

Ve ~ ~)/ L\
L Of \L ONC

©1985 INTERSOFT (PTY) LTD. All rights reserved.

No part of this book may be reproduced in any form or by any means, electronic
or mechanical, including photocopying, recording or by any information storage
and retrieval system without permission in writing from the publisher, with the
following exceptions: any material may be copied or transcribed for the nonprofit L
use of the purchaser, and material (not to exceed 300 words and one figure) may
be quoted in published reviews of this book.

Nnannmnmnmmw.

Cover Design: Susan Woolf

progr—. - |

Typesetting and Printing: Minit Print, Medical Centre.

SVI 318/328 is a trade mark of SPECTRAVIDEO INTERNATIONAL LTD.

MMM mnmm

L]

INTERSOFT

P.O. Box 5078,
Johannesburg, 2000,
South Africa.

Tel: (011) 337-5806/7
Telex: 48-3868 SA.

_m

THE MAGIC OF SPECTRAVIDEO

BY BERNARD L. BURKE

L

INTRODUCTION

This book is not a games book — there are plenty of those on
the market already — THE MAGIC OF SPECTRAVIDEO is a
book for the person who knows some basic programming
and is ready to advance both in basic and machine code. The
book is divided into two main parts:

PART 1 consists of chapter 1 through to chapter 14. This part
deals with the memory map, the video chip, the system
variables and other useful information for the basic
programmer. A knowledge of the information contained in
part 1 is essential for the machine code programmer.

PART 2 starts at chapter 15 and deals with machine code
programming on the SPECTRAVIDEO. You will find within
these pages the tools you need to enter the magic world of
machine code. These tools include a full machine code
assembler and details of many ROM routines to assist you in
your programs. There are also many source files to illustrate
the SUPER ASSEMBLER operation and the operation of the
ROM routines.

LISTINGS

How many times have you bought a book full of listings and
then found most of the listings full of errors?

Disheartening isn’t it?

We have tried to avoid that problem by providing a tape
containing all the listings. You should have received the tape
when you bought the book — if you did not get the tape then
consult your dealer.

BRICKBATS AND BOUQUETS

This book is written by a SPECTRAVIDEO USER for other
SPECTRAVIDEO USERS. We want the book to be accurate
and to provide the information which is required by the reader.

We would appreciate your comments, suggestions, or
criticisms about this book so that future editions can reflect
your needs.

Send your comments to the publishers:
INTERSOFT (PTY) LTD.,
P.O. BOX 5078,
JOHANNESBURG 2000,
SOUTH AFRICA.

*
B
o
=
3
E
E
E
E
=
=
=
B
2
E
E
E
2
2
E

N e

- e

- . .

.
-

N . .

THANKS

Thanks are due to INTERSOFT for publishing and distributing
this book. Thanks also to all the people who phoned me on
the SPECTRAVIDEO HOTLINE — many of the ideas in the
book were sparked off by the questions you asked.

Thanks to JAMES RALPH for distributing the MAGIC
SPECTRAVIDEO. A special thank you to BENNIE VAN DER
MERWE who wrote the SUPER ASSEMBLER — well done
BENNIE.

Finally, a special thank you to my wife DOROTHY and the
children (MATTHEW, MARK, SARAH, and LUKE) for “putting
up” with me during the long months of writing.

USING THIS BOOK

We suggest that you read through the book fairly quickly to
gain an appreciation of the contents and then start to work
through the chapters thoroughly from the beginning.

Use the tape supplied — you will find the listings on the tape in
the same order as they appear in the book. NOTE that for all
listings you type CLOAD followed by ENTER and then PRESS
PLAY ON THE TAPE.

There will be a great temptation to leap immediately into
machine code but please cover the earlier sections first — you
need to know about, for example, the memory and the video
chip before doing any serious machine code work.

Finally when you have worked through the book keep it near

the computer for reference purposes — the appendices will be
of particular use in this regard.

HAPPY COMPUTING

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

TABLE OF CONTENTS

NUMBER SYSTEMS

The Decimal, Binary, Hexadecimal
and Octal number systems are
examined.

BITS BYTES AND OTHER
WONDERFUL THINGS
Some microcomputer terms and
concepts are discussed.

MEMORY MAPS AND
SIGNPOSTS

The Spectravideo memory map is
examined and a table of boundary
addresses is provided. Program list
3.1 is a program which enables the
user to switch into the second
memory bank of the SVI 328.

BASIC PROGRAM AREA

This chapter looks at the basic
program layout in memory. Several
interesting program listings and a
basic word/token table are provided.

VARIABLES AND ARRAYS
An examination of the way basic
handles variables and arrays.

STRING SPACE

This chapter looks at strings and their
location in memory. input/output files
are also examined.

THE BASIC STACK
The operation of the stack is
discussed and some program
illustrations are given.

Page

14

18

26

34

38

42

\

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

MACHINE SYSTEMS AREA
The locations of the more .useful
system variables are given in table
form and an autorun- program for
cload programs is presented.

THE VIDEO CHIP

The TMS 9918A video chip is fully
described including the various
control registers and their contents.

DIRECT ACCESS TO THE VIDEO
CHIP AND VIDEO RAM

How to read from and write to the
video chip registers and the video ram
— essential information for the
machine code programmer.

TEXT MODE

The video chip in text mode — the
character set and how to access up to
7 different character sets. The
following character sets are
presented:

The inverse set

The underline set

The upsidedown set

THE HIGH RESOLUTION SCREEN
The screen 1 layout in detail including
the 768 user defined graphics. Some
interesting programs are presented.

VIDEO ENABLE/DISABLE

Shows how to disable the screen to
build a picture behind the scenes —
enabling the screen then instantly
displays your masterpiece.

THE VDP STATUS REGISTER
Explains the use of the register to
detect which sprites have collided.

45

50

56

59

66

75

77

B NN o Y) WO S g s | o o

- NN e R S OE, e . e e

| =1
L)

CHAPTER 15

CHAPTER 16

CHAPTER 17

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

CHAPTER 22

APPENDIX 1

MACHINE CODE

The first chapter in the machine code
section of the book — machine code
and the Z80A chip are described.

THE SUPER ASSEMBLER
A full Z80 assembler for your
Spectravideo.

SUPER ASSEMBLER OPERATING
INSTRUCTIONS

Complete instructions for your new
assembler.

SIMPLE SCREEN ROUTINES
Some machine code routines for
printing to the screen and getting
characters from the keyboard.

MORE PRINTING ROUTINES
Printing strings, screen formatting, as
well as screen and cursor control
commands.

THE SOUND OF MUSIC

Music and sound routines from
machine code — how to make
continuous sound in your programs.

TRANSFERING VARIABLES
FROM MACHINE CODE TO BASIC
How to create basic variables from
within your machine code routine.

SOME GRAPHICS ROUTINES

A high resolution screen scroll routine
and the machine code version of the
sprite detection routine.

280 MACHINE CODE
MNEMONICS

A full list of all the Z80A instructions
with brief explanations of each
instruction group.

79

88

95

100

105

108

114

120

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

APPENDIX 6

APPENDIX 7

APPENDIX 8

SPECTRAVIDEO ROM ROUTINES
In which the formula for calculating
the position of the basic word
routines is presented.'

INPUT/OUTPUT PORT TABLE
Full list of the Z80 1/0 ports used by
your SVI computer.

MORE ROM ROUTINES
Some more of the routines which
make your computer tick.

THE MAGIC OF SPECTRAVIDEO
TAPE DIRECTORY

A directory of the programs on the
tape which accompanies this book.

THE BASIC STATEMENT
HANDLER

Shows how to use the Basic
statement handler — this enables the
user to execute any basic routine from
within a machine code program.

HOOK JUMPS

Shows how to hook your own
routines into the rom. A full list of
hook jumps is provided as well as a
source file which creates a new basic
word.

READING INPUT DEVICES
Shows how to directly read the
keyboard and the joystick.

148

149

151

153

154

155

158

W

CHAPTER 1

NUMBER SYSTEMS

LY

This chapter has been included to introduce the reader to the
NUMBER SYSTEMS used by the computer. If you are already
familiar with the concepts presented here then skip this
chapter and continue with chapter 2 — you may however
want to glance through chapter 1 to refresh your knowledge
of number systems.

W W W

The computer reduces all data (even text, music, and
graphics) to a series of numbers which can be stored in
memory and easily manipulated by the micro processors
which make up the computer.

W

We are all familiar with the decimal system which is used all
the time by everyone — the computer however finds the
decimal system very difficult to work with. This is because of
the nature of the memory and processor chips within the
computer.

Your SPECTRAVIDEO, in common with other computers,
mostly uses the BINARY number system which counts up in
2’'s (DECIMAL counts in 10’s). The SVI also uses
HEXADECIMAL (counts in 16’s) and OCTAL (counts in 8's) —
the computer makes limited use of the familiar DECIMAL
system.

lw la w

L

n

NOTE that the “COUNT” of a number system is known as the
number BASE — so, for example, HEXADECIMAL or HEX has
a number BASE of 16 and BINARY has a BASE of 2.

L

o
= Lets look at NUMBER SYSTEMS:
———" THE DECIMAL SYSTEM
T
- Consider the following example taken from the packing shed
d B of a peach distributor. This company used the following
i packaging system:
e
;I i a) Peaches were packed into trays — 10 peaches to the

tray.

|/

e

b) Trays were packed into boxes — 10 trays to the box.

c) Boxes were packed into cartons — 10 boxes to the
carton.

d) Cartons were crated — 10 cartons to the crate.

At the end of the day the packing foreman had to report the
number of peaches packed that day — he calculated this by
counting the number of trays packed and multiplying by 10.

One day the foreman made a wondrous discovery — that day
76540 peaches had been packed and he noticed that each
digit of the number had a significance which he had never
before recognised:

7 full crates had been packed.
6 uncrated cartons were full.
5 boxes were full.

4 trays were full.

0 peaches left over.

Our hero had discovered the basic principles of the decimal
system — that each digit in a decimal number represents a
number of “LOTS” and the size of each “LOT"” is indicated by
the position of the digit within the decimal number.

Lets examine this in more detail — we were taught at school
that a number is made up as follows:

TABLE 1.1

ten thousands | thousands hundreds tens units

7 6 5 4 0

Examine table 1.1 closely and you will find that the value of a
“LOT” is ten times the value of the “LOT"” immediately to the
right of the “LOT"” under consideration.

Mm M M ™

m oM ooy OO mom oMo OE IO (M

. T

e am Ew maw e gk el et ke Nl Vit

-

-

?
!

Decimal is a number system with a BASE TEN and so we can
say that in the case of decimal a particular “LOT" value is equal
to the value of the “LOT"” on the right times the number BASE.

Now consider the following which is another way of depicting
the decimal system:

TABLE 1.2
10000’s 1000’s 100's 10's 1s
104 103 102 10° 100

The value of any “LOT" is equal to the NUMBER BASE raised
to the power of the NUMBER POSITION. The number
position is counted from right to left with the right hand digit
being in position zero.

NOTE:

a) Any number raised to the power of zero is equal to one
and so the value of the “LOT"” in the right hand number
position is always equal to one.

b) The digit in any number position can range from O to the
number base minus 1.

c) The value of any particular number position is equal to the
digit in that position multiplied by the “LOT" value at that
position.

BINARY NUMBER SYSTEM

The BINARY NUMBER SYSTEM has a BASE of 2 — this
means that a number position will always contain the digit O or
1 (digits range from O to the number base minus 1). The binary
system is depicted in the following table:

TABLE 1.3

128's |64's | 32's | 16's | 8s | 4's | 2's 1's

27 26 25 24 23 22 21 20

TABLE 1.3 describes the 8 smallest “LOTS” of a binary
number — remember that with the binary system a digit can
range from zero to one and so any particular “LOT” is either
present or absent. Such a number (8 “LOTS” OR BITS) can
range from zero to 255. Notice how all the principles which
applied to decimal numbers also apply to binary numbers —
only the number base has changed.

The binary system is particularly suited to the computer
because the computer must only remember whether a BIT is
on (1) or off (0) thus indicating whether a “LOT" is present or
absent.

EXERCISE 1
Lets convert the decimal number 156 into binary:

To do this we extract binary lots and set the binary bits as
required — starting with the senior (most significant) bit and
moving through to the least significant (junior) bit. Work
through the following table to understand the conversion
method.

TABLE 1.4
decimal remainder binary lot | binary digit
156 128 1
156 — (128*1) = 28 64 0
28 — (64*0) = 28 32 0
28 — (32*0) = 28 16 1
28 — (16*1) = 12 8 1
12 — (8*1) = 4 4 1
4—(4*1) =0 2 0
0—(2*0) =0 1 0

So decimal 156 = binary 10011100

Y . .

T MM M T m ™

1

™ Ol M W (R

ram rer ren e ™

rmy s &l

e

NS B Usee e L e Ll

. . .

Lm

i

=
i m

!

Now calculate the binary equivalent of 241 and 65 using the
tabulation method.

BIN$ FUNCTION

Spectravideo basic provides a simple way to convert from
decimal to binary using the BIN$ function.

try — PRINT BINS (241) — press ENTER

The computer responds with 11110001 — did you get that by
the tabulation method?

now try — PRINT BINS$ (65) — press ENTER

The computer responds with 1000001 — only 7 digits! must
be something wrong!

The reason for this is that the computer does not print leading
zeros in a binary number. To get over this problem use the
following code to convert to 8 bit binary:

AS$ = BINS (65): A$ = STRINGS (B—LEN(AS$),48) + As:
PRINTAS

This time the computer prints 01000001 — thats better!

The computer does all its internal calculations and storage in
binary format and it is therefore often convenient for the
programmer to work in binary as well. We have seen how
binary numbers consist of long strings of 1’s and 0’s which is
fine for the computer but difficult for humans — because of
this the HEXADECIMAL number system was developed.

e HEXADECIMAL NUMBER SYSTEM

HEXADECIMAL or HEX is a number system with a base of 16
which is compatible with the binary system but can represent
larger numbers using less digits. One HEX digit is equivalent
to 4 BINARY digits.

In common with other numbers a HEX digit must range from
zero to the number base minus 1. This means that the hex
digit must range from zero to 15 — seems like a problem for a
single digit. This problem is overcome by using letters A — F
to represent digits of value 10 to 15.

—10 —

TABLE 1.5

4096's 256's 16's 1's

163 162 16! 160

Table 1.5 describes the “LOTS” of a hex number which can
range from 0 to 65535 decimal or from 0 to FFFF hex.

Table 1.6 shows a comparison of decimal, binary and hex —
please study the table carefully so that you fully understand
the relationship between the different number systems. Note
in particular that a single HEX digit represents a 4 BIT binary
number. Incidentally a single HEX digit is often known as a
NIBBLE.

TABLE 1.6

DECIMAL/HEX/BINARY TABLE

DECIMAL HEX BINARY
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

L et

M M M M

e M) M @D WY I M (] M1 M

= ™

s e

A A}

R B s

e

S . N O (e B o O UGEEEe e e hmﬁﬂﬂl

-

Using TABLE 1.6 you can convert any binary number into
HEX. Proceed as follows:

a) Using leading zeros ensure that the number of digits in
the binary number is exactly divisible by 4.

b) Separate the binary digits into groups of 4.

c) Using table 1.6 convert each group of 4 binary digits into
a single hex digit.

This method is illustrated in the following example:

EXAMPLE
decimal 241 = binary 11110001
binary 11110001
binary 11110001 = F 1..... hex conversion from table 1.6.
binary 11110001 = hex F1 solution.

Il

1111 0001 separate into groups of 4.

Il
n
-

Now you try to convert decimal 138 to binary and then to hex.
You should get the result —

decimal 138 = binary 10001010 = hex 8A.
HEX$ FUNCTION

SVI basic provides the HEX$ function for conversion of
numbers into HEX.

try — PRINT HEX$ (201) — result C9.
The computer does not print leading zeros and so if you
require a hex number with say 4 digits you should use the
following code:

AS$S = HEX$(201):A$ = STRINGS$(4—LEN(A$),48) + AS:PRINTAS
Now the resultis 00C9 — a hex number of 4 digits as required.
BINARY/HEX TO DECIMAL CONVERSION

binary to decimal — PRINT &B00110111 — result 55

hex to decimal — PRINT &H37 — result 55

—12 —

e R OO i et

- ,.A.A..,ﬁ.».vm ‘-—.VI-.,.A...W

%

THE OCTAL NUMBER SYSTEM

The last number system used by the computer is the OCTAL
system which has a base of 8.

TABLE 1.7 describes the OCTAL system.

TABLE 1.7

512's 64's 8's 1's

g3 82 8! 80

This system is not used often but the SPECTRAVIDEO
computers use OCTAL in the disc system to keep track of the
disc space allocated to various files.

The basic function OCTS$ is used to convert decimal numbers
into octal and the prefix &o is used to convert octal into
decimal.

PRINT OCT$(156) result 234 octal
PRINT &o0361 result 241 decimal

S EEEEEEEREREREEEEEEE 5

That's all about number systems — in the next chapter we will
examine some of the well known but little explained computer
terms.

S - TP

"l M (o

e

mm s _al re

rer

A . LU . R SR D B e G e L

CHAPTER 2

BITS BYTES AND OTHER WONDERFUL THINGS

In CHAPTER 2 we examine a few computer terms and
conduct an interesting little exercise using PEEK and POKE.

BITS

A bit is the smallest fraction of the computers memory. Bits
can be considered as switches which can be either ON (set) or
OFF (not set or reset). When a bit is set then it contains a 1
whilst reset bits contain a 0. The SVI 328 contains 917504
BITS and the SVI 318 contains 524288 BITS. Since bits are a
very small unit they are grouped together in bunches of 8 bits
— each bunch is known as a BYTE.

BYTES

A BYTE is the smallest, directly addressable, unit of the
computers memory. The SVI 328 has 65536 bytes of
continuous memory with addresses 0 to 65535. In the SVI 318
the address range is the same except that no memory is
provided between addresses 32768 and 49151. Both
machines are provided with a separate bank of 16384 bytes of
VIDEO memory which has the address range 0 to 16383.
Each byte consists of 8 bits each of which can represent
either 1 or 0. The computer uses the BINARY NUMBER
SYSTEM for its internal computations and so it sees the
contents of a byte as an 8 digit BINARY number. Such a
number can range between 0 and 255. The significance of the
value of a particular byte depends on:

a) The value.
b) The position of the byte in memory.
c) The way in which the byte is read.
To understand this please switch on your computer and do
the following exercise.
EXERCISE 2

Note that the exercise should be carried out with the
computerin DIRECT mode (ie. type in without line numbers so
that execution is immediate).

type POKE 50000,122 — press ENTER

WL 1V, p

The computer places the number 122 into byte 50000 and
then returns to command mode with the report OK. Now we
are going to examine the contents of this byte in a number of
different ways.

type PRINT PEEK(50000) — press ENTER

The computer displays the number 122 on screen as you
would expect.

now type PRINT CHR$(PEEK(50000)) — press ENTER

This time a z is printed because you have told the computer to
consider the value in address 50000 as a character.

Now try the following:
1) PRINT BINS$(PEEK(50000)) — press ENTER — BINARY

NUMBER

2) PRINT HEXS$(PEEK(50000)) — press ENTER — HEX
NUMBER

3) PRINT OCT$(PEEK(50000)) — press ENTER — OCTAL
NUMBER

Finally try this little experiment:
type in 10 REM SPECTRAVIDEO — press ENTER

This is a small basic program — LIST it to make sure that it is
there.

now type POKE 32773,130 — press ENTER

LIST that basic program again and notice that the line has
changed to:

10 FOR SPECTRAVIDEO

The reason for this is simply that the computer expects the
value in address 32773 to represent the first basic keyword in
the basic program. 130 is the TOKEN for the keyword FOR —
more about basic program layout and tokens later.

RANDOM ACCESS MEMORY (RAM)

In EXERCISE 2 we used the basic instructions POKE and PEEK
to change or examine the contents of a byte. You can PEEK

— 15 —

m m M mm m

Im M

(e (8§ rm B & | R A

ey — ——

Mhm‘“

Y S L. :

L, N BN R RN B .

(read) the contents of a RAM byte and you can POKE (change)
the contents of a RAM byte. The RAM address range on your
SVI computer is as follows:

SVI 328 — from 32768 to 65535
SVI 318 — from 49148 to 65535

With both machines the area from 58624 to 65535 is reserved
for SYSTEM VARIABLES and WORK AREAS - you can PEEK
in this area with safety but you should only POKE if you
understand the effects of your action. The system area is fully
explained later in the book.

READ ONLY MEMORY (ROM)

You can PEEK any ROM byte but POKING in the ROM area
has no effect. The ROM contains the BASIC language and all
the ROUTINES to control the computer, the screen, the
cassette, sound etc. The ROM, which is written in Z80
MACHINE CODE, contains many useful routines (ROM
ROUTINES) which can be used by the machine code
programmer in his own programs.

VIDEO MEMORY

The SVI range of computers are equipped with a TMS 9918A
VIDEO DISPLAY PROCESSOR which handles the video
display. This chip has a dedicated RAM of its own — the video
RAM contains 16384 memory bytes for picture display, sprite
handling, etc. The user may directly access the VRAM using
VPEEK and VPOKE. The video chip and the video ram are
examined in more detail later.

KILOBYTES

A byte is a small memory unit and so it is convenient to define
and use a larger unit — the KILOBYTE (KB). The KB does not
contain 1000 bytes as you might expect — 1 KB contains 1024
bytes. The reason for this is that the computer uses the
BINARY number system and controls memory in PAGES
(blocks) of 256 bytes each — so there are 4 pages to the KB,
and 64 * 4 = 256 pages in the main memory area.

= 16 =

—

____"

CENTRAL PROCESSING UNIT

The CENTRAL PROCESSING UNIT (CPU) is the microchip
which controls all the functions of the computer. The
Spectravideo computers use the Z80A chip as a CPU.

The Z80A has an instruction set which comprises 245 simple
instructions. These instructions can be used in combinations
to give about 700 instructions in all. Direct instructions to the
CPU are given in MACHINE CODE which is the only
“LANGUAGE” that is understandable to the CPU. The
Spectravideo machine code is Z80 machine code.

Basic program instructions are translated into machine code,
by the routines in the ROM, before they can be executed by
the CPU. This translation takes time and so basic programs
generally run much slower than machine code programs.
Many of the routines in this book use machine code to
increase the operating speed.

INPUT/OUTPUT PORTS

Input/Output ports are used by the computer for
communication with external devices such as the VDU
SCREEN, THE CASSETTE, THE LINE PRINTER, THE DISC
DRIVE ETC.

The Z80A CPU controls 256 INPUT and 256 OUTPUT ports —
only a few of these ports are used to control the standard SVI
devices. In this book you will find many useful routines which
use the 1/0 ports and you will learn how to use the ports which
control the VDU screen.

PROGRAMMABLE SOUND GENERATOR

The SVI computers are fitted with a GENERAL INSTRUMENT
PSG chip AY—3—8910. This chip is capable of producing
music from 3 channels (3 notes at one time) as well as
generating sound effects from the noise channels. Music can
be programmed using a basic music macro language — the
chip can also be accessed using the basic SOUND command.
The sound capability of your SVI is discussed later in the book.

— 17 =

m M M om m M

m [

rem R rm (8| r [8 MM M M ™ |

'S 3l

N

S . B o N B B NN G G (e el s Ussls

CHAPTER 3
MEMORY MAPS AND SIGNPOSTS

The SVI micros are based on the ZB0A microprocessor chip —
this chip is an 8 bit processor but is provided with a 16 bit
addressing facility. This means that the Z80A can control
65536 memory bytes within the address range 0 to 65535 —
(a computer uses more than 16 bits for addresses greater than
65535).

Despite the limited addressing facility of the Z80A the SVI
computers can be expanded to 160 KBYTES of user RAM in
addition to the 16K of video RAM. This large memory is
controlled by bank switching — banks of memory are
switched IN and OUT as required so that the Z80A only sees a
single 64K block at any one time.

INSTALLED MEMORY
Please refer to figures 3.0 — 3.3 whilst reading this section.

SVI computers have eight possible banks of memory — each
bank can contain 32K Bytes. One lower bank (ie. BKO1 or
BK11 or BK21 or BK31) and one higher bank (ie. BKO2 or BK12
or BK22 or BK32) are enabled at any one time.

SVI 318 — Contains 32K bytes of ROM (read only memory or
“brains” which is located in bank BKO1) and 32K bytes of
RAM. 16K of the RAM is located in the upper half of bank
BKO2 and the other 16K is the video RAM.

SVI 328 — Contains 32K of ROM (as in the SVI 318) and 80K of
RAM. 32K of the RAM is located in bank BK02, 32K is in bank
BK21 and the remaining 16K is the video RAM.

MEMORY EXPANSION
a) The SVI 318 can be expanded to 160K user RAM by the
addition of one 16K and two 64K expansion boards (one

with BK21 and BK22 switched on and the other with
BK31 and BK32 switched on).

— 18 —

. . (= - ‘

b) The SVI 328 can be expanded to 160K of user RAM by
the installation of two 64K expansion boards (one with
BK22 and BK31 switched on and one with BK32
switched on — the other 32K in the second card cannot
be used).

c) Note that memory installed in BK22 can be accessed in
basic using the SWITCH command — this command
exchanges the RAM banks BK0O2 and BK22 to give the
user a second basic RAM.

d) BK21 is automatically switched in when the CP/M
operating system is in use — this systemis supplied with
the disc drives. Program list 3.1 is a program to allow the
user to utilise the memory in bank 21 for basic
programming.

e) BK31 and BK32 are not accessible from basic and so are
usually only of use to the machine code programmer.

BASIC RAM ORGANISATION

Figure 3.4 shows the layout of the BASIC RAM — BKO2 or
BK22. The most important part of the RAM is the MACHINE
SPACE at the top end of the memory. In this area the
computer keeps all the SYSTEM VARIABLES (eg. screen and
character colors, cursor position, screen mode etc.),
FUNCTION KEY DEFINITIONS, VARIOUS BUFFERS and all
the other information that is needed for proper operation of
the computer. The machine area is fully explained in chapter 8.

BOUNDARY ADDRESSES

The location of each area of the RAM is defined by the
boundary addresses of that area — see figure 3.4 (eg. the
ARRAY TABLE is located from ARRAY TABLE START to
ARRAY TABLE END).

The boundary addresses are 16 bit addresses and each
address is contained in the RAM machine area (SYSTEM
VARIABLES). To read these addresses you must type a
command with the following general format into your
computer in direct mode:

Z = HEX$ (PEEK(X) + 256 * PEEK(Y)) HEX
ADDRESS

o 4 Gt

s oI A T o s N A |

("€

ey Y A @) W) WY

e

=

— ¥

oS BN, B BN BN B D S D e e el mee Ui

or Z = PEEK(X) + 256 * PEEK(Y)...... DECIMAL ADDRESS

After execution of the command the variable Z will contain the
desired address. X and Y are of course different for each area
and you must substitute the correct X and Y values.

NOTE that the computer stores 16 bit addresses or numbers
in the order low byte followed by high byte (the bytes are
therefore in “reverse order”) and so it is necessary to multiply
the second byte by 256 to read the whole number.

In the next few chapters we examine the different areas of the
RAM in some detail.

PROGRAM LIST 3.1

BANK 21 SWITCH ROUTINE — MACHINE CODE BY
BENNIE VAN DER MERWE

10 CEAR200,&8HF480

20 FORX = &HF480TO&HF4F9

30 READXS$:POKEX,VAL(“&H" + X$):NEXT

40 DEFUSR = &HF480

50 Z=USRI(0):NEW
100 DATA 22,5E,FE,E5,3E,C3,32,57
110 DATA FF,21,B4,F4,22,58,FF,ED
120 DATA 73,5C,FE,F3,3E,0F,D3,88
130 DATA DB,90,32,64,FE,E6,FD,D3
140 DATA 8C,21,00,80,11,00,00,01
150 DATA 00,80,ED,B0,3A,64,FE,D3
160 DATA 8C,FB,E1,C9,FE,C9,C0,ED
170 DATA 73,5C,FE,DD,2A,03,FA,23
180 DATA 22,5E,FE,F3,3E,0F,D3,88
190 DATA DB,90,32,64,FE,E6,FD,D3
200 DATA 8C,21,00,00,11,00,80,4E
210 DATA EB,46,71,EB,70,23,13,7A
220 DATA B3,20,F4,3A,64,FE,D3,8C
230 DATA FB,ED,7B,5C,FE,CD,50,37
240 DATA DD,22,03,FA,2A 5E,FE,7E
250 DATA C1,C9

NOTE THAT THIS PROGRAM WILL ONLY WORK WITH
THE SVI 328

A

Type in the program and CSAVE to tape. To execute type
RUN followed by ENTER. The program will initialise BANK 21
as a second BASIC RAM storage area. The program will
automatically delete after performing the initialisation so
ensure that you CSAVE before running for the first time.

After running this program you can use the basic word
SWITCH to switch between memory banks. One program
can be stored in bank 21 and another in bank 02. The SWITCH
command can be given in a program so programs can be run
alternately in both banks.

EXAMPLE

RUN the SWITCH PROGRAM then type in the following
program:

10 PRINT “THIS IS BANK 1”
20 SWITCH
30 GOTO 10

Type RUN followed by ENTER and the screen will display
THIS IS BANK 1 and on the next line OK. Now type LIST
followed by ENTER and notice that the program has
dissappeared — You are now in the other bank. Type in the
same program except change line 10 to PRINT “THIS IS
BANK 2”. Type RUN followed by ENTER and watch the
computer continually switch and report current bank number.

FIGURE 3.0
SPECTRAVIDEO MEMORY BANK LAYOUT
B B B B
K K K K
0 1 2 3
1 1 1 1
B B B B
K K K K
0 1 2 3
2 2 2 2

—T —

MMM m

I’ (W1

|

T M M m

g

(R A

1w =)

. . s

UM B D IEEN L e e

Ny N |

FIGURE 3.1

SPECTRAVIDEO 318 INSTALLED MEMORY

LR R

LI

LR R R I B B
LR K K
LA B

L 1 2
* % X W 1 1

* % % W

LR R I O O 2

* % % ® X

B

K
B B
0 K K

2
P 1 2
Y 2 2

* R XA K

LR

* kXK KR

The *'s represent the installed memory.

