Svi-728

PERSONAL COMPUTER
USER'S MANUAL

SPECTRAVIDEO'S
USER’'S MANUAL STATEMENT

This equipment generates and uses radio frequency energy and if not
installed and used properly, thatis, in strict accordance with the
manufacturer's instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with the
limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference in a residential
installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause interference
to radio or television reception, which can be determined by turning
equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:

@ Reorient the receiving antenna

B Relocate the computer with respect to the receiver

B Move the computer away from the receiver

B Plug the computer into a different outlet so that computer and receiver
are on different branch circuits

If necessary, the user should consult the dealer or an experienced

radio/ television technician for additional suggestions. The user may find
the following booklet prepared by the Federal Communications
Commission helpful:

“"How to Identify and Resolve Radio-TV Interference Problems”

This booklet is available from the U.S. Government Printing Office,
Washington, DC 20402. Stock No. 004-000-00345-4.

WARNING:

This equipment has been certified to comply with the limits for a class B
computing device, pursuant to Subpart J of Part 15 of FCC Rules. Only
peripherals (computer input/output devices, terminals, printers, etc.)
certified to comply with the Class B limits may be attached to this
computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

Published by
SPECTRAVIDEO INTERNATIONAL LTD.

First Printing 1984
Printed in Hong Kong
Copyright © 1984 by Spectravideo International Ltd. All rights reserved.

Every effort has been made to supply plete and inf jon in this manual. Spectravideo International Ltd.
reserves the right to change Technical Specifications and Characteristics at any time without notice.

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement and written permission from
Spectravideo International Ltd.

Us $13.95
SVI 728 UM

TABLE OF CONTENTS

INTRODUCGTION: ... s coomammis ans s sooma oms o6 Shaisidis o sqmibnane 68 sy a@ers 1

R R RN o R AL R S X AR A IR
SYSTEMOVERVIEW: ..o o oy oateids vs w08 5
B SuperMSXBASIC 6
B EXDONDBDItY . v sooovivin wva st sseinsitie aive siie 7
B The SVI-728 System Peripheral Map 8
W UnpackingtheSVI-728 9
B System Installotion .. .uaos i s e e w 10
B Ports Sockets and Switches 1n
M ConnectiontoaMonitor. 12
M Connectiontothe TV 12
B Connection to the Standard Cassette Recorder . . 13
@ ConnectiontothePrinter 14
B Power Supply and Cable Connections 15
B TurningonthePower 16
W PowerOnSelf-Test.................. 17
B GameSIOt . . s wwen e SRR e G e 17

[URTE o e e AT e T A U e R S SRR S B MG S]
THE KEYBOARD:ooocn o o ammvine i o e 21
WOk voveassm o daldE 0% vRRG B i s 22
W Cursor e e e 22
B Kevbotrd Layout: .. .:vii s ssmieie o ae o 25
B Punction Kev : . oo s S o 2% e 26
B Numeric Keypad and Cursor Control Key 28
B Program Contmol o=« oo wreraiesi oo s S 30
B Miscellaneous:Key: :nicn @ o Sewas sun 5% s 31

EABY BDITING oiciiien 55 Swniss &8 oveeu a1
W ScreenEditor, 43
B Inoort MIOOSvovaa sos sommae s sZenaresea 45
AN TN B A RN LR s S R e e Y
ABASICINTRODUCTION. 49
B About this BASIC Tutorial Guide. 49
B Whatisprogramming? 50
B One word beforewebegin. 51
N R AT L AR B N n R R R I o PR LS
WRITE YOUR FIRSTPROGRAM. 55
B GettingStarted 55
M Gridand Coordinates. 56
B CIST o v moasidems oo o annias 3% somas 58
M SCREEN. i 60
I PSET o v v apesvvsons sme e svanwsens e aipuene 61
B Let’saddsome COLOR: .. ., i i s 62
M Border, Background and Foreground. 64
B GOTO .uoi s smvamss s e wieilens 5 e 65
R PTG 2 RS T A R TSI BT L TR L ORI R
GOING THROUGHTHE LOOPS. 69
B INPUT oo st axssnthes ane sme svsiviens o swiese 69

M Containersand Variables70

~

B FOR/NEXT . o5 8% 80,565 55 €5 eidieuere sn o 74
B Some TimeSavingHints 76
B END oo o sn snomms o R Smaein v s 77

SETTING THINGSINMOTION 81
B PRESET 81
B Walking Backwand -..oouics an aavsde s e % 83
W STEP::: s 55 55055 05 805555 v v 85
M First ChallengingProgram 85
B BEM o oo scfasianse an on awise 5% 3 86

DECISIONMAKING.. 4. v oia v svansidte Eaiame 91
B OAEITHEN o oo 52l 86wl Sl o s 921
M StringVariable 92
W Another Challenging Program 93
B More:Decisions:« «ioiisn oo o D i% B 95
M Printittheway youwant 97
W TAB: v o svavmven oo 0 SRl S5 w8 98

SOME RANDOM THOUGHTS 101
B RND,INTand —=TIME. 102
W JumpingAround 103
B GOSUB/RETURN. ... oo woe suoiviess s s 104
B The Computerasa Calculator. 106
B ArithmeticOperations 107
M Processing Information. 108
B READDATA:; .-ain a6 o wendms o e 109
M OUTOF DATAMessage 112
B CLEAR. .o o oonives ave wus wispminta s s 112
8l RESTORE . oo wouosesy s 9% sivsimg s wk 113
B Another TimeSaver 113
B AUTO: ...vi o0 wsiinmae o Vuwa myesieieny edp on 113

ARRAYS - AWAY OF ORGANIZING

MANY CONTAINERS 17
WM DIM. ... e e 118
B Working with a Larger Set of Containers. 119

ON THE END OF A LONG STRING 125
WM OString. e e 125
B CNPUT s s wirammris s oo ROSTeny e a0 125
B LEFTS,RIGHT$,MIDS 126
WM LEN e 127

ADVANCED GRAPHICS AND SOUND

PROGRAMMING. 131
PART ONE - ADVANCED GRAPHICS 132
B O CIRCLE!. .. - .c.ccovonue sie sumngimse sis syusnane 132
B OPAINT o oo v s amiaiene & e 133
W OCLINE G o saaiss o 8% Siaes on vaes 137
B BOXAB):. - ococonio one sin soepenee s sapens 138
B BOXFILABFE . coamw oo wn sniaans ave aeisos 139
B DRAW .. o can o S O e v 140
Bl SCALE ... oo cueveiane e spsmnyuce exe sumuscuim 141
B LOCATE: i vusms v sreinsisi abamaissiies o 142

B BLANKMOVE 143

W SPRITES$. 143
PART TWO-SOUND PROGRAMMING 150
B OPLAY. . . e e e 151
W-QIAOCTAVE) ! ..l ive et sve suemass 161
W TOEMPO) i coavan on sy o Sey 152
M L(LENGTH) 152
B S SHAPE): ..u st v mimmegsis oo samees 163
B MATONE): o svess o o suniois o6 s 163
WM R(REST) 163
B VAVOLOUME) v.icos o5 sn soamsie s s 164
B Using 3 Channelsof SOUND 164

APPENDICES

Appendix A
Appendix B
Appendix C

ASCliCharacterCodes. 167
Mathematical Functions 158
Error Codes and Error Messages. 159
DISICEITON: . oo vt s soseasianess ds s 162
MSX BASICReservedWords 163
Memory Map & I/OPinouts 165
NOLO.ON SCIIOME o iic v v s ssvinics e ae wuios 170
Trouble Shooting Chart:. .:: . uiivis i o5 wavia m
Programmable Sound Generator (PSG). 172
Introduction to BASIC programming. 178
GIOSSarY: v o Soadiin i SBNeS &% 28 s 188

INDEX .

SVI-728 MSX COMPUTER QUICK REFERENCE CARD

INTRODUCTION

Welcome to the world of tomorrow. You have
just made a purchase that will reward you

for a long time to come. The SVI-MSX 728
home Computer that you have purchased will
open the doors to the future both today and in
the future. The SPECTRAVIDEO family of
personal computers contain features that will
allow you to take advantage of all current
computing technology and will also allow you
to expand your horizons as new technology
evolves,

The SVI-MSX 728 is the tool that will allow you
to deal with the computer revolution of the
1980’s and this is the manual for the operation
of this tool.

Again, welcome to tomorrow. Make it what
you want it to be with you SVI-MSX 728. Just
keep one thought in mind as you progress on
your journey: A computer is only as smart as
you make it. Without you, it's only a rather
complex bunch of wires, chips, metal and
plastic. You are the most important
component of your new computer system !

SYSTEM OVERVIEW

SYSTEM OVERVIEW

The terms in the following system overview
might not be familiar to those of you who are
just beginning to learn about computers, But
don’t worry. This manual was written
especially for first time computer users to
teach them the powerful MSX BASIC language
that is built into the SVI-728. The overview is
intended to give the beginner as well as the
experienced user an appreciation of the power
and beauty of the SVI-728: the first affordable
and expandable personal computer.

Your SVI-728 computer contains 3 powerful
processors that allow you to display exciting
pictures, play music or sound effects and
control a program all at the same time!

A ZBO0A 8-bit Microprocessor controls all the
system components. It is responsible for
storing, retrieving and executing programs. A
video display processor (VDP) serves to
generate all necessary video, control and
synchronization signals. The VDP is capable
of displaying 16 colors. It also supports
manipulations of 32 sprites (shapes) and a
maximum or 40 column text mode.

In addition, there is a programmable sound
generator (PSG) which can produce music or
a wide variety of complex sounds.

The MSX BASIC language is stored in the 32K
bytes of Read Only Memory (ROM). Your
instructions (or “programs’’ in computerese)
to command the computer are stored in one

RS e e

SUPER MSX
BASIC

64K bytes of Random Access Memory (RAM).
The remaining 16K is strictly for use by the
VDP to store information with which it creates
colorful graphic displays.

The powerful MSX BASIC language written
by Microsoft® is an extension of the same
BASIC language that is available on computers
costing three times as much as the SVI1-728.

If you are new to programming, you will find
MSX BASIC to be a versatile, easy to learn and
easy to use language. Experienced
programmers will appreciate its powerful
features and the flexibility it permits when
writing, editing, debugging and running
programs.

The MSX BASIC has the following powerful
built-in features:

(a) Screen editor.

(b) Full graphic and sound manipulation.

(c) New SPRITE commands.

(d) Default double precision math package for
business application programs.

(e) Special machine interrupt handling
commands for real time BASIC
programming.

(f) Special function keys for often used
commands (user programmable).

(g) True upper and lower case display and
printing.

REMEMBER:

The secret to mastering the SV|-728’s power

is to take your time reading this book

and trying out all the exercises on your computer.
Like driving a car, you must learn by doing.

By correcting your mistakes and learning

not to feel bad about them, you will succeed

and grow with the Spectravideo’s line of
expandable and affordable computer products.

EXPANDABILITY

To upgrade the computer, you can easily

add more peripherals through the expansion
module interface or game cartridge slot. You
may install the SVI-707 MSX Disk Drive and
the SVI-727 80 Column Video Cartridge to run
CP/M programs; or else the speech synthesizer,
the SVI-737 MSX 300 Baud Modem w/RS232.
Besides, a wide variety of peripherals from other
companies can also be used. Just name a few:
music synthesizer, light pen etc.

MSX is a trademark of Microsoft Corporation
Microsoft® is a trademark of Microsoft Corporation.
CP/M is the trademark of Digital Research.

[

dVIN TVH3IHdIH3d W3LSAS 82L-IAS FHL

HONSAOr XS LOL-IAS
“A'L swoy piepuels Aue Jndwo) XSW B8ZZ-IAS

8ljesse) piepue)s Aue
Y = A 1 |
See 1 | 67 [||—
£ LI

ELEERERELEEEPEL
111

JITTTTTTTT]
| D 03 R)) D | #onsAor XSW LOL-IAS
C
I I== _||
|] _ _
It _ I - 1 1 |
abpupe)d uwnio) 08 #bpupe) swen #bpulie) adejie abpuype) ebpupie) eocepeu
LZL-IAS XSW Z€Z Sy WvH X9 ZEZ SY + wapow
— LSL-IAS Lvl-IAS LEL-INS
aAuQ ¥S'a XSW
L0Z-IAS

10}UOW prepuels Aue

B UNPACKING
B SYSTEM INSTALLATION

B POWER SUPPLY AND CABLES
B POWER-ON SELF-TEST

UNPACKING THE The SVI-728 computer, video and audio cables,

SVI-728 - power supply and switch box (for USA version only)
are all securely packed in a foam cushioned carton.
Please note: Save all packaging materials
in case you must ship the unit for maintenance
or repairs.

10

| SVI-728 |

SYSTEM
INSTALLATION

; - .
MOMAMmMOMMMN S S e

AETN () 0 O8 £0 £R £A 0 AR £ £2 A A
g O £3 £N £ £N D) AD A £N AW AR A e
TR G000 MNnDODmmS S oy,
e e ——

Check the contents of your SV|-728 package.
You should find the following items:

SVI1-728 Home Computer
Video cable and audio cable
Switch box (for USA version)
Power supply

This instruction manual
Warranty registration card

DN B W =

If any items are missing, please check with
your dealer immediately.

To connect the system, you will need two
proper electrical outlets for your SVI-728
Computer and monitor or television set.
Choose a comfortable position for operation,
away from any source of extreme heat
(sunlight, heaters, etc).

Study the photos below carefully:

TV A/NV GND I1/0 SYSTEM PRINTER CASSETIE

4 PORT PORT PORT PORT PORT
TV PORT Connects your TV to the SVI-728 computer.
AUDIO/VIDEO This port connects your monitor to the
PORT SVI-728 computer.

GND Ground.

1/0 SYSTEM Connects the SVI-707 disk drive to the

PORT SVI-728 computer

PRINTER PORT Connects to a Centronics-type printer.
CASSETTE PORT Connects to a standard cassette recorder.
GAME SLOT For MSX game cartridge and other peripherals.
POWER SUPPLY Connects the power supply unit to the SVI-728
SOCKET The other end of the supply unit is connected
to an electrical wall outlet.
POWER SWITCH Turns on the power to the SVI-728
JOYSTICK PORT 1 For connection to a joystick.

JOYSTICK PORT 2 For connection to second joystick.
Joystick port 2 Joystick port 1

N A T

CONNECTION TO The video cable that is required in the SVI-728
A MONITOR computer system consists of 2 RCA phono
plugs for video and audio on both ends.
1. Connect one end of the RCA plugs into the
video and audio ports on the rear of the
SVI-728.
2. Connect the RCA plug marked ‘“video’ to the
video port and the RCA plug marked ““audio”
to the audio port on the rear of the monitor.

