format VAL (string expression)
Descriptions 1) The VAL function returns the numeric value of a string specified by the

string expression that follows it.

2) The string may be binary (&B), octal (&0), or hexadecimal (&H), as long as
it represents a numeric value.

3) For a non-numeric string, this function returns a zero.

Examples A= VAL (“-1.234")
B = VAL (“&B1010")
C= VAL (“&H" + "1F")

VA R PT R (Variable Pointer) | Function

Function This function returns the first address of a variable area or file control block.

Formats VARPTR (variable)
VARPTR (#file number)

Descriptions 1) When a variable is specified, the VARPTR function returns the first address
of the variable area in which the value assigned to that variable is stored.
2) When a #file number is specified, the VARPTR function returns the first
address of the file control block for the file which is specified by the file
number.

Examples A =VARPTR (X)
B = VARPTR (#1)

-131-

VD P (VDP) System Variable
Function This variable is used to load values into the registers of the video display proces-
sor (VDP), or returns register values.
Format VDP (integer expression)
Descriptions 1) The VDP variable is used to load a value into the VDP register whose num-

ber is specified by the integer expression, or to return the value of that reg-
ister.

2) The value of the integer expression is from O to 8, and is used to specify one
of the VDP registers.

3) Erroneous use of this variable may cause an abnormal screen. Before using
this variable, refer to the MSX system hardware description to fully ac-
quaint yourself with the VDP,

Examples A=VDP (0)

VDP (7) =1

VPEEK (video Peek) Function

Function This function returns the contents of the video RAM (VRAM).
Format VPEEK (address)
Descriptions 1) The VPEEK function returns the contents of the specified address in
VRAM.
2) The address is specified with an integer expression whose value is from &HO0
to &H3FFF.
Example A = VPEEK (&H1000)

V P 0 K E (Video Poke) Statement

Function This statement is used to write one byte of data into a specific location in
video RAM (VRAM).

Format VPOKE address, integer expression

Descriptions 1) The VPOKE statement is used to write one byte of data, specified by the

integer expression, into the specified address in VRAM.

2) The address is specified with an integer expression whose value is from
&HO0 to &H3FFF.

3) The value of the integer expression must be from 0 to 255.

4) Erroneous use of this statement may cause an abnormal screen. Before
using this statement, refer to the MSX system hardware description to
fully acquaint yourself with the VDP.

Example VPOKE &H1803, &H41

—132—

WAIT

Statement

Function
Format

Descriptions

This statement causes the system to wait until an input port has a specified value.

WAIT port address, integer expression 1 [, integer expression 2]

1)

2)

3)
4)

The WAIT statement causes the system to wait for data input until the data
whose bit pattern is specified by integer expressions 1 and 2 is input from
the port with the specified port address.

The system reads the value of the specified input port, and XOR’s the in-
put value with the value of integer expression 2. It then AND’s the result of
the XOR with the value of integer expression 1. If the result of the AND
operation is =1 (true), execution proceeds with the next statement. If the
result is O (false), the system again reads a value from the same input port.
When integer expression 2 is omitted, zero is assumed for it.

Erroneous use of this statement may cause the system to ignore data from
all input ports other than the specified port, from which state the system
can be recovered only by turning it off.

For details on port addressing, refer to Chapter 3, Section 5, "'I/O Map."”

WIDTH

Statement

Function

Format

Descriptions

Example

This statement is used to specify the number of characters per row to be printed
on a text mode screen,

WIDTH integer expression

1)

2)

3)

4)

The WIDTH statement is used to set the width of a row on a text mode
screen.

The specifiable range of the integer expression differs depending on the
screen mode:

40 x 24 Text mode from 1 to 40

32 x 24 Text mode from 1 to 32

Either end of a frame may overflow your display screen depending on the
display type used. In such a case, use the WIDTH statement to reduce screen
width.