— 99 _

z‘

i
|
l/

)
lr

J

SPECTRAVIDEO 328 INSTALLED BASIC MEMORY

e % %W

LR

LR R

LA

LR I

LI I

LR I

LR I

LA I

LR

* % %K XK

LR I

IR

LA I

% % % % % ¥

LR I

LA R I

LR R

LR R

% % M

FIGURE 3.2

The *'s represent the installed memory.

— Y

W M MmO M mMm ™

| o

ren r ' 4!

[fa 2l ra rm rm

rm

FIGURE 3.3

SPECTRAVIDEO 328 INSTALLED CP/M MEMORY

LI

[% % % * ¥

B B [* % % % M B
K K [% % % ¥ W K
* R KXW
0 1 % % % % ¥ M 3
1 % % % * ¥ ¥ 1
% % * % * ¥
* % % % % X

% % % ¥ % X

HE % % % % ¥

pE % % % %

HE % % % % ¥ B B B
PE % % % % ¥ K K K
*‘li'**]
PE % % * * ¥ 1 2 3
HE % % % % ¥ 2 2 2

PE % % % * ¥

e % % % % ¥

. D (WD G e e e\l e Vsl

PE % % % * ¥

The *'s represent the installed memory.

— 24 —

N -, . ..

|

FIGURE 3.4

RANDOM ACCESS MEMORY MAP UNDER BASIC

BASIC
PROGRAM

VARIABLES
TABLE

ARRAY
TABLE

WORK
SPACE

BASIC
STACK

STRING
SPACE | "t

1/0
BUFFERS

USER MACHINE
CODE AND DISC
SYSTEM

MACHINE
SPACE

BASIC PROGRAM START

VARIABLES TABLE START

ARRAY TABLE START

ARRAY TABLE END

BASIC STACK POINTER

END OF STRING SPACE

STRING POINTER

START STRING SPACE

TOP OF BASIC MEMORY

&HF500

ErHFFFF

= D o=

mmTmm

M M mM

m m m

M (H) (W)

an m mn m a2l

3 Al

(G D LD O U L L

(NN N ..

(I . N .

CHAPTER 4
BASIC PROGRAM AREA

The start address of the basic program area depends on the
computer model — with the SVI 328 this area starts at
address &HB8000 whilst the basic program area of the
unexpanded SVI 318 starts at &HCO000.

BASIC PROGRAM START X = &HF54A Y = &HF54B

This system variable can be used within a program to decide if
the computer is a 318 or a 328.

The basic program area is variable in length depending on the
size of the program. The area ends at the start of the variables
table.

VARIABLES TABLE START X = GHF7EE Y = &HF7EF
BASIC PROGRAM LAYOUT

The basic program is held within the computer in
CONDENSED BINARY FORM. This means that basic
KEYWORDS are held as one or two byte tokens, numbers are
held in binary form and text is held in ASCII code. Each line has
a memory overhead of 5 bytes which are used as shown in
Table 4.1 — NOTE that “byte number” refers to the byte’s
position in any particular basic program line.

TABLE 4.1
byte number 1 2 3 L last
contents |start address |line number | zero
of next line

Addresses and line numbers always occupy two bytes each
and so no extra memory is gained by only using small line
numbers. The final byte of each line always contains a zero to
indicate the end of line.

— 96—

HIDING PROGRAM LINES

You may find it useful to “HIDE” certain lines or parts of lines
in your program — there is a simple procedure which allows
you to do this. Such lines will not appear in the program list
although they remain in the program. '

Program list 4.1 shows an example of the line hiding
procedure to protect a password within a program. Note that
the procedure replaces the Z’s (in the REM statements) with
DELETE marks. When the program is listed the hidden lines
are printed and immediately erased — this happens so quickly
that the hidden line cannot be read. You can put this routine at
the start of your own programs.

Type in the program and CSAVE to the data recorder. Now
RUN the program and then LIST — notice that only line 130
remains in the list — line 120 and 140 are still in the program
but are hidden in the list. Now you can type in your own
program from line 160 onwards. When someone RUNS your
program it will erase if the user does not type in the correct
password.

PROGRAM LIST 4.1
HIDDEN LINES ROUTINE

10 ’ hidden lines routine
207
30 ' by B L BURKE
40
50 X1 = PEEK(&HF54A) + 256 * PEEK(&HF54B)
60 X2 = PEEK(&HF7EE) + 256 * PEEK(&HF7EF)
70 FORY =X1TOX2
80 IFPEEK(Y) = 143ANDPEEK(Y +1)=90THENC =1 :NEXT
90 IFC = 1ANDPEEK(Y)=90THENPOKEY,127ELSEC =0
100 NEXT
110 DELETE50—110
120 As = “EXCALIBER":REMZZ2Z22222222222227222277
130 CLS:INPUT”ENTER PASSWORD ”;B$
140 IFBS < >ASTHENNEW:REMZZZZZ277277777777727277 2L

i

m M m o

1 O ®) (EY o (m

re 2 o fa 2l (3 &l =

'S o

A ™™™,

PROGRAMS WHICH MODIFY THEMSELVES

The line hiding routine is an example of a program which
modifies itself — another example is given in Program list 4.2.
This routine can be used in your programs so that the user can
personalise the program so that it addresses him by name.

The % characters in the DATA statement are replaced with
the users name and then the routine is deleted — the user
must then CSAVE the personalised program. Again you can
start any of your programs with a similar routine.

PROGRAM LIST 4.2

PERSONALISATION ROUTINE

10 ' personalisation routine
207
30’ by B L BURKE
407
50 CLS:INPUT”PLEASE ENTER YOUR NAME ";A$
60 IFLEN(AS$) > 20THENAS = LEFT$(A$,20)
70 X1 = PEEK(&HF54A) + 256 * PEEK(&HF54B)
80 X2 = PEEK(&HF7EE) + 256 * PEEK(&HF7EF)
90 FORY =X1TOX2
100 IFPEEK(Y)=132ANDPEEK(Y +1)=34THENY =Y + 1:
GOTO110ELSENEXTY
110 FORZ = 1TOLEN(AS):POKEY +Z,ASC(MID$(AS$,Z,1)):
NEXTZ
120 CLS:PRINT”"PROGRAM PERSONALISATION COM-
FPLEIRE'"
130 PRINT“PLEASE SAVE PROGRAM”
140 DELETE50—140
150 DATA" % % % % % % % % % % % % % % % % % % %"
160 READNS$:Z=INSTR(NS$,”%"):N$ =LEFTS$(N$,Z—1)
170 CLS:LOCATE(40—6—LEN(NS$))/2,2:PRINT”HELLO "”;N$

N e el e\ omills Uil

Ny N o .

ANIMALS

I Animals is an interactive program which has been written for
- o many different computers. My version is presented in
l Program list 4.3.

!

— 28 —

The user must think of an animal and the computer has to
guess the animal based on the answer to a simple question.
The program must be CSAVED every time the game is played
because the computer learns new facts at each game. The
program in its present form can accommodate 20 animals.

Enjoy the ANIMALS program — it is another example of a
program which modifies itself.

NOTE the use of the system variable DATA POINTER in
Program list 4.3 line 270. This variable always points to the
next set of data in the basic program.

DATA POINTER X = &HF7F4 Y = &HF7F5
PROGRAM LIST 4.3 — ANIMALS

10 ONSTOPGOSUB210:STOPON
20 SCREENO,0:LOCATE,,0
30 CLS:LOCATEO,10:PRINT“THINK OF AN ANIMAL AND
DONT TELL ME”
40 LOCATEO,17:PRINT”PRESS ANY KEY ”;
50 IFINKEY$ <3 THENS50
60 IFINKEY$ =""THENG60
70 CLS:LOCATEO,10:PRINT“TELL ME A FEATURE OF
THIS ANIMAL"
80 LOCATEOD,14,1:INPUTAAS
90 LOCATE,,0
100 X=0:RESTORE370
110 READFS$,AS
120 P=INSTRI(F$,"@"):F$ =LEFT$(F$,P—1)
130 P=INSTR(AS,”@"):A$=LEFT$(A$,P—1)
140 IFF$=""THEN240
150 IFAA$=F$THENCLS:LOCATEO,10:PRINT"THE
ANIMAL IS ”;A$:GOTO170
160 X=X+ 1:IFX<20THEN110ELSE220
170 LOCATEO,17:PRINT”PRESS ANY KEY ”;
180 IFINKEY$ < >""THEN180
190 IFINKEY$=""THEN190
200 GOTO30
210 RETURN220
220 CLS:LOCATEO,10:PRINT”l AM TIRED OF GUESSING
ANIMALS”
230 SCREEN,1:LOCATE,,1:END

=90

PROGRAM LIST 4.3 CONTINUED

240 CLS:LOCATEO,10:PRINT”I DONT KNOW THAT ONE"
250 PRINT:PRINT:PRINT”PLEASE TELL ME THE ANIMAL"”
260 LOCATEO,17,1:INPUTABS$:LOCATE,,O0
270 IFLEN(AB$)>19THENABS$ = LEFT$(AB$,19)
280 DP =PEEK(&HF7F4) + 256 * PEEK(&HF7F5)
290 DP=DP-52
300 PE=PEEK(&HF7EE) + 256 * PEEK(&HF7EF)
310 FORPC = DPTOPE:IFPEEK(PC) = 132ANDPEEK(PC + 1) =
64THEN320ELSENEXTPC
320 FORPK=1TOLEN(AAS)
330 POKEPC + PK,ASC(MID$(AA$,PK,1))
340 NEXTPK
350 IFAAS$ < >ABS$STHENAAS$ = AB$:GOTO280
360 GOTO30
370 DATARRQRQRQRQQQQQAQQQQQEQQQ@
380 DATARRQRQQQRQRQACQQAQAQAQQQQAQQQ@
390 DATAQQQQRRQRCQAEReeeeRRR@
400 DATARRQRQQQRQQQCQQAQQQQQAQEQQ@
410 DATARRRQRRRRRQRCCRReREREE@
420 DATAQRQQQRRRQRQQACQQ@QRQEQQQ@
430 DATAR@RQRQCQRRReReeeeeeeee@
440 DATAQRQQQQRQRRQQQQQQQQQQQQ@
450 DATARRQRQQQRRAQAQQQQAQQQQQQQ
460 DATARRQQQQQQAQQAQQQAQQ@QAQQQQ@
470 DATAQQ@QQQQQQQeeeeeeeeee@
480 DATAQR@RQQ@Q@QRReGee@eeeeeeeQe@
490 DATAQR@@Q@Q@QAQAQQQQRQ@Q@Q@AQQQ@
500 DATAR@@@Q@@@@QQ@Ge@e@eeeQE@
510 DATAQ@@Q@QQQQRAQACQC@@REQE@
520 DATAQ@@Q@QRRQQRReeeeeeREEE@
630 DATAQ@@Q@QRQQRQRACeeeeeEEEE@
540 DATAQRQ@Q@QRQQ@C@CCCCReoECE@
560 DATAQ@QQ@QRRRReeeeeeeeee@
560 DATAQQQQRQRQRRReeeeeeeeEE@
570 DATAQ@QQQQQRQQQQeeeeeQeEE@
580 DATAQQQQQRQQQQQQRQQQCAEQEEE
590 DATAQQQRQQQQACeeeeee@eEEEE@
600 DATAQQQRQRQQQCeeCGeGeEEE@
610 DATAQQQRQQQQAQCCGGGEEEE@
620 DATAQQQQRQRQQQQReCeeeeEEE@

TG e TR T e Ll | Tl b) Lo (Y e

(- . e, e, W g

_q

L

y -

W

llﬂ P\l E

=30 =

PROGRAM LIST 4.3 CONTINUED

630 DATAQQRQ@Q@eeeReeeeeeeeeee@
640 DATAQQRRRRRRCReRee@eee@ee@Q@
650 DATARRQ@Q@QReRRReeeeeeeeee@
660 DATAR@RReeReeCeeeee@e@eee@
670 DATAQQRRRRRRReReeee@eeee@
680 DATAQQRRRRRRRRRReeeee@@@
690 DATA@RReeeeeeeeeee@eeeee@
700 DATAQRQQ@QRQRRQCRReReeeee@
710 DATARRQRQRQRRRRREARCeReeeee@
720 DATAQR@e@eRReeeee@@eeeee@
730 DATARQQQRReeeeeeeeeeeee@
740 DATAQQQQQeeeeeeeeeee@@@@
750 DATAQQQQeeeeeeeeeeeeeee@
760 DATAQQRQQQRRQROReReeeerEE@

NOTE THAT LINES 370 TO 760 ARE IDENTICAL AND CAN
BE ENTERED BY EDITING THE LINE NUMBER ONLY.

BASIC KEYWORDS AND TOKENS

The MICROSOFT BASIC LANGUAGE of the
SPECTRAVIDEO computers has 117 basic commands and 48
basic functions. The difference between a commmand and a
function is as follows:

a) A command tells the computer to DO SOMETHING eg.
PRINT, MOTOR ON etc.

b) A function tells the computer to perform some operation
upon data and to RETURN A RESULT eg. X =
INT(23.456) returns X =23.

Commands are held as single byte tokens in a basic program
and functions are held as two byte tokens. This is very
memory efficient — take the word LOCATE which is often
used to position the cursor for printing — the token for
LOCATE is 216 ie. one byte instead of 6 for the full word
LOCATE. The full basic word list and token table is given
overleaf.

e 1 e

s AUNEN: aE. AN, o, BN, . |

[y m m '

2l

r

mm rm

13 B m

™

8]

.

lljiii, 1 _MN -l!luu

R) W (N S N S S s

SV1 318/328 BASIC WORD AND TOKEN TABLE

AUTO
BSAVE
CLICK
CONT
CSAVE
COLOR
RELETE
DEFSTR
DEFDBL
DSKI$
ELSE
ERROR
EQV
FILES
GOTO
INPUT
IMP
KILL
LLIST
LINE
LIST
MERGE
MAX
NAME
OPEN
OR
PUT
PRESET
PLAY
RUN
RESUME
SCREEN
STOP
SAVE
STRINGS
TRON
TO

USR
WIDTH

>

4

/

169
206
200
153
154
189
168
171

174
234
161

166
251

183
137
133
252
212
158
175
147
182
202
211

176
249
179
195
193
138
167
197
144
186
227
162
7
221

160
240
243
246

AND
BLOAD
CLOSE
CLEAR
CRSLIN
CLS
DATA
DEFINT
DSKO$
DRAW
END
ERL
FOR
FN
GOSsuUB
IF
INKEY$
KEY
LET
LOAD
LFILES
MOD
MDM
NEW
ouT
OFF
POKE
POINT
RETURN
RESTORE
RSET
SPRITE
SWAP
SPC(
SOUND
TROFF
TIME
VARPTR
WAIT

A

ey Wl

248
205
180
146
232
159
132
172
209
190
129
225
130
222
141
139
236
199
136
181
187
253V
207
148
156
235
152
237
142
140
185
238 v~
164
223
196
163
239
231
150
241
244
247

ATTRS
BEEP
COPY
CLOAD
CIRCLE
CMD
DIM
DEFSNG
DEF
DIAL
ERASE
ERR
FIELD
GOTO
GET
INSTR
IPL
LPRINT
LOCATE
LSET
MOTOR
MON
NEXT
NOT
ON
PRINT
PSET
PAINT
READ
REM
RENUM
SWITCH
SET
STEP
THEN
TAB
USING
VPOKE
XOR

<

*

233
192
214
155
188
215
134
173
151
208
165
226
177
137
178
229
213
157
2167
184
204
203
131
224
149
145
194
191
135
143
s
20V
210
220
218
219
228
198
250
242
245

BASIC FUNCTIONS WORD AND TOKEN TABLE

NOTE ALL THE TOKENS IN THIS TABLE ARE PREFIXED

ABS
BINS
CDBL
CvD
DSKF
FRE
HEX$
LPOS
LEN
MKI$
MID$
PEEK
RIGHTS
SQR
SPACES
TAN

NOTES

134
157
160
170
166
143
155
156
146
174
131
151
130
135
153
141

WITH 255
ATN 142
CINT 158
CVI 168
CcOos 140
EXP 139
FIX 161
INT 133
LOG 138
LEFTS$ 129
MKS$ 175
OCTS$ 154
PDL 164
RND 136
SIN 137
STICK 162
VAL 148

ASC
CSNG
CVvSs
CHRS$
EOF
FPOS
INP
LOC
LOF
MKD$
POS
PAD
SGN
STRS
STRIG
VPEEK

149
159
169
150
171
167
144
172
173
176
145
165
132
147
163
152

i) You do not type tokens in to your basic program — you
type in keywords and the tokens are automatically stored
in the memory instead of the characters of the keyword.

i) Later in the book | will show you how to make use of
basic tokens in your machine code programs.

e B

m M

™! W W1

m

(3 ANENE AU AU APNEES RN A BN R A

B Al

T

iwm)

-

(al

CHAPTER &
VARIABLES AND ARRAYS

Variables are small MEMORY BOXES which you can define to
hold various numbers (NUMERIC VARIABLES) or text
(STRING VARIABLES) for use in your programs. Each variable
must be given a name of one or two characters (eg. A or XY
etc.) and a value. You may enter your variables as follows:

LET A = 12345 0or A = 12345 NUMERIC
VARIABLE.

LET A$ = “abc” or A$ = “abc” STRING
VARIABLE.

Variables like these are known as SIMPLE VARIABLES — one
variable value for each variable name. Variables which have
not been given a value are equal to zero in the case of numeric
variables and in the case of string variables they are equal to
(") — an empty string.

The computer keeps all information about variables in a
memory area called the variables table.

VARIABLES TABLE

See Figure 3.4 for the relative location of the variables table in
the computer memory map. The memory area starting at the
variables table is controlled by the basic system and the
instructions within the basic program. The variables table
contains entries for each simple variable defined in the basic
program. The values of numeric variables are held within the
table but in the case of string variables only the string
descriptor is held in the table. Note that if you STOP a
program the variables table remains intact until you change,
add or re-enter a program line or RUN the program.

The variables table is located in the memory just after the
basic program.

VARIABLES TABLE START X = &@HF7EE Y = &HF7EF

— BA ==

NUMERIC VARIABLES

The space taken up by a variable depends on the precision of
the number concerned..

1)

2)

3)

DOUBLE PRECISION — Double precision variable names
should be suffixed with the # sign eg. X# =
12345678901234. You can omit this sign if you define the
variable using the DEFDBL instruction eg. DEFDBLX.
Double precision variables can hold a number correct to
13 decimal places with the restriction that the maximum
number of digits is 14. Numbers with more than 14 digits
are rounded and presented in exponential form. Double
precision numbers take up 11 bytes in the variables table:
a) The first byte contains 8 to indicate double precision.
b) Next there are two bytes for the variable name.

c) Finally there are 8 bytes to contain the value.

SINGLE PRECISION — single precision variable names
should be suffixed with the | sign eg. X! = 1234567. You
can omit the sign if you define the variable with a
DEFSNG instruction eg. DEFSNGX. Single precision
numbers are correct to 6 figures with larger numbers
being rounded. Numbers with more than 14 digits are
presented in exponential form. Single precision numbers
take up 7 bytes in the variable table:

a) The first byte contains 4 to indicate single precision.
b) Next there are 2 bytes to contain the variable name.
c) The last 4 bytes contain the variable value.

INTEGER VARIABLES — These variables have names
which are suffixed with the % sign eg. X% = 23456. You
may omit the sign if you define the variable using the
DEFINT instruction eg. DEFINTX. Integer variables take
up 5 bytes in the variables table and they can range in
value from —32768 to 32767.

Five byte variables table entry:

a) The first byte contains 2 to indicate an integer.
b) The next 2 bytes contain the variable name.

c) The last 2 bytes contain the integer value.

— 35 —

rw

R AN IS SR

rm

L s tENE Gt &

- L N

L oo oW

||| N | | T

L

(&)

STRING VARIABLES

String variables are suffixed with the $ sign eg. X$ = “asdfg”.
You may omit the $ sign if you define the variable using the
DEFSTR instruction eg. DEFSTRX. The variables table only
contains a 6 byte string descriptor for each string variable.

ii)

Six byte string descriptor:

a) The first byte contains 3 to indicate a string variable.

b) The next 2 bytes contain the variable name.

c) The next byte contains a number to indicate the
number of characters in the string.

d) The last 2 bytes contain the start address of the
memory area where the string is located.

NOTES

The variables X, X# X!, X% and X$ are all different and
can all be used in a program at the same time.

The length of the variables table will change depending
on the number and type of variables defined by the basic
program — the table ends at the address where the
ARRAY TABLE starts:

ARRAY TABLE START X = &HF7F0 Y = &HF7F1
ARRAYS

Arrays are collections of variables all bearing the same
name and containing similar or related data. Different
ELEMENTS of the array are identified by a system of
number subscripts eg. A(1) , A(2) etc.

A single DIMENSION array (vector) is a single column of
numbers or strings. A table of numbers is represented by
a two dimension array eg. the array A(2,2) is a numeric
table with 3 columns and 3 rows.

Arrays must be properly dimensioned before you can use
them. Dimension your array as follows:

DIM A(21,20) numeric array with 22 rows & 21
cols.

DIMAS$(10) string array with 1 col & 11 rows.

— 36 —

ARRAY TABLE

See Figure 3.4 for the relative location of the array table in the
computer memory map. ARRAYS are subscripted variables
with definitions and type signs the same as for simple
variables. The array table is of variable length depending on
the number and magnitude of the array dimensions. The table
layout is given below:

a)

b)

c)

d)

e)

f)

The first byte in an array descriptor contains a number to
indicate the nature of the array variable:

i) 8 for double precision.

it) 4 for single precision.

i) 2 for integer.

iiii) 3 for string.

The next 2 bytes contain the variable name (1 or 2
characters).

The fourth and fifth bytes contain the number of bytes
remaining in the array descriptor.

The sixth byte contains the number of array dimensions.

Next there are a number of 2 byte entries one for each of
the dimensions — each 2 byte entry contains the size of
the relevant dimension. NOTE that in arrays the
dimension 0 is significant so the array A(1,1) has 4
elements namely A(0,0), A(0,1), A(1,0) and A(1,1).

Finally there are entries for each element of the array as
follows:

i) 8 byte entries for double precision arrays.

i) 4 byte entries for single precision arrays.

iii) 2 byte entries for integer arrays.

iv) 3 byte string descriptors for string arrays.

The array table ends at the address stored in the system
variable array table end.

ARRAY TABLE END X = gHF7F2 Y = HF7F3

LR I R I I R

— 37—

.

ILAN

h 4 o W o Wk 1 s

L.,

1)

W ow b N

wm ol R w

CHAPTER 6
STRING SPACE

Refer to Figure 3.4 for the relative position of the string space
within the computer memory map. Strings are collections of
characters (words or sentences) which have been assigned to
a string variable. Each character of the string takes up 1 byte in
string space. String space starts high up in the memory and
decends downwards towards the stack area. At power on
your SVI computer allocates 200 bytes of string space but the
user can change this using the CLEAR command.

eg. CLEAR 2000 — allocates 2000 bytes of string
space.

The useful addresses associated with string space are:

START STRING SPACE X = gHF7A2 Y = gHF7A3

END STRING SPACE X = &HF546 Y = &HF547
STRING POINTER X = gHF7C7 Y = &gHF7C8
NOTES

i) The start of string space is dictated by the current value
of the TOP OF MEMORY marker — more about that just
now.

i) The end of string space is dependent on the start
address and upon the size of the string space allocated
by the CLEAR command.

iii) The string pointer contains the address of the next free
byte in string space.

iv) Strings can be any length up to 255 bytes long. When
strings are edited (changed) there is no guarantee that
the resultant string will fit into the old space allocated to
that string. To overcome this problem the new version of
the string is placed into string space starting at the string
pointer and the string descriptor is updated to point to
the new string.

— 38 —

5
{
H
i
i

v) Obsolete strings are not erased immediately but remain
in memory until the string space becomes full and the
computer automatically performs a garbage collection.
The garbage collection consists of erasing all the
obsolete strings and restacking the current strings from
the start of string space. This procedure can take several
minutes if a large amount of string space has been
allocated.

INPUT/OUTPUT FILES

Input/Output files are used to format and control data input
and output from/to various devices eg. the screen, the data
recorder, the disc drive etc. The files are located in the
computer memory map just above the string space and below
the top of memory. At power on the computer automatically
allocates space for two 1/O files namely FILE$0 and FILE#1.

Addresses associated with the file space are:

TOP OF MEMORY X = @HFDE6 Y = &HFDE7
START OF STRING SPACE X = &HF7A2 Y = &HF7A3

Up to 16 files are available on your SVI computer — you can
change the number of files allocated by using the MAXFILES
command:

eg. MAXFILES = 2 — allocate space for one extra file
namely FILE #2.

MAXFILES = 0 — Release file space allocated to FILE#1.

Use MAXFILES = 0 if you do not need any files (eg. if your
program is not doing any /O to cassette or other device) —
this will release 267 bytes for other duties. Each file uses 267
bytes — file$0 is located at the start of file space and it cannot
be switched off because it is used by the computer for various
automatic operations.

The actual location of any file in memory is given by:

Z = VARPTRHFF) where F is the file number.
Incidentally you can find the location of any variable by using
the VARPTR function:
eg. PRINT VARP iR(X) Z = VARPTR(AS) etc.

T A ™ Ma

Wl Wl (WY I e (E e e

rm

W o e I3 |

e

S T G

W ¥

- by A o W o

Iy

Notice that the computer always reports a negative number
as the address of a variable (VARPTR) — this is because the
computer uses integers for addresses and you will recall that
SVI integers range from —32768 to 32767. When the
computer has to report an address which is greater than
32767 it uses the binary TWO’S COMPLEMENT FORM ie. all
binary 1’s become 0’s and 0’s become 1’s, add 1 and then
change the sign. To read the real address add 65536:

eg. Z = VARPTR(X) + 65536

TOP OF MEMORY

| have spoken a number of times about the TOP OF MEMORY
— let’s look at what this means. The memory area which is
controlled by the basic system is the area between BASIC
PROGRAM START and TOP OF BASIC MEMORY. If the user
POKES in this area the basic program is likely to overwrite the
POKED values — in order to protect such POKES it is
necessary to place them above the top of basic memory. This
however presents another problem because the area above
the top of basic memory is reserved for SYSTEM VARIABLES
and other machine controlled parameters. To get around this
problem the user can lower the top of basic memory to
release a space for special POKES and machine code routines.
This area is shown in Figure 3.4 as USER MACHINE CODE
AND DISC SYSTEM.

To reserve space above the top of memory proceed as
follows:

CLEAR A,B where A is the amount of STRING
SPACE required and B is the required
top of memory address.

BASIC HINTS

At the start of your BASIC programme you should have the
various memory reconfiguration commands in the proper
sequence — of course you will not always need all the
commands in every program.

eg. 10 MAXFILES = 2
20 CLEAR 500,56000
30 DEFINTA—-Z
40 DEFSTRY
50 DIMY(200)

— 40 —

F -

The sequence is important because MAXFILES and CLEAR
wipe out several other commands.

FIELD COMMAND

You can use unopened files to format screen output by
making use of FILES, FIELD, LSET and RSET commands.

eg. 10WIDTH 40
20 FIELD4#,40 AS A$
30 FIELDHKH,20 AS A1$,20 AS A2$
40 B1$ = “LEFT SET”
50 B2$ = “RIGHT SET”
60 LSET A1$=B1$:RSET A2$=B2$
70 PRINT A$

Line 20 defines the length of the fileg¥1 field which we call AS.
Line 30 divides this field into two equal parts and in line 60 we
insert strings into the fields. Note that LSET inserts a string
starting at the left side of the field and RSET inserts the string
so that the last character will be at the right end of the field.
The reader is urged to experiment with these commands and
to enjoy the ease with which output can be formatted.

TRANSFERING DATA TO TAPE

Files are used to transfer DATA to tape. A tape DATA FILE is
different from a program file in that it does not have LINE
NUMBERS and itis saved in ASCIIl MODE ie. each characteris
saved as an ASCII code.

The program code required to create a data file is in the
following example:

10 As = “THIS IS A DATA FILE TEST"”

20 OPEN “CAS:TEST” FOR OUTPUT ASH#
30 PRINT31,A$

40 CLOSE

To read the file back into your program use the following
code:

50 OPEN “CAS:TEST” FOR INPUT AS 1

60 INPUT #1,AS$

70 CLOSE
Note that any variable data can be transferred to tape using
basic code similar to the above. Note also that the usual tape
screen prompts will operate as with normal program saving
and loading.

LR R R I I R I R R I O

In the next chapter we examine a very important area of the
computers memory — THE BASIC STACK.

— 41 —

W) (4, (W) I® MM /W W (™ (W) /®) (W] (F] WM W (WM M Mmoo

In

1

o), W NS N B[BN U (DN WD SE (NmY e LUk

CHAPTER 7
THE BASIC STACK

See Figure 3.4 for the relative position of the basic stack in the
computers memory map. The basic stack occupies the
memory area between the end of the string space and the
stack pointer. The stack pointer marks the current top of the
stack which grows downwards from the end of string space.

This may seem a bit of an anomaly or an error but it is quite
true — the stack grows downwards and.so the top of the
stack is at the lowest stack memory address.

The stack is used by the basic coommand GOSUB and by FOR
NEXT loops. Stacks work on a LAST IN FIRST OUT basis
(LIFO) and items which are left on the stack will simply remain
there. In extreme cases the memory can fill up due to poor
stack management.

Type into your computer the following program line:
10 GOSUB 10

Now type RUN and press ENTER — notice how quickly the
computer memory fills up. Each GOSUB puts a 7 byte return
address onto the stack and this address is only removed
when the RETURN co.nmand is executed. It is therefore
essential that each GOSUB in your program is matched by a
RETURN.

FOR-NEXT loops use up 25 bytes of stack space which is only
cleared when the loop has run through all its cycles. It is often
necessary to jump out of FOR-NEXT loops when a desired
condition has been met — this practice leaves the 25 bytes on
the stack. To avoid problems you should ensure that all FOR-
NEXT loops are contained in sub-routines. The RETURN after
the sub-routine wipes the return acdress and the FOR-NEXT
loop off the stack.

The min: programs 7.1 and 7.2 illustrate the stack operation.
Line 10 sets up the user defined function FNSP(X) as a
measure of the stack pointer. The programs then print the
current value of the stack pointer before and aftera GOSUB —
notice that the stack pointer address has reduced by 7

—42 —

=

because the return address is now on the stack. The
programs then enter the FOR-NEXT loop and again print the
stack pointer address — this time the pointer has reduced by
25 because the FOR-NEXT loop is on the stack. The programs
now loop until Z = 10 whilst printing the stack pointer at each
loop. When the condition (Z = 10) is met program 7.1 exits the
for/next loop and prints the final stack pointer address whilst
program 7.2 exits the loop and returns before printing the final
stack pointer.