NOTE: Some monitors require an inexpensive
adapter to add to the RCA plugs before
connecting them to the monitor. That is
available from your local electronics dealer,
We recommend the Radio Shack RCA Mini-
Adapter (Model # 274-330).

CONNECTION TO 1. Connect one end of the RF Cable
THE TELEVISION to the TV port at the rear of the computer.
and the other end to the TV RF input.

COMPUTER

COMPUTER
*

CONNECT
T0 1V

Connect the other end of the shielded video
cable to the TV switch box.

b

COMPUTER

COMPUTER
&

{ CONNECT

TOw
VHF

3. Disconnect the VHF TV antenna and
reconnect it to the switch box's connector
marked TV.

COMPUTER

COMPUTER

! CoNNtECT
{ nw
i VHF
t
)|

™

" CONNECT TD ANTENNA

CONNECTION TO 1. Connect one end of the cassette cable
THE STANDARD to the cassette port at the rear of the
ITE computer.

13

e — e i i)
pr—————]

2. Insert the plugs on the other end of the
cable to the corresponding jacks on the
cassette recorder.

MIC (Red) 'EAR (White)

CONNECTION TO 1. Connect one end of the SVI-207
THE PRINTER Centronics Interface Cable to the
printer port at the rear of the

computer.

2. Connect the other end of the cable to
the connector of the printer.

3. Plug the power cable of the printer to an
electrical wall outlet.

POWER SUPPLY 1. Before connecting the power supply, please
AND CABLE check and be sure the power switch on the
CONNECTIONS right side of the unit is OFF.

2. Connect the cord coming from the power
supply as shown.

S e e

16

3. Connect the other end of the power supply to
any wall outlet.

TURNING ON After you have connected the SV1-728 to your
THE POWER power supply, first turn on your TV then turn
the SVI-728 power switch to the “ON"’
position. There is a channel switch 3-4
located at the bottom of keyboard. Select
the proper channel (for USA users only).

Il

:

The POWER ON indicator will light up.

POWER ON
SELF-TEST

GAME SLOT

The SV1-728 has a built-in diagnostic check
that will automatically check the function of
the system.

If the system still does not start up properly,
refer to the trouble shooting chart. (Appendix G)

The MSX GAME SLOT is located conveniently
on the upper middle position.

To insert or remove a MSX Cartridge, first be
sure the power switch is in the OFF position.

Game Slot

uug
ug
ue
Lok

18

THE KEYBOARD

19

20

THE KEYBOARD

Programming is generally done by sending
instructions to the computer through the
keyboard. Your instructions and the
computer’s responses are visible on a TV
screen, which is connected to the keyboard.
The computer’s keyboard should look
somewhat familiar to you because it
resembles that of a typewriter. However, the
keyboard contains additional keys that are
necessary to effectively communicate with the
computer,

Turn on you computer (remember, the
ON/OFF switch is located on the right side of
the computer). You are off to a good start if
the screen looks like this when you turn the
computer on.

MSX System
Version 10

Copyright 1983 by Microsoft

If you do not see anything on the screen
immediately after turning on the

g2

22

Ok

CURSOR

power, turn to the trouble shooting chart in
Appendix G for assistance.

After several seconds you will see the
following information appear on the screen.

MSX BASIC version 1.9
Copyright 1983 by Microsoft
28815 Bytes free

Ok

The word “Ok "’ is the message to you from
the computer that it is ready to accept your
commands. The white square underneath the
word ““Ok " is called the ““cursor.” Its position
on the screen informs you of the location of
the next letter you type. Let's start typing and
get acquainted with the SVI-728 and its special
features that aid you in working with the
computer,

Begin by pressing the following keys:

PRINT

The cursor moves one position to the right
every time you press a key.

Now find the key (on the lower left
side of the keyboard), and while holding it
down, press the double quotation mark,@ i
key. This should cause the quotation marks to
appear as on a typewriter.

S —
Type the following message:
“ LONG LIVE THE SVI-728"

Now make another double quotation mark at

the end of the message by pressing

and [I[. The screen should now look like this:

MS X BASIC version 1.9
Copyright 1983 by Microsoft
28815 Bytes free

ok

print “long live the SVI-728" ®

If you ever make a mistake while typing - for
example, you accidentally type the single quote
mark instead of the double quotation mark -

all you need to do is press the backspace key,
and retype by pressing the and while
holding it down, press the double quotation
mark, [¥7] Key. The backspace key permits
easy retyping by erasing the character
immediately to the left of the cursor.

Now press the key and look at the

screen. It will look like this:

MSX BASIC version 1.§
Copyright 1983 by Microsoft
28815 Bytes free

OK

print “long live the SVI-728"*

long live the SVI-728

Ok
&

24

When you press the key while in
immediate mode, you are telling the computer
that you have finished working and that you
want the computer to begin working. The

your message on the screen. When it has
finished obeying your instructions, it will
display the Ok message to inform you that it
is ready for more instructions.

If you wish to type using upper case letters,
you should press the key while
pressing a letter key. Should you desire to
type using only upper case letters for an
extended period of time, you should press

the key, located on the lower
left side of the keyboard.

The | _CAPS/LOCK | key toggles between the
upper and lower case letters. When you wish
to return to lower case letters, press the

CAPS/LOCK | key a second time to unlock it.

Now it's your turn to enter other messages in
immediate mode. Don’t forget to press the
key when you have placed the
closing double quotation mark at the end of
each message. |f a message is longer than a
single screen line, the computer will
automatically advance to the next screen line,
thus alleviating the need for a return key as on
a typewriter (more on this last point later).

If you misspell a word that is a BASIC
command, such as PRINT, the following
message will appear on the screen:

PRINT “LONG LIVE THE SVI-728
LONG LIVE THE SVI-728
Ok

PRONT I AM THE GREATEST"”
Syntax error
Ok

KEYBOARD
LAYOUT

T_he Syntax error message tells you that

you spelled an instruction incorrectly. Don't
worry, the computer is very forgiving and
patient. We will explain how to correct this
mistake in the next chapter.

You can clear the entire screen at once by
pressing the key located at the
top right hand corner and the [SHIFT | key
simultaneously. The abbreviation “CLS”
stands for ClearScreen.

When you have finished practising entering
messages for the computer to print, please
continue reading.

So far we have introduced you to the
following keys: letter and number keys, the
backspace key, the key and the

key. All keys are shown
below.

waogaoaa

~CdaddododuuoaECcy
“dacoguoouEaanc

The SV1-728 has many convenient features
that are operated by certain keys. You will find
these special keys to be both helpful and time
saving. The remainder of this chapter will
describe these keys, most of which will be new
and some of which will be a review.

FUNCTION Look at the top row of keys on the keyboard,
KEY the ones highlighted below.

These keys are called ““function” keys and
each one is marked with the letter ’F'* , They
are a labor-saving device because they allow
you to instruct the computer to perform a
frequently used function by pressing only one
key instead of having to type many keys.

Here is a list of each key, the function it
performs and a brief description of the

function.

KEY PRE-DEFINED FUNCTION

F1 color

F2 auto[10,1ﬂ]
F3 goto

F4 list

F5 run

F6 color 15,4,7

F7 cload”’

F8 cont [ENTER

F9 list. [ENTER]
F10 [CI5] run [ENTE

Function keys F1 through F5 are operated by
pressing the appropriate key. Function keys
F6 through F10 are operated by pressihg the

key and holding it down while

simultaneously pressing the appropriate key.

COLOR

AUTO

GOTO

LIST

RUN

COLOR

CLOAD’

CONT

LIST.

RUN

The COLOR command is used to change the
text, background and border colors on your
TV or monitor,

The AUTO command is used to make the
computer generate program line numbers
automatically. This command is used very
often, since all programming statements must
be preceded by line numbers.

GOTO is a command which provides you with
the ability to execute your program from any
place (line number) you desire,

This command instructs your SV|-728 to print
all of your immediately preceding program
statements on the screen. LIST is probably
the most often used computer command.
RUN tells the computer to take the program
you have written and perform the commands
you have indicated,

This tells the computer to print white letters
on a blue background with a cyan border.
These colors are the colors of the screen
when you turn the computer on.

CLOAD instructs the computer to input (load)
data from a cassette recorder (which can be
easily connected to your SVI-728.

This command is used to tell the computer to
“’continue’’ program execution after the last
executed line.

With this LIST. (with a period next to it) only
the last line you were working on (whether
programming, editing, etc.) will be displayed
on the screen, \

This command is similar to the standard RUN
command. However this command also clears
the screen before it “runs’’ your program.

===

NUMERIC
KEYPAD and

CURSOR

CONTROL
KEY

28

On the bottom of your TV screen, the SVI-728
lists the function that each key performs.

color Ml cioad Wcont Il iist M run |

The SVI-728 will normally display the function
of keys F1 through F5, and whenever you

press the key it displays the function
of keys F6 through F10.

Any of these pre-defined functions can be
quickly changed for your own convenience to
a function that you frequently use.

The numeric and cursor control keypad
contains keys that are primarily used for
simple numeric entry, word processing and
cursor control. The followings are the
commands that are accessed by this keypad.

Numeric
Keypad

SELECT and
PRINT KEYS

The numeric keys (0-9) are the same as the keys
on the top of the regular keyboard. These are
used when performing rapid entry of numeric
data. This keypad also contains the
mathematical functions keys (+, —, =, /)

which can be used to enter formulae and to
perform quick calculations.

The[SELECﬂandIPRINT]keys are also included
on this keypad to allow the advantage of using
these functions that are often available in word
processing and data entry software packages.
These keys have no function in BASIC
programming and are only accessed from
programs such as those mentioned above.

Arrow Keys
(Cursor Control)

PROGRAM
CONTROL
KEY

STOP

30

The arrow keys (up, down, left & right)
control the movement of the cursor on the
display screen. By pressing a combination of
the up and left arrow keys, you will cause the
cursor to move towards the upper left corner
of the display screen. Other combinations will
work in the same fashion giving you 8
directions of cursor movement using these
keys.

The followings are the program control keys
used to control the operation of computer
programs.

The key. Press this key to pause the
computer after you have instructed it to run
or to perform a function (which makes it begin
working on your program). Press the
key a second time to instruct the computer to
resume working on your program or a
function.

The CONTROL key. This key is used in
conjunction with the STOP key. In effect, this
tells the computer to stop what it's doing and
turn control back over to you (so that you can
issue further instructions). Press the
key while simultaneously pressing the | STOP
key.

The key. Press this key at the end of
ENTER each instruction you type. By pressing this

key you are telling the computer to enter the
instruction you just typed into its work space.
As we previously mentioned, the
key is not used to advance the cursor to the
next screen line and therefore should not be
confused with the return key on a typewriter.
In the event that an instruction contains more
characters than can fit on a single screen line,
the computer will automatically advance the
cursor to the next screen line. For example:

PRINT “) WISH WE WOULD HURRY U
P WITH THIS INTRODUCTION SO T
HAT | CAN BEGIN TO PROGRAM"

This long instruction cannot possibly fit onto a
single screen line which has room for only 29
characters. Whenever this happens, the

computer will automatically advance you to

the next line. In the above example, the

key should only be pressed after you

have typed the closing double quotation
mark that follows the word PROGRAM.

MISCELLANEOUS

KEY
CAPS The [CAPS/LOCK | key — pressing this key
LOCK will toggle the display characters from lower
case to upper case or upper case to lower
case.
CLS/HM The key — pressing this key will
COPY move the cursor to the upper lefthand corner

of the screen. When pressed together with the
T R R R e e R T

32

INS
PASTE

GRPH

CODE

N —
SHIFT | key, it will move the cursor

to the upper lefthand position (home)
and clear the screen.

The key — this key is used

when you wish to insert characters within a
line. Just move the cursor to the location
where you wish to insert, then press this key
and the text you type will be inserted.

The key — press this key to

delete the character under the cursor.

This key is often used in software application
programs. Its usual function is to interrupt the
operation of a program or to continue
operation following an interrupt (Escape),

This key is not used in BASIC. It is often used
in a word processor or similar application
program to space forward 5 spaces to begin a
paragraph.

This key backs up the cursor one space. It
deletes the character immediately to the left of
the cursor prior to the key press.

The key is used to select the
graphic symbols that correspond to the keys.
If you press the key and hold it
down while simultaneously pressing one of
the letter keys, the graphic symbol of the
corresponding key displayed.

The key is used to select the
characters other than English that correspond
to the keys. It you press the key
and hold it down while simultaneously
pressing one of the letter keys, the different
language character of the corresponding key
will be displayed.

The details of the keyboard layout and templates

are shown below:

1NOAVT QHVOSA3N QHVANVYLS

E|[t|[o][©][m

| |=—> 00| WO N

d§1h‘¢v-0

=)

d3SS3Hd AN LJIHS HLIM
1NOAVT QHVOEA3N AHVANVYLS

we | -][][O |
-(1E€||C]||} ans | ¢l <||> IN|(N[|S||A||D]|X]||Z]|tams
+|19]|S][¥]| |] « T r]H]|[D][d]a][s]|V]]]
¥ (6](8]14]| | -] {1 d]lo]lt][n][A]l[L][d][3]M[O
/ll=t]]= [+ =1L D el 8]~ %] [$] 2] [@]]
ors| 2] | | | b)) LT Okd/ /64 |84 | 24

34

Qg3SS3dd AIN 300D HLIIM
1NOAVT QHVOSA3IN QHVANVLS

35

ol
@l
o0
=
N

3
0
-
8
@

0
1

v i
al8k

O
«@

<«

X
o
2 1)

/=] [=] e]|[3][8][2][£][¢
103733| Wmﬁﬁ _@mzﬁ%b n v G4

a3SS3dd SA3IN 300D 8 L4IHS HLIM

1NOAVT GHVOEAIN QHVANVYLS

auna <110 3000
=|lellzllt 1ams | [2 Y _|E LdIHS
+][9][s][¥] (0] (ol (1] [¥][n][Q [][][¥
¥/6]|8][4 U |®) ¢ E

/=] [1]]=] MIE %|[3] [Ib] fd] [
e (2] | | |) oid|[ed |[8d |[24][o4

36

ad3SS3Hd SAIN HAVHO 8 1dIHS HLIM
LNOAVT QHVOSAIN AQHVANVILS

wams | =] K o) _IL E ol 1], [|rams

s DE!];]EE.

moﬁﬂﬂmj.]

.En r uf |z

Bl [t]|o] 0|

HINIEIEDE
| |=—| 00| O | N

Ak oldj{|6d || 8d || 44

J3SS3Hd SA3IN HAVHO HLIM
1NOAVT QHVO8A3N QHVANVYLS

N..w.hv 1101

* v HHEI =

o MMM HHH]

Ol [e il J] P

+I

bt | Gd || ¥4

38

Now that you have learned how to hook up
your computer and are familiar with the
keyboard, you can proceed further in the
manual. However, if you are anxious to begin
using your computer, please turn to Appendix |
for some simple demonstrations.