The initial screen widths are as follows:

40 x 24 Text mode: 37 columns

32 x 24 Text mode: 29 columns

WIDTH 20

-133-

g

L O

CHAPTER 3

REFERENCE

Character Code Table 136
Control Codes: .oicrieisie pieiniem bias e 137
MEMOTY MBR « oo s oie ivasare s aiavers aie e aile-aisve 138
[(S S (] 139
VO MAD oo s, s saatasiemn mmaea 140
ErrorCode List . v o snmwiscaneans wae sisis 141
Index to BASIC Language Functions 144

—-135—

CHARACTER CODE TABLE

Character codes are represented by the hex integers from &HO0O0 to &HFF, to which the cha-
racters and symbols listed in the following table are assigned.

The character code of a given character is represented by a two-digit hexadecimal number com-
posed of the most significant 4 bits and least significant 4 bits.

with the graphic

« $1Q p weayiubis 1s89M

Most significant 4 bits —* character header

o|1|2[3|4|s]|e|[7[8|o|a|B|C|D|E|F]|— al|s
0 e={glefpr| |p|c|E|a|A || 4=[=]5 o [=ay 1]
1 v[1]a]ofa]a]uf=]i|a[MGIX]B8|2]E 1 e
2| |ws|"[2[8[Rr[o|r[é|m|c|T mmlpdr|[=]s 2 (@
3 Bla[c|[s|[c|s]a]ls]c|T|™M™]n|= 3(@H!
4 s|a|o|T|a|t]|alo]|n|o]=|mz]] s |o|H
5 %|s[e|lule|u|alo|n|c|M ™.,|) 5 |&|H
6 &evavaaaG[L%u+ s |o[]]
7 8L “l7la[w]a|w|c]|u|o]i|MEHr|= 7|« |H
8 |es|we| ([8|H[X|h|x|&]Y nl@z]e]° s B -
gfasl | foft|v|i]|v|e|o|]|i| BE|e|" 9|0 |
AlLF * Jlzlilz|e|lo|[]= w|Q| e Al
B |wowe|esc| + K[k{'l'¢‘/,'\,@ 5 |V© B|co
clesl=] . [<{c N i i e o Nl =] c[*|X
pleal@|-[=[m[1|m[[V]x]i]%["I]¢] o|r|/
el [P].]|>[n]|Tn]|T|Alr]|< || Q] B €] FEIN
Fl ||z 2]o[_|o|®=[A]s]|>]|8[p)™ n|wm F %
1 Hex numbers

Graphic character header (hex &HO01)
Characters preceded by a graphic character header are used to represent graphic symbols.

(Example): Execution of PRINT CHR$(1); CHR$(&H41) printsa () on the screen.
Execution of PRINT CHR$(&H41) prints “A" on the screen,

When a graphic symbol is entered from the keyboard, it is automatically preceded by a graphic
character header, and the resulting character code consists of two bytes.

-136—

Control Codes

Character codes with their high order 4 bits representing a value of 0 or 1 are used for cursor or
screen control, and their character equivalents are not shown on the screen.

(Example): Execution of PRINT CHRS$(&HOC) clears the screen. Control codes are also
generated when a data key plus the CTRL key, or a control key, are pressed.
Con-
trol | Abbrev. Key Description
code

01 - CTAL| and E Generates a graphic character header.

02 - CTAL| and @ Repositions the cursor to the first
location of the preceding data item,

03 - CTRL| and 'E_ CTRL\ and |STOP Stops program execution,

05 - CTRL D Deletes characters from the current
cursor position and all the remaining
positions to the right.

06 - CTRL @ Repositions the cursor to the first
location of the next data item.

07 BL (] and (G] Sounds the buzzer.

08 BS TRL and @ or . Deletes the character from the location
just preceding the current cursor
position,

09 TAB CTRL| and [I] or Causes the cursor to shift at eight posi-
tion intervals,

0A LF CTRL| and m Performs a line feed operation (re-
positions the cursor to the first loca-
tion of the next row).

oB HOME CTRL| and [_?_J or I»oue Repositions the cursor to the first
location of the first row.

oc CLS m and D or W and @ Clears the entire screen.

oD CR CTRL| and @ or |RETURN Performs a carriage return (end of
entry operation).

0E - and E Repositions the cursor to the bottom
row.