PROGRAM LIST 7.1

10 DEF FNSP(X) = PEEK(X) + 256 * PEEK(X+1)
20 X = gHF7DD
30 PRINT FNSP(X)
40 GOSUB 70
50 PRINT FNSP(X)
60 END
70 PRINT FNSP(X)
80FORZ =1TO 100
90 PRINT FNSP(X)
100 IF Z < 10 THEN NEXT
110 PRINT FNSP(X)

In program 7.1 there is no RETURN to match the GOSUB in
line 40 and so the FOR-NEXT loop and the return address
remain on the stack. Notice the final value of the stack pointer
is still 32 less than the first stack pointer address. This is poor
stack management.

PROGRAM LIST 7.2

10 DEF FNSP(X) = PEEK(X) + 256 * PEEK(X+1)
20 X = &HF7DD
30 PRINT FNSP(X)
40 GOSUB 70
50 PRINT FNSP(X)
60 END
70 PRINT FNSP(X)
80FORZ = 1TO 100
90 PRINT FNSP(X)
100 IF Z < 10 THEN NEXT
110 RETURN

.

m e

|y

O M N ey (e (e

3 A

[

|

L-Jl

e Ui e e

R N, .

In program 7.2 good stack management is illustrated — the
program returns after exiting the FOR-NEXT loop and the
stack is returned to its original condition. Notice that the final
stack pointer address is equal to the first address.

The computer automatically looks after the stack but good
programming (eg. list 7.2) will prevent the dreaded OUT OF
MEMORY message from appearing on your screen due to
poor stack management,

LA I I I R R

The next chapter concludes our examination of the computer
memory map with an exposition of the mysteries of the
machine systems area above the top of memory.

— 44 —

.

CHAPTER 8
MACHINE SYSTEMS AREA

The machine systems area contains all the SYSTEM
VARIABLES which are needed for the eomputer to function
properly. Things like the cursor position, the softkey
definitions, screen colors, keyboard buffer, etc. etc. etc.

This chapter explores the use and position of the useful
sections of the system area which is located as follows:

SYSTEMS AREA START ADDRESS = 62720 decimal or
F500 hex.

SYSTEMS AREA END ADDRESS = 65535 decimal or FFFF
hex.

TABLES
START NO OF
ADDRESS NAME BYTES DESCRIPTION

&HF52B USR TABLE 20 10 * 2 BYTE USR
ADDRESSES SET UP BY
DEFUSR STATEMENT

&HF7F6 DEFTABLE 26 26 * 1 BYTE ENTRIES
GIVING THE DEFAULT
VARIABLE TYPE 2 =
INTEGER 3 = STRING 4 =
SINGLE 8 = DOUBLE
CHANGE BY DEFINT ETC.

&HFA1E FUNCTION 160 10 * 16 BYTE ENTRIES

STRING ONE FOR EACH
TABLE FUNCTION KEY
CONTAINS CURRENT
STRINGS
&HFBOE MUSIC A 128 MUSIC QUEUE USED BY
PLAY
&HFBB8E MUSIC B 128 MUSIC QUEUE USED BY
PLAY

— 45 —

remy e rem e aa |

- - re rem

.

TABLES CONTINUED

i

START NO OF
ADDRESS ., NAME ne . DESCRIPTION
&HFCOE MUSICC 128 MUSIC QUEUE USED BY
PLAY
&HFCDA VOICEA 36 STATIC DATA FOR
MUSIC A
&HFCFF VOICEB 36 STATIC DATA FOR
MUSIC B
&HFD24 VOICEC 36 STATIC DATA FOR
MUSIC C
&HFD69 FUNCTION 10 INDICATES IF FUNCTION
FLAGS KEY TRAP IS ON = 1 OR
OFF = 0

&HFDEB TRAP TABLE 33 11 * 3 BYTE ENTRIES FOR
F—KEY AND STOP TRAPS
BYTE 1 OFF = OON = 1
BYTES 2/3 ADDRESS OF
TRAP GOSUB LINE

&HFE79 HOOK JUMP 315 105 * 3 BYTE HOOKS
TABLE USED TO HOOK YOUR

OWN ROUTINES INTO
BASIC ROM ROUTINES

USEFUL PARTS OF THE MUSIC STATIC DATA TABLE

1 BYTE NO ENTRY FUNCTION
3 LENGTH OF MUSIC STRING
4 —5 ADDRESS OF M STRING
11 — 12 TONE PERIOD
13 AMPLITUDE/SHAPE
14 — 15 ENVELOPE PERIOD
16 OCTAVE
17 NOTE LENGTH
18 TEMPO
19 VOLUME
= 46~

M. B M B W T BT WU T N

USEFUL ADDRESSES

TO READ THE ACTUAL ADDRESS USE:
Z = PEEK(LOW BYTE) + 256 * PEEK(HIGH BYTE)

LOW BYTEHIGH BYTE ADDRESS NAME

&8HF546 &HF547 END OF STRING SPACE

&HF54A &HF54B BASIC PROGRAM START

&HF7A2 &HF7A3 START OF STRING SPACE

&HF7C7 &HF7C8 STRING POINTER

&HF7CD &HF7CE POINTER TO END OF FOR LOOP

gHF7DB &HF7DC RESUME ADDRESS

&&HF7DD &HF7DE STACK POINTER ADDRESS

8HF7DF &HF7EO LAST ERROR LINE NUMBER

&HF7E1 &HF7E2 CURRENT LINE USED BY LIST.

&HF7E5 &HF7E6 ERROR HANDLING LINE NUMBER

HF7EA &HF7EB LAST LINE WHEN CTRL/STOP

GHF7EC &HF7ED RESTART ADDRESS USED BY CONT

SHF7EE &HF7EF START OF VARIABLES TABLE

8HF7FO &HF7F1 START OF ARRAY TABLE

8HF7F2 &HF7F3 END OF ARRAY TABLE

8HF7F4 &HF7F5 ADDRESS OF NEXT DATA

&HF992 &HF993 ADDRESS OF FILE#0 BUFFER

gHFA17 &HFA18 ADDRESS OF QUEUE TABLES

HFA1TA &HFA1B END POINTER IN KEY BUFFER

8HFA1C &HFA1D START POINTER IN KEY BUFFER

&HFDE6 &HFDE7 TOP OF BASIC MEMORY

8HFE2E &HFE2F COUNTER FROM 0 TO 65535

&HFE30 &HFE31 CURRENT INTERVAL VALUE

et pmstas e~ e

-

&§HFE32 &HFE33 INTERVAL COUNT DOWN

= 7 =

}
|

MORE SYSTEM VARIABLES AND FLAGS

ADDRESS CONTENTS POKE

| &HF53F LATEST ERROR NUMBER NO
&HF543 SCREEN LINE LENGTH YES

8HF7D6 AUTO LINE NUMBERING FLAG YES

1 = ON 0 = OFF

&§HF98C NUMBER OF DISC DRIVES NO

&HF98D NUMBER OF FILES — MAXFILES NO

SHFAO02 CLICK SWITCH 1 = ON 0 = OFF YES

&HFAO03 CURSOR LINE NO

SHFAO04 CURSOR COLUMN NO

SHFAO05 CURSOR SWITCH1 = ON O = OFF YES
&HFAO06 FUNCTION KEY DISPLAY SWITCH NO

&HFAOQ7 VDP REGISTER 1 CONTENTS NO
&HFAOA FOREGROUND COLOR YES
&HFAOB BACKGROUND COLOR YES
SHFAOC BORDER COLOR YES

RN N S RN SN B LB

NOTE THAT POKED COLORS ONLY BECOME ACTIVE
AFTER A SCREEN INSTRUCTION.

EVEN MORE SYSTEM VARIABLES AND FLAGS

ADDRESS CONTENTS POKE

SHFE35 INVERSE CHARACTERS FLAG YES
1 = ON 0 = OFF

&§HFE38 UPPER CASE CHARACTERS FLAG YES
1 =0ON 0 = OFF

SHFE3A SCREEN MODE NUMBER NO
&HFE3B SPRITE SIZE YES
0 = 8 * 8 UNMAGNIFIED

1 8 * 8 MAGNIFIED

]

2 =16 * 16 UNMAGNIFIED

3 =16 * 16 MAGNIFIED
&§HFE3C REGISTER 0 OF THE VDP NO
&HFE3D REGISTER 8 OF THE VDP NO

1 BF T " R T

ml

— 48 —

- IS am I e

R T —

AUTO RUN PROGRAM

Here is a short program which uses the systems area to
AUTORUN a CLOAD program.

PROGRAM LIST 8.1

10 FORX =0TO3:READZ:POKE&HFDS8D + X,Z:NEXT
20 POKE&HFA1C,&H8D:POKE&HFA1D,&HFD

30 POKE&HFA1A,&H91:POKE&HFA1B,&HFD

40 DATAB82,85,78,13

50 CLOAD

Type in the program and SAVE it to tape in ASCIl MODE ie.
you must SAVE the program and not CSAVE. Save the
program with the following command:

SAVE “AUTO”

Now CSAVE your own program onto the tape just after the
AUTO program. When you wish to RUN your program you
type in:

RUN “AUTO"”

The program AUTO will load and run and after loading your
program it will automatically RUN.

AUTO works as follows:

1) The word RUN followed by the ENTER code is poked
into the key buffer.

2) The key buffer pointers are reset to point to the start and
end of the instruction RUN.

3) Your program is then CLOADED.
4) After loading is complete the computer returns to

command mode and the instruction RUN is ejected from
the key buffer and immediately executes.

— 49 —

3 SN: sHN. s BEN. sl s sl . . |

(3 & e e . 15 3l s Al m I m

m

[IS IS I o

| o

[

B SN S § = SR

£y | g ¢

T T T g —

CHAPTER 9
THE VIDEO CHIP

The SPECTRAVIDEO computers use the TMS 9918A video
chip to handle all screen output. This chip has 4 different
screen modes 3 of which are implemented on the SVI
machines.

In this chapter we take a look at the way the video chip works.
GENERAL

The SVI picture is made up of 35 different planes stacked one
on top of the other. These planes are numbered from O to 34
with plane 34 being at the bottom of the pile. Images on the
lower planes can only be seen if the upper planes are
transparent at that particular point.

The lowest plane of all is plane 34 — this is the external video
plane. The use of this plane (to display pictures from an
external video chip or other video source) is not implemented
on the SVI machines.

Immediately above the external video plane is the backdrop
plane which is a single color plane and cannot display any
images. This plane provides the border around the graphics
screens.

The next plane is the pattern plane (in screen 2 this is the
multicolor plane). This plane displays all the pattern images
created with PRINT, DRAW, LINE, CIRCLE etc. etc.

All the remaining planes (31 — 0) are for sprites — one sprite
can be displayed on each plane making a total of 32 sprites
displayed at one time. Sprites on the upper planes (lower
plane numbers) will pass in front of sprites on the lower
planes. Only four sprites may be displayed in any horizontal
line — the fifth sprite in a line will disappear.

CONTROL

The SVI machines are provided with a dedicated bank of 16K
bytes of video RAM. The video chip controls the display by

— 50 —

1)

2)

3)

4)

5)

maintaining a series of tables in the video RAM memory. The
tables are set up differently for each of the three display
modes — screen 0O, screen 1 and screen 2. Different modes
are set up using the nine registers of the video chip.

VDP TABLES

PATTERN GENERATOR — The pattern generator table
is an area of video ram which contains the data for
producing shapes on the pattern plane. The data is held
in binary 8 bit numbers so that when displayed the binary
1 will produce a dot in the foreground color and binary 0
will remain in the background color. Patterns are formed
by grouping 8 binary numbers together to form a pattern
block. The character set definitions are held in a pattern
generator table.

COLOR TABLE — The color table is similar to the pattern
generator table except that the data refer to foreground
and background colors rather than display positions.

SPRITE PATTERN GENERATOR TABLE — Same as the
pattern generator table except that the patterns refer to
sprites which can be displayed on the sprite planes.
Sprite patterns are defined in blocks of 8 binary numbers
— large sprites are formed from 4 such blocks.

NAME TABLE — For the purposes of the name table the
screen is divided up into small squares and the name
table has an entry for each square. These entries define
which pattern block is to be displayed in that particular
square.

SPRITE ATTRIBUTE TABLE — The sprite attribute table
has 32 * 4 byte entries one entry for each of the sprite
display planes. An entry consists of:
a) Y co-ordinate — display position down the screen.
b) X co-ordinate — display position across the screen.
c) Sprite number — 0 to 255 for 8 * 8 sprites.

0 to 255 step 4 for 16 * 16 sprites.

d) Sprite color — Bits 0 to 3 contain the color.
Bit 7 is used to move the sprite to the
left in order to facilitate entry from
behind the left border.

=5 =

W |

) B L

-

h: 18 Lmql . .

VIDEO CHIP REGISTERS

In order to set up and maintain control over the various tables
the video chip has a set of 9 registers.

REGISTER O
BIT NO. 7 6 5 4 3 2 1 0

0 0 0 0 0 0 X E

Only two bits of register 0 are used namely bit 0 and bit 1. BitO
is the EXTERNAL VIDEO ENABLE BIT which is always set to
zero on the SVI machines. Bit 1 is marked X and will be
discussed under register 1.

LR I R

REGISTER 1
BIT NO. 7 6 5 4 3 2 1 0
R B I NK Zz 0 S M

All bits are significant with the exception of bit 2 which is
reserved for future expansion.

BIT O — The sprite magnification bit —
0 for normal size.
1 for double size.

BIT 1 — The sprite size bit — O for 8 * 8 sprites.
1 for 16 * 16 sprites

BIT 2 — Reserved.

BIT 3, BIT 4 and BIT 1 REGISTER 0 — These 3 bits act
together as in the following table.

X Y Z

TEXT SCREEN 0 0 1 0

GRAPHICS SCREEN 1 1 0 0

GRAPHICS SCREEN 2 0 0 1
— 52 —

-

BIT 5 — The VDP interrupt enable bit — 0 to disable interrupt.
1 to enable interrupt.

BIT 6 — The video enable bit — 0 to disable the display.
1 to enable the display.

BIT 7 — The RAM select bit — O to select a 4K video RAM.
1 to select a 16K video RAM.

LR R B EREEEREEEREREERSESEJEJEXZ.]

REGISTER 2
BIT NO. 7 6 5 4 3 2 1 o

0 0 0 0 |name table base addre

Register 2 contains a number between 0 and 15 from which
the BASE ADDRESS of the name table can be calculated.

NAME TABLE BASE ADDRESS = (REGISTER 2) * 400 HEX

BRI R R R R I

REGISTER 3
BIT NO. 7 6 5 4 3 2 1 0

color table base address

Register 3 contains a number between 0 and 255 — The
COLOR TABLE BASE ADDRESS is calculated as follows:

COLOR TABLE BASE ADDRESS = (REGISTER 3) * 40 HEX

LR I I R I R

REGISTER 4
BIT NO. 7|6 |5 |4a]3]2]1]o0
0 0 0 0 0 |pattern generato

Register 4 contains a number between 0 and 7 from which the
PATTERN GENERATOR BASE ADDRESS can be calculated.

PATTERN GENERATOR BASE ADDRESS =
(REGISTER 4) * 800 HEX

— B3 —

re ren e m e

rem

e

rm

|y

.

. 14l

[7

UL TR VT B T T BT el T T

=

REGISTER 5
BIT NO. 7 6 5 4 3 2 1 0

sprite attribute table base address

Register 5 contains a number between 0 and 127 which
defines the SPRITE ATTRIBUTE TABLE position in the video
RAM.

SPRITE ATTRIBUTE TABLE BASE ADDRESS =
(REGISTER 5) * 80 HEX

LR R R R EREEEEEREEREEREREXRSES]

REGISTER 6
BIT NO. 7 6 5 4 3 2 1 0

0 0 0 0 0 sprite pattern

Register 6 contains a number in the range 0 to 7 from which
the SPRITE PATTERN GENERATOR BASE ADDRESS can be
calculated.

SPRITE PATTERN GENERATOR BASE ADDRESS =
(REGISTER 6) * 800 HEX

LR I R R R R

REGISTER 7
BIT NO. 7 6 5 4 3 2 1 0

text color back drop color

Register 7 controls the global colors. In text mode the
backdrop section of the register contains the background
color whilst in graphics mode the backdrop section contains
the border color.

LA R R B EREEEREERERESRESRZSSE.]

REGISTER 8
BIT NO. 7 6 5 4 3 2 1 0

F S C fifth sprite plane number

— 54 —

- - -

The interpretation of Register 8 is as follows:

BIT 7 — This is the interrupt flag which is set to 1 every time
the VDP completes a screen scan.

BIT 6 — This is the FIFTH SPRITE FLAG and is set to 1
whenever there are five sprites in a horizontal line across the
screen. When five sprites are in a horizontal line across the
screen then the sprite on the lowest plane (highest plane
number) will disappear.

BIT 5 — This is the sprite coincidence flag which is set to 1
whenever two sprites collide.

BITS 0 TO 4 — These bits contain the plane number of the fifth
sprite.

EE R R R R R R O R

This concludes the examination of the VIDEO CHIP — in the
next few chapters you will learn how to use the VDP and its
registers in some advanced ways.

— 55 —

e e rEM e e MM WY O RYT W e e Mmoo o™ Mmoo

e

rm

i N WK N G NN W NN D N U e e LU i

CHAPTER 10

DIRECT ACCESS TO THE VIDEO CHIP AND VIDEO RAM

The SPECTRAVIDEO communicates with the VDP and the
VRAM through 4 INPUT/OUTPUT PORTS. The ports
concerned are as follows:

1)
2)

3)

4)

1)

2)

3)

OUTPUT PORT &H8O0 WRITE VRAM DATA.

OUTPUT PORT &H81 ... WRITE ADDRESS OR
REGISTER NUMBER

INPUT PORT &H84 READ VRAM DATA.
INPUT PORT &H85 RESET STATUS REGISTER.

WRITING TO THE VDP REGISTERS

Decide on the data to the output to the register and place
the data into variable X. eg. X = 19.

Decide on the register to which the data is to be output
and place the register number into variable Y. eg. Y = 7.

Output the data in the following way:

10 Z=INP(&H85)
20 OUT&H81,X
30 OUT&HS81,(YOR&HS80)

Type RUN followed by ENTER to transfer the data to the VDP
register.

NOTE

a)

b)

1)

2)

Z = INP(&H85) resets the STATUS REGISTER to enable
a good transfer to take place.

In line 30 data bit 7 is set (ie. register number OR &H80 is
output) to signal to the VDP that we wish to transfer data
to a register and not to VRAM memory.

READING FROM THE VIDEO RAM MEMORY

Decide on the VRAM address from which you want to
start reading data — place this address into variable X —
eg. X = 275.

Convert the address into a 4 digit hex number = &H0113.

-~ 5B o

3)

4)
5)
6)
7)

Divide the hex address into a low byte = &H13 and a
high byte = &HO01.

Reset the status register.

Send the low byte out through port &H81.
Send the high byte out through port &H81.
Read the data in through port &H84.

PROGRAM LIST 10.1

VRAM DIRECT READ

10 " example VRAM direct read
20 CLS
30 VPOKE&H113,98
40 VPOKE&H114,150
50 X = INP(&H85)
60 OUT&H81,&8H13
70 OUT&H81,&H1
80 Z1 =INP(&H84)
90 Z2 =INP(&H84)
100 PRINTZ1,Z22

Program 10.1 illustrates the method of direct reading of the
video RAM. Two characters are poked onto the screen and
then the VRAM address is output through port &H81. The
character codes are then read directly through port &H84 —
NOTE that the VRAM address increments automatically after
every read.

1)

2)

3)

4)
5)

WRITING TO THE VIDEO RAM MEMORY

Decide on the VRAM address to which you want to start
writing data — place this address into variable X — eg. X
=75

Convert the address into a 4 digit hex number = &H0113.

Divide the hex address into a low byte = &H13 and a
high byte = &HO1.

Reset the status register.

Send the low byte out through port &H81.

— 57 —

-——

g
T3

) SN W GER (o NG BN (NS (NG BN NS UeEmm o

6) Send the high byte or &H40 out through port &H81.
NOTE that bit 6 is set to inform the video chip that we
want to do a VRAM WRITE OPERATION.

7) Write the data out through port &H80.

PROGRAM LIST 10.2

VRAM DIRECT WRITE

10 ‘'example VRAM direct write
20 CLS

30 Z21=98

40 Z22=150

50 X =INP(&H85)

60 OUT&HS81,8H13

70 OUT&H81,(8&H10R&H40)
80 OUT&HS80,Z21

90 OUT&HS80,Z22

This program illustrates the method of directly writing to the
video RAM memory. Two VRAM codes are placed in
variables Z1 and Z2. The VRAM destination address is output
through port &H81 — first the low byte and then the high byte
or &H40. The two data bytes are then output through port
&HB80. NOTE that the destination address automatically
increments with each write operation.

— 58 —

CHAPTER 11

TEXT MODE

The SPECTRAVIDEO text mode is known as SCREEN 0 —
this is the default mode which is always current when the
computer is switched on.

TEXT MODE VDP REGISTER CONTENTS

REGISTER O = 0O
REGISTER 1 = &HFO
REGISTER 2 = 0.... NAME TABLE STARTS AT 0.

REGISTER 3 = ?.... NOT SIGNIFICANT IN TEXT MODE.
REGISTER 4 = &H1 PATTERN GENERATOR STARTS AT

&H800.

REGISTER 5 = 7 NOT SIGNIFICANT IN TEXT MODE.
REGISTER 6 = ?.... NOT SIGNIFICANT IN TEXT MODE.
REGISTER 7 = &HF4 WHITE TEXT/BLUE BACKGROUND.
REGISTER 8 = ? DEPENDS ON INTERRUPT STATUS.

1)

2)

3)

4)

NOTES

In text mode the screen is divided into 960 pattern
positions each of which is capable of displaying a
character. There are 40 positions in each row and 24
rows.

The pattern NAME TABLE starts at VRAM address O as
defined by (register 2) * &H400 = 0 * &H400 = 0.

Each entry in the name table represents a pattern
position on the screen. Position 0 is in the top left of the
screen. The position numbers increase across the screen
so that the top right hand position is 39 and the second
row ranges from 40 on the left to 79 on the right. Position
mapping is illustrated in figure 11.1.

There is a one to one correspondence between the
screen character position and the character code
position in the name table. eg. The character in screen
position 167 is contained in VRAM byte 167 which is the
168'th entry in the name table.

— 59 —

-

f——

[3 [R5} T 5 B §

iR Al

FIGURE 11.1

TEXT SCREEN CHARACTER POSITION MAP

L 0 1 - g A A T 37 | 38 | 39
; ! 4 | a1 | a2 | ...l 77 | 78 | 79
80 | 81 | 82 | ..iooirennnn.. 117 | 118 | 119
I 120 | 121 [122 | coiiriiiinenn, 157 | 158 | 159
sl 160 | 161 | 162 | .ovvuvivnn.. 197 | 198 | 199
‘ 2001201 | 202 | ..ivviniiiieens 237 | 238 | 239
| 240 | 241 | 242 | i.eiviennnnne. 277 | 278 | 279
E 280 | 281 | 282 | 317 | 318 | 319
9901 @31 | 322 | oiivvninensis 357 | 358 | 359
360 | 961 | 382 | ..oiiierenenes 397 | 398 | 399
! 400 | 401 | 402 | 437 | 438 | 439
- 440 | 441 | 442 | ..., 477 | 478 | 479
. 480 | 481 | 482 | 517 | 518 | 519
- 620 | 821 | e b i 557 | 558 | 559
E 560 | 561 | 562 |ooin.... 597 | 598 | 599
L 600 | 601 | 602 |ovnnn.... 637 | 638 | 639
t 640 | 641 | 642 | 677 | 678 | 679
= 680 | 681 | 682 |oeuw..... 717 | 718 | 719
li P20 |} 729 1 722 '} .inirnrnnann. 757 | 758 | 759
760 | 761 | 762 | ...l 797 | 798 | 799
i 800 | 801 | 802 |oennn... 837 | 838 | 839
. 840 | 841 | 842 | 877 | 878 | 879
= 880 | 881 | 882 |ooon.... 917 | 918 | 919
! 020 | 923 | 928 | .vremmssmenion 957 | 958 | 959
I
~ -

—_—

PATTERN GENERATOR TABLE

In text mode the pattern generator table contains the
character set and is located at (register 4) * &H800 = 1 * 2048
decimal — ie. the character set starts at VRAM address 2048.
Each character is defined in an 8 byte block of VRAM memory
and the maximum number of character definitions in the
generator table is 256.

Characters are defined as follows:

CHARACTER A: 2312 00100000 32
2313 01010000 80
2314 10001000 136
2315 10001000 136
2316 11111000 248
2317 10001000 136
2318 10001000 136
2319 00000000 0
CHARACTER S: 2456 01110000 112
2457 10001000 136
2458 10000000 128
2459 01110000 112
2460 00001000 8
2461 10001000 136
2462 01110000 112
2463 00000000 0
CHARACTER E: 3112 00000111 7
(INVERSE) 3113 01111111 127
3114 01111111 127
3115 00001111 15
3116 01111111 127
3117 01111111 127
3118 00000111 7
3119 11111111 255

Program list 11.1 is a short program to display all the character
definitions on the screen. Interpret the display as follows:

a) The number on the left is the VRAM address of the byte
containing the relevant piece of character data.

— 61 —

ey ymv ren O rmm o rm P M T PR RN MW ENT A AT ™ M e

-

ey

e e e e S S— S S— S SRS §U8 S SN S M Y 1%

G R B GEEN PEN NN SN NN BRSNS GEN EEL

)

b) The data is displayed in binary form in the midd'e of the
screen and in decimal form on the right of the screen.
You may change any character by using VPOKE to
change the character data.

PROGRAM LIST 11.1

10 ' character definitions

20 FORX =2048TO4097STEPS8

30 FORY =0TO7

40 B$ =BINS(VPEEK(X +Y))

50 B$ =STRING$(8—LEN(B$),48) + B$

60 PRINTX +Y,BS$; TAB(28)VAL(“&B"” +BS)
70 NEXTY

80 PRINT:PRINT

90 NEXTX

LRI R R R R I I R

CHARACTER SETS

The video chip will support up to 7 different character sets
held in video memory at the same time. The sets must be
located starting at an 800 hex address boundary and the set
currently in use is selected using the VDP register 4.

CHARACTER SET DEFINITION TABLES START
ADDRESSES

SET NUMBER |VRAM START ADDRESS | REGISTER 4

2048
4096
6144
8192
10240
12288
14336

Set 1 is the standard character set to which the SVI| defaults at
power on. The other 6 sets must be user defined or
constructed by modifying set 1. The following 3 program lists
(11.2, 11.3, 11.4) demonstrate the use of the other character
sets. In each of the programs a second character set is
created by modifying the standard set — call the new set
using GOTO 100 and return to the standard set using GOTO
200.

NOOhWN =
NOOLWN-=

= B

il GBS mE 0 B UE B B BN B B am =

ol

S

PROGRAM LIST 11.2
THE INVERSE SET

10 ’ inverse set located as set 7
20 FORX =0T02047

30 VPOKE 14336 + X,255—VPEEK(2048 + X)

40 NEXT
100 ’ call inverse set
110 X =INP(&H85)
120 OUT&HS81,7
130 OUT&HS81,(40R&H80)
140 END
200 ’ restore normal set
210 X =INP(&H85)
220 OUT&H81,1
230 OUT&H81,(40R&H80)

PR R R R R R R

PROGRAM LIST 11.3
THE UNDERLINE SET

10 ' underline set located as set 2
20 FORX =0T0O2047
30 VPOKE4096 + X,VPEEK(2048 + X)
40 NEXT
50 FORX =15T0O2047STEP8
60 VPOKE4096 + X,255
70 NEXT
100 ’ call underline set
110 X = INP(&H85)
120 OUT&H81,2
130 OUT&H81,(40R&H80)
140 END
200 ’ restore normal set
210 X =INP(&H85)
220 OUT&H81,1
230 OUT&HS81, (4OR8H80)

i BB e

m m MmMm M M M m mm

'

m mnorMmoMMm MM

s 8l

e

|

PROGRAM LIST 11.4
THE UPSIDEDOWN SET

10 ’ upsidedown set located as set 3
20 FORX=0TO2047STEP8
30 FORY =7TOO0STEP-1
40 VPOKE6144 + X+ 7—Y ,VPEEK(2048 + X +Y)
50 NEXTY
60 NEXTX

100 ’ call upsidedown set

110 X=INP(&H85)

120 OUT&HS81,3

130 OUT&H81,(40OR&HB80)

140 END

200 ’ restore normal set

210 X=INP(&H85)

220 OUT&H81,1

230 OUT&H81,(40R&H80)

USING REGISTER 7

In text mode register 7 defines the foreground (ink) and
background (paper) colors. It works like this:

N e e U U el e

1) Select the foreground color — eg. black = 1.
2) Select the background color — eg. yellow = 11.

3) Convert the color numbers into HEX — foreground
background

o
w:

4) Join the two hex numbers together = 1B.

5) Output this value to register 7 using the following:

10 X = INP(&H8b)
20 OUT &H81,&H1B
30 OUT &H81,(7OR&H80)

Now type RUN followed by ENTER and the colors will change
to BLACK TEXT on a YELLOW BACKGROUND.

— 64 —

LEE s em:. G iew e

POKING AROUND ON THE SCREEN

Characters can be placed into any position on the screen
using VPOKE and characters can be read from any position on
the screen using VPEEK. It should be noted that the VRAM
uses an adjusted set of codes for character display — these
codes correspond to the position of the character definition
within the pattern generator table (eg. space = 0, A = 33,
etc.).

The VRAM codes are related to ASCII in the following way:

1) The 95 standard characters are numbered from O
(representing space) to 94 (representing~). These values
are equal to ASCII values minus 32.

2) 95 represents the inverse (invisible) cursor.

3) The set of inverse characters is represented by numbers
96 to 190. Each inverse character code is equal to the
standard character ASCII code plus 64.

4) Code 191 is the normal (visible) cursor. Put a few lines of
text on the screen then — VPOKE 380,191 — which puts
an image of the cursor in the center of the screen.

SO WHAT? Just an inverse space isn’t it?