After completing these exercises, return to
chapter 3 to continue.

39

EASY EDITING

41

42

SCREEN
EDITOR

EASY EDITING

The BASIC Screen Editor lets you change a
line anywhere on the screen. You can change
only one line at a time. The Screen Editor can
be used after an Ok prompt appears and before
a RUN command is issued. By using the

Cursor Control keys and the editing keys,

you can move quickly around the screen,
making corrections where necessary.

Here is an example to show you how to use the
Screen Editor.

Let’s enter the following program.

10 REM SCREEN EDITOR DOMO
20PRINT “DEMONSTRATION OF "
30 END

Note: Remember that a program line must
always begin with a line number. If you make

a mistake, just press | ENTER | and retype the
line.

After you have finished, press the
and keys simultaneously, then type
LIST or [F4] and press [ENTER | You

should see:

LIST

19 REM SCREEN EDITOR DOMO
2p PRINT “DEMONSTRATION OF "

38 END

Ok

Now correct the word DOMO in line 10. First
use the cursor key's UP direction key to move
to line 10 and then the RIGHT direction key to
move the cursor to the top of the letter ‘O of
“DOMO".

10 REM SCREEN EDITOR D[MO
20 PRINT “DEMONSTRATION OF "
3@ END

Ok

Press the letter “E’* to change the word to
“DEMO”, then press . The line will be

stored now as:

10 REM SCREEN EDITOR DEMO

You have just replaced the character O with
the character “E"’. To verify this, press
and [CLSMM] simultaneously, then [Fa]
(list), . You should see:

10 REM SCREEN EDITOR DEMO
20 PRINT “DEMONSTRATION OF"
30 END

Ok

The next step is to insert the two words
SCREEN EDITOR into line 20. We do this by
moving the cursor to the second quote of Line 20.

19 REM SCREEN EDITOR DEMO
20 PRINT “DEMONSTRATION OF"”
30 END

Ok

INSERT Now press the , key and the
MODE cursor will become half as tall as before. This

means you are in the “INSERT" mode. Type
“SCREEN EDITOR", bring the cursor back to
the beginning of line 2, and press ;

S s T e

486

You have just inserted the words “SCREEN
EDITOR"” .Follow the steps you used to verify
line 16 and you will see:

10 REM SCREEN EDITOR DEMO

20 PRINT “DEMONSTRATION OF
SCREEN EDITOR"

30 END

Ok

Besides using the Screen Editor, you can also
change a line by entering a new one with the
same line number. BASIC will automatically
replace that line.

A BASIC
INTRODUCTION

47

48

A BASIC
INTRODUCTION

ABOUT THIS To be able to control a computer, you must
BASIC TUTORIAL be able to communicate your instructions in a
GUIDE language that the computer understands. The

SVI-728, like most personal computers,
understands a language called BASIC
(Beginner’s All Purpose Symbolic Instruction
Code). This language, which is built right into
the SV1-728, is a set of English words with
which you can instruct the computer to
perform certain functions.

This manual differs in many ways from other
manuals written to teach BASIC. One of the
major differences is that most of the information
presented in this tutorial has already been used
successfully to teach BASIC in the classroom.

This guide begins by describing those BASIC
commands which allow you to design simple
pictures and see them displayed on the TV
screen. Our reason for introducing you to
BASIC through graphics is simple. Learning
BASIC is like learning a foreign language. If we
can relate the new words of BASIC to the
knowledge that you already possess about
drawing, you can move smoothly into the
computer age and have fun at the same time.

In the next few chapters we will explain several
commands which allow you to create pictures.
But there is much more to learn about the
SVI-728’s graphic capabilities. It will be
explained in greater depth in the latter chapters
of this manual.

B e e e e

WHAT IS
PROGRAMMING?

Programming is the act of writing the
instructions and information that must be given
to the computer in order for it to perform a
task. Programs differ from one another in that
the instructions and information necessary for
managing a household’s checkbook, for example,
are different from the instructions and
information needed to control a video game.

Programs written in one computer language will
not contain the instructions and structure that

a program in another computer language
possesses. That is why professional programmers
generally must specialize in one or two languages.
It is the rare individual who is even aware of all
the different computer languages that have

been developed in the past twenty years.

There are two different ways to type a BASIC
instruction into your computer: In “‘program”’
mode or in “immediate’ mode.

As its name implies, you are in ““program”’
mode when you write a program. A BASIC
program is a set of instructions typed one
instruction after the other with a line number
beginning each instruction line. For example:

10 PRINT “I AM”
20 PRINT “STARTING TO"”
30 PRINT “LEARN BASIC”

Line numbers are genera'ly in intervals of ten

to allow for easy reference when corrections

are required or when additional lines need to

be inserted. The computer executes your program
after you type the word RUN.

The second way of instructing the computer is
called “immediate” mode, because after each
instruction is typed and the key is
pressed, the computer will immediately respond.
Do not precede the single line of instruction
with a line number when you are in “immediate”

mode.
ONE WORD For most of the time spent with this tutorial,
BEFORE WE you will be in program mode. If you are serious
BEGIN about programming, then you will continue

to write programs and very infrequently be in
the immediate mode. The immediate mode is
generally reserved for housekeeping details like
saving programs on a cassette tape or disk,
requesting a catalog of your programs stored
on a disk and loading information from a
cassette or disk into the computer.

We realize that these words and concepts are
new for many of you, but don’t worry. These
ideas will become clearer as you continue
reading.

The model that we are about to present is
critical to your fully understanding how a
computer works and what it does with the
program you type in.

Your interaction with the computer is similar
to the following scenario.

If you were interested in buying a car you
would probably call a car dealer for a price on
a particular model. You might ask the
salesman for a price on a Cadillac with power
windows, power steering, leather seats, deep
pile carpeting, and tinted windows. The

Eermmme————

52

salesman will then proceed to check his
price lists, write the numbers down on a
worksheet, add the numbers together and
quote you the total price.

Procedures to get information about a car.

START
|

ASK
SALESMAN

|

SALESMAN
CHECKS PRICE
|
SALESMAN
RESPONSE
|

By the same token, when you work with a
computer, the computer is the salesman. You
tell the computer exactly what you want just
as you tell the salesman and in both cases you
get an answer. Similarly, in both instances

you do not see the many calculations that both
the salesman and the computer perform before
informing you fo their answer. The instructions
you give to the salesman or to the computer

is the ‘INPUT’ they need to act on.

The calculations done on the salesman’s
worksheet are analogous to the wok performed
in the computer’s erasable memory (called
RAM or Random Access Memory), and the
answer you get is called, the ‘OUTPUT".

By reading and practising the new language you
have started to learn, you will be entering the
ever expanding computer world. BASIC is only
the beginning.

ENJOY.

WRITE YOUR FIRST
PROGRAM

53

54

WRITE YOUR FIRST
PROGRAM

GETTING The easiest way to draw pictures on the
STARTED computer is similar to the way one plays the
game BattleshipTM.

The goal of Battleship is to try to guess the

positions of your opponent’s ships. The game
board for Battleship looks like this:

12 3 45 6 7 8 91

i

Figure 1 Battleship Game Board

@ = I OTMmMODODO®® P

Figure 1 shows how your opponent has his
board set up. One of his ships is at positions
H-2, H-3, H-4, and H-5. His other ship is at
positions C-7 and D-7.

B . e e S L o

You must seek out his ships by calling the
names of positions on the board. In this
example, if you were to call H-2 he would
reply that you hit his ship, but if you said H-1,
he would have told you that you missed.

The important lesson to learn here is the way
you give names to each of the positions on the
board. In essence, each position on the
Battleship game board is a point on a graph.

GRID and To draw on the SVI-728 you must also give a
COORDINATES name to each box of the grid that is shown in
Figure 2.

"0 20 0 40 %0 60
0123456789 123456789 123456789 123456789 123456789 123456789 12

CBNP PN = O

SAR5LLAESRURRRERURABURRY

Figure 2

Each box has a name. The name is composed
of two numbers: the number at the top of a
column, and the number at the side
designating each row. The first number is the
horizontal location and the second number is
the vertical location. These two numbers are
called: the coordinate numbers of a point.

56 I A AT P T A 15 R I 15 T AT AU NG TP 1 R SR

0123456789

10

1

231456789

Understanding how to name boxes is very
important for creating simple pictures. It is
especially important because we are going to
introduce through which pictures can be
created. Spend a moment on the following
exercise before proceeding to the next
section.

In Figure 3, several boxes are darkened. This
signifies that they have been lit. Do you know
the names of these boxes? Write them down on
a piece of paper.

30 50 60
123456789 123456789 1231456789 123456789 \

e

-+

Figure 3

Your answers should have been
A: (20, 10)
B: (2@, 20)
C: (20, 309)
D: (20, 49)

Now we will use these names in a program
which will light the boxes in Figure 3. Type
on the keyboard exactly what is listed below.

P = e

58

LIST

Don't forget to press | ENTER | at the end of

each line. We will not always remind you from

this point on. Pressing [ENTER | after each
instruction should become second nature to
you by the time you finish this book.

10 SCREEN 3
20 PSET (70,50)
30 PSET (66,54)
40 PSET (74,54)
50 PSET (62,58)
60 PSET (78,58)
70 PSET (66,62)
80 PSET (74,62)
90 PSET (70,66)
100 END

After you have checked to make certain that
your program matches our program, type
RUN.

What's the matter? Did the picture flash by
too quickly? Don‘t worry we expected that
little problem to occur. Do the following:

1. Type:
LIST
Ok

Your program is displayed again on the
screen. As its name implies, LIST will list your
whole program from beginning line number to
the last number you used. If you typed LIST
when you were in immediate mode and not
using the line numbers, you would not see a
program listed.

2. Type in the following new line.

95 GOTO 95

A 6 1 s LB A7
3. Type LIST

Notice that line 95 was inserted between lines
90 and 100 automatically by the computer.
Remember what we had said earlier in this
guide about line numbers and why we usually
use numbers with an interval of ten between
them. The insertion of additional lines is a
natural occurrence when you write programs.

4. Type RUN

The computer not only draws the shape we
want, but it also keeps the picture on the
screen forever and does not allow you to type
in anything at the keyboard. Try typing. The
characters you type don‘t appear on the TV.
Why? Because the machine is still RUNning
your program and will continue to do so until
you press the [CTRL | + [STOP | keys
simultaneously. Let’s look at the program
again.

10 SCREEN 3
20 PSET (70,50
30 PSET (66,54)
40 PSET (74,54)
50 PSET (62,58)
60 PSET (78,58)
70 PSET (66,62)
80 PSET (74,62)
90 PSET (70,66)
95 GOTO 95
160 END

Before we added line 95, the picture appeared
momentarily and then disappeared because
the program did exactly what it was supposed
to do (very quickly) and then disappeared. By
adding Line 95, we told the computer to stay
right where it is. To stop the program, press
the [CTRL] + [STOP] keys simultaneously.

P e e A R S s B I s s R T rony.

SCREEN

The [CTRL | + [STOP | keys combination
breaks the computer out of its continuous loop,
and will stop the computer from whatever
program happens to be RUNning.

You will see whatever you type appear on the

TV. Remember to press after you

finish each line.

10 SCREEN 3
20 PSET (10,20)
30 PSET (20,20)
40 PSET (30,20)
50 PSET (40,20)
60 GOTO 60
70 END

Line 10 tells the computer that you are going to
draw a picture on SCREEN 3.

There are 4 screens:

SCREEN f - This screen allows you to enter 23
lines of text with a maximum of 39 characters on
each line before the display starts to “‘scroll” or
move up.

SCREEN 1 - The screen the computer displays
when you turn it on. This screen allows you to
enter 23 lines of text with a maximum of 29
characters on each line before the display starts
to “scroll’” or move up.

Both of the two screens allows you to
communicate with your computer and

tell him what to do for you: type in your
commands in the immediate mode, or type
in your programs.

SCREEN 2 - The High Resolution graphics
screen which you use to draw High Resolution
graphics.

SCREEN 3 - The Low Resolution graphics
screen which you use for drawing Low Resolution
graphics.

(More about High and Low Resolution you will
find in Appendix F)

Whenever you CTRL-STOP a RUNning program
which uses SCREEN 2 or SCREEN 3, the
computer will automatically return to SCREEN @
or 1 (the previous text screen) program you by
displaying the “Ok" message and the cursor. This
will allow you to review (LIST) your program and
make your modifications.

PSET Line 20 introduces the PSET instruction.
PSET tells the computer to turn on the box
that is named (10,20). Remember, the first
number in parentheses refers to the column
and the second number refers to the row of
the box.

Lines 3@-5@ continue to turn on the boxes we
see darkened in Figure 3. Line 6@ will soon
be explained.

Now type RUN and your picture will
be displayed. When you finish viewing your
work, press the | CTRL | and [STOP | keys
simultaneously to stop the program.

What you typed into the computer was your
first program. Giving several instructions to

the computer at once is generally more
efficient than giving the computer one
instruction at a time in immediate mode.
(Remember that in i/mmediate mode the computer
executes the command you type immediately
after you press the key.) If we
didn’t use line numbers to signify that we were
writing a program but rather told the computer
to turn on one box at a time, it would be

like going to a supermarket ten times in one
day and each time buying only one item. That
would be a terrible waste of gas and time.

e T R TP S S S R S Wy SO

62

LET'S ADD SOME
COLOR

After all this talk, it is time for you to practise
what we have been preaching.

NEW tells the computer to forget about the
program you had previously typed.

Type NEW

Try to write a program that draws the shape in
Figure 4,

Figure 4

Each of the boxes you light up can be in one
of 16 colors. Here is a list of the 16 colors the
computer uses and the corresponding number
for each color.

COLOR # COLOR
a TRANSPARENT
1 BLACK
2 MEDIUM GREEN
3 LIGHT GREEN
4 DARK BLUE
5 LIGHT BLUE
6 DARK RED
7 CYAN
8 MEDIUM RED
9 LIGHT RED
19 DARK YELLOW
1 LIGHT YELLOW
12 DARK GREEN
13 MAGENTA
14 GRAY
15 WHITE

Before describing how to add colors to your
drawings we will first demonstrate your
computer’s vivid colors.

E—————
Press the and keys to

clear the screen and type the following:

COLOR 4,15 ENTER

(Note that function key #1 @ can generate the
word “‘color” for you]

The colors of the background and text
are now reversed, The numbers 4 and 15
represent two of the 16 colors listed above.

Let’s experiment with the COLOR command.
Begin by typing:

COLOR 4,4

The text disappeared and the only thing you
see is a blue screen. Now type your

name. You should hear the clicking sound but
no characters are displayed on the screen. Here
is why:

The first number following the COLOR
command is the color you are instructing the
computer to use for the display of text while
the second number is the color the computer
will use for the background. Since you
instructed the computer to use the same blue
color (4) for both the text and the background
the text seemed to disappear. In other words,
what you type is printed on the screen, you

just can’t see it! In order to return to “visible”
text you need to type a new COLOR command,
but it would not be easy without seeing the cusor
or what you typed.