12 INS CTRL| and @ or @ Inserts a character.

15 - CTRL| and @ Deletes a line

1C B |CT§L and L\ or |:} Shifts the cursor to the right.

1D - I 1AL and E_J or | o= Shifts the cursor to the left.

1E t CTAL| and I— or | Shifts the cursor upward.

1F f CTAL| and [SHFT| and [;] or () Shifts the cursor downward.

-137-

2. MEMORY MAP

Work area ® Work area
BASIC’S work area.

File control block ® User area
This area is available to the user for storage of user pro-
String area grams. User area addresses can be set at and below

&HF380 by the CLEAR statement.

Stack area ® File control block
This area is used for file 1/0. The size of this block
Free area corresponds to the number of files specified in the

MAXFILES statement.

User area Array variable area ® String area

This area is used for storing strings assigned to string
variables. The size of the area is specified with the
CLEAR statement. The initial size is 200 bytes.

Variable area

Program area (text area) ® Stack area
This area stores the return addresses for the FOR-NEXT,
GOSUB, or other branch statements.

® Free area
Unused area, whose size can be returned by the FRE

function.

® Array variable area
This area stores data assigned to array variables. For
string array variables, the pointers that point to string
data stored in the string area are stored in this
area. This area is set aside in memory when the DIM
statement is executed or an array subscripted with 10
or less is first used.

® Variable area

This area stores data assigned to variables.
MSX BASIC For string variables, the pointers that point to string
data stored in the string area are stored in this area.

® Program area
This area stores BASIC programs.

—138—

3. SLOTS

On MSX systems, more than 64K bytes of memory space is available by adding additional slots.
There are four standard slots in an MSX system, and up to four expansion slots can be attached
to each of the standard slots.

Memory space is divided into pages of 16K bytes each, and a slot is assigned to each page.

Slots are automatically selected by BASIC at the time of power on. When you wish to select
a specific slot, you will have to use a machine language program. For more details, read the books
on MSX software specifications.

Standard Slots
FFF
Page 3 RAM (64KB)
Co00 —————————— | e =
Page 2
8000 b—uor-— W
Page 1
BASIC
4000 [----SYSTEM----[——M—| - ceneen ~
(32KB)
Page 0
0000
Slot 0 Slot 1 Slot 2 Slot 3

(cartridge slot) (cartridge slot or
expansion bus)

In the Toshiba Home Computer HX-10, slots 1 and 3 are available to the user, and slots O and 2
are used for the system and RAM.

Pages 0 and 1 of slot O are used as the BASIC system area, and pages 2 and 3 of slot 2 are used
for BASIC RAM: a total of 32 KB.

—139—

4. 1/0 MAP

Address

P

EO

D8

DO

Cco

BO

A8

A0

90

88

80

00

/0 R/W Contents Remarks
System reserve area Address
AB w Mode set PPI
AA w Data write to port C
R Data read from port C
FDC A9 W Data write to port B
R Data read from port B
A8 W Data write to port A
System reserve area
R Data read from port A
i A2 | R |Dataread PSG
Al w Data write
PSG
A0 w Register select
vDP
99 W Command and address set vVDP
Fewse R |Status read
98 w Data write to VRAM
System reserve area
R Data read from VRAM
RS232C
91 w Print data Latch output
90 w Strobe output (bit 0) Latch output
Undefine
R Status input (bit 1)

W: Write R: Read
For more details, read the books on MSX hardware and soft-
ware.

—140—-

5. ERROR CODE LIST

Error message

Error No.

Description

Bad file name

Bad file number

Can't continue

Device 1/O error

Direct statement in file

Division by zero

File already open
File not found
File not open
Illegal direct

Illegal function call

Internal error

Input past end

Missing operand

56

52

17

19

57

1

54
53
59
12

51

55

24

File name is wrong.
® Wrong or no mode specification in the OPEN statement.

File name is wrong.

e A file number larger than that specified in the MAX-
FILES statement was specified.

® A file number not specified in the OPEN statement was
specified.

Program execution cannot be resumed.
® Resume after execution break due to an error.
® Resume after program modification.