Well no It really is an image of the cursor move
the real cursor over those lines of text and watch the
image reflect the characters over which the cursor
passes.

5) The 56 graphics characters are represented by VRAM
codes 192 to 247 (ie. SVI CODE plus 32).

8) When writing to the screen in the normal way with
PRINT then the computer adjusts the codes to print the
correct characters. When writing to the screen with
VPOKE then the user must adjust the codes before
poking them onto the screen.

EE R R O R I

That concludes the examination of the TEXT MODE — in
the next chapter we look at the VDP in high resolution
graphics mode.

— 65 —

wd= G
/ Iroplos L
O ~ #7EF - fatt

1800 — Blaff — lawe Tt

Slpoo — BILFFF ~ S e i
| $ P $27,5(4 — Cdéc\r Taz(r/(k
$2800 — -~ sprke falde

)

m*uﬂu?

|
i
i

(8

. -

CHAPTER 12

THE HIGH RESOLUTION SCREEN

The SPECTRAVIDEO high resolution screen (SCREEN 1)
provides a resolution of 256 dots across the screen and 192
dots down the screen. The screen uses the GRAPHICS 2
mode of the TMS 9918A video chip which can display 15
colors plus transparent in a standard 8 * 8 dot picture block
(user defined graphic).

HI—RES GRAPHICS VDP REGISTER CONTENTS

REGISTER 0 = &HO02
REGISTER 1 = &HEO
REGISTER 2 = &HO06 NAME TABLE BASE ADDRESS =

&H1800

REGISTER 3 = &H80 COLOR TABLE BASE ADDRESS =

&H2000

REGISTER 4 = &HOO PATTERN GEN BASE ADDRESS =

REGISTER 5

REGISTER 6

&HO0000

&H36 SPRITE ATTRIBUTE TABLE =
&H1B00

&HO7 SPRITE PATTERN TABLE =
&H3800

REGISTER 7 = ? DEPENDS ON THE GLOBAL COLORS
REGISTER 8 = 7 DEPENDS ON INTERRUPT STATUS

1)

2)

NOTES

Imagine the screen is divided up into 768 blocks and each
block consists of 8 * 8 dots or PIXELS (picture elements).
Further imagine that the screen is divided horizontaly into
three equal sections — each section contains 256 picture
blocks. There are 32 blocks in each line and 8 lines in each
section making a total of 24 lines on the screen.

The NAME TABLE has three sectioAs — one for each
section of the screen. Each section of the name table has
256 entries — one for each picture block in the screen
section. When SCREEN 1 is first selected the name table
entries correspond to the screen positions — ie. the first
entry in each section is 0 the nextis 1 and so on to the last
entry in the section which is 255. This means that any
entry in the PATTERN GENERATOR TABLE wiill
immediately become visible on the screen.

— 66 —

3) Lets make an entry into the pattern generator table to
illustrate these concepts:

10 SCREEN 1
20 LOCATE 1,0
30 PRINT “A"
40 GOTO 40

This mini program appears to PRINT an “A” in the top left
hand corner of the screen — in fact we have transfered the 8
pieces of data which define “A” into the first 8 entries of the
pattern generator table. Further we have shifted that data one
dot to the right so that the “A” is more central within the
graphics 8 * 8 picture block.

The first 8 bytes in the pattern generator table now look as
follows:

BYTE &H0000 00010000
BYTE &HO0001 00101000
BYTE &H0002 01000100
BYTE &H0003 01000100
BYTE &HO0004 01111100
BYTE &HO005 01000100
BYTE &H0006 01000100
BYTE &H0007 00000000

Now press CTRL/STOP and modify the mini program as
follows:

10 SCREEN 1
20 LOCATE 1,0
30 PRINT “A”
40 LOCATE 9,0
50 PRINT “B”
60 GOTO 60

When you RUN this program we find a “B” next to the “A” on
the screen — we have now transfered the 8 data bytes which
define “B” into the next 8 entries of the pattern generator
table. Again we have made the character more central within
the 8 * 8 picture block.

— BT

m M e [(E]) ™ MM W M M m M WM ™M M ™M mMm

L AL

LI

||

L m ™

]

i e e e e e D et e Wl Ul e U

The next 8 bytes in the pattern generator table now 'ook like
this:

BYTE &HO0008 01111000
BYTE &HO0009 00100100
BYTE &HOOOA 00100100
BYTE &H000B 00111000
BYTE &HO000C 00100100
BYTE &HO00D 00100100
BYTE &HOOOE 01111000
BYTE &HOOOF 00000000

4) Now lets introduce some color into our two user defined
graphics. The color table starts at VRAM address
&H2000 and there is one color entry to match each entry
in the pattern generator table. Color table entries are
constructed as follows:

i) Decide on a foreground color — ie. the color to be
assumed by the 1’s in the pattern definition — eg.
RED = 6.

i) Decide on a background color — ie. the color to be
assumed by the 0’s in the pattern definition — eg.
YELLOW = 10.

iii) Convert color numbers into hex: —
FOREGROUND = 6,
BACKGROUND = A

iv) Join the two hex digits together = 6A.

v) Place the result into the correct place in the color
table:
eg. VPOKE &H2000,&H6A

Now press CTRL/STOP and modify the mini program as
follows:

10 SCREEN 1
20 LOCATE 1,0
30 PRINT “A”
40 LOCATE 9,0
50 PRINT “B”
60FORX =0TO 7
70 VPOKE &H2000 + X, &HB6A
80 VPOKE &H2008 + X,&HAB6
90 NEXT
100 GOTO 100

— 68 —

-

-

The first few entries in the color table now look like this:
&H2000 &H6A

£H2007 E&HEA

£H2008 EHAB
EH200F EHAB

NOTE that each data entry in the pattern generator table has a
corresponding entry in the color table and the address of the
color entry is equal to the address of the pattern generator
table entry plus &H2000.

5) Lets now examine the NAME TABLE — at the moment
the name table is set up so that any screen position will
display its corresponding block graphic as defined in the
pattern generator table. So for example screen position O
(top left hand corner) displays the “A” which is defined in
position 0 of the pattern generator table and in position O
of the color table. Likewise the “B” is in position 1 on the
screen and in the tables.

If we change the name table entries we can move the image
on the screen — to illustrate this press CTRL/STOP and
modify the mini program as follows:

10 SCREEN 1

20 LOCATE 1,0

30 PRINT A"

40 LOCATE 9,0

50 PRINT “B”

60 FORX = 0TO 7

70 VPOKE &H2000 + X, &HB6A

80 VPOKE &H2008 + X,&HAB

90 NEXT
100 FOR X = 0 TO 255
110 VPOKE &H1800 + X,0
120 NEXT
130 FOR X = 0 TO 255
140 VPOKE &H1800 + X,1
150 NEXT
160 FOR X = 0 TO 255
170 VPOKE &H1800 + X,2
180 NEXT
190 VPOKE &H1850,0
200 VPOKE &H18FF,1
210 GOTO 210

— 69 —

" M A MM M @ Mmoo oMo momom

(R Bl B Al e r rm

18 Al

IS Al

[

Wi BN B () B (NS SN G L B e e

NOTES

a) Lines 100 to 120 fill the top section of the screen with
user defined graphic 0 — the “A”.

b) Lines 130 to 150 fill the top section of the screen with
user defined graphic 1 — the “B”.

c) Lines 160 to 180 fill the top section of the screen with
user defined graphic 2 — undefined and therefore just
blank.

d) Finally lines 190 and 200 place the user defined graphics
at specific locations on the screen section.

USER DEFINED GRAPHICS ARE ONLY ACTIVE IN THE
SCREEN SECTION FOR WHICH THEY WERE DEFINED —
YOU WILL RECALL THAT THE SCREEN IS DIVIDED INTO 3
SECTIONS — TOP THIRD, MIDDLE THIRD, AND BOTTOM
THIRD. EACH SCREEN THIRD HAS ITS OWN SET OF UDG.

— 70 —

I —

SCREEN 1 TABLE ADDRESSES (TOP THIRD)

NAME TABLE (TOP THIRD)

&H1800|&H1801|&H1802|.... |&H181D(&H181E|&H181F
&H1820|&H1821|&H1822|....|&8H183D|&H183E|&H183F
&H1840|&H1841|&H1842|.... |&H185D|&H185E |&H185F
&H1860|&H1861|&8H1862|.... |&H187D|&H187E|&H187F
&H1880|&H1881|&H1882|.... |&H189D|&H189E |&H189F
&H18A0(&H18A1|&H18A2|.... |[&H18BD|&H18BE |&H18BF
&H18C0o|&H18C1|&H18C2|.... |&H18DD|&H18DE|&H18DF
&H18EO |&H18E1 |&H18E2|.... |&H18FD|&H18FE |&H18FF

Each address represents the name table address for that
particular screen location in the top third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (TOP THIRD)

PATTERN GENERATOR COLOR TABLE
&HO0000 &H2000
&HO0001 &§H2001
&HO0002 &H2002
&HO7FD &H27FD
8HO7FE &H27FE
&HO7FF &H27FF

NOTE that the first 8 entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDGH1, and so on — the last 8 entries refer to UDG255. Note
also that each UDG number is unique to the top third of the

screen.

— 71 —

W e W) W) (W) (W] (W] W rTe

1

IW| (W] (W] (W) AW few) A W) (W (W] (W] (W] (W

-

A e S aee Umme el she Ui el b Uik U e il

SCREEN 1 TABLE ADDRESSES (MIDDLE THIRD)

NAME TABLE (MIDDLE THIRD)

&H1900 |&H1901 |&H1902|....

&H191D|&H191E|&H191F

&H1920 |&§H1921 |&H1922|....

&H193D |&H193E |&H193F

&H1940 |&H1941 |&H1942|. ...

&H195D |&H195E |&H195F

&H1960 |&H1961 |&H1962|....

&H197D|&H197E |&H197F

&H1980 |&H1981 | &H1982|....

&H199D |&H199E |&H199F

&H19A0|&H19A1 |&§H19A2|. ...

&H19BD|&H19BE|&H19BF

&H19CO|&H19C1|&H19C2|. ...

&H19DD|&H19DE|&H19DF

&H19EOQ |&H19E1 |&H19E2].. ..

&H19FD |&H19FE |&H19FF

Each address represents the name table address for that
particular screen location in the middle third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (MIDDLE THIRD)

PATTERN GENERATOR COLOR TABLE
&§H0800 &H2800
&HO0801 &H2801
&H0802 &H2802
&HOFFD &H2FFD
&HOFFE SH2FFE
&HOFFF &H2FFF

NOTE that the first 8 entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDG1, and so on — the last 8 entries refer to UDG255. Note
also that each UDG number is unique to the middle third of the

screen.

T

S

v

e

SCREEN 1 TABLE ADDRESSES (BOTTOM THIRD)

NAME TABLE (BOTTOM THIRD)

&H1A00(&H1A0T|&HT1AO02|. ... |[8H1ATD&H1ATE|&HTATF
&§H1A20(&H1A21|&8&H1A22|. ... |[&H1A3D|&H1A3E|&H1A3F
&H1A40(&H1A41|8H1A42|. ... |[&H1ABD|&H1ABE|&H1ASF
EH1AB0[EH1AB1|&H1AB2|. ... |[&H1A7D&H1A7E|&H1A7F
&H1A80(EH1A81 |EH1A82|. ... [&H1A9D|&H1ASE|&H1A9F
EH1AAOEHTIAATEHT1AAZ . .. &H1ABDig&H1ABE&H1ABF
f&H1ACO&H1AC1 SH1AC2|.... &H1ADD‘8H1ADE8H1ADF
&H1AEO|&H1AET |&#H1AE2|.... {&H1AFD&H1AFE|&H1AFF

Each address represents the name table address for that
particular screen location in the bottom third of the screen.

PATTERN GENERATOR AND COLOR TABLE
ADDRESSES (BOTTOM THIRD)

PATTERN GENERATOR

COLOR TABLE

&H1000 &H3000
&H1001 &H3001
&H1002 &H3002
&H17FD &H37FD
&H17FE &H37FE
&H17FF &H37FF

4

NOTE that the first 8 entries in the pattern and color tables
refer to user defined graphic 0, the second 8 entries refer to
UDG1, and so on — the last 8 entries refer to UDG255. Note
also that each UDG number is unique to the bottom third of

the scree

n.

[

M M W m

M ™M M M MM M M m

m m m mMm ™M m

El El (E) O EY

N . B, 3l

iR NS B W NN (i e e s i U U el ol

PROGRAM LIST 12.1

To conclude this chapter the program list 12.1 is presented —
this program is used to mix your own titles with the
SPECTRAVIDEO logo on screen 1. The machine code reads
the logo off the screen into normal memory and then puts the
logo back on the screen with your own titles.

10 REM SVI logo mix — SVI 328 only
20 CLEAR200,50000!
30 DEFINTZ
40 FORZ=1T0O110
50 READXS$
60 POKE 50000! + Z,VAL(“&H" +X$)
70 NEXT
80 DEFUSRO =50001!
90 DEFUSR1 =50055!
100 LOCATE,,O
110 DEFUSR2 = &H4782
120 SCREEN1
130 Z=USR2(0)
140 Z =USRO0(0)
150 SCREENO
160 SCREEN1
170 Z=USR1(0)
180 LOCATE®G0,40
190 COLOR11
200 PRINT”BERNARD L BURKE PRESENTS"”
210 COLOR15
220 GOT0O220
230 REM GET mid section screen
240 DATADB,85,F3,3E,00,D03,81,3E
250 DATAO08,D3,81,21,C8,C3,01,00
260 DATAO08,DB,84,77,23,08,3E,00
270 DATABS,20,F6,89,20,F3,D3,81
280 DATAZ3E,28,03,81,01,00,08,DB

+ 290 DATAB84,77,23,0B,3E,00,B8,20

300 DATAF6,B9,20,F3,FB,C9

310 REM PUT mid section screen
320 DATADB,85,F3,3E,00,D03,81,3E
330 DATAOS8,F6,40,D03,81,21,C8,C3
340 DATAO01,00,08,7E,D3,80,23,08
350 DATA3E,00,B8,20,F6,B89,20,F3
360 DATAD3,81,3E,68,D03,81,01,00
370 DATAO08,7E,D3,80,23,0B,3E,00
380 DATABS,20,F6,B89,20,F3,FB,C9

In the next chapter we look at the video disable facility in the
VDP register 1.

— 74 —

CHAPTER 13

VIDEO ENABLE/DISABLE

By using the VIDEO ENABLE/DISABLE bit of VDP register 1 it
is possible to make complicated graphics appear instantly on
the screen.

The procedure is as follows:

1)

2)

3)

4)

5)

6)

Set the SCREEN mode and then read the current value of
register 1 into a variable (X) from the register save
address &HFAOQ7.

Set the VDP interrupt bit and the video enable/disable bit
to zero by using the binary mask &B10011111 (&H9f) in
conjunction with the bitwise AND instruction.

Clear the VDP status register.
Write the new value to the VDP register 1.

Perform any basic instructions to draw your picture on
the graphics screen.

Restore the old value in the VDP register 1. NOTE thatin
this case we do not clear the status register because the
VDP interrupt is disabled. The picture on the screen is
instantly displayed.

This procedure is illustrated in program list 13.1.

PROGRAM LIST 13.1

10 COLOR15,4,4

20 SCREEN1

30

40 ' x=vdp reg1 data
50

60 X = PEEK(&HFAOQ07)
707

80 ’ disable screen
90’

= 5

-

C BT T _'m'n — - -

1

A g R g

PROGRAM LIST 13.1 (CONTINUED)

100 Z =INP(&H85)

110 OUT&HS81,(XAND&H9F)
120 OUT&H81,(10R&H80)
130 CIRCLE(90,90),20,8

140 PAINT(90,90),8

150 LINE(10,10)—(180,50),11,BF
160’

170’ enable screen

180’

190 OUT&H81,X

200 OUT&H81,(1OR&HS80)
210 GOTO210

Change lines 120 to 140 in order to draw your own picture

behind the scenes.

LR R I I R I I

In the next chapter we conclude the discussion on the VDP
with an examination of the use of the status register —

register 8.

— 76 —

CHAPTER 14

THE VDP STATUS REGISTER

The VDP status register (register 8) is a read only register
which can be used to indicate the following:

1) When there are 5 sprites in a line.

2) The plane number of the fifth sprite which has
disappeared.

3) When two or more sprites have collided.
Program list 14.1 illustrates the use of the status register:

PROGRAM LIST 14.1

10 SCREEN 1
20 FORX=0TO7
30 As$=A$+CHRS$(255)
40 NEXT
50 SPRITES$(0)=A$
60 PUTSPRITEO,(150,50),11,0
70 PUTSPRITE1,(160,50),8,0
80 PUTSPRITES,(170,50),13,0
90 PUTSPRITE4,(180,50),14,0
100 FORX =—20TO150
110 PUTSPRITEZ2,(X,50),3,0
120 NEXT
130 Z = PEEK(&HFE3D)
140 SCREENO
150 PRINTBINS$(Z)

The program places 4 sprites in a line and then introduces a
fifth sprite which moves from the right and collides with one
of the other sprites. The screen then changes to screen 0 and
the binary value of the status register is printed.

This value is &B11100100. Interpret as follows:

a) Bit 5 (third from the left) is a 1 so there has been a sprite
collision.

b) Bit 6 (second from the left) is also 1 so there are 5 sprites
in a line — the remaining 5 bits give the sprite plane of the
fifth sprite = 4. Notice that the sprite on the lowest plane
(of the five) disappears.

B by N

R W e S

Al

18

Program 14.2 shows another use of the VDP register 8 — to

detect which sprites have collided. The program works like

this:

1) The sprite collision is detected by the normal ON SPRITE
routine with the GOSUB set to line 190.

2) The routine at line 190 performs the following
operations:

i) Switches off each sprite in turn.

ii) Allows time for the register 8 to be updated.

ii) Checks if the sprite collision flag is still active.
iv) Switches the sprite back on if flag still active.
v) Displays plane number of collision sprite.

Note this routine can only be used to detect collisions when
one of the colliding sprites is known — eg. a bullet or missile
sprite.

PROGRAM LIST 14.2

10 DEFINTA—Z
20 SCREEN1
30 ONSPRITEGOSUB190
40 FORX=0TO7
50 A$ = A$ + CHR$(255)
60 NEXT
70 DEFFNSC(S) = (PEEK(S)AND&B00100000)
80 S = &tHFE3D
90 SPRITES(0) = A$
100 FORP=1TO15
110 PUTSPRITEP,(50 + P*10,P*10),P,0
120 NEXT
130 PD = (INT((RND(—TIME)*150)/10))* 10
140 SPRITEON
150 FORZ = —20T0255
160 PUTSPRITEO,(Z,PD),3,0
170 NEXT
180 GOTO130
LS
—4TOB0STEP4 : Epctt ot 5
210 YP = VPEEK(E&H1B00 + X) 3P0 Ak Ll As
220 IFYP = 209 THENNEXTTELSEVPOKEEH1B00 + X,209
230 FORWT = 1TO50:NEXT
240 IFFNSC(S) = 0THENPRINTX/4:RETURN130
250 VPOKEEH1B00 + X, YP
260 NEXTX
270 RETURN130

— 78 —

CHAPTER 15
MACHINE CODE

The remainder of this book is devoted to an introduction to
Z80 MACHINE CODE and its implementation on the
SPECTRAVIDEO. Programs presented include a full Z80
assembler which the reader can key into his computer —
NOTE that the assembler will be found on the tape supplied
with this book.

WHAT IS MACHINE CODE?

The microprocessor which is the heart of your computer
performs its various tasks in response to a set of instructions
— these instructions are called machine code. In the case of
the Spectravideo computers the processor is the Z80A and
the instruction set is known as Z80 machine code.

Machine code is the only language which is understood by the
Z80 chip — high level languages such as BASIC are broken
down into raw machine code by the BASIC INTERPRETER in
the ROM before the Z80A chip can execute the instructions.

The machine code programmer has to break every task into
simple steps as he codes a program — he is rewarded for his
efforts by an enormous increase in operating speed. To
illustrate the concept of breaking a task into parts consider the
following example:

TASK — Make a cup of coffee.
PARTS — Go to kitchen.
Find kettle.

Collect kettle.

Find water.

Collect water in kettle.
Find power point.
Plug in kettle.

Etc.

Etc.

Etc.

N . W NN RN, W

§
R N . .

In computer terms the Basic (for humans but complex for the
computer) instruction may be — PRINT “SPECTRAVIDEO” —
but the machine code equivalent will consist of many small
individual steps.

MACHINE CODE INSTRUCTIONS

In machine code the user can instruct the processor to
perform various arithmetic and logical operations on data
stored within the computer memory. Data transfers can also
be performed within the memory and between the computer
and various peripheral devices.

The machine code instructions and program data are stored in
the computer memory and the current instruction is indicated
by a pointer known as the PROGRAM COUNTER. To execute
a given instruction the user must simply point the program
counter at the memory byte containing that instruction.

MACHINE CODE AND THE SPECTRAVIDEO

When the SVI computer is operating under the standard basic
language the basic system is in control of the whole memory
area. Under these conditions your basic programs can easily
overwrite any machine code you may place in the memory. To
prevent this from happening you must reserve some space
which is safe from the basic system before you install the
machine code program.

Safe places for a machine code routine are:
a) In a basic REM statement,
b) In a string.
c) Above the top of basic memory.

The best place to install your machine code is above the top of
memory after reserving space by lowering the top of memory.
Look back at PROGRAM LIST 3.1 — in line 10 the CLEAR
command is used to lower the top of memory to &HF480
before installing the machine code routine.

To execute the machine code routine it is necessary to set the
PROGRAM COUNTER to point to the start address of the

—80 —

routine. This is done using the DEF USR command followed
by the Z = USR(0) command — see lines 40 and 50 in
PROGRAM LIST 3.1.

Notice also in program 3.1 that machine code is just a series of
numbers held within an area of memory — each number is
part of a Z80 instruction or a piece of program data.

NOTE that machine code programs can be operated without
any basic support — such programs can be recorded on tape
using the BSAVE command and RUN using the BLOAD,R
command.

eg. BSAVE “TEST”,START ADDRESS,END ADDRESS,RUN
ADDRESS
BLOAD test”,R.

THE Z80A CHIP

FIGURE 15.1
MAIN REGISTERS ALTERNATE REGISTERS
F A F A’
B C B’ C’
D E D’ =
H L bl |

16 BIT REGISTERS

1X
Y
SP
PC
R | v

IN ADDITION TO THE ABOVE REGISTERS THE Z80A IS
EQUIPPED WITH 256 INPUT PORTS AND 256 OUTPUT
PORTS FOR COMMUNICATION WITH PERIPHERAL
DEVICES SUCH AS THE SCREEN, TAPE, DISC ETC.

Figure 15.1 is a schematic diagram of the Z80A chip — lets
now look at the method of operation.

= 8=

™ ™ M

5 oL s L A s s A 0

e

ey A (w Wy

e

| B 1§ (mY 18N

AT N BN N SR N U ENE S NN N NOD N Bl

THE REGISTERS

There are two sets of working registers labelled MAIN
REGISTERS and ALTERNATE REGISTERS. The user can
select any one set of A,F registers with either set of
B,C,D,E,H,L registers to be active at any one time. The
register set which is not currently in use may be used as
storage because any data contained within those registers is
retained. Each of the registers is an 8 bit register (ie. it can
contain a number between 0 and 255) but under certain
circumstances the registers may be used in pairs as 16 bit
registers.

THE A REGISTER

This register is also known as the ACCUMULATOR and is
used for most arithmetical and logical operations. The status
of the A register (following such an operation) may be tested
by checking the flag register. This information may then be
used for various conditional jumps and calls.

THE F REGISTER

This is the FLAG register which contains various flags to
indicate the condition of the A register following an arithmetic
or logical operation.

THE B AND C REGISTERS

Usually used as loop counters (BC = byte counter) but can
also be used for temporary storage and other operations.

THE D AND E REGISTERS

Used for general work and as the destination address pointer
in block moves (DE = DEstination).

THE H AND L REGISTERS
These registers are generally used together as a 16 bit
address pointer with the HIGH BYTE of the address in

register H (H = High) and the low byte in the L register (L =
Low).

_82 —

THE IX AND |IY REGISTERS

These registers are known as the INDEX REGISTERS and are
used as address pointers. The actual address pointed to is
calculated as the sum of the register contents and a specified
offset or displacement between —128 and + 127.

THE SP REGISTER

The STACK POINTER REGISTER contains the address of the
current top of the stack. The programmer can set aside any
area of the computer RAM memory as a stack area or use the
area set aside by basic for a stack (provided that the MC
program is called from basic).

All stack operations are 16 bit operations — the stack is used
for RETURN addresses and can be used as a temporary
storage area for register contents. The PUSH command
pushes the contents of a 16 bit register (eg. HL or BC) onto the
stack whilst the POP command pops the value off the stack
into a 16 bit register. NOTE that registers A and F actas a 16
bit register for stack operations.

Remember that the stack grows downward in memory so the
stack pointer is automatically decremented by 2 when a
number is added to the stack. The pointer increments by 2
when a number is removed from the stack.

THE PC REGISTER

The PC register is the program counter which contains the
address of the byte containing the current machine code
instruction. The program counter is automatically
incremented after each instruction is executed. The PC is
changed by each JUMP, CALL or RETURN command.

THE R AND IV REGISTERS

The REFRESH and INTERRUPT VECTOR registers are used in
advanced programming and can be ignored.

THE Z80A INSTRUCTION SET

Z80 machine code consists of over 700 simple instructions
which can be grouped into 8 main groups:

— 83—

a2l rem -

-

e

res

B2} [LAl (A2l

pid

e IR ;
i I = -I-__..i-_,».w

]

(g

i

TR

11

>

1) LOAD AND EXCHANGE INSTRUCTIONS

Data can be taken from any memory byte or from any register
and LOADED into another register or into any memory byte.
Registers B, C, D, E, H, and L may be used individually (as 8 bit
registers) or in pairs BC, DE, and HL as 16 bit registers.

The exchange instructions are used to exchange the contents
of one register with the contents of another register.

2) BLOCK TRANSFER AND BLOCK SEARCH INSTRUCTIONS

Block transfer instructions transfer a specified number of
bytes frorn one memory location to another.

Block search instructions search for a specific byte in a
specified area of the computer memory.

3) LOGICAL AND ARITHMETIC INSTRUCTIONS

The logical operations AND, OR, and XOR can be performed
between the A register and another register or memory byte.

Arithmetic operations include ADD, SUBTRACT,
INCREMENT (increase by 1) and DECREMENT (decrease by
1).

4) ROTATE AND SHIFT INSTRUCTIONS

These instructions are used to ROTATE or SHIFT the bits
within a specified register. A shift to the left effectively
multiplies the register contents by 2 and a shift to the right
divides by 2.

5) BIT MANIPULATION INSTRUCTIONS

These instructions allow the user to. SET, RESET, or TEST a
specific bit in a specified register or memory byte.

6) CALL, JUMP and RETURN INSTRUCTIONS

These instructions change the contents of the PROGRAM
COUNTER so the program will continue operating from a
different address. JUMP is similar to a basic GOTO, CALL is
similar to a basic GOSUB and RETURN equates to a basic
RETURN.

— 84 —

Jumps can be to a specified address or can be relative to the
current address up to 127 bytes forward or 128 backward
counting the displacement byte as —1.

7) INPUT/OUTPUT INSTRUCTIONS

The INPUT instructions can read a byte from any INPUT port
into any of the registers. The OUTPUT instructions send a
byte from any register to any OUTPUT port. There are also
instructions which send or receive a block of bytes through a
specified port.

8) Z80 CONTROL INSTRUCTIONS

HALT and the interrupt control instructions fall into this
category.

P T E R E R R R R

MACHINE CODE MNEMONICS

To remember an instruction set which consists of over 700
sets of numbers is a formidable task and so itis fortunate that
THE ZILOG CORPORATION OF CALIFORNIA (the originators
of the Z80 chip) designed a set of mnemonics (memory aids)
to assist the user to write in machine code. A machine code
program which is written in mnemonics is known as a
SOURCE FILE which is made up of SOURCE CODE.

An ASSEMBLER takes a source file and turns it into true
machine code — the machine code file created by the
assembler is known as the OBJECT FILE which consists of
OBJECT CODE.

MACHINE CODE CONVENTIONS

THE BRACKETS RULE

A source code without brackets means that the operation
specified must be carried out upon the contents of the
register concerned.

eg. LD HL,dddd — means load register HL with number
dddd.
DEC DE _ means decrement the contents of
register DE.
= 5=

' ADD A,B — means add the contents of register B to
o | the contents of register A and leave the

l‘ result in register A.

i

1

A source code with brackets means that the operation must
be carried out on the contents of the memory byte which is
pointed to by the address contained in the bracketed register.

eg. LD A,(HL) — means load the A register with the
contents of the memory byte pointed to
by the address held in the HL register.

=1 [A s

DEC (HL) — means decrement the contents of the
memory byte pointed to by the address
held in the HL register.

LD(ADDR),A— means load the memory address
contained in the brackets with the
contents of the A register.

THE ORDER RULE

Where an instruction contains two registers or an address and
a register the first named register or address will contain the
result of the operation.

eg. LD SP,HL — the Stack Pointer is loaded with the
contents of the HL register.
ADD SP,IY — add the contents of the IY register to the

Stack Pointer and put the result into the
Stack Pointer.

THE IMPLIED “A” RULE

Where an instruction obviously needs two registers but the
mnemonic only contains one then the other register is always
the ACCUMULATOR.

eg. XOR D — means XOR the D register with the A
register and put the result into the A
register.

sSuB B — means subtract the contents of the B

register from the contents of the A
register and put the result into the A
register.

AN N NP NN W

86 —

L
n1

THE 16 BIT RULE

When a 16 bit transfer takes place then the LOW BYTE is
placed into the specified address and the HIGH BYTE is
placed into the address + 1. This bit order applies for all 16 bit
transfer operations — NOTE however that 16 bit registers
contain the high byte in the left hand portion of the register
(eg. B,D or H) and the low byte in the right hand part of the
register (C,E or L).

EE IR R IR R R R R R R R R O O

The full list of machine code mnemonics is presented in the
APPENDIX 1 for your convenience.

Do not worry if you dont understand machine code
immediately you will understand more and more as you do the
exercises presented in the next few chapters. The SUPER
ASSEMBLER is presented in the next chapter and your next
task is to type in the assembler — or find it on the tape
provided.