Now you could appreciate the usefulness of
function key #6.

First make sure that the cursor (which you
cannot see) is positioned at the beginning of a
“clean” new line. You do this simply by

pressing | ENTER

e 63

64

BORDER
BACKGROUND
and
FOREGROUND

You will still not see anything changed, but

you will hear a beep. Since the last thing you
typed was your name, by pressing the
key you caused the computer to generate a
“’Syntax error’’ message which is always
accompanied by a short “warning’’ beep.

This of course, wouldn’t happen if your name

is a correct command in the BASIC language.

Now, press the key and while holding it
down press function key # (F6). The display
returns to normal and you should see now all

the words you previously typed plus the ““Syntax
error’ and “Ok’’ messages.

Take a look at the last color command on the
screen:
COLOR, 15,4,4

this is the command you gave the computer by
using (Note that you didn’t have to
this command, sinoe ENTERs
automatically. You see that there is a third
number added to the color command. We
already know that the first number (15) is the
text color, and that the second number (4) is
the background color. The third number (7) is
the color the computer uses for the border of
the screen. The border is usually not displayed
in the text mode (screen @ and 1). That’s why the
need to specify a border color exists mostly
when you are using SCREEN 2 or SCREEN 3.

We may think of the screen’s display as of
three layers, one on top of the other. At the
bottom there is the Border, above it there is
the Background which in the text mode, or
SCREEN @ or 1, covers the Border totally; and in
the graphic screen (2 or 3) “‘grows down’’ in
size and “exposes’ the Border at the top and
bottom of the screen .

Above the Background comes the Fareground
which might be described as a clear acetate
layer that “carries’” all the images that appear

on the screen: on SCREEN @ or 1 it’s the text,
and on SCREEN 2 or 3 it’s the graphic image.

If you understood this concept you should feel
comfortable with the following fomat
description: the format of the COLOR
command is

COLOR, <foreground color #> ,
<background color # >,
< border color # >

Now, experiment with the numbers to get
familiar with all the colors.

0O.k. Let’s get back to the PSET command

PSET (10,20) 3

Now change the color,

PSET (10,20), 8

The PSET command only scratches the
surface of the almost unlimited graphic
capabilities of the SVI-728. The majority of
commands to create exciting pictures on your
computer will be described after we have
introduced you to the BASIC language.

GOTO Before we end this chapter, type in this

popular little program that uses the GOTO
command in a way that is easily understood.

First type NEW

and then

10 PRINT “I LOVE MY SVI-728
COMPUTER"
20 GOTO 18

now type RUN.
e e B

Press the [CTRL] + [STOP | keys combination
to stop the runaway program. Do you
understand why the machine printed ‘| LOVE
MY SVI-728 COMPUTER’’ again and again?
Here’s why.

Line 10 tells the computer to PRINT the
message between the parentheses on the
screen. And Line 20 tells the computer to go
back to line 1@ and print the message again.
After it is printed a second time, the computer
reaches line 20 again and is sent back again to
line 10 and then again and again . . . to infinity.
Now try inserting other messages in between
the parentheses in line 1@. The quickest way

to change line 10 is as follows:

First type LIST
to see your program. Don’t forget to press

Next retype

16 PRINT

Now add any message you want, such as your
name, and put a closing quotation mark at the
end of your message. After you have finished
retyping line 10 and pressed , the
change has been entered in the computer’s
memory.

Now type RUN

and the revised message should appear on the
screen. We will have more to say about the
PRINT command in a later chapter.

We suggest that you read appendix F now
for clarification on screen modes, before go
to next chapter.

GOING THROUGH
THE LOOPS

67

68

GOING THROUGH
THE LOOPS

After using the PSET command in the previous
chapter, you probably thought: there has to be
a way to turn on the lights of particular boxes
that is quicker than having to name each box
individually. Well there is! But before we show
it to you, first type in the following program:

In MSX-BASIC there 10 CLS
is a nice shortcut that 20 PRINT “TELL ME A NUMBER"”’
saves you from 30 INPUT Y
always having to 49 SCREEN 3
type out the word 50 PSET (3¢,Y)
command PRINT- 60 PSET (45,Y)
just type in a 70 PSET (GQ,Y)
question mark (?)-it 80 PSET (75,Y)
serves the very same 90 GOTO 9¢
purpose!

Now type RUN

Your program should have disappeared and
the message “TELL ME A NUMBER" should
suddenly appear on a cleared screen. The
screen was cleared, thanks to the CLS
command which stands for “’ClearScreen”’,
which is on line 10.

The message is output to the screen by the
PRINT command in line 20, and the cursor
should appear just after a question mark.

INPUT The question mark was put there by the
command INPUT. INPUT tells the computer

P e T e S

70

CONTAINERS
and VARIABLES

The type of a
variable container

discussed in this
chapter is a numer

This is

used for the storage

container

of numeric values
only. Non-numeric
variables

or Alpha-numeric

variables will be

to wait and not go on to the next instruction
of the program until you type something in at
the keyboard. Whatever you type in is stored in
a “container’’ in the computer’s erasable
memory.

The more technically oriented of our readers
will recognize that the container we are
referring to is a variable. The following
explanation about the way a computer uses
containers to store information is meant for
those readers who aren’t comfortable with the
term “variable’’,

Before we continue with the description of
containers, let’s first observe a container in
action. First type in a number between 0-191
and press . (If you press a number

greater than 191, you will get a blank screen.)

If you typed in a number between 0-191 and
pressed , a line should have been
drawn on the screen. The location of that line
depends on the number you typed in. Here is
why.

The number you typed is stored in a container
called "Y", as designated in line 3@. Think of
"Y' as a cup, and the number you typed as a
mark on a piece of paper that is placed in the
cup. When the computer reaches line 5@ and
itis time to turn on the box that is specified by
the name (3@,Y), the computer looks in the
cup marked "Y'’ and substitutes the number
you typed in for the letter Y wherever “'Y*’
appears. So if you had typed in 27, the
number 27 would be stored in the container
Y. When the computer reaches line 5@ it
will light up box (3@, 27); at line 6@ box

(45, 27); at line 7@ box (6@, 27); and finally at
line 8@, box (75, 27).

CONTAINERS IN
THE COMPUTER'S
MEMORY

ONE LAST
WORD ABOUT
CONTAINERS

It would be very difficult to store and retrieve
information if we did not have a clear way of
referring to the information we use. Thus we
have chosen the term “‘container” to
designate a particular location in the
computer’s erasable memory where
information is stored. The letter ““Y" is only
one of many possible symbols we can use to
“name’’ the containers.

A container’s name can be thought of as the
number part of the address of your home. If a
friend mails a letter to you and the envelope
bears only the name of the street you live on
but not the specific number of your house, it
is quite possible that your mail will be placed
in the wrong box. Similary, if we feed into the
computer information that is not “‘correctly
addressed”’, we will have a hard time finding
the information we need later on. Our ability
to communicate with the computer will then
be severely limited.

The SVI1-728, like most personal computers,
uses two different sets of containers. One set
of containers holds only numbers, the second
set holds both numbers and words.

A container whose name begins with the
letters A-Z holds only numbers but when a
dollar sign, “$", is placed after the letters it
can hold both numbers and words. A
container name can be up to 2 characters in
length-it can’t be a word of BASIC Language-
for example, SV, DL, HF, L1, etc, are legal
containers names. Type:

10 CLS

20 PRINT “WHATEVER YOU TYPE IN
WHEN THE QUESTION MARK
APPEARS, | WILL REPEAT"”

30 INPUT A$

40 PRINT A$

50 END

72

CONTAINER
STORAGE AND
RECALL

e —
Type RUN

Then type a number in response to the dollar
sign, and watch the computer echo whatever

you typed (remember to press [ENTER | when

you finish your input).
Then type RUN

again and this time type in a word or two in
response to the question mark (and press

[ENTER]).

What happens when you mix both numbers
and words in the same container? Is the
mixture accepted? Try it by RUNning the
program again.

You may store a maximum of 255 characters
(letters) in any one container. Likewise, you
can type a maximum of 255 characters on any
one line of your BASIC program. Experiment
to see what happens when you try typing

more than 255 characters. RUN the program
again, and this time type more than 255
characters after the question mark and then
press . You should see that the extra

characters were ignored.

There are various commands that tell the
computer what information to put into a
specific container. We have already seen that
INPUT puts the information that you type into
a container. Here is another way. Type,

10 CLS

20 LETA=10
30 LETB=20
40LETC=A+B
50 PRINT C

60 END

LET

Now type RUN

The number 30 should have been printed out
on the screen. This program illustrates how
one assigns information to containers. The
command LET prefixed the name of the
container you wish to use and the container is
placed on the left side of the equal (=) sign.
The information you wish to place into the
container is written on the right side of the
equal (=) sign. After the number 10 has been
placed in A’ and the number 20 has been
placed in ““B”’, the computer adds the
numbers together and places the sum into
container ““C"". Thus the computer’s answer is
found in container “C" and the contents of
container “‘C’* are printed on the screen.

You do not have to use the command LET to
assign information to a container. The
following program does exactly the same
thing:

19 CLS

20 A=10
30B=20
49C=A+B
50 PRINT C
60 END

The use of LET generally helps to improve the
readability of your program. This is helpful
when someone else looks at it, or when you
look at it after not reading it for a long period
of time.

Now we’ll show you another way to use
containers . . . one that allows you to draw
quickly.

74

FOR/NEXT

The following techniques will not only help
you to draw quickly — they will also prove to
be invaluable in almost any program you
write. Type and RUN the following program:

10 CLS

20 FORX=0TO 64
30 PRINT X

40 NEXT X

50 END

Surprised at the result? You really should not
be. This program uses the same kind of loop
and container that we have been discussing.

After line 10 clears the screen, line 20 instructs
the computer to place all the numbers

between @ and 64 into the "“X’* container one
at a time, The obedient computer begins by
putting a @ in the X"’ container. The
instruction to PRINT X on line 3@ forces the
computer to look up the number stored in the
X' container and display it on the TV. Then
on line 40 the computer is instructed to take
the next number after @ and place that in the
“X"" container. Since a container can hold only
one item at a time, the @ is erased from the
"X’ location in the computer’s erasable
memory and the number 1 is now placed in
the X'’ container. Then the computer is sent
back to line 20 to begin tne process again.

Since the number 1 is one of the numbers
designated to be placed in “X"’, the computer
proceeds to line 3@ where it finds the number
1 stored in “X", and proceeds to PRINT the
number 1 an the screen. Line 4§ causes the
number 2 in the container and returns the
computer to line 2@ where the same events
occur. This loop continues until the number
64 has been placed in X" and has been
displayed on the screen. Since 65 is not one

of the designated numbers on line 20, the
computer sees the END command on line 5@
and stops.

The FOR-NEXT commands are always a
pair. Never use one without the other. The
FOR-NEXT loop is fundamentally different
from the loop we can create with the GOTO
command. As your programming skills
develop, you will learn when the use of each
is appropriate.

Do you think you can change the

program which printed out the numbers
between B-255 to draw a straight line across

the whole screen? Before you read how it’s
done, try it yourself. Hint: Two lines have to be
changed and lines added.

10 SCREEN 3

20 FOR X =0 TO 255
30 PSET (X,25)

40 NEXT X

50 END

Type RUN and watch how effortlessly the
computer draws that line!

The computer is told on line 20 to put all the
numbers between @-255 into X"’ container
one at a time. A @ is placed in “X" in line 20.
And when the instruction to turn on the box
named (X,25) is given in line 3@, the computer
checks to see what number is stored in X"’
and substitutes the @ for the container name
in the name of the box, so the first box lit is
box (@,25).

NEXT X on line 40 places the number 1 in
X", Since 1 is a designated number, the

R B R BT TS T L A5 KU S A D OB A A TN+

76

SOME TIME
SAVING HINTS

second box the computer lights up is box
{1,25). The number one stored in ‘X" is
substituted for the X’ in line 4@. This loop
continues until all 255 boxes in row 25 have
been lit,

Now try changing the loop program which
draws a horiztonal line on row 25 to one that
will draw a vertical line at column 30 from the
top of the screen. Your program should look
like this:

19 CLS

20 SCREEN 3

30 FORD=0TO 191
40 PSET (30,D)

50 NEXT D

60 END

Notice that we use a different container name.
“D" is the designated container that will hold
all the numbers between 3-191. This looping
program works exactly like the program above,
that draws the horizontal line.

We have spent much time explaining to you
how containers work in a non-technical way.
This was important because the more you
know about how the computer works and the
precise cause-and-effect of every command in
BASIC, the better use you can make of the
SV|1-728 features.

We have seen how loops can save you time.
Another little time saving tip is this. You need
not always place the END command at the
end of every BASIC program. Although it is
good practice to do so, you will quickly learn
where END is necessary.

END

10 CLS
20 PRINT “I LOVE MY SVI-728"
30 GOTO 2¢

The END command is not needed at the end of
this program because the way the program is

structured the computer will never pass line 3d.

It will be caught in a continuous loop until you

press the [CTRL | + [STOP | keys combination.

Similarly, you need not always precede your
program with

16 CLS

You should decide when you have to work
with a clear screen and when you don’t.

When using the SCREEN command you do

not need to use the CLS command because

the SCREEN command automatically clears
the screen.

78

SETTING THINGS IN
MOTION

79

80

PRESET

SETTING THINGS IN
MOTION

Now that you know how to use containers to
draw a line, let’s add one line to the program

you did in the previous chapter. This addition
will cause a dot to move across the screen,

10 SCREEN 3

20 FOR X =0 TO 255
30 PSET (X,25),11

490 PRESET (X,25)

50 NEXT X

RUN

Was that a bit too quick for you? Before we
show you how to slow the bouncing ball
down, let’s review this program to learn how
we create the illusion of motion.

The new command PRESET on line 40, acts
just the opposite of PSET. PSET turns boxes
on and PRESET turns boxes off. In our
program above, PRESET turns off the very
same box that PSET turned on. In line 30 we
told PSET with what color to light the boxes.
In line 40 we don’t have to tell PRESET a color
number. PRESET merely turns the box off to
the background color of the screen.

How can we slow our bouncing ball down?
Well, it makes sense to somehow slow down
the computer so it will be delayed between
line 3@ and line 40, because the slower the

82

boxes get turned off, the longer they will stay
on and the easier it will be for an observer to
follow the path of the ball. We will add what
is known in computer jargon as a time delay
between line 30 and line 4@.

Add the following lines:

35 FORT=0TOb50
37 NEXTT

Now type LIST

and your program should look like this:

10 SCREEN 3

20 FOR X =0 TO 255
30 PSET (X,25), 11
35 FOR T =0 TO 50
37NEXTT

40 PRESET (X,25)

50 NEXT X

Now type RUN.