Data transfer error occurred during communication with

an 1/0 device.

® (Cassette file read error.

® Communication with an 1/O device was forcibly stopped
by operating the CTRL and STOP keys.

A direct mode statement exists in an ASCI| file being loaded.

Division by zero was attempted.
® Divider is zero.
® Divider is an undefined variable.

File is already open.

The file was not found.

The file is not open.

Execution of a non-direct statement was attempted.

A statement or function is called in an illegal way.

® The argument in a statemet or function exceeds the speci-
fied range.

® An array is subscripted by negative numbers or by un-
reasonably large numbers.

An error occurred within BASIC.
® Normally this type of error will not occur. Should it
occur, temporarily turn off the system.

File data read was attempted with the INPUT# statement

after all data of that file has been read.

® The number of variables in the INPUT# statement ex-
ceeds the number of data items.

® Read operation was attempted to a file where no data
exists.
(This error can be recovered by using the EOF function.)

Necessary operand is missing.

® The number of operands is wrong.

® Periods (.) are used as separators for operands, instead
of commas (,).

=141~

Error message

Error No.

Description

NEXT without FOR

No RESUME

Qut of DATA

Qut of memory

Out of string space

Overflow

Re-dimensioned array

RESUME without error

RETURN without error

String formula too
complex

String too long

Subscript out of range

1

21

14

10

22

16

15

The number of NEXT statements does not correspond to

that of FOR statements.

® A FOR-NEXT loop contains part of another FOR-NEXT
loop.

No RESUME statement exists in an error service routine.
® Execution returned from an error service routine by using
a GOTO statement.

There is no data to be read by the READ statement.
® The number of data items is insufficient,

® Wrong line number in the RESTORE statement.
® |llegal use of delimiters in the DATA statement.

Insufficient memory capacity.

® Program is too large.

® Too many variables.

® Arrays too long.

® Unnecessary array variables are not erased by the ERASE
statement.

String space is insufficient.

® String space set by the CLEAR statement is too small.

Numeric value exceeds the allowable range.

® The result of an arithmetic operation is too large or too
small.

An array was doublely defined.

|® An already dimensioned array was re-dimensioned by the

DIM statement.

® An array subscripted by 10 or less was used without
dimensioning, then was subsequently dimensioned by the
DIM statement.

A RESUME statement was executed in a portion of a pro-
gram other than an error service routine,

A RETURN statement was executed before a GOSUB

statement was executed.

® Execution branched to a subroutine by a GOTO state-
ment.

® No END statement was defined at the end of the main
program, and the following subroutine was executed.

String is too complex.
® Operations for the string written on a line is too com-
plex (too many parentheses).

String is too long.
® An attempt was made to assign more than 256 characters
to a string variable.

The subscript for an array exceeds the allowable range.

® Subscript is too large.

® An undimensioned array is subscripted by a number
exceeding 10.

AHB

Error message

Error No.

Description

Syntax error

Type mismatch

Undefined line number

Undefined user
function

Verify error

13

18

20

Syntax does not match the MSX BASIC syntax.

® Wrong entry due to typing error.

® |llegal delimiter (comma, period, colon, semicolon, etc.)

® Mismatched parentheses.

® Variable name beginning with a character other than an
alphabetic character.

Variable type mismatch.

® An attempt was made to assign a string to a numeric
variable.

® An argument type in a function does not match.

Wrong line number designation.
® Line number specified in a GOTO, GOSUB, RESTORE,
or RESUME statement does not exist.

User function is not defined.
® Wrong function name in the DEF FN statement.
® No DEF FN statement has been executed.

Verify error.

® Disagreement between the program in memory and that
read from cassette was found during the execution of the
CLOAD? command.

® Program saved from a system with different RAM
capacity was verified with the program in the current
system. (An error will occur if the program contents are
normal.)