LR R R R R R R R

87 —

nn mn M a8l ™ m laa |

a gl m ren m m 3.8l

I (322l ren ia - & s

H)

e ————

| L e e

U

T

LN NN NNy BN NN SENy SN (NN

Vdi

CHAPTER 16
THE SUPER ASSEMBLER

The SUPER ASSEMBLER is a full Z80 machine code
assembler for the SPECTRAVIDEO computers. The
assembler was written in machine code by my young friend
BENNIE VAN DER MERWE.

The given listing includes all the machine code and a loader
program. Type in the listing and CSAVE to tape — now place a
new tape in the data cassette and RUN the program. The
machine code assembler will load into memory and then
BSAVE to tape.

For future runs of the assembler you may CLOAD and RUN
the basic listing or you may BLOAD the machine code version
directly. If you directly BLOAD the MC version please
remember to reserve space first:

type CLEAR 200,48000 followed by ENTER before BLOAD.
NOTES

1) The given version of the assembler is for the SVI 328 or
the expanded SVI 318 — the version is suitable for disc or
tape.

2) The SUPER ASSEMBLER is available on the
accompanying tape. The tape contains two versions of
the assembler,

a) SA328 — suitable for the SVI 328 or the expanded
318.

b) SA318 — suitable for the unexpanded SVI 318.

3) When you type in the listing take great care to check each
data line for accuracy — the assembler will not work
properly if any of the data is entered incorrectly.

4) Entering the listing will take some time so please CSAVE
the growing listing frequently — there is nothing worse
than coming near to the end of a large listing and losing
the lot due to a power failure or some such mishap.

— 88 —

T " —— - i = il

PROGRAM LISTING 16.1
SUPER ASSEMBLER

10 * SUPER ASSEMBLER

20

30"

40

50"

60 '

70"

80 CLEAR100,47999!

90 FORX =48000!T0O52400!:POKEX,0:NEXT
100 FORX =48000!T0O49407!:READXS$:POKEX,VAL("&H" +

X$):NEXT
110 FORX =49984!T052400!:READX$:POKEX, VAL("&H" +
X$):NEXT

120 BSAVE”SA328",48000!,52400!
130 END
140 DATA 69,6E,20,62,2C,28,63,29,00,6F,75,74,20,28,63,29
150 DATA 2C,62,00,73,62,63,20,68,6C,2C,62,63,00,6C,64,20
160 DATA 28,23,29,2C,62,63,00,6E,65,67,00,72,65,74,6E,00
170 DATA 20,20,00,6C,64,20,69,2C,61,00,69,6E,20,63,2C,28
180 DATA 63,29,00,6F,75,74,20,28,63,29,2C,63,00,61,64,63
190 DATA 20,68,6C,2C,62,63,00,6C,64,20,62,63,2C,28,23,29
200 DATA 00,20,20,00,72,65,74,69,00,20,20,00,6C,64,20,72
210 DATA 2C,61,00,69,6E,20,64,2C,28,63,29,00,6F,75,74,20
220 DATA 28,63,29,2C,64,00,73,62,63,20,68,6C,2C,64,65,00
230 DATA 6C,64,20,28,23,29,2C,64,65,00,20,20,00,20,20,00
240 DATA 20,20,00,6C,64,20,61,2C,69,00,69,6E,20,65,2C,28
250 DATA 63,29,00,6F,75,74,20,28,63,29,2C,65,00,61,64,63
260 DATA 20,68,6C,2C,64,65,00,6C,64,20,64,65,2C,28,23,29
270 DATA 00,20,20,00,20,20,00,20,20,00,6C,64,20,61,2C,72
280 DATA 00,69,6E,20,68,2C,28,63,29,00,6F,75,74,20,28,63
290 DATA 29,2C,68,00,73,62,63,20,68,6C,2C,68,6C,00,20,20
300 DATA 00,20,20,00,20,20,00,20,20,00,72,72,64,00,69,6E
310 DATA 20,6C,2C,28,63,29,00,6F,75,74,20,28,63,29,2C,6C
320 DATA 00,61,64,63,20,68,6C,2C,68,6C,00,20,20,00,20,20
330 DATA 20,00,20,20,20,00,20,20,00,72,6C,64,00,69,6E,20
340 DATA 66,2C,28,63,29,00,20,20,00,73,62,63,20,68,6C,2C
350 DATA 73,70,00,6C,64,20,28,23,29,2C,73,70,00,20,20,00
360 DATA 20,20,00,20,20,00,20,20,00,69,6E,20,61,2C,28,63
370 DATA 29,00,6F,75,74,20,28,63,29,2C,61,00,61,64,63,20
380 DATA 68,6C,2C,73,70,00,6C,64,20,73,70,2C,28,23,29,00

=489 —

-

s al [p &l (2 &l res ren - rem remy 12 &l ey ren ren s 8l ey

18 &l 18 & na

SR L MR W (G W N (R W

L3 i

SUPER ASSEMBLER LISTING CONTINUED

390 DATA 00,00,6C,64,69,00,63,70,69,00,69,6E,69,00,6F,75
400 DATA 74,69,00,20,20,00,20,20,00,20,20,00,20,20,00,6C
410 DATA 64,64,00,63,70,64,00,69,6E,64,00,6F,75,74,64,00
420 DATA 20,20,00,20,20,00, ,64,69,72
430 DATA 00,63,70,69,72,0
440 DATA 20,20,00,20,20,0
2,0

0,0

2

O

~
~

momno

NONO
o
gm
©
N}
R
o
NES]

~

©0
NN
N
NON
S000

450 DATA 00,63,70,64,72,
460 DATA 00,00,6E,6F,70,
470 DATA 20,28,62,63,29,2C,6
480 DATA 6E,63,20,62,00,64,6
490 DATA 23,00,72,6C,63,61,0

~
~

2
0,6
0,2
0,6
0,6

N
I
(o))

o
B
N
o
(@]

~

2000
NN
w

AN

Oo—2owWW
COOOMNNIOOO

N
S
(o))
@
5O

[N
o
—_

~

m
[eXo XoRe No X&)

wWo
50
o)}
ko)
o
N
N

o)
w
o0
Ie))

o
o)
N
o)
o)

6E,63,20
,23,00,72
2

~

2
520 DATA 63,00,64,65,63,20,63,00,6C,64,
530 DATA 72,63,61,00,64,6A,6E,7A,2 ,20,64,65
540 DATA 2C,23,00,6C,64,20,28,64 ,2C,61,00,69,6E,63
550 DATA 20,64,65,00,69,6E,63,20,64,00,64,65,63,20,64,00
560 DATA 6C,64,20,64,2C,23,00,72,6C,61,00,6A,72,20,23,00
570 DATA 61,64,64,20,68,6C,2C,64,65,00,6C,64,20,61,2C,28
580 DATA 64,65,29,00,64,65,63,20,64,65,00,69,6E,63,20,65
590 DATA 00,64,65,63,20,65,00,6C,64,20,65,2C,23,00,72,72
2 6

fo))
ao
NN
O(DP)
o
o
(o))
Q)

620 DATA 68,6C,00,69,6E,63,20,68,00,64,65,63,20,68,00,6C
C,23,00,64,61,61,00,6A,72,20,7A,2C,23
2C,68,6C,00,6C,64,20,68,6C

6 2
610 DATA 23,00,6C,64,20,28,23,2
20,6
630 DATA 64,20,68,
6

,6E,63,2C,23,00,6C,64,20,73,70
,28,23,29,2C,61,00,69,6E,63,20

A,72,20,63,2C,23,00,61,64,64,20,68,6C

C,64,20,61,2C,28,23,29,00,64,65,63
730 DATA 20,73,70,00,69,6E,63,20,61,00,64,65,63,20,61,00
740 DATA 6C,64,20,61,2C,23,00,63,63,66,00,00,00,72,65,74
,70,20,62,63,00,6A,70,20,6E,7A
23,00,63,61,6C,6C,20,6E,7A,2C
770 DATA 23,00,70,75,73,68,20,62,63,00,20,20,00,20,20,00
780 DATA 72,65,74,20,7A,00,72,65,74,00,6A,70,20,7A,2C,23
790 DATA 00,20,20,00,63,61,6C,6C,20,7A,2C,23,00,63,61,6C
800 DATA 6C,20,23,00,20,20,00,20,20,00,72,65,74,20,6E,63
810 DATA 00,70,6F,70,20,64,65,00,6A,70,20,6E,63,2C,23,00
820 DATA 6F,75,74,20,28,23,29,2C,61,00,63,61,6C,6C,20,6E

l

B EE BN B B S IS BB BB BE BB I B ==

J

SUPER ASSEMBLER LISTING CONTINUED

830 DATA 63,2C,23,00,70,75,73,68,20,64,65,00,20,20,00,20
840 DATA 20,00,72,65,74,20,63,00,65,78,78,00,6A,70,20,63
850 DATA 2C,23,00,69,6E,20,61,2C,28,23,29,00,63,61,6C,6C
860 DATA 20,63,2C,23,00,20,20,00,20,20,00,20,20,00,72,65
870 DATA 74,20,70,6F,00,70,6F,70,20,68,6C,00,6A,70,20,70
880 DATA 6F,2C,23,00,65,78,20,28,73,70,29,2C,68,6C,00,63
890 DATA 61,6C,6C,20,70,6F,2C,23,00,70,75,73,68,20,68,6C
900 DATA 00,20,20,00,20,20,00,72,65,74,20,70,65,00,6A,70
910 DATA 20,28,68,6C,29,00,6A,70,20,70,65,2C,23,00,65,78
920 DATA 20,64,65,2C,68,6C,00,63,61,6C,6C,20,70,65,2C,23
930 DATA 00,20,20,00,20,20,00,20,20,00,72,65,74,20,70,00
940 DATA 70,6F,70,20,61,66,00,6A,70,20,70,2C,23,00,64,69
950 DATA 00,63,61,6C,6C,20,70,2C,23,00,70,75,73,68,20,61
960 DATA 66,00,20,20,00,20,20,00,72,65,74,20,6D,00,6C,64
970 DATA 20,73,70,2C,68,6C,00,6A,70,20,6D,2C,23,00,65,69
980 DATA 00,63,61,6C,6C,20,6D,2C,23,00,00,00,01,01,00,00
990 DATA 00,00,00,00,00,00,01,00,00,00,5D,00,00,00,00,00
1000 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,15
1010 DATA 80,00,00,50,F4,02,00,00,00,00,00,00,00,00,00,00
1020 DATA 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,52
1030 DATA 21,CC,C0,01,83,02,AF,77,23,0B,78,B1,20,F8,3A,02
1040 DATA FA,32,CC,C0,AF,32,02,FA,21,C2,C3,CD,9A,45,3E,01
1050 DATA 32,CD,C0,21,07,80,22,EF,C0,21,80,C3,CD,7D,69,C9
1060 DATA 53,75,70,65,72,20,41,73,73,65,6D,62,6C,65,72,20
1070 DATA56,65,72,73,69,6F,6E,20,36,2E,30,0D,0A,28,43,29
1080 DATA 20,31,39,38,35,20,62,79,20,42,65,6E,6E,69,65,20
1090 DATA 76,61,6E,20,64,65,72,20,4D,65,72,77,65,2E,0D,0A
1100 DATA 0A,00,30,00,C7,C8,C9,CA,3E,68,32,0E,C4,3E,26,32
1110 DATA 0D,C4,2B,23,7E,FE,2E,28,FA, FE,6F,20,04,32,0E,C4
1120 DATA 23,FE,6E,20,06,3E,62,32,0E,C4,23,FE,6D,CA,21,C4
1130 DATA 11,0E,C4,13,7E,FE,00,28,08,FE,29,28,04,12,23,18
1140 DATA F2,AF,12,21,0D,C4,CD,CA,14,2A,25,F9,C9,26,68,66
1150 DATA 34,35,30,00,00,2E,66,66,00,00,00,00,00,00,00,00
1160 DATA 00,E5,D1,21,00,00,13,1A,FE,29,28,15,FE,00,28,11
1170 DATA D5,06,09,E5,01,19,10,FD,16,00,D6,30,5F,19,D1,18
1180 DATA E5,22,25,F9,C9,49,4A,4B,4C,4D,3E,23,77,23,E5,D1
1190 DATA 7E,FE,00,28,0B,FE,2C,28,07,FE,29,28,03,23,18,F0
1200 DATA 7E,12,23,13,FE,00,20,F8,12,C9,6E,6F,70,71,72,73
1210 DATA 74,75,22,39,C2,21,42,C1,22,3B,C2,0E,01,3A,CD,CO
1220 DATA 47,2A,F3,C0,22,04,C0,3A,F5,CO,FE,00,C8,2A,3B,C2
1230 DATA 11,06,00,19,22,3B,C2,E5,D1,2A,39,C2,1A,FE,00,20
1240 DATA 08,7E,FE,00,20,03,C3,CE,C4,1A;BE,20,04,13,23,18
1250 DATA EB,1A,FE,00,20,08,7E,FE,29,20,03,C3,CE,C4,0C,05
1260 DATA C2,8D,C4,21,E0,C4,CD,7D,69,1E,11,C3,07,09,21,F6

0] —

| M M (WMo e e W W W

M (WY M e e e

h.8

e

PR BN

T et e . — ey a—— . p——

LR N SN TR NN BN GER N DERE OB LGN UGmel M U

SUPER ASSEMBLER LISTING CONTINUED

1270 DATA C0,23,23,0D,20,FB,7E,32,D4,C0,23,7E,32,D5,C0,C9
1280 DATA 0A,55,6E,64,65,66,69,6E,65,64,20,6C,61,62,6C,65

1290 DATA 2E,0A,0D,00,F8,F9,FA FB,FC,FD,FE,00,01,02,21,DA
1300 DATA C0,06,13,AF,77,23,10,FB,3A,84,FD,FE,FE,28,F9,3A
1310 DATA 86,FD,FE,EF,20,17,21,21,C5,CD,7D,69,1E,11,C3,07
1320 DATA 09,0A,45,73,63,61,70,65,2E,0D,0A,0A,00,2A,EF,CO
1330 DATA 7E,FE,27,20,01,23,FE,00,20,04,11,07,00,19,7E,FE
1340 DATA 24,CA,86,C5,FE,21,CA,65,C5,11,DA,C0,0E,00,7E,FE
1350 DATA 00,28,0A,FE,27,28,06,0C,12,23,13,18,F1,22,EF,CO
1360 DATA 79,32,D6,C0,C9,3E,0A,DF,7E,DF,23,7E,FE,27,28,07
1370 DATA FE,00,28,03,DF,18,F3,3E,0A,DF,3E,0A,DF,3E,0D,DF
1380 DATA 22,EF,C0,C3,FE,C4,DF,ED,5B,F3,C0,1B,23,13,7E,FE
1390 DATA 27,28,0A,FE,00,28,06,12,D5,DF,D1,18,EF,ED,53,F3
1400 DATA C0,18,D7,A8A9,AA AB,AC,AD,AE AF,B0,B1,82,83,B4
1410 DATA B5,B6,3A,DA,C0,21,DB,CO,FE,5B,20,09,CD,C8,C3,22
1420 DATA F3,C0,C3,5D,C6,FE,5D,C2,20,C6,3A,F5,C0,3C,32,F5
1430 DATA CO,FE,02,28,11,CD,78,37,21,80,C3,CD,7D,69,21,07
1440 DATA 80,22, EF,CO,AF,C9,3E,0A,DF,21,0B,C6,CD,7D,69,2A
1450 DATA F3,C0,CD,3D,CC,3E,0D,DF,3E,0A,DF,3E,0A,DF,3A,CC
1460 DATA C0,32,02,FA,3E,02,32,93,F7,E1,C9,46,69,72,73,74
1470 DATA 20,63,6C,65,61,72,20,61,64,64,72,65,73,73,3A,00
1480 DATA FE,64,C2,59,C6,7E,FE,62,20,11,23,23,CD,C8,C3,7D
1490 DATA 2A,F3,C0,77,23,22,F3,C0,C3,60,C6,FE,77,20,1A,23

1500 DATA 23,CD,C8,C3,DD,2A F3,C0,DD,75,00,0D,74,01,0D,23
1510 DATA DD,23,DD,22,F3,C0,C3,60,C6,3E,FF,C9,C9,3E,0A,DF
1520 DATA 21,DA,C0,CD,7D,69,3E,0D,DF,3E,0A,DF,AF,C9,74,75
1530 DATA 3A,DA,CO,FE,58B,30,06,FE,41,38,02,18,03,3E,FF,C9
1540 DATA 3A,D6,C0,FE,06,D02,03,C7,3A,F5,C0,FE,01,CA,CF,C6
1550 DATA 3A,CD,CO,FE,28,CA E3,C6,3A,CD,C0,21,F6,C0,23,23
1560 DATA 3D,20,FB,3A,F3,C0,77,23,3A,F4,C0,77,3A,CD,C0,21
1570 DATA 42,C1,11,06,00,19,3D,20,FC,EB,21,DA,CO0,06,06,7E
1580 DATA 12,23,13,10,FA,3A,CD,C0,3C,32,CD,C0,C3,CF,C6,3E

1590 DATA 0A,DF,21,DA,C0,CD,7D,69,3E,0D,DF,3E,0A,DF,3E,0A
1600 DATA DF,AF,C9,21,EE,C6,CD,7D,69,1E,11,C3,07,09,0A,54
1610 DATA 6F,6F,20,6D,61,6E,79,20,6C,61,62,6C,65,73,2E,0D
1620 DATA 0A,0A,00,21,0E,C7,CD,7D,69,1E,11,C3,07,09,0A,4C
1630 DATA 61,62,6C,65,20,74,6F,6F,20,6C,6F,6E,67,2E,0D,0A
1640 DATA 0A,00,29,2A,2B,2C,2D,2E,2F,30,31,32,33,34,35,36
1650 DATA 37,38,39,3A,3B,3C,3D,3E,AF,32,D1,C0,3A,DA,CO,FE
1660 DATA €4,20,0D,3A,DB,CO,FE,BA,20,06,21,DF,C0,C3,76,C7
1670 DATA 3A,DA,CO,FE,BA,20,07,3A,DB,CO,FE,72,28,03,3E,FF
1680 DATA C9,21,E0,C0,3A,DF,CO,FE,2C,28,08,2B,3A,DE,CO,FE
1690 DATA 2C,28,03,21,DD,C0,3E,FF,32,D1,C0,7E,FE,2D,C2,8E

1700 DATA C7,E5,23,CD,C8,C3,AF,95,32,02,C0,C3,C6,C7,FE,2B

— 92 —

- ==

J——

SUPER ASSEMBLER LISTING CONTINUED

1710 DATA C2,9F,C7,E5,23,CD,C8,C3,7D,32,02,C0,C3,C6,C7,ES
1720 DATA 7E,FE,2E,20,06,23,CD,C8,C3,18,08,CD,72,C4,2A,D4
1730 DATA C0,18,03,2A,25,F9,AF,BC,28,DE,ED,5B,F3,C0,13,13
1740 DATA 7D,93,6F,C3,98,C7,E1,CD,4A,C4, AF,C9,D3,D4,AF,32
17650 DATA D3,C0,3A,D6,C0,47,21,DA,CO,7E,FE,2E,20,14,E5,23
1760 DATA CD,C8,C3,22,D4,C0,E1,CD 4A,C4,3E,FF,32,D03,C0,C3
1770 DATA OF,C8,FE,41,38,14,FE,5B,30,10,E5,CD,72,C4,3E,FF
1780 DATA 32,03,C0,E1,CD,4A,C4,C3,0F,C8,23,05,C2,09,C7,21
1790 DATA DA,CO0,AF,32,CE,C0,23,7E,FE,00,C8,FE,69,20,F7,23
1800 DATA 7E,FE,78,20,04,3E,DD,18,07,FE,79,C2,16,C8,3E,FD
1810 DATA E5,2A,F3,C0,77,23,22,F3,C0,3E,FF,32,CE,C0O,AF,32
1820 DATA CF,C0,E1,E5,23,7E,FE,2B,C2,58,C8,23,CD,C8,C3,7D
1830 DATA 32,D0,C0,3E,FF,32,CF,C0,E1,2B,36,68,23,36,6C,23
1840 DATA 7E,FE,2B,C0,E5,23,7E,FE,29,20,FA,D1,7E,12,23,13
1850 DATA FE,00,20,F8,C9,7D,7E,7F,80,81,82,83,84,3A,DA,C0O
1860 DATA 32,5A,C9,3A,DB,C0,32,5B,C9,3A,DC,C0,32,5C,C9,21
1870 DATA 38,C9,CD,CA,14,3A,25,F9,FE,00,CA,D8,C8,3D,CB,27
1880 DATA CB,27,CB,27,47,3A,DD,CO,FE,20,20,03,3A,DE,C0,21
1890 DATA 66,C9,0E,C0,BE,28,04,0C,23,18,F9,78,81,47,2A,F3
1900 DATA CO,3E,CB,77,23,3A,CE,CO,FE,00,28,05,3A,D4,C0,77
1910 DATA 23,70,23,22,F3,C0,AF,C9,3A,DB,CO,FE,65,28,05,FE
1920 DATA 69,C2,6E,C9,3A,DA,CO0,0E,00,FE,62,20,02,0E,40,FE
1930 DATA 72,20,02,0E,80,FE,73,20,02,0E,C0,79,FE,00,CA,6E
1940 DATA C8,2A,F3,C0,36,CB,23,3A,CE,CO,FE,00,28,05,3A,D0
1950 DATA C0,77,23,3A,D04,C0,CB,27,CB,27,CB,27,81,4F,06,00
1960 DATA 3A,E0,C0,E5,21,66,C9,BE,28,04,04,23,18,F9,E1,78
1970 DATA 81,77,23,22,F3,C0,AF,C9,FF,9E,28,28,E5,28,22,72
1980 DATA 6C,63,72,72,63,72,6C,20,72,72,20,73,6C,61,73,72
1990 DATA 61,20,20,20,73,72,6C,22,2C,22,63,70,20,22,29,F3
2000 DATA 32,29,F6,33,29,00,62,63,64,65,68,6C,28,61,3E,FF
2010 DATA C9,7A,7B,7C,7D,7E,7F,80,81,82,83,84,3A,DA,CO,FE
2020 DATA 6C,C2,E4,C9,3A,DB,CO,FE,64,C2,D4,C9,3A,E2,CO,FE
2030 DATA 2E,CA,92,CC,3A,DD,C0,21,DC,C9Y,CD,CC,C9,78,CB,27
2040 DATA CB,27,CB,27,C6,40,4F,21,DD,CO0,7E,23,FE,2C,20,FA
2050 DATA 7E,21,DC,C9,CD,CC,C9,79,80,2A,F3,C0,77,23,3A,CE
2060 DATA CO,FE,00,28,12,3A,D4,C0,77,23,18,0B,06,00,BE,C8
2070 DATA 23,04,18,FA,3E,FF,C9,22,F3,C0,AF,C9,62,63,64,65
2080 DATA 68,6C,28,61,3A,DA,C0,32,64,CA,3A,DB,C0,32,65,CA
2090 DATA 3A,DC,C0,32,66,CA,21,42,CA,CD,CA,14,3A,25,F9,FE
2100 DATA 00,CA,D4,C9,3D,CB,27,CB,27,CB,27,C6,80,4F,3A,D3
2110 DATA CO0,3C,3D,28,19,3A,CE,C0,3C,3D,20,12,3E,46,81,2A
2120 DATA F3,C0,77,23,3A,D4,C0,77,23,22,F3,C0,AF,C9,21,DC
2130 DATA CO0,23,7E,FE,00,20,FA,2B,7E,FE,29,C2,B1,C9,3D,C3
2140 DATA B1,C9,FF,9E,28,28,E5,28,22,61,64,64,61,64,63,73

93 —

m M MM M M o e e

m

m s oM o m

m . m

.0

3.4

o N R SN, R, W R, W W R g S

1

SUPER ASSEMBLER LISTING CONTINUED

2150 DATA 75,62,73,62,63,61,6E,64,78,6F,72,6F,72,20,63,70

2160 DATA 20,22,2C,22,63,70,20,22,29,F3,32,29,F6,33,29,00
2170 DATA 32,D01,C0,32,D03,C0,CD,50,C3,AF,32,CF,C0,32,03,CO

2180 DATA CD,FE,C4,CD,B2,C5,3C,3D,28,EF,CD,70,C6,3C,3D,28
2190 DATA E8,2A F3,C0,CD,18,CC,3E,0D,DF,06,0F,C5,3E,1C,DF

2200 DATA C1,10,F9,21,DA,CO,CD,7D,69,3E,0D,DF,3E,0A,DF,3A
2210 DATA DA,CO,FE,72,20,1B,3A,DB,CO,FE,73,20,14,21,DE,CO
2220 DATA CD,C8,C3,7D,C6,C7,2A,F3,C0,77,23,22,F3,C0,C3,79
2230 DATA CA,3A,DA,CO,FE,68,20,13,3A,DB,CO,FE,61,20,0C,2A
2240 DATA F3,C0,36,76,23,22,F3,C0,C3,79,CA,3A,DA,CO,FE,69
2250 DATA 20,2C,3A,DB,CO,FE,6D,20,25,2A F3,C0,36,ED,23,E5
2260 DATA 21,DD,C0,CD,C8,C3,7D,E1,0E,46,FE,01,20,02,0E,56

2270 DATA FE,02,20,02,0E,5E,71,23,22,F3,C0,C3,79,CA,CD,38
2280 DATA C7,CD,CE,C7,21,82,BD,0E,00,CD,EE,CB,04,05,28,0D

2290 DATA 21,4D,BF,0E,C0,CD,EE,CB,04,05,C2,93,CB,2A,F3,CO
2300 DATA 71,23,3A,D1,C0,3C,3D,28,0B,3A,02,C0,77,23,22,F3
2310 DATA C0,C3,79,CA,3A,CF,C0,3C,3D,28,05,3A,D4,C0,77,23

2320 DATA 22,F3,C0,3A,D3,C0,3C,3D,CA,79,CA,3A,D4,C0,77,23
2330 DATA C3,77,CC,C3,5E,CC,FE,2C,CA,79,CA FE,B68,CA,79,CA
2340 DATA 3A,DC,CO,FE,74,CA,79,CA,3A,D5,C0,77,23,22,F3,CO
2350 DATA C3,79,CA,21,12,BD,0E,A0,CD,EE,CB,04,05,20,0E,2A

2360 DATA F3,C0,36,ED,23,71,23,22,F3,C0,C3,79,CA,21,80,BB
2370 DATA OE,40,CD,EE,CB,04,05,C2,D9,CB,2A,F3,C0,36,ED,23
2380 DATA 71,23,3A,D3,C0,3C,3D,28,0A,3A,D4,C0,77,23,3A,05
2390 DATA C0,77,23,22,F3,C0,C3,79,CA,CD,7D,C8,3C,3D,CA,79
2400 DATA CA,CD,7C,C9,3C,3D,CA,79,CA1E,FF,C3,07,09,E5,11
2410 DATA DA,C0,06,FF,CD,0A,CC,E1,04,05,C8,0C,7E,23,FE,00
2420 DATA 20,FA,7E,06,02,FE,00,C8,18,E4,1A,BE,CO,FE,00,28
2430 DATA 04,23,13,18,F5,06,00,C9,7C,CB,3F,CB,3F,CB,3F,CB
2440 DATA 3F,CD,40,CC,7C,E6,0F,CD,40,CC,7D,CB,3F,CB,3F,CB
2450 DATA 3F,CB,3F,CD,40,CC,7D,E6,0F,CD,40,CC,C9,C3,18,CC
2460 DATA 11,4E,CC,1B,3C,13,3D,20,FC,1A E5,DF,E1,C9,30,31

2470 DATA 32,33,34,35,36,37,38,39,41,42,43,44,45,46,3A EO
2480 DATA CO,FE,23,C2,71,CC,3A,DA,CO,FE,B69,CA,71,CC,C3,88
2490 DATA CB,3A,DE,C0,C3,76,CB,22,F3,C0,3A,DB,CO,FE,70,C2
2500 DATA 73,CB,C3,88,CB,C0,AF,C9,DD,95,96,97,98,99,9A,98
2510 DATA 9C,9D,2A,F3,C0,36,36,23,3A,04,C0,77,23,E5,21,E2
2520 DATA C0,CD,C8,C3,7D,E1,77,23,22,F3,CO,AF,C9,B9,BA,BB
2530 DATA BC

EIE R R IR I R R I R R I

In the next chapter you will find the operating instructions for
the SUPER ASSEMBLER.

EIE R R R

B v.)

CHAPTER 17
SUPER ASSEMBLER OPERATING INSTRUCTIONS
LOADING THE ASSEMBLER
SVI 328 VERSION

Type CLEAR 200,48000 followed by ENTER and then
BLOAD”SA328"” again followed by ENTER — press play on
the tape and the assembler will load into the memory.

The assembler is located from address 48000 to 52480 or in
HEX from &HBBB80 to &HCDO00. Machine code programs can
be assembled at addresses above the end of the assembler
but please ensure that you do not assemble in the machine
area at the top of memory.

Do not assemble above 62720 (&HF500) if using a tape or
above 54712 (&HD5B8) if using a disc. You may assemble
programs in the memory area below the assembler but
remember the following:

1) Change the original CLEAR command so that the
assembled program will still be above the top of memory.
For example use CLEAR 200,42000.

2) Leave sufficient space below the assembled program for
the source file which starts at address 32768 (&H8000).

NOTE that if you are using the pre recorded tape version of
the assembler you simply type CLOAD “SA328" followed by
ENTER to load the loader program. RUN the loader program
which will then load the super assembler and initialise KEY
(F1) with the "ASSEMBLE"” command. NOTE also that all the
mini programs and source files in this book will be found on
your SUPER ASSEMBLER tape.

SVI 318 VERSION
This version of the SUPER ASSEMBLER is not given in this
book but is provided on the accompanying tape.

The assembler is located from address 58000 to 62480 or in
HEX from &HE290 to &HF410. Machine code programs can

— 95 —

rema T Cer IE B! e ram rew 2 Al ey ey ia &l . s o rv|

PRy . -

T .

£

LU Em R WE EE Em Wm my am gm, wp

be assembled at addresses above the end of the assembler
but please ensure that you do not assemble in the machine
area at the top of memory.

Do not assemble above 62720 (&HF500) — You may
assemble programs in the memory area below the assembler
but remember the following:

1) Change the original CLEAR command (in the loader
program) so that the assembled program will still be
above the top of memory. For example use CLEAR
200,57000.