Your program should now be considerably
easier to your eyes because the dot will move
more slowly across the screen. Lines 35 and

37 should look familiar to you. They are an
example of your typical FOR-NEXT loop, with
an important difference.

In the previous chapter we stuck a command
(such as PSET or PRINT) between the FOR X
and the NEXT X commands. In the bouncing
ball program we did no such thing. Rather, by
placing the FOR T and the NEXT T
commands on consecutive lines, we caused

the computer to wait a certain amount of time
before proceeding to line 4@. Lines 35 and 37

WALKING
BACKWARD

caused the computer to stop and count from
@ to 5@. The computer merely placed the
numbers between @ and 5@ into the container
called “T’* one after the other, and that took
up time. Hence, this use of the FOR-NEXT
loop is called a ““time delay”.

To speed up the moving dot, simply change
the last number you want to be placed in the
“T" container to a number less than 50. For
example,

35FORT=0TO 25
37NEXTT

To slow down the bouncing ball, simply
increase the last number to be placed in the T
container to a number greater than 5@. For
example,

35 FORT=0TO 100
37NEXTT

Now that you have mastered how to make the
ball move forward, from left to right, it is time
to make the ball move backward, from right
to left. Add the following lines to the
bouncing ball program:

60 FOR Q = 255 TO @ STEP-1
70 PSET (Q,25), 11

80 FORF=0TO 10

90 NEXT F

100 PRESET (Q,25)

110 NEXT Q

83

84

STEP

The new addition to the revised bouncing ball
program is the line 6@. You are probably
wondering where the STEP — 1 came from.
Here's why,

The instruction

FOR X =@ TO 255

means that the computer is instructed to place
all the numbers between @ and 256 into the
“X"" container one at a time. The “one at a
time"’ instruction need not be written
explicitly.

FORQ=0 TO 255

is equivalent to

FORQ=0 TO 255 STEP 1

Which means move from @ to the next
number, one at a time. When you do not
specify how many numbers to STEP to, the
computer automatically assumes you mean to
advance by one number at a time. We could
just as easily have instructed the computer to
jump from @ to 2 with the instruction,

FOR Q=0 TO 255 STEP 2

Therefore, line 6@,
FORQ=255TO Q@ STEP-1

is interpreted by the computer to mean placing
all the numbers between 255 and @ into
container Q" one number at a time in
descending order. That is how we get the ball
to move backward .

By deleting just one line you can see a
drastically different result. The present
program bounces the ball back and forth
across the screen. Try it. Delete line 100 by

typing.

100

Now type LIST.

To prove to yourself that line 100 was erased,
type:

RUN

When you deleted line 100, the boxes that are
lit up by line 7@ are no longer turned off. Now
change the program by adding one line which
will make it get stuck in a continuous loop.
Try it before you read on.

You should have added,

120 GOTO 20

This addition tells the computer to return to
line 20 and start drawing the ball and the line
again, It looks like a little yo-yo.

FIRST Using all the materials you have learned up to
CHALLENGING this point, try writing a program that will
PROGRAM create a picture in which a ball tumbles down

a staircase. This program is tricky, but
remember we have placed it here to really
challenge you. It should be easier to tackle if
you first instruct the computer to draw a
staircase and then concentrate on making a
ball move down the stairs, The finished
product should resemble the picture in
Figure 5,

Figure 5
S R T R 1 T R SR AR

Our program to accomplish this task is listed
below.

5 REM THIS SECTION OF THE
PROGRAM DRAWS A
~ STAIRCASE
19 SCREEN 3
20 FOR X =@ TO 191
30 PSET (X,Y), 6
440 Y=Y +1
45 NEXT
50 REM THIS SECTION OF THE
PROGRAM DRAWS THE BALL
TUMBLING DOWN THE STAIRS
60 Y=0
79 FOR X=4TO 191
80 PSET (X,Y), 15
190 FORT =0 TO 100
195 NEXTT
110 PRESET (X,Y)
120 Y=Y +1
125 NEXT X
135 CLS
149 Y=0
150 GOTO 20

REM The above program does exactly what we had
set out to do. The only new command
introduced here is REM. REM is the
abbreviated form of remark. When REM
appears at the beginning of a program line, (in
this program, lines 5 and 55), the computer
understands that it should ignore whatever
follows the REM command on the same line.
REM statements are comments which are
used to increase the readability of a program.

Lines 4@ and 120 use containers in a way that
is familiar to people who remember basic
algebra. The instruction “Y =Y + 1" tells

the computer to add 1 to the number that is

stored in the “Y" container and then place the
new number back in the YY" container.

If you were not able to complete the staircase
program, do not be discouraged. As
mentioned at the beginning of this guide, we
differ from other tutorial texts in many ways.
In addition to offering in-depth, non-technical
explanations of the BASIC commands we also
supply you with challenging exercises.

B e e

88

DECISION MAKING

89

90

DECISION MAKING

Up until now we have been introducing you to
the BASIC language through graphics. Now
we will begin to explore many other BASIC
commands in different settings.

IF/THEN In order to program the computer to make
decisions, we use the instruction known as
the IF-THEN statement. (Note: this is the first
time we have used the word ““program’”as a
verb. Previously we used this word as a noun,
but the verb for creating a program is
programming and we will start using this
official term.) Let’s see how it works. Enter
(this is the verb we will now be using
alternatively for the word “‘type’’) the
following program:

10 CLS

20 PRINT “TRY TO GUESS THE
NUMBER THAT | AM THINKING
OF. I'LL GIVE YOU A HINT.IT
IS BETWEEN @ AND 100."

30 A=50

40 INPUT X

50 IF X = A THEN GOTO 100

60 PRINT “SORRY, YOU DID NOT
GUESS IT. TRY AGAIN.”

70 GOTO 49

100 PRINT “GREAT GUESS. YOU ARE

CORRECT, THE NUMBER | WAS
THINKING OF 1S 50.”

R R et LT P P T A i,

92

STRING
VARIABLE

Now RUN the program. The INPUT command
in line 40 will cause a question mark to appear
on the screen. Enter your guess after the
question mark. Line 5@ of the program
compares your guess that is stored in
container "X’ with the number that is stored
in container “A"". If you guessed the number
50 then the computer will jump to line 194@. If
you did not guess the number 5@, and
container ‘X" holds any other number, the
computer automatically continues to line 6@.
There, it informs you of the result and sends
you back to line 40 which places another
question mark on the screen and waits
patiently for your next guess. |f you entered
50 as your guess, then the test on line 50
sends you to line 10@ which prints out the
appropriate message. Let’s take a closer look
at the |IF-THEN statement. Like the
FOR-NEXT loop, the IF-THEN command is
used very frequently.

The IF-THEN statement performs a test. In
our example the command meant: if X = A
was true then the computer must jump to line
10@. If the test proved to be false (the number
stored in “X" did not equal the number stored
in “A"), then no action was to be taken (e.g.
do not jump to line 1@@). Instead the computer
just continues with the next line in order.

In chapter 6 we mentioned that your computer
uses 2 different types of containers: One kind
stores only numbers and is called a “Numeric
Variable,”” while the other store both letters
(words) and/or numbers as long as they are
placed between double quotation marks. This
variable is called a ’String Variable” (Because
a word is a group of characters that are strung
together).

To differentiate between the two types of

variables a dollar sign ($) is placed after the
name you choose for the variable.

Example: A$ = “VARIABLE"
B$ = “2 Variables”
C$ ="1234"

We will now challenge you to write a program
that requires the use of a String Variable.

ANOTHER Listed below is the English description of a
CHALLENGING program that you should try writing and
PROGRAM running. The three steps below describe the

three major components of this program. The
first two steps can each be translated into one
line of BASIC command that the computer
understands. Step 3 will require several lines
of BASIC commands to ensure that the
computer does what is described. The
program you write should behave as described
in the three steps.

STEP 1: The computer asks you (by
displaying the message on the TV) whether it
should list all the numbers between @ and 100
for you on the screen.

STEP 2: The computer waits for your answer
and stores it in the type of container that
holds words.

STEP 3: The computer checks your response.
If you type in the word “YES'' it will proceed
to print the numbers between @ and 100 and if
you type “NO’* the computer will say
“GOODBYE" to you rather than print the
numbers.

Try writing and running this program.
Remember that very few people ever 'get a
program written 10@% correct the first

time. Part of the beauty of programming is
that it continually allows you to learn from
your mistakes. We provided several hints in
the description of the three steps. Read the
description carefully before you begin. Good

luck. Just in case you get stuck, we wrote our
program to meet the requirements of steps
1-3.

5 CLS

19 PRINT “DO YOU WANT ME TO
LIST ALL THE NUMBERS
BETWEEN @ AND 10¢? TELL
ME YES OR NO. "

20 INPUT A$

30 IF A$ = “NO"” THEN GOTO 100

49 FOR1=0TO 100

50 PRINT I

60 NEXTI

70 END

100 PRINT “GOODBYE"

We wrote END on line 70 so that if you type

“YES" and the computer lists all the numbers
between @ and 100, it will not continue onto

line 18@. The END serves as a

barrier to stop the computer from continuing
to line 104.

What happens if you enter a word other than
“yes’’ or “‘no’’ in response to the computer’s
question?

Type RUN and find out.

If you just tried this experiment you should
have found out that the computer lists all the
numbers from @-10@ anyway, because as it
stands now the program only checks for the
presence of the word “no” in the A$
container. If any other word is in there, the
computer still continues to line 4@. Try to
repair this program. Here is what we suggest.

35IF A$ = “YES” THEN GOTO 4¢

37 PRINT “YOU DID NOT TELL ME
YES OR NO, TRY AGAIN.”

38 GOTO 20

If you type LIST, your revised program should
resemble ours.

5CLS

10 PRINT “DO YOU WANT ME TO
LIST ALL THE NUMBERS
BETWEEN 9 AND 100? TELL ME
YES OR NO*

20 INPUT AS$

30 IF A$ = “NO” THEN GOTO 100

35 IF A$ = “YES” THEN GOTO 4§

37 PRINT “YOU DID NOT TELL ME
YES OR NO, TRY AGAIN.”

38 GOTO 20

49 FOR 1=0TO 100

50 PRINT |

60 NEXT |

70 END

100 PRINT “GOODBYE"

Now, if you type in any words other than
“YES" or “NO", the computer will tell you that
what you typed is not what it expected and

will let you keep on trying until you type either
“YES” or "NO”.

Your computer is capable of making other
kinds of decisions, beyond simple IF-THEN
tests. Here is another one. Enter the following
program:

96

10 CLS

20 REM THIS PROGRAM WILL
GATHER INFORMATION ABOUT
FAMILIES

30 PRINT “DO YOU HAVE A
BROTHER? TYPE YES OR NO.”

40 INPUT AS$

50 PRINT “DO YOU HAVE A SISTER?
TYPE YES OR NO.”

60 INPUT BS

70 IF A$ = “YES” AND B$ = “YES”
THEN PRINT “THEN THERE ARE
AT LEAST THREE CHILDREN IN
YOUR FAMILY.”

80 IF A$="YES” OR B$ = “YES"
THEN PRINT “THERE ARE AT
LEAST TWO CHILDREN IN YOUR
FAMILY

90 IF A$ < > “YES” AND B$ = “YES”
THEN PRINT “AREN’T YOU
LUCKY THAT YOU DO NOT HAVE
ANY BROTHERS."”

100 IF A$ = “YES"” AND B$ < > “YES"”
THEN PRINT “AREN'T YOU
LUCKY THAT YOU DO NOT HAVE
ANY SISTERS.”

110 IF A$ < > “YES"” AND B$ < >
“YES” THEN PRINT “YOU ARE
AN ONLY CHILD.”

120 END

Now RUN

and answer the questions. If you typed the
program in Capital Letters make sure that
when you respond to the question mark sign
you type the words “YES" or “NO"* in capital
letters. If you typed the program in Lower
case your "yes'’ or “no"’ response should also
be typed in Lower case letters. Then RUN the
program and again type in different responses
to see the results.

PRINT IT THE
WAY YOU WANT

The program is very straightforward. The new
commands AND, OR, <> (not equal) are
used in BASIC the same way they are used in
everyday speech.

We can have the PRINT command place
information on different parts of the screen by
adding a comma or semicolon to the word
PRINT. Enter the following program.

10 FOR 1 =0 TO 100
20 PRINT “HELLO"
30 NEXT |

Type RUN. You should recognize this form of
the PRINT statement. This is what we
introduced to you a few chapters ago. Now
change line 20 to read

10 FOR | =90 TO 100
20 PRINT “HELLO",
30 NEXT I

Now type RUN again and compare the results
you get with those of the previous program.

Now change line 20 again as follows;

10 FOR1=0TO 100
20 PRINT “HELLO";
30 NEXT |

TAB

There are three very distinct ways that output
can be displayed. Later on, we will apply
these different PRINT styles in our programs.

By using the TAB command, you can tell the
computer where you want the information
to be put. Enter the following lines in
immediate mode (without a line number).

PRINT TAB (20); “HELLO"

and now enter,

PRINT TAB (30); “GOODBYE"

TAB starts the printing of the message at the
column of text specified in the parentheses.
The left most column of the text screen is @,
and the right most column is 39,

SOME “RANDOM™”
THOUGHTS

100

Random numbers
are important in

computer programs

especially in game or

quiz programs, as
well as some
mathematic and
scientific
applications.

SOME “RANDOM"”
THOUGHTS

Many games that people play involve an
element of chance, from board games like
monopoly to the game of craps played in
casinos. The excitement and the high risk
involved in these games occurs by rolling disc
and getting a random, or unexpected
number.

It is very easy for us to roll the dice and
receive a random number. A random number
is one that occurs as if you placed your hand
in a barrel full of numbers and picked one out.
Unless you were a prophet, you wouldn’t
know what number to expect, and would be
surprised at the result.

While it is easy for us to roll random numbers
with dice, it is not so easy for your computer
to simulate dice and pick a truly random
number. Many microcomputers don‘t even
afford you the opportunity to easily spin a
truly random number. When you tell these
other machines to pick a random number they
will produce a fake random nuriber. Their
numbers are not truly random because each
time they start picking a number they always
begin with the same number. It’s as if the
barrel that they picked from only had one
number in it.

However, your SV1-728 can pick truly random
numbers. To do so, always insert the
following line at the beginning of a program
that calls for random numbers.

101

102

RND,

INT

TIME

5 N=RND (— TIME)

The new commands that are introduced are
INT, RND and - TIME.

To pick a truly random number the SVI-728
takes a look at its internal clock, which
measures the passage of time in

microseconds. Each time that the computer
receives the instruction — TIME, it looks at its
internal clock and uses the time on the clock
as the truly random number from which to
pick more random numbers. Since time never
stands still, each time the computer checks its
clock it will report a truly random number.