-143—

FUNCTIONAL DESCRIPTION

Function Description Command

Programming Deletes the program NEW 88
Generates line numbers automatically AUTO 45

Renumbers all lines RENUM 111

Deletes a line DELETE 60

Displays the program on the screen LIST 81

Prints the program listing on the printer LLIST 81

Executes the program RUN 114

Restores execution of the program CONT 54

Starts tracing | TRON 130

Stops tracing . TROFE 130

Cassette Recorder | Saves the program CSAVE 55
SAVE 114

Loads the program CLOAD 51

LOAD 82

Verifies the program CLOAD? 51

Merges programs MERGE 85

Saves the machine language program BSAVE 47

Loads the machine language program BLOAD 47

Controls the motor MOTOR ON 87

MOTOR OFF 87

Specifies the transfer rate | SCREEN 115

Specifies the number of files | MAXFILES 85

Opens a file } OPEN 96

Qutputs data PRINT # 106

PRINT # USING 107

Inputs data INPUT # 73

LINE INPUT # 80

INPUTS 73

Determines whether EOF has been reached or not EOF 63

Closes the file CLOSE 52

Determines the file control block address VARPTR 131

Keyboard Inputs data INPUT 72
LINE INPUT 80

INKEY$ VAl

INPUTS 73

Controls the key clicking sound SCREEN 115

—-144—

Function Description Command
Keyboard Defines a function key KEY 76
Lists the function key contents KEY LIST 76
Displays the function key contents KEY ON 76
Deletes the function key contents display KEY OFF 76
Controls the function key interrupt KEY (n) ON 77
KEY (n) OFF 77
KEY (n) STOP 77
ON KEY GOSuUB 92
Controls the [CTRL| and [STOP| key interrupt STOP ON 125
STOP OFF 125
STOP STOP 125
ON STOP GOSUB 94
Determines which cursor key is pressed STICK 123
Determines if the space key is pressed or not STRIG 126
Controls the space key interrupt STRIG (n) ON 127
STRIG (n) OFF 127
STRIG (n) STOP 127
ON STRIG GOSUB 95
Screen Control Sets the screen mode SCREEN 115
Specifies the colour COLOR 53
Clears the screen CLS 52
Writes data into the VDP register VDP 132
Determines the contents of the VDP register VDP 132
Detrmines the start address of the video RAM table BASE 46
Determines contents of the video RAM VPEEK 132
Writes data into the video RAM VPOKE 132
Text Screen Mode | Displays data PRINT 102
Displays formatted data PRINT USING 103
Displays the program LIST 81
Specifies the line width (number of characters) WIDTH 133
Text Screen Mode | Outputs blanks TAB 129
SPC 119
Moves the cursor LOCATE 82
Determines the vertical position (line) of the cursor CSRLIN 55
Determines the horizontal position (column) of the POS 101
cursor
Graphic Screen Draws circles and ellipses CIRCLE 49
Mode Draws straight lines and rectangles LINE 79
Draws graphics DRAW 62
Fills in colour PAINT 98
Draws dots PSET 108
Changes the colour of the dots PRESET 101
Determines the colour code of the specified point POINT 100

—145—

Function Description Command
Graphic Screen Displays characters and numbers MAXFILES 85
Mode OPEN 96
PRINT # 106
PRINT # USING 107
CLOSE 52
Sprite Screen Defines the sprite pattern SPRITES 121
Displays the sprite pattern PUT SPRITE 109
Controls the sprite pattern interrupt SPRITE ON 120
SPRITE OFF 120
SPRITES STOP 120
ON SPRITE GOSUB| 93
Printer Prints data LPRINT 83
| Formatted data LPRINT USING 84
| Prints the program listing LLIST 81
| Outputs blanks TAB 129
SPC 119
Specifies whether the MSX printer is used or not SCREEN 115
Determines the position of the printer head LPOS 83
Sound Plays music PLAY 99
Determines whether music is being played or not PLAY 100
Writes data into the PSG register SOUND 118
Sounds the buzzer BEEP 46
Joystick, etc. Determines the direction of the joystick STICK 123
Determines whether the trigger button is pressed STRIG 126
or not.
Controls the joystick trigger interrupt STRIG ON 127
STRIG OFF 127
STRIG STOP 127
ON STRIG GOsSuB | 93
Determines the condition of the touch pad PAD 97
Determines the condition of the paddle PDL 98
1/0 Port Outputs data ouT 97
Determines the value of the input port INP 71
Waits until the specified value is input WAIT 133
File Specifies the number of files MAXFILES 85
Opens the file OPEN 96
Outputs data PRINT # 106
PRINT # USING 107