2) Leave sufficient space below the assembled program for
the source file which starts at address 49152 (&HC000)
on the unexpanded SVI 318.

LR R R R R R I Y

SOURCE FILES

Source files are typed into the computer in the same way as
basic programs except that each line is a REM statement. You
may use all the basic editing features (AUTO, RENUM, etc.)
when writing your source file. The SOURCE FILE must be
organised in a special way for the assembler to work properly.
Many examples of source files can be found in the remaining
chapters of this book but the general rules are laid out below:

1) NUMBERS — The assembler can deal with numbers
which are entered in HEX, DECIMAL, BINARY or
OCTAL. It is however necessary to indicate which
number system is used in every instance. For example
the number 165 can be entered in a source file in the
following different ways:

HEX — .ab — prefix = "

BINARY — .n10100101 — prefix = “.n"”
DECIMAL — .m165 — prefix = “.m"”
OCTAL — .0245 — prefix = “.0”

2) ASSEMBLER DIRECTIVE : SET ADDRESS POINTER —
The user must set the assembler address pointer in the
first command line of the source file so that the
assembler will know where to start the assembly. This is
done in the following manner:

10 REM [.m53000

- 1.

S B B B S B BN BN Ee

-

NOTE that the open sqguare bracket means SET THE
ASSEMBLER ADDRESS POINTER TO THE FOLLOWING
ADDRESS and that address can be written in any valid
number system.

3)

eg.

eg.

4)

eg.

5)

eg.

6)

eg.

SOURCE LINE FORMAT — Each line of the source file
must have a line number, the basic word REM, a space
followed by an assembler directive or a Z80 MNEMONIC
with appropriate addresses and numbers entered

200 REM Id a,.10

Multiple statements may be entered in the same line but
the statements must be separated by a single quote.

150 REM Id a,.m15'ld b,.0a’add a,b

ASSEMBLER DIRECTIVE : COMMENT — Comments
may be entered in any line of your source file following a !
sign. The assembler ignores any text after the ! sign and
moves on to the next source line.

100 REM ! subroutine to print string
110 REM Id a,.m65’! character code into register A

ASSEMBLER DIRECTIVE : LABELS — Labels may be
placed at any pointin your source file and the label will be
equivalent to the assembler address pointer at that point.
Such labels may be used to address JUMPS, CALLS,
LOADS or any other Z80 commands which require an
address.

10 REM [.dOOO'Start

NOTE that labels can be a maximum of 5 characters long
and the first character must be a capital letter with the
remaining characters in lower case.

ASSEMBLER DIRECTIVE : NUMBER STORAGE — You
can set aside storage areas for numeric constants and
variables by using the directives db (single byte) or dw
(two bytes).

200 REM Store’db .0a

210 REM Stor2’dw .m1000

e (G

MM ™m

R NS ¢

S s 2N e alN . SN E A

-

e e s e s e e — — — —

A e e

- .

L

. T

7)

eg.

8)

eg.

9)

eg.

10)

or

ASSEMBLER DIRECTIVE : STRING STORAGE — You
can set aside a storage area for strings by using the $
prefix.

150 REM Str1'$This is a string””:

ASSEMBLER DIRECTIVE : END MARKER — The close
square bracket is used to mark the end of the source file.

1000 REM]

SETTING JUMP ADDRESSES — Many assemblers use
the EQU statement to set up labels with external
addresses (ie. addresses outside the current MC
program — eg. ROM routines.). With the SUPER
ASSEMBLER you use the open square bracket to set the
address pointer and then specify the label. This must be
done at the start of the source file.

10 REM [.394d'Chput
20 REM [.403d'Chget

TO RUN THE ASSEMBLER — Having entered the source
file type in the following:

DEFUSR 0 = 51830 followed by ENTER — SA328
DEFUSR 0 = 61830 followed by ENTER — SA318

now type Z = USR 0 (0) to start assembly.

To RUN your MC program DEFUSR 1 = YOUR PROGRAM
START ADDRESS and then Z = USR 1 (0) to execute your
program.

11)

eg.

12)

SAVING YOUR MC PROGRAMS — Use the standard
BSAVE command to save the machine code and use
SAVE or CSAVE to save the source files.

BSAVE “mcprog” ,start address,end address,run address
CSAVE “source”
FINAL CAUTIONS:

a) There MUST be a space between the REM and the
instrucion.

b) All numbers (except the line numbers) MUST be
properly prefixed.

— 98 —

c)
d)

e)

f)

g)

h)

i)

All instructions MUST be in lower case.

All labels MUST have the first letter in upper case
and the remaining letters in lower case.

The first instruction MUST be the open square
bracket.

The last instruction MUST be the close square
bracket.

BEWARE of overwriting the machine area at the top
of memory.

BEWARE of overwriting the SUPER ASSEMBLER.

Always reserve space before loading the assembler
or your own MC programs.

Always SAVE your source files before assembling
and running — the mc program may crash and you
will have to retype the source from the start.

**************i****l

Sample source files can be found in the next few chapters.
Work through each of the files and exercises to gain an
appreciation of machine code in general and the SUPER
ASSEMBLER operation in particular.

Most of the source files make use of BASIC ROM ROUTINES.
Each time a new routine is used the function of the routine is
highlighted as in the following example:

Chput
USE = print character to screen
ADDRESS = 394d hex
ENTRY = character code in A
EXIT = none
CHANGES = no registers changed

— 99 —

-

-

-

CHAPTER 18

SIMPLE SCREEN ROUTINES

Ll e =

Load up the assembler and then set up as follows:

type DEF USR 0 = 51830 ENTER — (61830 FOR SVI 318)
type DEF USR 1 = &HDO000

Now type in the following source file:

SOURCE FILE 18.1
10 REM | Chput demo

20 REM !

30 REM !

40 REM [.394d'Chput’! print character rom routine
50 REM [.d000’! assembly start address

60 REM Id a,.m65’! code for A into the A register
70 REM call Chput’! print it

80 REM ret’! return to basic

90 REM ! end of source

Save the source file to disc or tape and then type:

Z = USR 0(0) to assemble the file at address &HDO0O0O.
Z = USR 1(0) to run the MC program.

When you run the program you will notice that it prints AOK
on the screen. This routine is used to print a character on the
screen. The routine does not print a carriage return or a line
feed and so the basic OK appears immediately after the
character on the screen.

4

Notice that the ASCII code of the character to be printed must
be in the A register before calling the CHPUT routine.
S
EL Chput
® USE = print character to screen
: i ADDRESS = 394d hex
ENTRY = character code in A
n | 8 EXIT = none
CHANGES = no registers changed
I
; — 100 —

i1l
Al

SOURCE FILE 18.2 is a modified version of SOURCE FILE 18.1
— the program continuously loops and fills the screen with
characters. Notice the label Loop in line 80 — this label marks
the relative jump destination for the jump in line 110.

SOURCE FILE 18.2
10 REM | perpetual demo

20 REM |

30 REM !

40 REM [.394d'Chput’! print character rom routine

50 REM [.d00Q’! assembly start address

60 REM Id a,.m65’! code for /4. into the A

70 REM | register

80 REM Loop ! Loop start point

90 REM |
100 REM call Chput’! print character in A register
110 REM jr Loop’! unconditional relative jump to Loop
120 REM ret’! return to basic
130 REM ! end of source

Now assemble [Z = USR 0(0)] and run [Z = USR 1(0) Jand
notice how quickly the screen fills up with the letter A.

You have probably noticed also that this program continues to
run on and on and on

In fact this program will run on for ever or until you switch your
computer off. We did not provide for the program to reach an
end either automatically or by a CTRL/STOP.

Switch the computer off and then on again — load up the
assembler and then load SOURCE FILE 18.2. We will now
modify the file to allow CTRL/STOP to be used.

Source file 18.3 is a modified version of file 18.2 but at each
Loop the computer checks if CTRL/STOP has been pressed
and ends the program if the check is positive.

SOURCE FILE 18.3
10 REM | CTRL/STOP demo

20 REM !
30 REM !

— 101 —

T W e

182

mn

- LA]

- YN§S

LR LN B NN TN T T

SOURCE FILE 18.3 CONTINUED

40 REM [.394d'Chput’! print character rom routine
50 REM [.3512'Break’! check CTRL/STOP rom routine
60 REM [.d00O0’! assembly start address
70 REM |
80 REM Loop ‘! Loop start point
90 REM !
100 REM Id a,.m65’! code for A into the A register
110 REM call Chput’! print it
120 REM call Break’'! check for CTRL/STOP
130 REM jr nc,Loop’! no CTRL/STOP so Loop
140 REM ret’! CTRL/STOP so return to basic
150 REM]I end of source

Notice that the relative jump to Loop has changed to a
conditional relative jump. The routine BREAK sets the carry
flag if CTRL/STOP has been pressed so we jump to LOOP
only if the carry flag is not set (jump relative non carry).

Save the source file, assemble it, and then run the mc
program. Assembly and execution of this (and all other source
files in this book) is performed in the same manner.

Break
USE = check for CTRL/STOP
ADDRESS = 3512 hex
ENTRY = none
EXIT = carry flag set if CTRL/STOP
CHANGES = A and F registers

Getting a little tired of a screen full of A’s? — then try the next
program — SOURCE FILE 18.4.

SOURCE FILE 18.4

10 REM | Chget demo

20 REM |

30 REM |

40 REM [.394d'Chput’! print character rom routine

50 REM [.3512'Break’! check CTRL/STOP rom routine

— 102 —

— B BE B BE BE 2 B B .

SOURCE FILE 18.4 CONTINUED

60 REM [.403d'Chget’!
70 REM [.dO0O0’!
80 REM call Chget’!
90 REM push af’!
100 REM |
110 REM Loop ’!
120 REM !
130 REM pop af’!
140 REM call Chput'!
150 REM push af’!
160 REM call Break’!
170 REM jr nc,Loop’!
180 REM pop af’!
190 REM ret’!
200 REM !

get character from keyboard
assembly start address

get character in A register
save A register on stack

Loop start point

recover A register from stack
print character

save A register on stack
check for CTRL/STOP

no CTRL/STOP so Loop
CTRL/STOP so clear A off stack
return to basic

end of source

This time a new ROM ROUTINE called Chget is used. When
you assemble and run the program nothing will happen until
you press a key. The routine Chget waits until a key is pressed
and our mc program will then print a screen full of your

selected character.

Chget
USE = get character from keyboard
ADDRESS = 403d hex
ENTRY = none
EXIT = character in the A register
CHANGES = A and F registers

The final source file in this chapter creates a different type of
display which is sometimes known as a BARBER POLE
display. This display prints the character set over and over
again by incrementing the character code at each Loop.

SOURCE FILE 18.5

10 REM | Chans demo
20 REM |
30 REM |
40 REM [.394d'Chput’!

print character rom routine

108 -

T ol B T ol B e e B Bl e B B

SOURCE FILE 18.56 CONTINUED

50 REM [.3dca’Chsns’!

60 REM [.dO0O’!
70 REM !

80 REM Start’!
90 REM !

100 REM Id a,,.m31’!

110 REM push af’!
120 REM |

130 REM Loop’!
140 REM |

150 REM pop af’!
160 REM inc a’!

170 REM cp .m126’!

180 REM jr z, Start’!

190 REM call Chput’!

200 REM push af’!

210 REM call Chsns’!
220 REM jr z,Loop’

230 REM pop af’!
240 REM ret’!|
250 REM]!

check any key rom routine
assembly start address

Start routine address

space code — 1 into A
register
save A register on stack

Loop routine address

recover A register from stack
increase character code
last ascii character y/n ?
yes so back to Start

no so print character
save A register on stack
key press y/n?

Nno so Loop

yes so clear A off stack
return to basic

end of source

To stop the display simply press any key — this feature is
supplied by the ROM ROUTINE Chsns which checks for a key
press at each Loop. The ZERO FLAG is set if there has NOT

been a key press.

Chsns

USE
ADDRESS
ENTRY
EXIT
CHANGES

check for a key press
3dca hex

zero flag set if no key press
A and F registers

— 104 —

CHAPTER 19
MORE PRINTING ROUTINES

The source file 19.1 uses the basic PRINT routine to print a
string on to the screen.

SOURCE FILE 19.1

10 REM | Print routine demo

20 REM |

30 REM |

40 REM [.1265'Print’! Print routine address

50 REM [.d000’! assembly start address

60 REM Id hl,Str’! set HL register to point to Str
70 REM call Print’! Print Str

80 REM ret’! return to basic

90 REM Str$"This is a string”:’]! set up string Str

Note that the string is printed at the current cursor position
and all other text remains on the screen. The SYNTAX of the
string in line 90 is very important — a string must be enclosed
in double quotes and must end with a colon or a zero byte.
The $ sign at the start of the string is the assembler directive
to indicate that a string follows.

When calling the routine PRINT from basic you should use the
syntax Z$ = USR1(0) and not the usual Z = USR1(0).

Print
USE = print a string to the screen
ADDRESS = 1265 hex
ENTRY = HL points to string address
EXIT = none

SOURCE FILE 19.2

10 REM | RST 18 hex demo

20 REM |

30 REM !

40 REM [.1265'Print’! 2rint routine address

— 105 —

i W S W e S

(1 WT I R El .

SOURCE FILE 19.2 CONTINUED

50 REM [.d000Q’! assembly start address
60 REM Id a,.0c’! clear screen character into A
70 REM rst .18’! put character in A to screen
80 REM Id hl,Str’! set HL register to point to Str
90 REM call Print’! Print Str

100 REM ret’! return to basic

110 REM St'$"This is a string™]! set up string Str

Source file 19.2 illustrates one of the useful restart
instructions of the SVI computers — rst 18 is a single byte
instruction which is used to print the character in the A
register onto the screen. In file 19.2 the character printed is
the clear screen character CHR$(0C) but you can put any
character into the A register and print it with a rst 18. Note that
the 18 in the rst 18 is in HEX and not decimal.

Rst 18 behaves in the same manner as the rom routine Chput
with no registers affected by the instruction.

Other useful characters to print for screen formatting are:

CHR$(09) = TAB CURSOR

CHRS$(0A) = LINE FEED

CHRS$(0C) = CLEAR SCREEN

CHRs$(0D) = CARRIAGE RETURN

CHRS$(1C) = CURSOR 1 SPACE TO THE RIGHT
CHR$(1D) = CURSOR 1 SPACE TO THE LEFT
CHRS$(1E) = CURSOR 1 LINE UP

CHR$(1F) = CURSOR 1 LINE DOWN

The final source file in this chapter is file 19.3 — in this file you
will see how to position the cursor at any point on the screen
before printing your text. The technique uses the rom routine
“Posit” with the cursor X (across) position in the H register
and the cursor Y position in the L register.

— 106 —

HE I Ol BN BN BN BN B BN B B B e

e et

B
SOURCE FILE 19.3 -
10 REM ! aursor position dermo 5
20 REM | —
30 REM !) 1
40 REM [.393e’Posit’| cursor position routine =
50 REM [.1265'Print’! print string =
60 REM ! -
70 REM [.dO00’! assembly address B
80 REM | =
90 REM | -
100 REM Id a,.m12’] clear screen character into A u
110 REM rst .18'! clear screen
120 REM Id h,.m12'! cursor column (across) 3
130 REM Id |,.m10’! cursor row (down)
140 REM call Posit’! position cursor E
150 REM Id hl,Mesg’! set HL to point to message
160 REM call Print’! print message 73
170 REM Mesg’! message address label
180 REM $"test message.” '! message string 3
190 REM db .0’! message end marker
195 REM ret’! return to basic 3
200 REM 1 end of source
]
B
Posit
USE locate cursor on the screen E
ADDRESS = 393e hex
ENTRY X position in H d
Y position in L
EXIT = none B
k
l
x
a
=
3
107

LB
“« 4

= i

W e o G Sl s

A GEEN NG Wem (EME mmmi

e o ey —— T P— —

CHAPTER 20
THE SOUND OF MUSIC

The first source file in this section shows how to use the basic
command PLAY from machine code. The HL register pair is
used to point to the location of the music string and then the
play routine is called.

Assemble the file in the normal way and then DEF USR1 =
&HDO000. To PLAY the music type Z = USR1(0) followed by
ENTER.

SOURCE FILE 20.1

10 REM ! Play routine demo

20 REM |

30 REM !

40 REM [.2c24'Play’! Play routine address

50 REM [.d000’! assembly start address

60 REM Id hl,Str’! set HL register to point to Str

70 REM call Play’! Play Str
80 REM ret’! return to basic
90 REM Str'$”abcabccbd”:’)’! set up music string Str

NOTE that the music string must be written in the same way
as a text string ie. enclosed in double quotes and terminated
with a colon or a zero byte.

Play
USE = play a music string
ADDRESS = 2c24hex
ENTRY = HL points to string address
EXIT = none

One of the more interesting features of the sound chip is the
repeat facility — To make a sound repeat continually you must
set bit 3 of register 13. When such a sound is initialised it will
continue repeating until interrupted by a CTRL/STOP or
another SOUND command. The repeating sound is controlled
completely by the sound chip — the computer may continue
with other activities without disturbing the SOUND.

— 108 —

- O

E

i'

T

Source file 20.1 shows how to intitialise a repeating sound

from machine code.

A
A

SOURCE FILE 20.9

10 REM | sound demo
20 REM |
30 REM [.d000’!
40 REM Id a,.m7’!
50 REM out (.88),a’!
60 REM in a,(,90)’!
70 REM and .n11000000’!
80 REM add .n00110111"!
90 REM out (.8c),a’!
100 REM Id a,.m8’!
110 REM out (.88),a’!
120 REM Id a,.n00011111"!
130 REM out (.8c),a’!
140 REM Id a,,m12’!
150 REM out (.88),a’!
160 REM Id a,.n00000011"!
170 REM out (.8c),a’!
180 REM Id a,.m13’!
190 REM out (.88),a’!
200 REM Id a,.n00001110’!
210 REM out (.8c),a’!
220 REM ret’!
230 REM [

(steam train)

assembly start address
psg register 7 into A
open psg register 7

read current value (reg 7)
extract bits 6 and 7

add “on switch” noise channel A
initialise psg register 7
psg register 8 into A
open psg register 8
volume noise channel A
initialise psg register 8
psg register 12 into A
open psg register 12
envelope period (coarse)
initialise psg register 12
psg register 13 into A
open psg register 13
envelope shape

initialise psg register 13
return to basic

end of source

NOTE that rom routines are not used — the sound chip is
accessed directly through the input/output ports. The ports

used are as follows:
OUTPUT PORT &H88 —
INPUT PORT &HS0 —

OUTPUT PORT &H8C —

address latch to indicate which
register is to be used.

used to read the value of the
current register.

used to write values to current
register.

The sound chip register 7 deserves a special mention — in this
register the 6 lower bits are used to enable the sound and tone
channels whilst the upper two bits are used in conjunction
with the sound chip ports A and B for joystick control and

— 109 —

-

=

a

1

L T T

2} 1oy

bank switching. It is therefore desirable to preserve these two
bits when sound channels are enabled. Lines 60 — 80 in
source file 20.2 preserve the two upper bits and enable the
noise channel A of the sound chip.

LA AR R R E R EREEEREERERERSREZ:ES.

PROGRAM FILE 20.3

10 REM sound demo (space ship)
20 REM
30 REM
40 SOUNDO,&B11100000 ‘tone period channel A (fine)
50 SOUND2,8B11111111 ‘tone period channel B (fine)
60 SOUND7,&4B00111100 ‘enable tone channels A and B
70 SOUNDS,&B00011111 ‘'volume channel A
80 SOUNDS9,&B00000111 ‘volume channel B
90 SOUND12,&B00000011 ‘envelope period

100 SOUND13,&B00001100 ‘envelope shape

Program file 20.3 is another example of repeating sound —
this time using two tone channels. The program is written in
basic but you can convert it to machine code as an exercise
(REMEMBER the rules for register 7).

L B N R N R O O

~ 110

|

CHAPTER 21

TRANSFERING VARIABLES FROM MACHINE CODE TO
BASIC

Machine code routines are often used to speed up certain
operations which would take a long time in basic. When MC is
used in this way it is usually necessary to transfer some
results back to the basic program.

Such results can be placed into known memory locations and
then PEEKED by the basic program. A more elegant way of
returning results is for the MC program to place the result
directly into a basic variable. Source file 21.1 illustrates this
method of returning results.

The following two ROM ROUTINES are used:

Eval
USE = evaluate a basic expression
ADDRESS = 14ca hex
ENTRY = HL points to expression
EXIT = result type in Vtyp
result in Dac

Vtyp is the system variable which contains the type of result
returned by the expression evaluator:

Vtyp address = f793 hex

Vtyp contents = 2 for integer result.
= 3 for string result.
= 4 for single precision result.
= 8 for double precision result.

Dac is the decimal accumulator which contains the result
returned by the expression evaluator:

Dac address = f923 hex

Dac contents — integer result contained in Dac + 2 and
Dac + 3

111 =

1R Al 18 _ Al 18 _N ™

e

m re e rm rem rem rem rem re rmm rer rmn

"

IH) 2 3

L. m m

T

. B

. c—— — S— . p—

Ny N, W BRSNS, W SR

-

TR
g ‘Aii i

&l

Adte

Dac contents — with a string result the address of the 3
byte string descriptor is contained in

Dac + 2 and Dac + 3.
— single precision result is in Dac to Dac

+ 3.
— double precision result is in Dac to Dac
+ 7.
LR R R R R R R I R R R O O
Vget

USE = get address of variable
ADDRESS = 6066 hex
ENTRY = HL points to variable name
EXIT = DE points to variable address
CHANGES = B and C registers

NOTE that if the variable does not exist then Vget will create
it. Default precision will be used for the variable unless
precision is stated as part of the variable name (eg. A4:or Bl).
In source file 21.1 the variable used is AD and the variable is
forced to the correct precision by updating the variable
definition table.

SOURCE FILE 21.1

10 REM ! returning variables to basic

20 REM |
30 REM !
40 REM [.14ca’Eval’! expression evaluator
50 REM [.6066'Vget’! get address of variable
60 REM [.f793'Vtyp'! system variable value type
70 REM [.f923'Dac’! decimal accumulator
80 REM [.f7f6'Vdef’! variable definition table
90 REM |
100 REM !
110 REM [.d00OQ’! assembly start address
120 REM Id hl,Exp’! point HL to expression
130 REM call Eval’l evaluate it
140 REM Id a,(Vtyp)'! value type into A register
150 REM Id (Vdef),a’l force variable to valtype

— 112 =

SOURCE FILE 21.1 CONTINUED

160 REM Id b,.0’ld c,a’!
170 REM Id hl,Varn’!
180 REM push bc’!
190 REM call Vget'!
200 REM pop bc’!

210 REM Id hl,Dac’!
220 REM Id a,.2’cp c'!
230 REM jr nz,Stor’!
240 REM inc hl'inc hl’!

250 REM !
260 REM !
270 REM Stor’!

280 REM |

290 REM Idirl

300 REM ret'!

310 REM Exp’!

320 REM db .ff'db .m148'!
330 REM $("132435.8866")'!
340 REM db .0’

350 REM |

360 REM |

370 REM Varn'|

380 REM |

390 REM $AD:'|

400 REM |

410 REM |l

variable length into BC
point HL to variable name
save BC on the stack

get variable position
recover BC from the stack
point HL to Dac

is the value an integer?

no so goto Stor

yes so increase Dac pointer
by two

subroutine to move value to
variable

move it

return to basic

expression Exp

basic tokens for VAL
string for VAL to operate on
expression end marker

variable name label
variable name = AD

end of source file

EE R R R I R

~ 1134

e .i, I i -

HE: N i a

[
W

CHAPTER 22
SOME GRAPHICS ROUTINES

One of the questions | am asked most often is — HOW DO
YOU SCROLL THE GRAPHICS SCREEN?

There is obviously no quick and simple answer to this
question and so my usual reply is — WITH DIFFICULTY — and
then | go on to explain as follows:

1) Move the graphics name table from the video ram into
the normal ram.

2) Rotate the lines of the name table one byte to the right or
left.

3) Move the adjusted name table from the normal ram back
to its normal position in the video ram.

4) The procedure in basic is much too slow and so machine
code must be used in order to get a smooth scrolling
effect.

This procedure is illustrated in source file 22.1. Notice that the
file has a machine code source section and a pure basic
section. Assemble the file in the normal way and then type
RUN followed by ENTER — the basic section will first draw a
simple picture on the screen and then repeatedly call the mc
program to scroll the top two thirds of the screen.

Source file 22.1 uses direct screen access through the
input/output ports as follows:

OUTPUT PORT &H81 — used to set the VRAM address
pointer and for writing data to the
VDP registers.

OUTPUT PORT &H80 — used to send data to video ram
byte located at the VRAM
address pointer.

INPUT PORT &H84 — used to read data from video ram
byte located at the VRAM
address pointer.

NOTE that the VRAM address pointer auto increments after
onch read or write operation.

- 1145

SOURCE FILE 22.1

10 REM |
20 REM |
30 REM |
40 REM [.d000’!
50 REM Id a,.0"!
60 REM out (.81),a"!
70 REM [d a,.18'!
80 REM out (.81),a"!
90 REM Id hl,.d100"!
100 REM !
110 REM Ini’!
120 REM |
130 REM in a,(.84)’!
140 REM Id (h),a"!
150 REM inc hl’!
160 REM [d a,.d4’!
170 REM cp h'!
180 REM jr nz,Ini’!
190 REM !
200 REM Scrol’!
210 REM !
220 REM Id de,.d100’!
230 REM Id hl,.d101"!
240 REM Id bc,.001f'!
250 REM Loop’!
260 REM push bc’!
270 REM |d a,(de)’!
280 REM Idir’!
290 REM Id (de),a’!
300 REM inc de’!
310 REM inc hl’!
320 REM pop bc’!
330 REM Id a,.d4’!
340 REM cp h'!
350 REM jr nz, Loop’!
360 REM |
370 REM Send’!
380 REM !
390 REM di’!
400 REM Id a,.0’!
410 REM out (.81),a’!
420 REM Id a,.18’!

screen 1 scroll demo

assembly start address
name table address lo byte
address to VDP

name table address hi byte
address to VDP

point HL to picture buffer

subroutine to fetch name table

byte in

load into buffer

increment buffer counter
buffer end + 1

is the end reached?

no so goto Ini for next byte

subroutine to Scroll the name table

buffer start

buffer start + 1

line length — 1

Loop label

save BC on stack

first byte in line into A register
move whole line one to the left
first byte into last position
start of next line

line start + 1

recover line count 3
end check

is it the end?

no so do it again

subroutine to send to the VDP

yes so prepare to send table to VDP
name table address lo byte

write it to the VDP

name table address hi byte

— 116

SOURCE FILE 22.1 CONTINUED

430 REM or .40 set bit 6 to indicate VDP write
440 REM out (.81),a’! write it to the VDP

450 REM Id hl,.d100’! buffer start address into HL
460 REM Outi’! Outi label

470 REM Id a,(hl)’! byte into A register

480 REM out (.80),a’! send it to VDP name table
490 REM inc hl'! increment buffer pointer

500 REM Id a,.d3’! end check — bottom third not sent
510 REM cp h'! is it the end?

520 REM jr nz,Outi’! no so go send next byte

530 REM ei’! yes so enable interrupts

540 REM ret’! return to basic

550 REM]! end of source file

560 REM !

570 REM !

580 REM !

590 REM basic support routine

600 REM !

610 REM !

620 REM !

630 COLOR15,8,8

640 SCREEN1

650 PSET(0,80),1

660 DRAW”e90f45e29f80e30"
670 PAINT(4,80),1

680 LINE(10,140)—(150,190),11,BF
690 LOCATE25,160

700 COLOR4

710 PRINT”SCREEN SCROLL DEMO”
720 DEFUSR2 =&HDO000

730 DEFUSR3=&HDO014

740 Y =USR2(0)

750 Y = USR3(0)

760 GOTO750

EIE R I R R R R R O

The final source file in this book is a machine code version of
the sprite detection routine which was presented in basic
earlier.

- Em . '!!l;i-i! - !-'@ﬁ Lﬁ -, .

— 1100

£}
1

The routine is self explanatory if read in conjunction with the
earlier basic version — the sprite which caused the interrupt is
returned in the basic variable A.

Source file 22.2 is executed in the same way as file 22.1.

SOURCE FILE 22.2

10 REM ! sprite collision routine
20 REM |
30 REM |
40 REM |
50 REM [.dO0O0! assembly start address
60 REM Id b,.m33’! sprite count into register B
70 REM Next'! next routine label
80 REM dec b’! count = count — 1
90 REM Id a,.0"! zero into register A
100 REM cp b’! is count zero?
110 REM ret 2’| yes so return to basic
120 REM Id ¢,b’! No sO copy count into register C
130 REM sla ¢! multiply register C by 2
140 REM sla c'! multiply by 2 again
150 REM Id a,c’! C into A (sprite y position lo byte)
160 REM out (.81),a’! lo byte to video chip
170 REM Id a,.1b’! sprite y position hi byte
180 REM out (.81),a’! hi byte to video chip
190 REM in a,(.84)’! read in sprite y position
200 REM cp .m209’! is it on screen?
210 REM jr nz, Test’! yes so goto Test
220 REM jr Next'! no so check Next sprite
230 REM !
240 REM Test’! Test routine address label
250 REM |
260 REM push af’! save sprite y position
270 REM Id a,c! y position address lo byte
280 REM out (.81),a’! lo byte to video chip
290 REM Id a,.1b’! hi byte into A
300 REM or .40’! set bit 6 to indicate write
310 REM out (.81),a’! hi byte to video chip
320 REM Id a,.m209’! “sprite off screen” into A
330 REM out (.80),a’! write it to video chip
340 REM halt’! force update of Vstat
350 REM Id a,(.fe3d)’! Vstat into A

360 REM and .n00100000"! mask unwanted bits

— 117 —

IR Bl 1R ol - a2l

'S _ &l

a N LS NN NEN AN BN NDN NN S e

SOURCE FILE 22.2 CONTINUED

370 REM jr z,Found’!
380 REM Id a,c’!
390 REM out (.81),a’!
400 REM Id a,.1b’!
410 REM or .40

420 REM out (.81),a
430 REM pop af
440 REM out (.80),a
450 REM jr Next’!
460 REM !

470 REM Found’!
480 REM !

490 REM pop af’!
500 REM Id hl,Varn’!
510 REM push bc’!
520 REM call .6066'!
530 REM pop bc'!
540 REM ex de,hl’!
550 REM Id (hl),b’!
560 REM inc hl’!
570 REM Id (hl),.0"!
580 REM ret’!