Type the following short program to see how
to use line 5 in a program and what the INT
and RND instructions do.

10 REM THIS PROGRAM PICKS
A RANDOM NUMBER

20 N = RND (— TIME)

30 X = INT (RND (1) * 10)

40 PRINT X

The new line here is line 30. The first
instruction that the computer responds to on
this line is RND (1). The number one in
parentheses is called a dummy variable
(container). Any number could have been
used in the parentheses. In each case the
computer picks a truly random number that is
between zero and one, for example, .2345.
The next instruction that the computer
performs on line 3@ is multiplying the decimal
number (.2345) by 10@. Since we want a whole
number (one that doesn’t have any numbers

to the right of the decimal point) we then use
the INT instruction to chop off the numbers to
the right of the decimal point leaving us with
X=2.

We can now present the program that
simulates the spinning of dice to achieve truly
random numbers.

10 REMTHIS PROGRAM SIMULATES
THE ROLLING OF DICE

20 N = RND (— TIME)

30 X=INT (RND (1) *6 + 1)

35 IF X =7 THEN GOTO 30

40 Y = INT (RND (1) *6 + 1)

45 IF Y =7 THEN GOTO 40

B0 R=X+Y

60 PRINT R

Lines 30 and 4@ pick the random numbers.
Let’s take an example, If the instruction RND
(1) picks the number.9678, we then multiply
this number by 6 and get 5.8068. The
computer then adds 1 to 5.8068 and gets
6.8068. Finally it takes the INT of 6.8068
which is 6. So “X"" dice spun a 6. The
computer then repeats this process to get the
number of the Y’ dice and then adds the
X" and "Y' die together and places the total
in container “’R’" which is then printed. In all
honesty, the explanation of random numkbers
is a little complicated and we suggest that you
review the material a second time if you are
not quite sure how the RND function works.

JUMPING The command GOTO was shown to cause the

AROUND computer to jump from one line to another.
Right now we will show you another way of
jumping around in your program and then
explain the difference between these two
methods.

Enter the following program:

[e e S —————— T e

16 REM THIS PROGRAM
CONVERTS YEARS TO MONTHS
20 CLS
30 PRINT “HOW MANY YEARS OLD
40 INPUTN
50 GOSUB 200
60 PRINT “HOW MANY YEARS OLD
IS YOUR FATHER?"”
70 INPUT N
80 GOSUB 2090
90 PRINT “HOW MANY YEARS OLD
IS YOUR MOTHER?”
100 INPUT N
119 GOSUB 200
120 END
200 PRINT N; “YEARS IS EQUAL TO";
N *12; “MONTHS"”
210 RETURN

RUN the program and answer the questions.
Do you understand how this program works?
Let’s review it.

After asking you the question on line 3@ and
accepting your answer on line 40, the

GOSUB/ computer encounters GOSUB 200, which

RETURN means GOSUB subroutine 20@. A subroutine is a
section of a program, either one line or several
lines, that is referred to frequently by the main
part of the program. Therefore, it is called a
SUBroutine, since it is subordinate, or
secondary, to the bulk of the program.

When the computer sees GOSUB 200 on line
5@, the computer jumps to line 20@. When the
computer completes the conversion of years
to months on line 200 and prints it on the
screen, the program continues to line 210.
There, the command RETURN sends the
computer back to the line that follows the one
which contained the GOSUB 200. In our

program above, that would RETURN the
computer to line 60.

The same thing happens when GOSUB 200 is
encountered on line 80 and line 110. That is,
the computer RETURNS to line 90 and 120
respectively.

What is the difference between the GOTO
command and the GOSUB-RETURN
command? If we had used the command
GOTO 209 instead of GOSUB 200, then line
210 would have had to say GOTO 60 to have
the computer continue from where it stopped
when it jumped to 260. But line 21@ would
have also had to say GOTO 90 and GOTO 120
if we had used GOTO 200 on lines 8@ and 110.
But the computer could not have understood
a line 210 that would have said,

210 GOTO 60, GOTO 99, GOTO 129

This problem stems from the fact that when
the computer listens to a GOTO command it
does not remember the line that it stopped at
before it jumped to the specified GOTO line
number. On the other hand, the beauty of the
GOSUB-RETURN command is that it
remembers precisely the point from which it
jumped. When it is finished with the
subroutine and sees the command RETURN,
it knows exactly where to return to without
being told again.

The next program employs another command
that is a variation of the GOSUB-RETURN
statement. Enter,

s e — e ek ear R

106

TH
[

E COMPUTER

10 REM THIS PROGRAM
DEMONSTRATES A SIMPLE
TELEPHONE BOOK HELPER

30 PRINT “IF YOU WANT TO FIND A
PHONE NUMBER QUICKLY, JUST
PICK ONE OF THE CHOICES
BELOW AND | WILL DO THE
REST

49 PRINT ““1. DOCTOR"

50 PRINT “2. POLICE"

60 PRINT “3. SPECTRAVIDEO”

70 INPUTN

80 ON N GOSUB 100, 200, 300

90 GOTO 10

100 PRINT “THE DOCTOR’'S NUMBER
IS 555-1234"

110 RETURN

200 PRINT “THE POLICE'S NUMBER
IS 655-1245"

210 RETURN

300 PRINT “SPECTRAVIDEO’S
NUMBER IS 555-1256"

310 RETURN

RUN the program and try it out. The variation
of GOSUB-RETURN is on line 80. The
command ON N GOSUB 100, 200, 303 means
that if “N’" (the container that is holding the
number you have chosen) is the number 1,
then the computer will jump to the subroutine
on line 100@. If “N” is holding the number 2,
then the program jumps to the subroutine on
line 2@, and if “’N"" is holding the number 3, it
jumps to the subroutine on line 30@.

You can make the computer function as a
calculator.

For addition enter
PRINT6+3

ARITHMETIC
OPERATIONS

and the computer will output
9

For subtraction enter
PRINT 6 -3

and the computer will output
3

For multiplication enter
PRINT6*3

and the computer will output
18

For division enter
PRINT 6/3

and the computer will output
2

If you forget to use the word PRINT when you
use the computer as a calculator, the

computer will not output the answer. The
computer will have calculated the answer and
placed it into a container in its memory
automatically, but it will not inform you of its
answer.

Most of you probably remember the basic
rules of arithmetic from your elementary
school days, so we will not dwell upon these
types of calculations any further.

The following table lists the order of
precedence for the mathematical and logical
commands that your computer will calculate.
That means if any of these signs or words

are used in your programs, the order listed
here is the order in which they will be
executed

—

oDV + *xZ—

&
-

A

I

v

1}

A

I

L

NOOAWN S

108

PROCESSING
INFORMATION

If there is more than one operation listed on
any line of BASIC commands, and these
operations are both listed on the same level in
the above table, then the operation closer to
the left side of the screen will be performed
first. For example, if you entered

PRINT3+2 -1

the computer will output,

4

because it first added 3 + 2 and thendid 5 — 1.
Similarly, if you entered,

PRINT3-2+1

the computer will output,

2

because it first perform 3 — 2 and then did
1+1.

At the beginning of this tutorial we described
a computer program as a set of instructions
that processed (acted on) information. The
information of the program needs to begin
processing is called the input to the program
and the result of the processing is called the
output.

The following program demonstrates how to
tell the computer the information you want it
to process. Most of the commands in BASIC,
like PRINT, FOR-NEXT, IF-THEN, PSET, etc.
tell the computer what to do with information.
We have already shown you some words that
tell the computer what information to work
on commands like INPUT and LET X = 20.
Now we will introduce you to a new set of
words, READ and DATA, which as the names
imply, tell the computer that what follows is
the information to be processed.

Enter the following program.

5CLS

10 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR

20 FORX=1TO5

30 READ F$

40 PRINT F$

50 NEXT X

60 DATA JANUARY, FEBRUARY,
MARCH, APRIL, MAY

Type RUN.

Your program should have output the names
of the first five months of the year. Now let’s
take a closer look and see how the program
works.

READ/DATA Line 20 prepares a loop that will do something
5 times. That something is told to the
computer in line 30, where we instruct the
computer to READ some information and
place it in container F$. When the computer
comes across the READ command, it
immediately searches the whole program for
the first line that begins with the command
DATA. Since DATA appears on line 6@, the
computer READs the first word, ““January "’
and places it in container F$. Then the
program continues to line 4@ and PRINTs the
word in F$ (January). NEXT X on line 5@
sends the computer back to line 2@ to begin
this process of READing and PRINTing again.

The second time around, the computer looks
again for the DATA statement that tells the
computer that on this line it will find the
information it needs to READ. So the
computer goes to the information listed on the
DATA line after the place where it previously
stopped and stores in F$. When the computer

e e S

110

puts the word “February’’ into container F$, it
first erases the word ‘“January’’, which was
previously stored in F$. So when the
instruction PRINT F$ is encountered on line
40, the only word in F$ is “February” and so it
is PRINTed on the TV.

The line that begins with the command
DATA and contains the information we want
the computer to READ, can be placed
anywhere in the program. The READ
command searches the whole program,
starting at the beginning, for the first line in
which the command DATA appears.
Therefore, our READ/DATA program could
have been written in the following way:

5CLS

16 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR.

15 DATA JANUARY, FEBRUARY,
MARCH, APRIL, MAY

20 FORX=1TO5

30 READ F$

40 PRINT F$

50 NEXT X

OR

2 DATA JANUARY, FEBRUARY,
MARCH, APRIL, MAY
5CLS
10 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR
20 FORX=1TO5
30 READ F$
40 PRINT F$
50 NEXT X

The information that is placed on the DATA
line is separated by commas. The words or
numbers between commas are treated as one
piece of information. Enter and RUN the
following program to see what we mean,

10 CLS

20 REM THIS PROGRAM READS
AND PRINTS OUT THE NAMES
OF FIVE STATES

30 FORX=1TO5

49 READ F$

50 PRINT F$

60 NEXT X

70 DATA NEW YORK, NEW JERSEY,
NORTH DAKOTA, NEW
HAMPSHIRE, NEW MEXICO

How does the following program, which reads
and prints the name of 5 states, differ from
the program that did the same thing above?

10 CLS

20 FORX=1TO5

30 READ F$: READ G$

40 PRINT F$, G$

50 NEXT X

60 DATA NEW, YORK, NEW, JERSEY,
NORTH, DAKOTA, NEW,
HAMPSHIRE, NEW, MEXICO

You should be able to tell the difference from
just comparing the two programs without
even having to enter the second version and
running it.

The first program, which read and printed the
names of 5 states, did so by reading each set
of two words into one container, F$. In the
second program, the name of each state was

B T T

112

OUT OF
DATA
message

CLEAR

broken into two parts. The first half of the
name was stored in container F$ and the
second half of the name was stored in
container G$.

Enter the above revised program into the two
containers F$ and G$, if you have not yet
done so. Run the program. Now add line 7@:
70 GOTO 20

And RUN the program again. Did you get
OUT OF DATA message? That error message
resulted form the fact that you tried to
READ information again but since the
computer finished READing the list after you
ran the program the first time, the computer
did not find any more information on the
DATA line after the name MEXICO.

The way to fix that problem is to tell the
computer to return to the beginning of the
DATA before it is time to read the names
again. The command you use to do this is
RESTORE. Here is how the repaired program
looks.

10 CLS

20 CLEAR 500

30 FORX=1TO5

40 READ F$: READ G$

50 PRINT F$, G$

60 NEXT X

70 RESTORE

80 GOTO 30

90 DATA NEW, YORK, NEW, JERSEY,
NORTH, DAKOTA, NEW,
HAMPSHIRE, NEW, MEXICO

Here is how this program works. We have
added another command called CLEAR on
line 2@. Whenever you use a READ-DATA
command you should also use CLEAR, which
CLEARs away a lot of room (e.g., 500 spaces)
in the computer’s memory. Then you can

RESTORE

ANOTHER TIME
SAVER

AUTO

work with the containers that store words
without running out of space, because the
containers that store words and text generally
take up much more room than the containers
that store only numbers.

Then on line 78, the RESTORE command
instructs the computer to return to the
beginning of the list of information on the
DATA line before the GOTO 3@ command on
line 8@ sends the computer back to the
beginning of the loop on line 30. The program
should print out the names of the states
without receiving an OUT OF DATA message.

Our programs are beginning to get larger.

That is we are writing more lines of
instructions in each program. Some people

like to tell the computer to automatically write
the line number for each line of the program.
This is accomplished by typing:

AUTO

In immediate mode, the computer will
respond with the number 10 and it will wait
for you to begin typing on line 10. When you
have finished line 10 and pressed
the computer will automatically print line 2@
and wait for you to continue.

You can make the computer start the
automatic line numbers from a number other
than 10, and it can increase the number for
the next line by more than or less than 1. In
other words, the AUTO command can be told
what line number to start with and the increase
for each subsequent line.

For example:

AUTO 20, 40

This will start the first line number at 20 and
cause the second line number to be 6@ and
the third line number to be 100.

e e R

114

As with all the commands we have introduced
to you in this tutorial guide, it is necessary for
you to read the material in other parts of this
manual to get a full understanding of each
BASIC command.

ARRAYS-A WAY OF
ORGANIZING MANY
CONTAINERS

115

116

ARRAYS-A WAY OF
ORGANIZING MANY
CONTAINERS

We hope that you are beginning to feel
comfortable with the concept of containers
and how your computer uses them to store
and manipulate information. Previously, we
have always used a container as an individual
unit. That is, we have thought of each
container as a distinct unit. A", “B”’, "“C$"
and ““D$’’ are examples of individual
containers into which we put numbers and
words. However, we did not have the need to
group several individual containers into one set.

There are times when it is necessary to
arrange a series of containers into a larger
unit. If you wanted to keep track of 5 test
scores for each of the 25 students in your
class, it would make sense to organize the
containers that hold the scores into a larger
unit. Then you work with 25 sets of
containers, rather than with 125 individual
containers. (Each set would be a table with 5
lines of information.) Here is an example of
what the table for a student named John
might look like.

JOHN

(1) 75
(2) 82
(3) 94
(4) 68
(5) 109

Thus if we had before us 25 different tables
representing the scores of all 25 students, we

e e AR S SRR G T 6 N S ezl ||

118

DIM

could then refer to John's first test score as
John (1), his second test score as John (2)
etc.

The following program demonstrates how we
can instruct the computer to group John's 5
test scores into a table.

19 REM THIS PROGRAM
ORGANIZES JOHN'S TEST
SCORES INTO A TABLE

20CLS

30 DIM J (5)

40 FORX=1TO5

50 READ J (X)

60 NEXT X

70 PRINT “WHICH TEST GRADE DO
YOU WANT?"”

80 INPUT 2

90 PRINT J (2)

100 DATA 75, 98, 94, 68, 100

-

Enter this program and RUN it. This is how it
works.