—146—

Function Description Command
Inputs data INPUT # 73
LINE INPUT # 80
INPUTS 73
Determines whether EOF has been reached or not EOF 63
Closes the file CLOSE 52
Determines the file control block address VARPTR 131
Branch The program branches to the specified line GOTO 69
Deternines the condition IF 69
The program branches to several lines depending on ON GOTO 90
the conditions
Subroutine Executes a subroutine GOsuB 68
Executes a particular subroutine depending on ON GOSuB 90
the conditions
The program returns to the main routine RETURN 112
Repeat Repeats execution for the specified number of times FOR 66
NEXT 88
Error Generates an error intentionally ERROR 64
Defines the start line for an error recovery routine ON ERROR GOTO| 89
The program returns from the error recovery routine RESUME 112
to the main routine
Determines the line number where the error was ERL 64
generated.
Determines the error number ERR 64
Stop Stops the program STOP 124
End Terminates the program END 63
Remarks Inserts remarks in the program REM 110
Character String Replaces part of a character string MID$ 87
manipulation Determines part of a character string LEFTS 78
MID$ 86
RIGHTS 113
Determines the specified length of the space character A SPACE$ 119
string
| Determines the specified character string STRINGS 128
| Determines the position of a character string withina | INSTR 74
character string
Determines the length of a character string LEN 78

o A

Function Description Command
Type Conversion | Converts a numerical value into a double precision CDBL 48
real number.
Converts a numerical value into an integer CINT 48
Converts a numerical value into a single precision CSNG 55
real number,
Determines the character code ASC 44
Converts a character string into its numerical value VAL 131
Converts a character code into the corresponding CHR$ 48
character
Converts a decimal into a binary string BINS 46
Converts a decimal into an octal string OCT$ 89
Converts a decimal into a hexadecimal string HEX$ 69
Converts a numerical value into a character string STR$ 128
Numerical Determines the arc tangent | ATN 44
Operation Determines the cosine | COs 54
Determines the sine | SIN 117
Determines the tangent | TAN 129
Determines the exponential EXP 65
Determines the log LOG 83
Determines the square root SQR 123
Determines the absolute value ABS 44
Determines the integer part FIX 65
Determines the maximum integer below the INT 74
‘ specified number
Determines the sign SGN 117
Variables Assigns a value to a variable LET 78
Stores constants to be read by a READ statement DATA 56
Reads the constants set in the DATA statement READ 110
' Specifies the DATA statement to be read by the RESTORE m
| READ statement
Defines dimensions an array | DIM 61
Deletes an array ERASE 62
Initializes all variables CLEAR 50
Exchanges values between two variables SWAP 128
Determines the memory address where a variable is VARPTR 131
stored.
Defines an integer variable DEFINT 58
Defines a single precision variable DEFSNG 59
Defines a double precision variable DEFDBL 58
Defines a string variable DEFSTR 59
Random Number | Determines the value of a random number RND 113
User Functions Defines a user function DEF FN 57

~148-

Function Description Command
Memory Determines the amount of unused memory FRE 67
Determines the contents of the specified address PEEK 99
Write data into the specified address POKE 101
Defines the size of the memory area CLEAR 50
Machine Language | Defines the start address of a machine language DEFUSR 57
subroutine.
Executes a machine language subroutine USR 130
Interval Timer Sets the value of the internal clock TIME 129
(Internal Clock) Determines the value of the internal clock TIME 129
Controls the interval timer interrupt INTERVAL ON 75
INTERVAL OFF 75
INTERVAL STOP 75
ON INTERVAL 91
GOsuUB
Extended Calls the extended statement CALL 8
Statement

—149—

MEMO

MEMO

TOSHIBA CORPORATION
TOKYO JAPAN PRINTED IN JAPAN

EOQO075