590 REMVam'sA’db.0’]

600 REM
610 REM

goto Found if sprite not active
still active so restore
sprite y position into
sprite attribute table

go check next sprite
Found routine address label

clear AF off the stack
point HL to variable name
save sprite number (B)
get location of variable
recover sprite number
point HL at variable position
variable lo byte

increment pointer
variable hi byte

return to basic

Variable name

620 REM basic support program

630 REM

640 REM

650 DEFINTA—-Z
660 SCREEN1

670 DEFUSR2 = &HDO000

680 ONSPRITEGOSUBS820

690 FORX=0TO7

700 A$ =A%+ CHR$(255)

710 NEXT
720 SPRITES(0)=A$
730 FORP=1TO15

740 PUTSPRITEP,(50+P*10,P*10),P,0

750 NEXT

760 PD =(INT((RND(—-TIME)*180)/10))*10

770 SPRITEON

780 FORZ = —20T0O255

LT

T BN B BN BB BN EBE BB BB BB BB me =

SOURCE FILE 22.2 CONTINUED

790 PUTSPRITEO,(Z,PD),3,0
800 NEXT

810 GOTO760

820 SPRITEOFF

830 Z=USR2(0)

840 PRINTA

850 RETURN760

LR b R R I R

This book was designed to provide the reader with an
introduction to machine code on the SPECTRAVIDEQO —
interested readers can now build on this grounding using one
of the many good Z80 books which are available in your local
book store.

— 119 —

m

(L AD L A A A)

A

m m s (A (E (e (W E (W)W W) (W)

[®

(m

L)

. S

Ay N N N .

il = =N

APPENDIX 1

Z80 MACHINE CODE MNEMONICS

In the next few pages you will find a full list of the Z80
mnemonics which you will use in machine code source files.
In the list the following shorthand is used:

1)

2)

3)

4)

5)

6)

DIS means an 8 bit displacement which can range from
127 to minus 128.

NN means an 8 bit number which can range from 0 to
255,

HHLL means a 16 bit number which can range from 0O to
65536 — LL HH is the same number with the high and
low bytes reversed.

ADDR means a memory address or label — DR AD is the
address with the high and low bytes reversed as required
by the Z80.

PORT means an input or output port with a number in the
range O to 255.

All mnemonic instructions and register names are in
lower case as required by the assembler. The object
code is given in upper case hex numbers.

REMEMBER that you type the source code into a source file
and the assembler creates the object code.

LR IR R R R O I IR R O R O I

Add with carry (8 bit)

The content of the carry flag (1 or 0) is added to the value in
the “a” register and then the second named value (stated
value or register contents or memory location contents) is
added to the result. The final result is placed into the “a”
register.

SOURCE CODE

OBJECT CODE

adc a,(hl) 8E
adc a,(ix+DIS) DD 8E DIS
adc a,(iy + DIS) FD 8E DIS
adc a,a 8F
adc a,b 88
adc a,c 89

— 120 —

m——

SOURCE CODE OBJECT CODE
adc a,d 8A

adc a,NN CE NN

adc a,e 8B

adc a,h 8C

adc a,l 8D

LR L B B N B L N B R B B B B I

Add with carry (16 bit)

The content of the carry flag (1 or 0) is added to the contents
of the “hl” register and then the second named value (register
pair contents) is added to the result. The final result is placed
into the “hl” register.

SOURCE CODE OBJECT CODE
adc hl,bc ED 4A
adc hl,de ED 5A
adc hl,hl ED 6A
adc hl,sp ED 7A

Add instructions (8 bit)

The second named value (stated value or register contents or
memory location contents) is added to the value in the “a”

1

register and the result is placed into the “a” register.

SOURCE CODE OBJECT CODE
add a,(hl) 86
add a,(ix + DIS) DD 86 DIS
add a,(iy + DIS) FD 86 DIS
add a,a 87
add a,b 80
add a,c 81
add a,d 82
add a,NN C6 NN
add a,e 83
add a,h 84
add a,l 85

— 121 —

e

MY e (e

re e ram ranm res re res rem res rm

rm" s rad

. i

Add instruction (16 bit)

The contents of the second named register pair are added to
the contents of the first named register pair. The result is
placed into the first named register pair.

= -

l
I
|E SOURCE CODE OBJECT CODE
: add hl,bc 09
! add hl,de 19
: add hl,hl 29
i ' add hl,sp 39
r! add ix,bc DD 09
P add ix,de DD 19
: l! add ix,ix DD 29
add ix,sp DD 39
. add iy,bc FD 09
- add iy,de FD 19
add iy,iy FD 29
- add iy,sp FD 39

R R R R R R R R I I O

Logical “and” instructions

A logical “and” operation is performed between the named
value (specified value, register contents or memory location
contents) and the contents of the “a” register. The result is

=
= , ‘
L placed into the “a” register.
=
C

SOURCE CODE OBJECT CODE
and (hl) AB
and (ix + DIS) DD A6 DIS
and (iy + DIS) FD A6 DIS
and a A7
and b A0
and c A1

I and d A2

- W and NN E6 NN

— I; and e A3

- and h A4

: l! and | AbB

L‘V i EIE IR 2 2 I 2 2 O I Ik 2R O O 2

- li

. — 122 —

Logical “and” is a bit by bit comparison between two 8 bit
numbers. If a particular bit is 1 in both numbers then the
corresponding bit in the result will also be one otherwise the
result bit will be zero.

These instructions are useful for extracting selected parts of
numbers — eg. 01010101 and 00001111 = 00000101 — the
lower 4 bits of the first number are extracted by masking off
the upper 4 bits.

LR R R R R O R O

Bit testing instructions

These instructions test the condition of a specified bit in a
specified memory location or register. The zero flag is set
according to the result of the test and so a zero conditional
instruction usually follows the bit test instruction.

SOURCE CODE OBJECT CODE
bit .0,(hl) CB 46

bit .0,(ix + DIS) DD CB NN 46
bit .0,(iy + DIS) FD CB NN 46
bit .0,a CB 47

bit .0,b CB 40

bit .0,¢c CB 41

bit .0,d CB 42

bit .0,e CB 43

bit .0,h CB 44

bit .0l CB 45

bit .1,(hl) CB 4E

bit .1,(ix + DIS) DD CB NN 4E
bit .1,(iy + DIS) FD CB NN 4E
bit .1,a CB 4F
bit.1,b CB 48

bit .1,c CB 49

bit .1,d CB 4A
bit.1,e CB 4B

bit .1,h CB 4C

bit .1, CB 4D

- 128 =

e MM ™M M M () (e W W W

L.

e

i
| 3

8 R

W ER S =,

o T L T TN)

SOURCE CODE

bit .
bit .
bit .
bit
bit
bit
bit
bit
bit
bit

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit .

2,(hl)
2,(ix+DIS)
2,(iy + DIS)

.2,a
.2,b
.2,c
.2,d
.2,e
.2,h
2,1

.3,(hl)
.3,(ix+ DIS)
.3,(iy + DIS)
.3,a

.3,b

3.6

.3,d

.3,e

.3,h

3,1

4,(hl)

.4,(ix + DIS)
4,(iy + DIS)
4,a

4.,b

4,c

.4,d

4.e

.4,h

4,1

.5,(hl)
.5,(ix + DIS)
.5,(iy + DIS)
.B,a

.5,b

5,c

.5,d

.5,e

H.h

5,1

s [=

OBJECT CODE
CB 56

DD CB NN 56
FD CB NN 56
CB 57

CB 50

CB 51

CB b2

CB 53

CB 54

CB 55

CB 5E
DD CB NN 5E
FD CB NN 5E
CB 5F
CB 58
CB 59
CB bA
CB 5B
CB 5C
CB 5D

CB 66
DD CB NN 66
FD CB NN 66
CB 67
CB 60
CB 61
CB 62
CB 63
CB 64
CB 65

CB 6E
DD CB NN 6E
FD CB NN 6E
CB 6F
CB 68
CB 69
CB 6A
CB 6B
CB6C
CB 6D

SOURCE CODE OBJECT CODE
bit .6,(hl) CB 76

bit .6,(ix + DIS) DD CB NN 76
bit .6,(iy + DIS) FD CB NN 76
bit .6,a cB 77

bit .6,b cB 70

bit .6,c CcB 71

bit .6,d cB 72

bit .6,e cB 73

bit .6,h CB 74

bit .6,I CB 75

bit .7,(hl) CB 7E

bit .7,(ix + DIS) DD CB NN 7E
bit .7,(iy + DIS) FD CB NN 7E
bit.7,a CB 7F

bit .7,b cB 78

bit.7,c CB 79

bit .7,d CB 7A

bit .7,e CB 7B

bit .7,h cB 7C

bit .7, cB 7D

I E R E R E R R

Call instructions

Call instructions work like a basic GOSUB — a return address
is automatically pushed onto the stack and the program
counter is set to the call address. At the end of the called
subroutine a return instruction pops the return address off the
stack and into the program counter.

SOURCE CODE OBJECT CODE

call ADDR CD DR AD — unconditional

call c,ADDR DC DR AD — if carry flag set

call m,ADDR FC DR AD — if sign flag is set

call nc,ADDR D4 DR AD — if carry flag is reset
call nz, ADDR C4 DR AD — if zero flag is reset
call p,ADDR F4 DR AD — if sign flag is reset
call pe,ADDR EC DR AD — if parity flag is set
call po,ADDR E4 DR AD — if parity flag is reset
call z, ADDR CC DR AD — if the zero flag is set

FEEEEEEEE EE B E B E I I

— 125 —

P Ry > P |

g

. e i

Rl
-

) S, ..

=Y

M___._—.——w
m m i
.
.

Compare instructions

A value or the contents of the specified register or memory
location are compared to the contents of the “a” register and
the CPU flags are set as if a subtraction from the “a” register
had occurred. Testing the flags after a compare instruction
provides information concerning the compared value.

SOURCE CODE OBJECT CODE
cp (h) BE

cp (ix + DIS) DD BE DIS
cp (iy + DIS) FD BE DIS
cp a BF

cp b B8

cpc B9

cpd BA

cp NN FE NN

cp e BB

cp h BC

cp | BD

R U I R R O I

Special block search instructions

The “hl” register pair is set up to point to the first byte in the
search area. The register pair “bc” contains the number of
bytes in the search area. The “a” register contains the value
which is to be found in the search area. The contents of the
byte (pointed to by hl) is compared to the contents of the “a”
register and the cpu flags are set accordingly. The “bc”
register decrements and the “hl” register increments or
decrements according to which instruction is used. With the
repeat instructions the operations will repeat until the “bc”
register contains zero or until an exact match is found
between the byte indicated by “hl” and the contents of the “a”
register.

SOURCE CODE OBJECT CODE

cpd ED A9 — decrement hl and bc
cpdr ED B9 — decrement hl and bc then repeat
cpi ED A1 — increment hl and decrement bc
cpir ED B1 — as “cpi” but with repeat

— 126 —

E———

The decrement instructions

The contents of a memory byte, 8 bit register, or 16 bit
register are decreased by one.

SOURCE CODE OBJECT CODE
dec (hl) 35

dec (ix+ DIS) DD 35 DIS
dec (iy + DIS) FD 35 DIS
dec a 3D

dec b 05

dec bc 0B

dec c oD

dec d 15

dec de 1B

dec e 1D

dec h 25

dec hl 2B

dec ix DD 2B
dec iy FD 2B
dec | 2D

dec sp 3B

IR 2 2k 3k 20 3E IR R 2E O 2R 2R R b I I 2

The exchange instructions

Exchanges the contents of the indicated registers with the
contents of the stack at the current stack pointer position. An
instruction is also provided to exchange the contents of the
“de” and “hl” registers.

SOURCE CODE OBJECT CODE
ex (sp),hl E3

ex (sp),ix DD E3

ex (sp),iy FD E3

ex de,hl EB

PR R R R R O

Register bank exchanges

Two instructions are provided — one to exchange the “af”
register banks and the other to exchange the “hl”, “bc”, and
“de” banks.

SOURCE CODE OBJECT CODE

ex af,af” 08 — exchange af

exx D9 — exchange all but af

EE IR 2R R R R I R

— T =

e

Input instructions

Input an 8 bit value through the specified input port-into the
specified register. Most of the instructions require that the
input port number is in the “c” register.

SOURCE CODE OBJECT CODE
‘ in a,(c) ED 78
.! in a,(PORT) DB PORT
| in b,(c) ED 40
. l in ¢,(c) ED 48
| in d,(c) ED 50
| &'! ine,(c) ED 58
) in h,(c) ED 60
I in 1,(c) ED 68

LR R R R R I I R

Block input

Values are input through the port specified in register “c” and
placed into the memory byte pointed to by “hl”. Register “b"” is
used as a counter and the value in “b” is decremented. The
register pair “hl” is incremented or decremented depending
on which instruction is used. With the repeat instructions the
sequence of repeats will terminate when register “b” contains

zero.
SOURCE CODE OBJECT CODE

ind ED AA — decrement hl

indr ED BA — decrement hl and repeat
ini ED A2 — increment hl

inir ED B2 — increment hl and repeat

LR R I R I I I I I R R IR R O

Increment instructions

The contents of the specified register or memory byte are
increased by one.

SOURCE CODE OBJECT CODE

= = S N G e

inc (hl) 34

inc (ix + DIS) DD 34 DIS

inc (iy + DIS) FD 34 DIS
i inc a 3C
I inc b 04
o inc bc 03
inc ¢ oC

— 128 —

] l inc d 14
-y

B B B B OB e B = ==

SOURCE CODE

inc de
inc e
inc h
inc hl
inc ix
inc iy
inc |
inc sp

OBJECT CODE
13

1C

24

23

DD 23

FD 23

2C

33

L O L A O B O B

Some unclassified instructions

SOURCE CODE

cof
scf
cpl
daa
di

ei
halt

im .0
im .1
im .2
neg
nop

OBJECT CODE ACTION

3F flip the carry flag
37 set carry flag to 1
2F flip the bits in “a”
27 decimal adjust “a”
F3 disable interrupts
FB enable interrupts
76 stop operation until
interrupt
ED 46 interrupt mode 0
ED 56 interrupt mode 1
ED 5E interrupt mode 2
ED 44 flip “a” then add 1
00 no operation

LR R IR O IR R I I R I I I I B A

Jump instructions

The program counter is set to the specified jump address if

the flag condition (if any) is fulfilled.

SOURCE CODE

jp (h)

jp (ix)

jp (iy)

jp ADDR

jp c,ADDR
jp m,ADDR
jp nc,ADDR
jp nz, ADDR
jp p,ADDR
jp pe,ADDR
jp po,ADDR
ip z, ADDR

OBJECT CODE

EQ — unconditional

DD E9 — unconditional

FD E9 — unconditional

C3 DR AD — unconditional

DA DR AD — if carry flag is set
FA DR AD — if sign flag set

D2 DR AD — if carry flag is reset
C2 DR AD — if zero flag is reset
F2 DR AD — if sign flag is reset
EA DR AD — if parity flag is set
E2 DR AD — if parity flag is reset
CA DR AD — f zero flag is set

— 129 —

Sy

-~

NOTE that the parity flag checks the number of bits in “a”
which are set to 1.

Parity odd (po) = odd number of bits.
Parity even (pe) = even number of bits.

Parity checks are often used to detect errors in data transfer
operations.
LR I I O I I R R O O O

Jump relative instructions

The displacement is added to the address in the program
counter and the program counter is set to the new address.if
the flag conditions (if any) are fulfilled.

SOURCE CODE OBJECT CODE

jr c,DIS 38 DIS — if carry flag is set
jr DIS 18 DIS — unconditional

jr nc,DIS 30 DIS — if carry flag is reset
jr nz,DIS 20 DIS — if zero flag is reset
jrz,DIS 28 DIS — if zero flag is set

NOTE that the SUPER ASSEMBLER accepts values or labels
as displacements and addresses.

LR IR 2R Ik R I 2 2R R R O R

Instructions to load data into memory bytes

8 bit data is loaded from a register into the specified address.
With 16 bit data the low byte is loaded into the specified
address and the high byte is loaded into the address plus 1.
Addressing is by direct (numeric address or label) or indirect
by using a register pair as a pointer.

SOURCE CODE OBJECT CODE

Id (ADDR),a 32 DR AD — 8 bit direct

Id (ADDR),bc ED 43 DR AD — 16 bit direct
Id (ADDR),de ED 53 DR AD — 16 bit direct
Id (ADDR),hl ED 63 DR AD — 16 bit direct
Id (ADDR),hl 22 DR AD — 16 bit direct
Id (ADDR),ix DD 22 DR AD — 16 bit direct
Id (ADDR),iy FD 22 DR AD — 16 bit direct
Id (ADDR),sp ED 73 DR AD — 16 bit direct

130

The remaining instructions in this section are all 8 bit loads
with indirect addressing.

SOURCE CODE
Id (bc),a

Id (de),a

Id (h),a

Id (hD),b

Id (hl),c

Id (hi),d

Id (hl),NN

Id (hi),e

Id (hl),h

Id (hi),

Id (ix + DIS),a
Id (ix + DIS),b
Id (ix + DIS),c
Id (ix + DIS),d
Id (ix + DIS),NN
Id (ix + DIS),e
Id (ix + DIS),h
Id (ix + DIS),|

Id (iy + DIS),a
Id (iy + DIS),b
Id (iy + DIS),c
Id (iy + DIS),d
Id (iy + DIS),NN
Id (iy + DIS),e
Id (iy + DIS),h
Id (iy + DIS),|

OBJECT CODE
02

12

77

70

71

72

36 NN

73

74

75

DD 77 DIS
DD 70 DIS
DD 71 DIS
DD 72 DIS
DD 36 DIS NN
DD 73 DIS
DD 74 DIS
DD 75 DIS
FD 77 DIS

FD 70 DIS

FD 71 DIS

FD 72 DIS

FD 36 DIS NN
FD 73 DIS

FD 74 DIS

FD 75 DIS

LR IR R I I B I I I AR O O I

Register load instructions

Data is loaded from the source (value, memory byte, or
register) into the specified register or register pair.

SOURCE CODE
Id a,(ADDR)

Id a,(bc)

Id a,(de)

Id a,(hl)

Id a,(ix + DIS)

Id a,(iy + DIS)

OBJECT CODE
3A DR AD

O0A

1A

7E

DD 7E SIA

FD 7E DIS

— 131 —

m M M M ™M

(2} 8. A

=

]

—

L B _

=, .y ., .,

2

SOURCE CODE
Id a,a
Id a,b
Id a,c
Id a,d
Id a,NN
Id a,e
Id a,h
Id a,l

Id a,i

Id a,r

Id b,(hl)

Id b,(ix + DIS)
Id b,(iy + DIS)
Id b,a

Id b,b

Id b,c

Id b,d

Id b,NN

Id b,e

Id b,h

Id b,

Id bc,(ADDR)
Id bc, HHLL
Id c,(hl)

Id c,(ix + DIS)
Id c,(iy + DIS)
Id c,a

Id c,b

Id c,c

Id c,d

Id ¢,NN

Id c,e

Id c,h

Id c,l

OBJECT CODE
7F

78

79

7A

3E NN
7B

7C

7D

ED 57
ED 5F

46

DD 46 DIS
FD 46 DIS
47

40

41

42

06 NN

43

44

45

ED 4B DR AD
01 LL HH
4E

DD 4E DIS
FD 4E DIS
4F

48

49

4A

OE NN

4B

4c

4D

— 132 —

— interrupt vector
— refresh register

- - - - — -_..._.—-‘-\mv.n-,._, H,(-1
v

SOURCE CODE
Id d,(hl)

Id d,(ix + DIS)
Id d,(iy + DIS)
Id d,a

Idd,b

Id d,c

Id d,d

Id d,NN

Id d,e

Id d,h

Id d,l

Id de,(ADDR)
Id de,HHLL
Id e,(hl)

Id e,(ix + DIS)
Id e,(iy + DIS)
Id e,a

Ide,b

Id e,c

id e,d

Id e,NN

Id e,e

Id e,h

Id e,l

Id h,(hl)

Id h,(ix + DIS)
Id h,(iy + DIS)
Id h,a

Id h,b

Id h,c

Id h,d

Id h,NN

Id h,e

Id h,h

Id h,l

Id hl,(ADDR)
Id hl,HHLL

Idi,a
Idr,a

OBJECT CODE
56

DD 56 DIS
FD 56 DIS
57

50

51

52

16 NN

53

54

55

ED 5B DR AD
11 LL HH
5] =

DD 5E DIS
FD 5E DIS
5F

58

59

5A

1E NN

5B

5C

5D

66

DD 66 DIS
FD 66 DIS
67

60

61

62

26 NN

63

64

65

"ED 6B DRAD

2A DR AD
21 LL HH

ED 47
ED 4F

— 133 —

— interrupt vector
— refresh register

R A G A AL AN A L A - A

||

m

(=

&

(L (R L) L e

SOURCE CODE
Id ix,(ADDR)
Id ix,HHLL

Id iy,(ADDR)
Id iy, HHLL

Id 1,(hl)

Id I,(ix + DIS)
Id I, (iy + DIS)
Id l,a

Id b

Id Il,c

Id Il,d

Id ILNN

Id l,e

Id I,h

Id 1,1

Id sp,(ADDR)
Id sp,HHLL
Id sp,hl

Id sp,ix

Id sp,iy

OBJECT CODE
DD 2A DR AD
DD 21 LL HH

FD 2A DR AD
FD 21 LL HH

6E

DD 6E DIS
FD 6E DIS
6F

68

69

B6A

2E NN

6B

6C

6D

ED 7B DR AD
32 LL HH

F9

DD F9

FD F9

Block move instructions

PR R I I I

The “hI” register pair points to the start address of the block of
data to be moved. The register pair “de” points to the first
byte of the destination memory area. The register pair “bc”
contains the number of bytes to be moved.

The byte counter (bc) is decremented each time a byte is
copied from the source byte (pointed by “hl”) to the
destination byte (pointed by “de”). Pointers “hl” and “de” are
incremented or decremented according to which instruction

is used.

If the repeat instruction is used then the operation will
continue repeating until the byte count is zero.

SOURCE CODE
Idd

Iddr

Idi

Idir

OBJECT CODE
ED A8
ED B8
ED AO
ED BO

= 134 —

— hl and de decrement
— as Idd with repeat
— hl and de increment
— as Idi with repeat

Logical “or” instructions

These instructions perform a logical “or” operation between
the stated data (value, register, or memory byte contents) and
the “a” register. The result is placed into the “a” register.

The “or” instruction performs a bitwise comparison between
two 8 bit numbers — the corresponding bit in the result
number is set as follows:

1) both compared bits = 0O then result bit = 0.

2) any other condition then result bit = 1.

SOURCE CODE OBJECT CODE

or (hl) B6

or (ix+ DIS) DD B6 DIS
or (iy + DIS) FD B6 DIS
ora B7

orb BO

orc B1

ord B2

or NN F6 NN
ore B3

or h B4

or | B5

LR A I I I R R R O O

Logical “xor” instructions

These instructions work in the same way as the “or”
instructions but the results are as follows:

1) both compared bits the same then result bit = 0.
2) compared bits different then result bit = 1.

SOURCE CODE OBJECT CODE

xor (hl) AE

xor (ix + DIS) DD AE DIS
xor (iy + DIS) FD AE DIS
Xor a AF

xor b A8

Xor c A9

xor d AA

xor NN EE NN

Xor e AB

xor h AC

xor | AD

— 135 —

e rm rEl e

e

s a2l

IIg
I Output instructions

[
I 4 The "out” instructions transfer data through a specified
,l’ output port. The output port number is usually specified in
I register “c” and the data is contained in the specified register.
|
Il SOURCE CODE OBJECT CODE
il out (c),a ED 79
| out (c),b ED 41
T out (c),c ED 49
| l" out (c),d ED 51
o out (c),e ED 59
out (c),h ED 61
_ l! out (c),! ED 69
~ out (PORT),a D3 PORT
: 1! il*l***i{*********l*
I

= Block output instructions

L

The required output port number is placed into register “c”.
The start address of the block of memory to be output is
placed into the “hl” register pair. The “b” register is used as a
counter which decrements as each byte is output. The auto
repeat instructions will terminate when the “b” register
counts down to zero.

o o g
N -
- ™~y

|
L !

SOURCE CODE OBJECT CODE

outd ED AB — hl pointer decrements

otdr ED BB — as outd with repeat
1 outi ED A3 — hl pointer increments

otir ED B3 — as outi with repeat

el

LI R R R R U R R IR g ey

Stack operations (push)

R
-

b The 16 bit contents of a register pair is pushed onto the stack
and the stack pointer is decremented by two. The low byte of
the 16 bit number is pushed into the address stack pointer
minus 2 and the high byte goes into the address stack pointer
minus 1. NOTE that registers “a” and “f’ act like a standard
register pair for stack operations.

I | =
— =

ik

— 136 —

L

-
=

SOURCE CODE

OBJECT CODE

push af F5
push bc Cb5
push de D5
push hl E5
push ix DD E5
push iy FD E5

EIE IR TR R O I R I L B O

Stack operations (pop)

A 16 bit value is popped off the stack into the specified
register pair and the stack pointer is incremented by two.
Values need not be popped into the registers from which they
were originally pushed and so push and pop are often used
simply to tranfer data from one register to another.

SOURCE CODE OBJECT CODE

pop af F1
pop bc C1
pop de D1
pop hi E
pop ix DD E1
pop iy FD E1

PR R I A O N O R R A

The bit reset instructions

The specified bit in the specified register or memory location
is reset to zero.

SOURCE CODE OBJECT CODE
res .0,(hl) CB 86

res .0,(ix + DIS) DD CB DIS 86
res .0, (iy + DIS) FD CB DIS 86

res .0,a CB 87
res .0,b CB 80
res .0,c CB 81
res .0,d CB 82
res .0,e CB 83
res .0,h CB 84
res .0,l CB 85

— 137 —

iIn

T ™ ™M ™ Wm I 'fm m 'y x Im

= ™" o e

m =l M

=

N
l SOURCE CODE OBJECT CODE
| res .1,(hl) CB 8=
‘ res .1,(ix + DIS) DD CB DIS 8E
res .1,(iy + DIS) FD CB DIS 8E
res .1,a CB 8F
i res .1,b CB 88
res .1,c CB 89
! res .1,d CB 8A
res .1,e CB 8B
Ig res.1,h CB 8C
res .1, CB 8D
R
res .2,(hl) CB 96
l res .2,(ix + DIS) DD CB DIS 96
res .2,(iy + DIS) FD CB DIS 96
o res .2,a CB 97
res .2,b CB 90
! res .2,c CB 91
res .2,d CB 92
res .2,e CB 93
l! res .2,h CB 94
E res .2,l CB 95
' res .3,(hl) CB 9E
: res .3,(ix + DIS) DD CB DIS 9E
] res .3,(iy + DIS) FD CB DIS 9E
res .3,a CB 9F
res .3,b CB 98
‘ res .3,c CB 99
— res .3,d CB 9A
I res .3,e CB 9B
= res .3,h CBeoC
- res .3,l CB 9D
' res .4,(hl) CB A6
o res .4,(ix + DIS) DD CB DIS A6
I res .4,(iy + DIS) FD CB DIS A6
l res .4,a CB A7
r res .4,b CB AD
L res .4,c CB A1
7' res .4,d CB A2
- res .4,e CB A3
P res .4,h CB A4
; | res .4, CB A5
. | - — 138 —
g a2

e EOE E E s == ===

SOURCE CODE
.5,(hl)
.5,(ix + DIS)
5,(iy + DIS)
5,a

.5,b

5,6

.5,d

5,e

.5,h

.5,1

res
res
res
res
res
res
res
res
res
res

res
res
res
res
res
res
res
res
res
res

res
res
res
res
res
res
res
res
res
res

.6,(hD)
.B,(ix + DIS)
.6,(iy + DIS)
.6,a

.6,b

.B6,c

.6,d

.6,e

.6,h

.6,!

.7,(hl)
7.(ix+ DIS)
7,(iy + DIS)
.7,a

.7,b

R (o

.7,d

7.e

2N

.7,

OBJECT CODE
CB AE

DD CB DIS AE
FD CB DIS AE
CB AF

CB A8

CB A9

CB AA

CB AB

CB AC

CB AD

CB B6
DD CB DIS B6
FD CB DIS B6
CB B7
CB BO
CB B1
CB B2
CB B3
CB B4
CB B5

CB BE
DD CB DIS BE
FD CB DIS BE
CB BF
CB B8
CB B9
CB BA
CB BB
CB BC
CB BD

2 2k R R R R O I R

The bit set instructions

The specified bit in the specified register or memory location

is set to one.

— 189 —

T AN AT AT ol o § 1

= 3

IS TS s 2 B

I8 3

= S S A

L

M.

|

i

|EZY)

Y

| Bl I 721 i
LR T M

SOURCE CODE
set .0,(hl)

set .0,(ix + DIS)
set .0,(iy + DIS)
set .0,a

set .0,b

set .0,c

set .0,d

set .0,e

set .0,h

set .0,l

L(hi)
Jix + DIS)
iy + DIS)

set .1
set .1
set .1
set .1,
set .1,
set .1
set .1
set .1
set .1
set .1

’

a

b
Ko
,d
e

h
A

set .2,(hl)

set .2,(ix + DIS)
set .2,(iy + DIS)
set .2,a

set .2,b

set .2,c

set .2, d

set .2,e

set .2,h

set .2,l

set .3,(hl)

set .3,(ix + DIS)
set .3,(iy + DIS)
set .3,a

set .3,b

set .3,c

set .3,d

set .3,e

set .3,h

set .3,l

OBJECT CODE
CB C6

DD CB DIS C6
FD CB DIS C6
CB C7

CB CoO

CB C1

CBC2

CBC3

CB C4

CBC5

CB CE
DD CB DIS CE
FD CB DIS CE
CB CF
CBCs8
CB C9
CB CA
cBCB
CB CC
CB CD

CB D6
DD CB DIS D6
FD CB DIS D6
cB D7
CB DO
CB D1
CB D2
CB D3
CB D4
CB D5

CB DE
DD CB DIS DE
FD CB DIS DE
CB DF
CB D8
CB D9
CB DA
CB DB
CB DC
CB DD

— 140 —

- e . -—-—-

SOURCE CODE

set
set
set
set
set
set
set
set

set.

set

set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set

set
set
set
set
set
set
set
set
set
set

4,(hl)

4,(ix + DIS)
.4,(iy + DIS)
4,a

4.b

4,c

.4,d

4.e

4,h
4,1

.5,(hl)
.5,(ix+ DIS)
.5,(iy + DIS)
.b,a

BH,b

B e
.5,d
b,e
.5,h
Bl

.6,(hi)

.6,(ix + DIS)
.6,(iy + DIS)
.6,a

.6,b

.6,c

.6.d

.6,e

.6,h

.6,

.7,(h)

7 (ix+DIS)
7, (iy + DIS)
.7,a

.7,b

.7,C

.7.d

.7,e

.7.h

|

OBJECT CODE
CB E6

DD CB DIS E6
FD CB DIS E6
CB E7

CB EO

CB E1

CB E2

CB E3

CB E4

CB E5

CB EE
DD CB DIS EE
FD CB DIS EE
CB EF
CB E8
CB E9
CB EA
CB EB
CB EC
CB ED

CB F6
DD CB DIS F6
FD CB DIS F6
CB F7
CB FO
CB F1
CB F2
CB F3
CB F4
CB Fb5

CB FE
DD CB DIS FE
FD CB DIS FE
CB FF
CB F8
CB F9
CB FA
CB FB
CB FC
CB FD

— 141 —

wowm

w

. e (W W (H) TN W | !l‘ ll‘,

-] L Al T

The return instructions

I'he return address is popped off the stack into the program
counter and the operation continues from that address.
Conditional returns are subject to the condition being fulfilled.