Line 3@ DIMensions a block of five containers
for the set of containers called "“J”. That
means the computer is instructed to set aside
enough room to store 5 numbers in 5 different
containers. “J" is the name for this group of
containers. On line 5@ the computer READs in
one test score at a time from the data line and
places it into one container.

When the program reaches line 7@, it has
already placed all 5 test grades into 5 different
containers. This information is organized in
the computer in a way that is similar to the
table of John's test scores. So when we
INPUT the test score that we want in line 80,
the computer is told on line 99 to print that
particular line of the table.

WORKING WITH A
LARGER SET OF
CONTAINERS

Oh, we almost forgot to tell you: The offical
computer term for the set of containers that
we just worked with is an “array”’.

It is a little trickier to work with a large set of
containers that can store two items each than
it is to work with the simple container we
demonstrated above. If you wished to store
the scores of 5 students for one test, you
would need to have one set of containers that
stores their names, and one that stores their
respective grades. The table that represents
this information looks like this:

TEST #1

(1) JOHN 75

(2) BOB 81

(3) JOAN 65

(4) HARRY 96

(5) LINDA 98
Figure 7

The program that wiH READ and PRINT out a
table just like the one in Figure 7 is listed
below. Enter the program, RUN it and try to
understand it before reading our explanation.

— e

s e e

120

10 REM THIS PROGRAM
ORGANIZES NAMES AND
SCORES FOR ONE TEST

20 CLS

30 DIM V$ (5,2)

40 FORN=1TOb

50 FORS=1T02

60 READ V$ (N,S)

70 NEXT S: NEXTN

80 REM THIS SECTION PRINTS OUT
THE TABLE

90 PRINT “NAME"”, “GRADE"" :
PRINT

10 FORN=1TO5
110 PRINT V$ (N, 1), VS (N, 2)
120 NEXTN
130 DATA JOHN, 75, BOB, 81,
JOAN, 65, HARRY, 96, LINDA, 98

Don’t get discouraged. This is the most
difficult program you will see in this tutorial!
Let's take a closer look at it.

Line 3@ DIMensions or sets aside 5 containers
that will store the number corresponding to
the student’s names listed in Figure 7, and
the 2 containers that correspond to each
name or number.

Lines 10@-120 PRINT the table on the TV
screen in the same form as appears in
Figure 7.

The computerese term for this extended
container is a “‘double array’, which is a
fancy way of describing a two-column table.

Is there another way that we could have
written this program? Yes, there is. Generally,
almost all programs can be written in more
than one way. Different people plan and
program according to their own styles. Of
course there are important differences among

the various styles. You will learn to discern
which option to choose as your knowledge
increases with practice.

Here is another way you could have written
the program that reads and prints the table in
Figure 7. This time we use two separate sets
of containers: One to store the names, and
one to store the grades. Each one uses a non-
column array, not the double column array
that we just used.

19 CLS
20 DIM A$ (5), B (5)
30 FORI=1TO5
40 READ A$ (1), B (1)
50 NEXT |
60 PRINT “NAME", “GRADE"": PRINT
70 FORK=1TO5
80 PRINT A$ (K),B (K)
90 NEXT K
100 DATA JOHN, 75, BOB, 81, JOAN,
65, HARRY, 96, LINDA, 98

RUN the revised program to make sure that it
does what it is supposed to.

R e R T T N TR ST RS IS .

122

ON THE END OF A
LONG STRING

123

124

ON THE END OF A
LONG STRING

STRING Congratulations! You have made it this far
and we trust you are doing well. We will now
cover what is known in computerese as
**String Manipulations”. A string is a group of
characters that usually is just a word.
Accordingly, a word is considered to be a
string of characters that can easily be changed
and rearranged.

Enter the following program.

10 CLEAR 200

20 INPUT “TYPE IN A SENTENCE
THAT IS NO MORE THAN 10
WORDS LONG.”; S$

30 PRINT “THIS IS THE NUMBER OF
CHARACTERS IN THE SENTENCE
THAT YOU JUST TYPED.”

40 PRINT LEN (S$)

Now RUN the program. As its name implies,
the LEN command calculates the number of
characters in a string of characters. In this
example, the whole sentence was stored in
container S$.

INPUT We hope you have noticed that line 2@ looks a
bit unusual. This is because we used the
INPUT command to print the message on the
screen without the help of the PRINT
command, and placed the container name at
the end of the line. This line is a very good

e e AR T P e T

LEFTS
RIGHTS
MIDS$

example of a short cut in programming that
combines several commands on one line.

The following commands manipulate
character strings in various ways; RIGHTS,
LEFTS and MID$. The programs below will
introduce these commands and their use to
you.

10 INPUT “TYPE A WORD THAT IS AT
LEAST 6 LETTERS LONG"; W$

20 PRINT “THE FIRST LETTER IS:";
LEFTS (W$,1)

30 PRINT “THE LAST TWO LETTERS
ARE:"”; RIGHTS (W$,2)

40 GOTO 10

The LEFTS (W$,1) command on line 2@ told
the computer to print the first character to the
left of the string of characters stored in
container W$. If we had written LEFT$ (W$,3)
then the computer would have printed the 3
characters closest to the left.

Similarly, the instruction RIGHTS$ (W$,2) on
line 3@ causes the computer to print the 2
characters to the right, or the end of the string
of characters to the right, or the end of the
string of characters that is stored in container
WS§.

The MIDS$ is more powerful than the LEFT$
and RIGHTS$ commands. Enter and run the
following program.

10 W$ = “SPECTRAVIDEO”
20 PRINT MID$ (W$,4,3)

This MID$ command on line 20 started at the
fourth character from the left of the word
SPECTRAVIDEO (which was stored in container

W$), and counted the next three characters
and printed out these characters, i.e., CTR.

But the MID$ command can also serve a very
useful function.

If you wanted to search through a sentence
for a specific word, you could use MIDS$. It is
demonstrated in the following program. Enter
and run the program.

10 CLEAR 500

20 INPUT “TYPE A SENTENCE THAT
IS NO MORE THAN 10 WORDS
LONG"”; S$

30 INPUT “TYPE AWORD THAT
APPEARS IN THE SENTENCE
YOU ENTERED"”; W$

40 X = LEN (W$)

50 FOR T =1TO LEN (SS$)

60 IF MID$ (S$,T,X) = W$ THEN
GOTO 100

JONEXTT

80 PRINT “THE WORD YOU
SEARCHED FOR IS NOT IN THE
SENTENCE"”

90 END

100 PRINT W$ “APPEARS IN THE

SENTENCE AT CHARACTER
NUMBER “;T

In this program, MIDS$ is used to test various
sized groups of characters to see if they are
identical to the word we are searching for.
The program calculated the LENgth of W$,
and placed the number of characters in W$,
into the container called X" (line 40). Then
the computer starts at the left position of the
characters in W$ and counts the number of
characters stored in “X"’. If a match is found,
you are told that the word has been found in
your sentence.

T B T4 T Vs 73N . AR AT N e |

128

ADVANCED
GRAPHICS

AND SOUND
PROGRAMMING

129

130

ADVANCED
GRAPHICS

AND SOUND
PROGRAMMING

The material in this chapter will demonstrate
the advanced graphics and sound capability
that is built into the SVI-728 which separate it
from its competitors. This power is not
available and accessable from BASIC in any
other personal computer.

This chapter is separated into two parts. The
first part expands on the introduction to
graphics that you have received earlier. The second
part explains the simple approach to sound
programming using the PLAY command. A
more complicated approach to sound
programming is possible using the SOUND
command which is explained in Appendix H.

P e —————

CIRCLE

132

PART ONE-
ADVANCED
GRAPHICS

To begin exploring the graphics capability of
the SV1-728, type in the following lines,
pressing ENTER after each is completed:

10 SCREEN 2

20 CIRCLE (128,80),60,11
30 PAINT (128,80),11

40 GOTO 30

Now, RUN the program and you will see the
yellow circle appear on the screen and then it
will be filled in by the SVI-728’s yellow
paintbrush. To understand how this happens,
let's look at each line individually.

10 SCREEN 2

This line causes the computer to display its
graphic screen.

20 CIRCLE (128,80),60,11

Here, you are telling the computer to draw a
circle around a center point that is 128 columns
from the left side of the screen, 80 rows down
from the top of the screen, with a radius
(distance from the center of the circle) of 6@
points and using the yellow (the number 11)
outline.

PAINT 30 PAINT (128,80),11

This line introduces you the PAINT

command. This command tells the computer

to use its “paint brush’’ to fill certain areas. In
line 3@ the computer is instructed to fill the
circle you have just outlined in line 2@. In order
to paint (fill) an object you must give the
computer the coordinates numbers (in
parentheses) which designate any point inside
the object (as we just did giving the

coordinates of the center point of our circle). If
you had used coordinates which designate a
point outside the object, the computer would
have painted the whole background but not fill
the object itself.

However, the fill color MUST be the same

as the outline colour. In our case the number 11
is the same yellow color used for the circle
outline from line 2@. The PAINT “‘recognizes”’
outlines of objects as borders only if their color
matches the PAINT color. A different PAINT
color will “ignore’’ the outlines and will paint
(fill) the whole screen-covering the object.

40 GOTO 30

The last line of this program causes the
computer to repeat line 3@ so the circle will not
disappear. To stop the program press the
CTRL-STOP keys combination.

You can experiment with the numbers in this
program to vary the location, size or color of
the circle being painted.

You can create a vast array of different sized
circles and geometric shapes by adding a few
more instructions to the CIRCLE command.
We will give you another example of using the
circle command.

T ===

134

Change the program to read:

10 SCREEN 2

20 CIRCLE (128,96),80,13,3.14,6.28
30 GOTO 30

RUNnRing the program will give you the following
result:

You should see the bottom half of the circle.
Should you change line 2@ to be:

20 CIRCLE (128,96),80,13,6.28,3.14

you will see that the top half of the circle is
drawn. Another way of constructing a whole

circle is with the following changes in line 2§:

2¢ CIRCLE (128,96), 80,13,0,6.28

Those of you who remember your geometry
will recall that 3.14 is pi and 6.28 is 2pi
(approximate). The two pi numbers which
follow the color number (#13) on line 20 tell
the computer where you would like the
computer to begin and end the circle (how
much of the circle you want drawn).

You can also specify the kind of shape drawn.

For example, you can draw an ellipse (a
distorted circle for those of you unfamiliar
with geometry) with the following added
feature on line 2.

20 CIRCLE (128,96), 80, 13,,,1/4

135

136

How did we get an ellipse? Well, the three
commas after the number 13 are necessary to
inform the computer that we will not be
specifying the starting and ending points of
the shape and are therefore leaving them
blank. The computer knows what to do when
we leave it blank. It assumes that we want the
whole shape drawn. The 1/4 at the end of line
2 tells the computer the height/width ratio
that we want.

Generally, the width of the circle is the same

as the diameter you specify. However, if the ratio
number at the end of the CIRCLE command

line is less than one (1), the circle will be wider
than it is high, as in the example above where

the ratio is "’1/4"". If the ratio is greater than

one (1), the circle will be higher than it is

wide, as in the following example:

20 CIRCLE (128,96), 80,13,,,2

LINE

]
Now that you have seen what your SV|-728 can
do with circles and its paintbrush, we'll take a
look at lines and boxes. The computer has the
same simple method for drawing them as it

does for circles. First, type NEW to clear the

memory of the program we were using before.
Now, enter the following

10 SCREEN 2
20 LINE (50,40) — (200,150),14
30 GOTO 3¢

S

138

BOX
(B)

When you run this program, you will see that a
line has been drawn from high on the left side
of the screen to a low point on the right side of
the screen. The line that causes this to happen
is line 20:

30 LINE (50,40) — (200,150),14

This line tells the computer to draw a line from
a position 50 points from the left margin on the
screen and 40 points down from the top over
to a position that is 200 points from the left
margin and 150 points down from the top. The
number 14 designates the color of the line to
be white.

By simply adding the letter “’B’* following a
comma to the end of line 2@ you will convert
this line into a box.

20 LINE (50,40) — (200,150),14,B

RUNnNing the program now, will show a box
(outlined rectangle) on the screen. The ‘B’ tells
the computer to draw the box at the same
coordinates as the line.

BOX FILL To tell the computer to use the paintbrush
(BF) (fill the box) simply add the letter “F’’
immediately to the right of the “B” in line 20:

20 LINE (50,40) — (200,150),14 BF

Now, you will see that the program draws the
same box and paints the inside with the same
color as the outline.

As an interesting summary of the graphics
commands you have learned so far RUN the
following program:

10 COLOR, 1,9
20 SCREEN 2
30 CIRCLE (126,110),60,9,,,1.3
40 CIRCLE (110,96),10,2
50 PAINT (110,96),2
60 CIRCLE (142,96),10,2
70 PAINT (142,96),2
80 LINE (100,125) — (105,135),14
90 LINE (152,135) — (147,135),14
100 LINE (105,135) — (147,135),14
110 CIRCLE (74,110),25,11,,,5
120 CIRCLE (178,110),25,11,,.5
130 Y =85:R=50:C=1
140 FORQ=1TO 10
150Y=Y -5:R=R—-4:C=C+1
160 CIRCLE (126,Y),R,C,,,.2
170 NEXT Q
180 FORT=1TO500: NEXTT
199 N = RND (— TIME)
200 FORT=1TO 39
210 X =X +10:Y = 100
220 C = INT (RND(1)*15) +1
230 LINE (X,Y) — (X + 35, Y + 35),C,BF
240 LINE (X,Y) — (X + 35, Y + 35),1,BF
250 NEXT T
260 GOTO 260

This program demonstrates all the concepts
introduced thus far. We will continue with
some more graphics commands.

e e e R

140

DRAW

The DRAW command is actually the door to
an actual mini-language within BASIC called
"Graphic Macro Language (GML)".

Start by clearing the computer’s memory.
(Type: NEW then press ENTER)

Then type the following lines:

10 SCREEN 2

20 PSET (50,60), 1

30 DRAW D50 R50 U50 L50"
40 GOTO 40

Line 20 positions your graphic cursor at the
X, Y coordinates (50@,60), and designates the
color to be black (1).

Line 30 starts the line drawing at the point
specified in the PSET command. It can
moves relative to the point, according to the
distance and directional commands specified
in the DRAW statement.
Example:

DRAW “U5@R5¢@"

This tells the computer to draw fifty
units to to RIGHT.

Instructions are in quotes because the DRAW
command acts on a character string. Remember,
a character string is a variable (container) that
holds characters. Therefore, we could have
written the DRAW example used above in

the following manner.

30 T$ = “U50R50D50L50""
40 DRAW T$
50 GOTO 50

This second way of DRAWing first defines the
object we wish to DRAW, and then places it
in T$ and then DRAWSs T8S.