SOURCE CODE OBJECT CODE
l ret C9 — unconditional
[ret c D8 — if carry flag is set
- retm F8 — if sign flag is set
]l! ret nc DO — if carry flag is reset
. ret nz CO — if zero flag is reset
: ! ret p FO — if sign flag is reset
l ret pe E8 — if parity flag is set
r ret po EO — if parity flag is reset
| ret z C8 — if zero flag is set
reti ED 4D — return from an
interrupt service
routine
retn ED 45 — return from a non

maskable interrupt
service routine

LR R IR I R R IR R I R R R R I I

Restart instructions

The Z80 restarts provide single byte instructions to jump to
certain frequently used ROM routines in page 0. The
application on the SPECTRAVIDEOQO is given for each restart.

SOURCE CODE OBJECT CODE

- N R, N N s, B8

rst .00 C7 — reboot computer
rst .08 CF — basic syntax check
rst .10 D7 — get next basic character
rst.18 DF — print character in “a”
= rst .20 E7 — compares “h” and “de”
' rst .28 EF — checks sign of a result
l rst .30 F7 — gets type of variable
. g rst .38 FF — interrupt routine
I — 142 —

,-,
Bl

T = B

i

The rotate instructions

Rotate left

The bits in the specified register or memory location are
moved one to the left. Bit 7 moves into the carry flag and the
previous contents of the carry flag move into bit O.

SOURCE CODE OBJECT CODE

rl (hl) CB 16

rl (ix + DIS) DD CB DIS 16
rl (iy + DIS) FD CB DIS 16
rl a cB17

rla 17

rl b CB 10

rl c CB 11

rld CB 12

rl e CB 13

rl h CcB 14

rl | CB 15

Rotate left with carry

The bits in the specified register or memory location are
moved one to the left. Bit 7 moves into the carry flag and is
copied into bit O.

SOURCE CODE OBJECT CODE

ric (hl) CB 06

rlc (ix + DIS) DD CB DIS 06
ric (iy + DIS) FD CB DIS 06
ric a CB 07

rlica 07

ric b CB 00

ric c CB 01

ric d CB 02

ric e CB 03

ric h CB 04

ric | CB 05

Rotate right

The bits in the specified register or memory location are
moved one to the right. Bit 0 moves into the carry flag and the
previous contents of the carry flag move into bit 7.

— 143 —

m m g e [H eI I

m m

=

"

§=8

M m

g

ds

1

™)

1

v
-

—
=

ok |

n
L
I

&

LS. (S 8

S P P pm P S Wt w6 temeow g

P [p————
iu}nl

|

i e

!
|
i

SOURCE CODE OBJECT CODE

rr (hl) CB1&

rr (ix + DIS) DD CB DIS 1E
r (iy + DIS) FD CB DIS 1E
ra CB 1F

rra 1F

mb CB 18

rrc CB 19

rrd CB 1A

mre | CB 1B

rrh CB 1C

rrl CB 1D

Rotate right with carry

The bits in the specified register or memory location are
moved one to the right. Bit 0 moves into the carry flag and is
copied into bit 7.

SOURCE CODE OBJECT CODE

rrc (hl) CB OE

rrc (ix + DIS) DD CB DIS OE
rrc (iy + DIS) FD CB DIS OE
rrc a CB OF

rrca OF

rrc b CB 08

rrc c CB 09

rrc d CB 0A

rrce CB 0B

rrc h CB 0C

rrc | CB 0D

LR R I I I R R

Two special rotate instructions

These instructions operate on the memory byte pointed to by
“hl” and the “a” register.

SOURCE CODE OBJECT CODE
rid ED 6F

The following operations take place:

1) The lower 4 bits in (hl) move into the Qpper 4 bits.

2) The upper 4 bits in (hl) move into the lower 4 bits of “a”
3) The lower 4 bits in “a” move into the lower 4 bits in (hl)

— 144 —

R B B B B I R

This instruction can be used to multiply the contents of a
memory byte by 16.

SOURCE CODE OBJECT CODE
rrd ED 67

The following operations take place:

1) The lower 4 bits in (hl) move into the lower 4 bits of “a”
2) The upper 4 bits in (hl) move into the lower 4 bits.

3) The lower 4 bits in “a” move into the upper 4 bits in (hl)

This instruction can be used to divide the contents of a
memory byte by 16.

E IR IR I 2 2R R R IR 2R Ik S I R

The shift instructions
Shift left arithmetic

The bits in a register or memory location are shifted one to the
left. Bit 7 moves into the carry flag and bit O is reset to zero.

SOURCE CODE OBJECT CODE

sla (hl) CB 26
sla (ix + DIS) DD CB DIS 26
sla (iy + DIS) FD CB DIS 26
sla a cB 27
sla b CB 20
sla c CB 21
sla d CcB 22
sla e CB 23
sla h CB 24
sla | CB 25

Shift right arithmetic

The bits in a register or memory location are shifted one to the
right. Bit O moves into the carry flag and bit 7 remains
unchanged.

SOURCE CODE OBJECT CODE

sra (hl) CB 2E
sra (ix + DIS) DD CB DIS 2E
sra (iy + DIS) FD CB DIS 2E
sra a CB 2F
sra b CB 28
sra c CB 29
sra d CB 2A
sra e CB 2B
sra h CB 2C
sra l CB 2D

— 145 =

w Im m

m W (W (W W W

LA

[y [

[A B0

™ ™

.

| =

™M ™

[®]

1

i

B B USE e =

T MW S A S e e W e 00 e W pw—

A .

el il T R

F U)

L

Shift right logical

The bits in a register or memory location are shifted one to the
right. Bit 0 moves into the carry flag and bit 7 is reset to zero.

SOURCE CODE OBJECT CODE

srl (hl) CB 3E
srl (ix + DIS) DD CB DIS 3E
srl (iy + DIS) FD CB DIS 3E
srl a CB 3F
srl b CB 38
srl c CB 39
srl d CB 3A
srl e CB 3B
srl h CB 3C
srl | CB 3D

LR R I O O R

Subtract instructions
Subtract without carry

The specified value (actual value, register, or memory location
contents) is subtracted from the contents of the “a” register
and the result is placed into the “a” register.

SOURCE CODE OBJECT CODE

sub (hl) 96

sub (ix + DIS) DD 96 DIS
sub (iy + DIS) FD 96 DIS
sub a 97

sub b 90

sub c 91

sub d 92

sub NN D6 NN
sub e 93

sub h 94

sub | 95

R I S R R O R R R R R

— 146 —

=

Subtract with carry

The contents of the carry flag plus the specified value (actual
value, register, or memory location contents) are subtracted
from the contents of the “a” register and the result is placed

into the “a” register.

SOURCE CODE
sbc (hl)

sbc (ix + DIS)
sbc (iy + DIS)
sbc a

sbc b

sbc c

sbc d

sbc NN

sbc e

sbc h

sbc |

OBJECT CODE
9E

DD 9E DIS
FD 9E DIS
9F

98

99

9A

DE NN

9B

oC

9D

PR E EEEUEE R R

— 147 —

womwom

LI

3 AN AL NG \

rar e

n

PR A A A o

rE

b L L]
=

' U .

i B=

sibbinibdoat it bl ol T

S WumE PY pwmses WY pRemg SY g

o) P Bemsey

piEm s

APPENDIX 2

SPECTRAVIDEO ROM ROUTINES

The addresses of most ROM routines can be calculated in the
following manner:

1)

2)

3)

4)

5)

6)

Take the basic token (from the token table to be found
earlier in the book).

If it is a single token calculate X = TOKEN — 129.

If it is a double token take the second half of the token
(not the 255) and calculate X = TOKEN — 41.

Now calculate A = 389 + (X * 2).

The address of the ROM routine for the command
described by the token is given by:

ADDRESS = PEEK(A) + 256 * PEEK(A+1)
This procedure works for all routines with double tokens

and for routines with single tokens which are less than
217.

Have fun finding the routines and figuring out how they work.

HINT — in general you point the HL register to the start of a
BASIC instruction (entered in a machine code string) and call
the routine. NOTE that the basic instruction must not contain
the BASIC word itself.

— NG ==

PORT No.
&H10
&gH11
&gH12

&H20
&H20
&H20
&§H21
&H21
&§H22
&§H23
&gH24
&§H25
&§H26

&§H28
&§H28
&§H28
&§H29
&H29
&H2A
&H2B
&H2C
&H2D
&§H2E

&H30
&H30
&H31
&§H32
&H33
&H34
&gH34
&H38

&H50
&H51
&§H58

APPENDIX 3

INPUT/OUTPUT PORT TABLE

1/0 DEVICE

O
0]
I

T T00T0000™

—T00T0000™

1/0
e)
/0

(ONONORENONO I

PRINTER
PRINTER
PRINTER

MODEM
MODEM
MODEM
MODEM
MODEM
MODEM
MODEM
MODEM
MODEM
MODEM

RS232
RS232
RS232
RS232
RS232
RS232
RS232
RS232
RS232
RS232

DISC
DISC
DISC
DISC
DIsSC
DISC
DISC
DISC

80 COL
80 COL
80 COL

DESCRIPTION

DATA WRITE PORT

DATA STROBE

STATUS (bit 0 = 1 if not ready)

RECEIVER BUFFER REGISTER
DIVISOR LATCH (LSB)
TRANSMITTER BUFFER REGISTER
DIVISOR LATCH (MSB)
INTERRUPT ENABLE REGISTER
INTERRUPT ID. REGISTER
LINE CONTROL REGISTER
MODEM CONTROL REGISTER
LINE STATUS REGISTER
MODEM STATUS REGISTER

RECEIVER BUFFER REGISTER
DIVISOR LATCH (LSB)
TRANSMITTER BUFFER REGISTER
DIVISOR LATCH (MSB)
INTERRUPT ENABLE REGISTER
INTERRUPT ID. REGISTER
LINE CONTROL REGISTER
MODEM CONTROL REGISTER
LINE STATUS REGISTER
MODEM STATUS REGISTER

STATUS REGISTER
COMMAND REGISTER
TRACK REGISTER

SECTOR REGISTER

DATA REGISTER

INTRQ AND DRQ PINS

DISC SELECT REGISTER
DENSITY SELECT REGISTER

REGISTER SELECT LATCH
WRITE TO REGISTER
CRT BANK CONTROL

— 149 —

(A0

.

™

™

l" (.8
i 13

et et

[—

PORT No.
&H80
&§H81
&§H84
&§HB85

&§H88
&§H8C
&§H90

&§H96
&§H97
&§Ho8
&H99

P e =

EEEEEprEE
=

=) =)

= e

i e

I/O DEVICE

O
O
|
I

~“0O0

~T0O0

VDP
VDP
VDP
VDP

PSG
PSG
PSG

PP
PPI
PPI
PPI

INPUT/OUTPUT PORT TABLE CONTINUED

DESCRIPTION

VDP WRITE MODE 0
VDP WRITE MODE 1
VDP READ MODE 0

VDP READ MODE 1

REGISTER SELECT LATCH
WRITE TO REGISTER
READ FROM REGISTER

WRITE PORT C
CONTROL WORD REGISTER
READ PORT A
READ PORT B

R I R I I

— 150 ==

- O O B O B O E OE O O == =)

APPENDIX 4

MORE ROM ROUTINES

In appendix 2 the formula for calculating the position of the
BASIC WORD MACRO ROUTINES was given — in this
appendix some of the more useful PRIMITIVE ROUTINES are

given.

ERAFNK
ADDRESS
ENTRY
EFFECT

DSPFNK
ADDRESS
ENTRY
EFFECT

RSTFNK
ADDRESS
ENTRY
EFFECT

MAPXYC
ADDRESS
ENTRY

EFFECT

SETC
ADDRESS
ENTRY

EFFECT

SETATR
ADDRESS
ENTRY
EFFECT

&§H3B86
NONE .
ERASES THE FUNCTION KEY DISPLAY

8H3B9F

NONE

DISPLAYS THE FUNCTION KEY
DEFINITIONS

&§H3498

NONE

RESTORES THE FUNCTION KEYS TO
DEFAULT STRINGS

&H48E9

X CO-ORDINATE IN BC REGISTER

Y CO—-ORDINATE IN DE REGISTER
POSITIONS THE GRAPHICS POINTER TO
(X,Y)

&§H4988

GRAPHICS POINTER LOCATED AT (X,Y)
REQUIRED COLOR IN ATRBYT (&HFA13)
SETS THE PIXEL (X,Y) TO COLOR IN
ATRBYT

&H4980
COLOR NUMBER IN THE A REGISTER
SET ATRBYT TO THE COLOR IN ‘A’

e BB

1M (W IE] NN

=g=r3

‘ I i] i: porvor | i i.-.vmlimw -

Ul i

-

MORE ROM ROUTINES CONTINUED

READC
ADDRESS
ENTRY
EFFECT

RIGHTC
ADDRESS
ENTRY
EFFECT

LEFTC
ADDRESS
ENTRY
EFFECT

UPC
ADDRESS
ENTRY
EFFECT

TUPC
ADDRESS
ENTRY
EFFECT

DOWNC
ADDRESS
ENTRY
EFFECT

TDOWNC
ADDRESS
ENTRY
EFFECT

CHGCLR
ADDRESS
ENTRY

EFFECT

&H4951
GRAPHICS POINTER AT (X,Y)
READ COLOR OF PIXEL (X,Y) INTO ‘A’

&§H49CF
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X +1,Y)

&H49F8
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X—1,Y)

&H4A59
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X,Y—1)

&H4A3F

GRAPHICS POINTER AT (X,Y)

SETS CARRY FLAG AND RETURNS IF TOP
OF SCREEN IS REACHED ELSE SAME AS
UPC

&§HA4A2D
GRAPHICS POINTER AT (X,Y)
GRAPHICS POINTER TO (X,Y +1)

&H4A14

GRAPHICS POINTER AT (X,Y)

SETS CARRY FLAG AND RETURNS IF
BOTTOM OF SCREEN IS REACHED ELSE
SAME AS DOWNC

&H3750

REQUIRED FOREGROUND COLOR IN &HFAOA
REQUIRED BACKGROUND COLOR IN &HFAOB
REQUIRED BORDER COLOR IN &HFAOC
CHANGES THE SCREEN COLORS

= 15 =

THE MAGIC OF SPECTRAVIDEO TAPE DIRECTORY

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

LIST 3.1
LIST 4.1
LIST 4.2
LIST 4.3
LIST 7.1
LIST 7.2
LIST 8.1
LIST 10.1
LIST 10.

LIST 1

2
1
2
3
4
1
1
1
LIST 14.2

1
1
1
1
LIST 12
3
4
a4

SOURCE FILE 18.1
SOURCE FILE 18.2
SOURCE FILE 18.3
SOURCE FILE 18.4
SOURCE FILE 18.5
SOURCE FILE 191
SOURCE FILE 19.2
SOURCE FILE 19.3
SOURCE FILE 20.1
SOURCE FILE 20.2

PROGRAM

LIST 20.3

SOURCE FILE 21.1
SOURCE FILE 22.1
SOURCE FILE 22.2
SOURCE FILE APP 6
SOURCE FILE APP 7

APPENDIX 5

SIDE ONE

SIDE TWO

SUPER ASSEMBLER 328
SUPER ASSEMBLER 328
SUPER ASSEMBLER 318
SUPER ASSEMBLER 318

= 153

CLOAD”PL31"
CLOAD”PL41"
CLOAD”PL42"
CLOAD”PL43"
CLOAD”PL71"
CLOAD”PL72"
CLOAD”PL81"
CLOAD”PL101"
CLOAD”PL102"
CLOAD”PL111"
CLOAD”PL112"
CLOAD”PL113"
CLOAD”PL114"
CLOAD”PL121"
CLOAD”PL131"
CLOAD”PL141"
CLOAD”PL142"
CLOAD”SF181"
CLOAD”SF182"
CLOAD”SF183"
CLOAD"SF184"
CLOAD”SF185”
CLOAD”SF191”
CLOAD"SF192”
CLOAD"”SF193”
CLOAD"”SF201”
CLOAD""SF202"
CLOAD”PL203"
CLOAD”SF211"”
CLOAD”SF221"
CLOAD”SF222"
CLOAD "“SFAP6&”
CLOAD "“SFAP7”

CLOAD""SA328"
CLOAD""SA328"
CLOAD""SA318"
CLOAD"SA318"

[§ o § AN &

I am

18__ 8}

S —

oS

APPENDIX 6
THE BASIC STATEMENT HANDLER

This ROM ROUTINE is used by every basic command and
function to interpret the basic token and call the required
execution routines. The statement handler is a very useful
routine for the machine code programmer because it gives
access to all basic routines in the ROM. The hl register pair is
pointed to the start of the statement, the “a” register is loaded
with the first character of the statement, and the routine is
called at address &HOESS.

To illustrate the use of the statement handler lets look at a
short program to print the address of the stack pointer onto
the screen. In basic the program looks like this:

10 PRINT HEXS$(PEEK(&HF7DD) + &H100 * PEEK(&HF7DE))

This routine in machine code uses the following source:

10 REM [.d00O0’! assembly start
20 REM Id hl,Stap’! Stap address into hl
30 REM Id a,(hl)’! first character into a
40 REM call .0e88’! statement handler
50 REM ret’! return
60 REM Stap
70 REM db .m145’! PRINT
80 REM db .m255'db .m155'! HEXS$
90 REM (' (

100 REM db .m255'db .m151’l PEEK

110 REM $(&HF7DD)’| (&HF7DD)

120 REM db .m243’! +

130 REM $&H100"! H100

140 REM db .m245’'| :

150 REM db .m255'db .m151'l PEEK

160 REM $(&HF7DE)).’ (&HF7DE))

170 REM |

Assemble the file in the normal way and call the routine with Z$ =
USR1(0). The current address of the stack pointer will be printed on
the screen in hex.

Note that any ASCII characters in the routine must be in upper
case. So the (&HF7DD) and other strings are all in upper case.

Using the statement handler can reduce the most complicated
routines to simple proportions. Remember that there is 32K of
powerful basic ROM in your SPECTRAVIDEO — using the built in
routines can save vast amounts of space in your machine code
programs.

— 154 —

APPENDIX 7
HOOK JUMPS

In the SVI computers there are many HOOK JUMPS provided
so that the programmer can “HOOK” or attach his own
machine code routine to a basic ROM routine. The hook
jumps are situated in the systems area of memory and each
hook consists of three bytes. Each of the bytes normally
contains the number 201 which is the MC code for return.

At the start of many ROM routines there is a call to a hook
which normally returns immediately. In order to use the hook
you must place a jump to your own routine in the hook — this
is illustrated by the following source file:

10 REM [.dOOQO’! start address

20 REM Id a,.c3’! code for jump

30 REM Id (.ff57),a’! put it in the hook

40 REM Id hl,Start’! address for jump

50 REM Id (.ff58),hl’! put it in the hook

60 REM ret’! return

70 REM Start

80 REM cp .m91’! check for bracket

90 REM ret nz’! no bracket so ret
100 REM inc sp’! remove rom return
110 REM inc sp’! address from stack

120 REM inc hl’! hl to next instruction

130 REM push hl’! save it

140 REM Id hl,Str'! point hl to Str

150 REM call .2c24’! play it

160 REM pop hl’! recover hl

170 REM ret’! back to basic

180 REM Str

190 REM $"t255cdef":’! music string

200 REM ! end of source

This little program initialises the hook jump HOOK GONE so
that the open square bracket character “[” becomes a
command to play a music string. Assemble the file in the
normal way then run it with z6 = USR1(0). Now whenever

you press [followed by ENTER the music string will play —
this can be used in command or in program mode.

HOOK GONE is a very useful hook which is visited by all basic
statements before syntax check. This means that you can
define your own basic words — as we did in the given source
file. To avoid problems please remmember the following rules
for HOOK GONE.

— 165 —

1) When the hook is called the “a” register contains the
token of the current basic word. The first instruction in
the Start routine is a check for our new word ie. “I”. If the
current word is not a “[” then the program returns to the
ROM — this is essential to maintain compatibility with all
existing basic words.

2) When the ROM calls the hook, the return address on the
stack is a return to the ROM. Normally when you hook in
your own routine you want to return to your basic
program, and not to the ROM, and so you must remove
the ROM return address from the stack. This is done by
incrementing the stack pointer twice thus leaving the
basic return address at the top of the stack.

»
— .

et 2 S e —

_. —

A U

s

3. The address in the hl register is a pointer to the current
position in the basic program — this address must be
preserved so that the return to basic is correct. In our
HOOK GONE routine the hl register is incremented so
that hl points to the next basic instruction and not to the
“[". After incrementing the hl register it is saved on the
stack.

4) Finally after execution of the “hooked” routine the hl
register is restored before returning to basic.

Hook Gone is so useful you may never need any more hooks
however for completeness a full list of hooks follows:

HOOKS USED BY THE DISC SYSTEM

HDGET EtHFE7F HINDS EHFES2

HFPOS EHFESB HLOC EtHFE9A
HBAKU EHFEID HPARD EtHFEA3
HNTFL EHFEAY HSAVE EtHFEBS
HFILE E&HFEBS HLOF &HFEBB
HMERG EtHFECY HEOF EtHFECA
HGETP EtHFEDF HSETF EtHFEES

HNULO E&HFEEB HFILO EHFF12

HERRP EHFF18 HBINS &HFF2D
HWIDT EtHFF3F HDMOT EHFF5A
HDSKO EHFF8A HSETS E&HFF8D
HNAME ErHFFI0 HKILL E&HFF93

HIPL EHFFI6 HCOPY EHFF99

HDSKF ErHFFOF HDSKI &HFFA2
HATTR E&HFFAB

— 156 —

_.__4.,4,.... II '.,,,.)

NON DISC HOOKS

HKEYI &HFE79Yy HPRTF &HFE7C
HSCNE &HFE85 HSNGF &HFESS
HREAD &HFESE HISRE &HFE91
HMAIN &HFE94 HRSLF &HFEQ97
HSTKE &HFEAO HFRET &HFEAB6
HNTFN E&HFEAC HCLEA &HFEAF
HSAVD &HFEB2 HNTPL &HFEBE
HNODE &HFEC1 HDOGR &HFEC4
HPTRG &HFECD HNOFO &HFEDO
HPRGE E&HFED3 HBUFL &HFED6
HCRDO &SHFED9 HOKNO &HFEDC
HLOPD SHFEE2 HDEVN &HFEES
HRETU &HFEEE HCLRC &HFEF1
HLIST &HFEF4 HRUNC EHFEF7
HEVAL E&HFEFA HISMI &HFEFD
HCOMP &HFFO00 HFRQI &HFFO3
HDIRD &HFFO06 HOUTD &HFFO9
HNOTR &HFFOC HGEND &HFFOF
| HISFL &HFF15 HERRF &HFF1B
y HTRMN &HFF1E HCRUS E&HFF21
| HCRUN &HFF24 HFINP E&HFF27
| HFRME &HFF2A HFINI &HFF30
HBINL &HFF33 HFINE &HFF36
HFING &HFF39 HINCH &HFF3C
| HPINL SHFF42 HQINL E&HFF45
HINLI E&HFF48 HDSKC &HFF4B
HERAF EHFF4E HDSPF EHFF51
HNEWS E&HFF54 HGONE &HFF57
HMDMD E&HFF5D HMDMC SHFFB0
HMDMW &HFF63 HMDMI E&HFF66
HMDME &HFF69 HMDMB &HFF6C
HDIAL E&HFFBF HRS21 &HFF72
HONGO &HFF75 HKYCL &HFF78
HKYEA &HFF7B HNMI EHFF7E
HKEYC EHFF81 HMON EHFF84
HBADC E&HFF87 HCMD EHFF9C
HMONE &HFFAS8 HINIP &HFFAB
HCHPU &HFFAE HTOTE &HFFB1 {
— 167 —

W AW e

™

E

| N

APPENDIX 8
READING INPUT DEVICES

The main input device is the keyboard and most of the keys
produce an ASCIl value which can be read in basic or in
machine code. Several of the keys produce no ASCI| values —
these keys can only be detected by a direct read of the
keyboard matrix. Use the following general code to detect a
keypress of these special keys:

1) PRINT KEY; Y =8 Z = 32
2) SELECT KEY: Y =8 Z =16
3) FUNCTION KEY 1: Y =7 Z =1
4) FUNCTION KEY 2: Y =7 Z=2
5) FUNCTION KEY 3: Y =7 Z =4
6) FUNCTION KEY 4: Y =7 Z =28
7) FUNCTION KEY 5&: Y =7 Z =16
8) CTRL KEY: Y =6 Z =2
9) SHIFT KEY: Y =6 Z =
10) LEFT GRAPH KEY: Y =6 Z =
11) RIGHT GRAPH KEY: Y =6 Z =

Note that shifted keys produce the same values as unshifted
ones — to detect between shifted and unshifted keys you
should first read the shift key and then read the other key.

RS)

10 OUT &H96,(Y OR 16)
20 IF(INP(&H99)AND Z) <> 0 THEN 10

This program will loop until the key (defined by Y and 2) is
pressed.

— 158 —

- 3

The full keyboard matrix is given below:

SPECTRAVIDEO KEYBOARD MATRIX

Y/Z1 128 | 64 | 32 | 16 8 4 2 1
0 7 6 5 4 \3 2 1 0
1 / = 9 8
2 g f e d c b a —
3 o n m | k j i h
4 w \ u t s r q o]
5 CUP | BS] \ [z y x
6 LFT | ENT | STP |ESC | RG LG |CTR | SFT
7 DWN | INS | CLS F5 F 4 F3 F2 F1
8 RGT PRT | SEL |CAP | DEL | TAB | SPC
9 7 6 5 B 3 2 1 0
10 / — + 9 8

NOTES

L L A B AT L S

|

1=

(8-}

a) The Y value is the row number and the Z value is the
column number.

b) The bottom two rows of the matrix refer to the keypad.

c) CUP, LFT, DWN and RGT refer to the cursor direction

=

P a3

S .- . .- .. E . ==

keys.

— 159 —

IBL

-

)

THE JOYSTICK

The joystick is another commonly used input device — the
joystick direction can be read through PORT A of the PSG.
Read the joystick direction as follows:

10 OUT&H88,&HOE
20 Z=INP (&H90)

Each BIT of the number Z is significant — interpret as follows:

BIT O — If bit 0 = O then joystick 1 is forward.
BIT 1 — If bit 1 = O then joystick 1 is backward.
BIT 2 — If bit 2 = 0 then joystick 1 is left.

BIT 3 — If bit 3 = 0 then joystick 1 is right.

BIT 4 — If bit4 = O then joystick 2 is forward.
BIT 5 — If bit5 = 0 then joystick 2 is backward.
BIT 6 — If bit 6 = O then joystick 2 is left.

BIT 7 — If bit 7 = O then joystick 2 is right.

When reading the joystick position note that a 1 in any bit
signifies no contact in the relevant direction. Note also that
two directions are possible at one time on the same stick — so
for example forward + left is equivalent to diagonally
upwards to the left.

To read the joystick triggers use input port &H98.
10 Z=INP (&H98)
Bits 4 and 5 of the number Z indicate the state of the triggers:

BIT 4 — If bit 4 = O then the trigger on joystick 1 has been
pressed.

BIT5 — If bith
pressed.

0 then the trigger on joystick 2 has been

— 160 —

THE MAGIC OF SPECTRAVIDEO
Send to:

INTERSOFT (PTY) LTD., P.O. Box 5078, Johannesburg, 2000.

..

..
..

INTERSOFT gives its assurance that all information will be
treated as strictly confidential (if applicable.)

e == = =

INTERSOFT’S SPECIAL OFFER TO
“THE MAGIC OF SPECTRAVIDEO” OWNERS

CODE MASTER written by B.L. BURKE

CODE MASTER creates a special environment for your
SVI 328 whereby a full DISASSEMBLER and the SUPER
ASSEMBLER are active simultaneously.

CODE MASTER is an extension of the SUPER ASSEMBLER

and enhances its use because it includes full disassembly, a

source file generator, a header reader and other advanced

features which are fully explained in the accompanying

manual and in this book. All this for R17.95 + G.S.T. = R20.10.
FREE! Postage and insurance within R.S.A.

Please send me CODE MASTER. Please debit my Visa
Card or Master Card No.

P 2No [[=1 L O N v g R
Cheque D

Postal Orders D

Send the above coupon to: INTERSOFT (PTY) LTD., P.O. Box
5078, Johannesburg, 2000 by registered post and allow 21
days for delivery.

THE MAGIC OF SPECTRAVIDEO
BY BERNARD L. BURKE

The Magic of Spectravideo is a book for the person
who knows some basic programming and isready to
advance both in basic and machine code.
The book is divided into two sections, the first of
“which contains useful information for the basic
programmer and is essential before entering the
second half of the book which deals with machine
code programming.
The main features of this book include details of:

* Video processor
* Sound generator
* Rom routines

- % Machine code

- % Super assembler

Note: All listings appearing in this book are on the
accompanying tape on side one and the super
assembler SV1 328/318 on side two.

Cover design: Susan Woolf

INTERSOFT