SCALE

Please note you can draw diagonally using

E = diagonally up & right

F = diagonally down & right
G = diagonally down & left
H = diagonally up & left

U
4

'

D

Now we will look at several other additional
graphic commands you can use to create
exciting screen displays. They are SCALE,
LOCATE and BLANK MOVE.

Type in and RUN the following program:

10 COLOR, 1, 1

20 SCREEN2:X=14:Y =120
CO0=2:2=1

30 PSET (X, Y)

40 A$="S=Z,C=CO;F15R50E15
U45H15L30H15U20E10R20F10
R10U12H15L30G20D35F25R25
F10D18G10L35H10L10D14S0""

50 DRAW A$

6O0X=X+16: Y=Y +8
CO=CO0+1:2Z2=2+1

70 IF Z > 10 THEN 20

90 GOTO 30

B e e

In this example, the variable A$ contains the
statement S = Z which sets the command
SCALE equal to Z. As the program

continues, Z is raised by 1 each time line 60 is
reached. This causes the scale to be raised by 1.

LOCATE Now try this program:

10COLOR, 1, 1

11 CLS

12 REM LOCATE ISUSED TO
POSITION CURSOR

13 LOCATE 10, 170 : PRINT
“THIS IS AN"

14 LOCATE 10, 180 : PRINT
“EXAMPLE OF LOCATE"

15 FORI=1T0 1000 : NEXT

20X=14:Y=120:C0=2:2=1

25 SCREEN 2

30 PSET (X, Y)

40 A$ =S =2Z;C =CO;F15R50E15U45
H15L30H15U20E10R20E 10R20F 10
R 10U12H15L30G20D35F25R25
F10D18G10L35H10L10D14S0"

50 DRAW A$

60 X=X+16:Y=Y+8:CO=CO+1

1 Z2=2+1
70 IF Z> 10 THEN 20
99 GOTO 30

The command LOCATE is used to position the
cursor displayed on the screen.

142 e R L L Y TR AT,

VE Now, type NEW and enter the following
program:

10 REM DRAWING
20 SCREEN 2
30 AS = “BM30,156C9F15R50 E15U
45H15L30H15U20E10R20F 10R
10U12H15L30G20D35F25R25F
10D18G10L35H10L10D 14"
40 DRAW A$
50 PAINT (42,154),9
60 LINE (150,171) — (219,171),2
70 LINE (219,171) — (230,34),2
80 LINE (23¢,34) — (210,34),2
90 LINE (210,34) — (190,151),2
100 LINE (190,151) — (179,151),2
110 LINE (170,151) — (150,34),2
120 LINE (150,34) — (130,34),2
130 LINE (130,34) — (150,171),2
149 PAINT (165, 165),2
150 GOTO 150

In this example, line 3@ contains the statement
BM3@,156. This is the command that causes
the cursor to begin drawing at those specified
X and Y coordinates. Without using this
command, all draw statements will begin
executing at the upper left corner of the
screen.

Now that we have learned how to deal with
the simpler shapes, we will examine the more
complex type of graphics generation called
SPRITE generation. The best way to
understand a sprite is to imagine it as a magic
genie you can create and easily control.

Unlike the graphic commands we

have encountered up till now which can only
create one type of an object, like a line or
circle — the manipulation of sprites is a lot
more flexible.

— "}

In order to see a sprite on the screen you must
do the following:

STEP 1: Pick one genie “‘to talk to!’ (There are
32 different genies available to do your
bidding).

STEP 2: You must tell the genie “what you
want it to wear”’ In other words, what
shape you want it to assume).

STEP 3: You must tell it what color to take
the shape that it will wear.

STEP 4: You must tell it where to appear on
the screen.

The importance of this genie metaphor cannot
be overstated. Whenever you do not get the
results you expected when commanding a
genie it is probably because you did not
provide all four pieces of information
necessary to make the genie appear.

We will now demonstrate how to instruct a
genie. Enter the following program and RUN
it.

10 SCREEN 2
20 FORT=1TO8
30 READ A$
40 S$ = S$ + CHRS(VAL("&B" + AS))
50 NEXT T
60 SPRITES (1) = S$
70 PUT SPRITE 0, (128,96),8, 1:
GOTO 70
100 DATA 00011000
110 DATA 00111100
120 DATA $1111110
130 DATA 61111110
140 DATA 01111110
150 DATA 61111110
160 DATA 00111100
170 DATA 00011000

144

You should see a red ball appear at the center
of the screen. This ball is the sprite that we
created in the above program. Here is how it
works.

Lines 100—17@: These lines design the clothes
that the genie will wear (or in straighter
language, they contain the design of the
sprite’s shape). Each line of the data
statement has eight characters on it. They
represent the size of the sprite. The zeros are
to make the display transparent at that point
of the shape while the ones are the points of
the display that are lit.

e 140

146

If we took an 8 by 8 grid , the shape
would look like this:

Lines 20—5@: These lines complete the design
of the shape of the clothes. They set up a

loop that will read the set of data lines, convert
them into binary strings, append each one to
the former and then store this one shape unit
in S$.

Line 6@: This line picks the sprite that we will
command (#1) and tells it to carry the shape
contained in S$.

Line 7@: This line tells the sprite what color to
make the shape, and where to appear on the
screen. This line:

70 PUT SPRITE @, (128,96), 8,1

is read like this (It's a long sentence, but you'll
be able to follow it):

PUT the SPRITE that is specified at the end of
line, which is #1, on plane (surface) @, at
position (128,96) which is the center of the
screen, using color #8. The sprite to use is #1.

(Note: In the command, PUT SPRITE

(sprite plane), (X,Y), (color #), (sprite
pattern #), the use of different plane numbers
allows the user to place more than one sprite
on the screen at once.)

The way we create sprites is very logical. |f
you are familiar with any other computer’s
BASIC, you will immediately notice how
much easier the sprite manipulation is on the
SVI-728. That's because other systems force
you to go PEEKing and POKing around
their computer’s memory.

Sprites are not limited to only 8 by 8 pixels.
Sprites can also be placed within a 16 by 16
box. The sprite size after the screen mode
determines the size of sprite. The sprite size
should be set to @ to select 8 X 8 pixels, 1to
select 8 X 8 pixels (magnifed by 2), 2 to
select 16 X 16 pixels, 3 to select 16 X 16
pixels (magnified by 2).

Hence, if sprite size 1 is selected the sprite
becomes 8 X 8 pixels (magnified by 2);
however, if sprite size 2 is selected, then the
use of a 16 X 16 box is allowed. But, the
computer fills the 16 X 16 box differently than
it fills the 8 X 8 box. The following program
should illustrate how this works:

10 screen 2, 2
20 for X=11to 32
30 read a$
40 restore
50 s$ =s$ + chr$ (val("’&b" + a$))
60 sprite$ (@) = s$
70 put sprite @, (128, 96), 1,0
80 next x
90 goto 90
100 data 11111111

A A T T AR PR AT

148

Notice tha the computer first fills a box 8 x 16
and then fills another 8 x 16 box

alongside this one to make 16 x 16 box.
Therefore, when making a 16 x 16 sprite,
careful manipulation of data statements (32 of
them) is required.

This program demonstrates the use of the
joystick to move sprites. When run, a small
spaceship-like sprite will appear. This sprite
can be moved anywhere within the confines
of the screen and will also fire a bullet when
the trigger is pressed.

10 Color 15,1, 1
20 Screen 2,2
30 Rem This section reads in the sprites
40 ForT=1t08
50 Read A$
60 S$ =S$ + CHRS(VAL ("&b + A$))
70 NextT
80 SPRITE $ (1) =S$
90 ForT=1t08
100 Read B$
110 U$ = US$ + CHRS (VAL("&b" + B$))
120 NextT
130 SPRITE $ (2) = U$
140 Rem This section sets the initial
location of the Sprite
150 X=128:Y =96
160 Put SPRITE 1, (X,Y), 9,1
170 D =STICK (@)
180 F =STICK (0)
190 Rem This section takes the given
joystick information and uses it
to make the sprite move
200 If F <> @then GOSUB 460
210 fD=1then X=X:Y=Y -1
220 IfD=2then X=X+1: Y=Y -1
230 IfD=3then X=X+1:Y=Y
240 IfD=4then X=X+1:Y=Y+1
250 IfD=5then X=X:Y=Y+1
260 IfD=6then X=X—-1: Y=Y +1

2701fD=7 then X =X -1: Y=Y
280 IfD=8then X=X—-1:Y=Y =1
290 GOTO 160

300 DATA 00111100

310 DATA 01000010

320 DATA 10000001

330 DATA 11111111

340 DATA 01000010

350 DATA 10000001

360 DATA 10000001

370 DATA 10000001

380 DATA 00010000

390 DATA 00101000

400 DATA 00101000

410 DATA 00111000

420 DATA 00000000

430 DATA 00000000

440 DATA 00000000

450 DATA 00000000

460 For | =Y — 3 to — 2@ step — 2
470 Put Sprite®, (X,1),9,2

480 Next |

490 Return

If you have understood all of the previous
graphics examples and concepts, you should
be well on your way to creating exciting
graphics to enhance the programs you create
using your SVI-728.

That ends our introduction to BASIC
graphics. Now it is time to move on to

the extraordinary sound capabilities of the
SVI-728.

e e

150

(=]
»

-_—

0 5{ m——
-—

A% =Bb -
G*=Ab m——
F=G"mmm—
D* = E® m—m—r
C#* =D m———
—
L
-_—

03 m———
[
L
y—
-
[

OPVO0DMMEOP>PIOOMMOPIOOMT

\
(2]
o

NERRERRNRRRRRRERN

| B¢

mm

=

-

PART TWO-
SOUND
PROGRAMMING

There is also a very powerful music synthesizer
built-in to the SVI1-728 that is easily used by
simple BASIC commands to produce music. In
addition to the power of this synthesizer, it is
most important to realize that it can do its work
independently of the main microprocessor.
What this means is that you can program the
synthesizer to do one thing while the screen,
printer, modem or other peripheral is doing
something else.

The following figure represents the available
musical scale that can be accessed by the
SVI1-728's synthesizer.

PLAY The command that opens the door to this
synthesizer is the BASIC keyword PLAY. For
example, Typing the BASIC statement:

PLAY “CDE"

followed by pressing the ENTER key, will
produce musical tones from your SV1-728
through the speaker on your television or
monitor. You could achieve the similar results
by writing a BASIC program with the following
lines:

10 PLAY “CDE"”
20 GOTO 10

There are numerous other things that can be
done with sound using the synthesizer in your
SVI-728. We will look at the simple ones in this
section and progress to the more complex

ones in later pages. We will continue to work
with the BASIC program listed above and
make changes in it as we go along.

O (OCTAVE) First, change line 10 to read:

10 PLAY “O1CDE"”

Now, when you run the program, you will hear
that the sounds produced are at a very low
pitch when compared with the first ones you
made. This is because you have set the
OCTAVE by adding the “O1” before the
“CDE"".This is the command that allows you to
access 8 octaves with the synthesizer. Now

add this line:

11 PLAY “0O4CDE”

When the program is run, you will hear three
low notes followed by three higher notes. The
octaves you can access using the “O”
command can range from 1 (lowest) to 8
(highest).

e T O T SR R Sy

152

T(TEMPO)

L (LENGTH)

Now, change line 1@ to read:

19 PLAY “T3201CDE"

The program will now play the same note you
heard before but at a much slower rate. What
you did by typing the “T32" before the
“O1CDE" was to set the TEMPO or speed of
the music. The values for "“T*' can range from
32 (slowest) to 255 (fastest).

You will also notice that the notes in line 11
also play at the slower pace. This is because
the synthesizer will play at whatever tempo
you set until you tell it to play at a different
tempo. To see this in action, change line 11 to
read:

11 PLAY “T25504CDE"”

Now, as you can hear, the notes from line 11
play at a much faster pace than those in line
10.

You can also control the length of each note
individually. To see this, change line 10 to
read:

19 PLAY “T25501CDL1E"”

This change the “E’* note to a much longer
duration than “C"" or “’D"* and also causes the
notes in line 11 to play for a longer time. This
length command can be placed in front of any
note to control its length. The length of the
notes can be varied from 1 (longest) to 64
(shortest).

Two other BASIC commands that can be
applied to sound are the S command and
the “M” command. These two commands
determine the tonal qualities of the note being
played. These are more commonly referred to
as the “ENVELOPE" characteristics of a note.
Everything that creates a sound has unique
characteristics.

S (SHAPE)

M (TONE)

R (REST)

For example: the same note played on a piano
and a trumpet may be at the same pitch but
will have two distinctly different sounds. These
two commands allow you to shape the notes
you are creating in the same way.

The *“S” command controls the shape of the
note. As an illustration of this, change line 10
to read:

19 PLAY “S104CDE"”

and eliminate line 11.

Now, run the program to see the differences in
the sounds you hear. These shape commands
can be considered the voices of the

synthesizer. There are 14 of them built-in to

the SVI-728. This means that the numbers used
to set the ““S” command can range from 1 to
14,

The “M” command controls the tone period or
to be more specific, the amount of time that
you will hear each note based on its tonal
qualities. To see how this works, change line
10 to read:

10 PLAY “S10M500004CDE"

As you will hear, this changes the sound
dramatically. The values used to set “M’’ can
range from 1 to 65535.

You can also insert pause between notes by
using the “R” command. Change line 1@ to
read:

18 PLAY “O4CR1DR1QE”

This causes the “’C’’ note to play and then
silence is heard for a while then the D'’ note
plays, then a shorter period of silence, then the
“E’" note followed immediately by the “‘C"’
note again.

e meere——

154

V (VOLUME)

USING
3 CHANNELS
OF SOUND

The final command we will examine in this
section is the ““V" command. This command is
used to set the volume of the sound being
produced. Change line 10 to read:

10 PLAY “04V5CV10DV15E”

You will now hear that each note gets louder
than the one before it. You can set the volume
from @ to 15.

So far, we have only used one note at a time
to demonstrate the use of the synthesizer.
However, the SVI-728 has three separate
channels of sound that can be programmed
individually to play together to create chords.
Change line 10 to read:

10 PLAY “O1CDE", “O3EFC", “O5GAB"”

What you hear is three notes being played in
combination to create a chord. You can also
have each channel play something entirely
different from the others to create a melody
and harmony part in the music you create.

There are also other ways of addressing the
sound and music generation capabilities of the
SVI1-728 and they will be covered in the
appendix, which is called “USING THE
PROGRAMMABLE SOUND GENERATOR".

155

156

APPENDIX A

ASCIl CHARACTER CODES

ANK|
F)

| b=y W|0 |e ofnz ﬁ
w/BQ&n o3/ tle0|a«w[8[e|w|C
0 <1+ 3

Q -

00 < |20 p— | 2= RO [0 D |13 ||| : =T | 2 AVo/manu
< |w|-=ols|clz] o of-v|L [[_[=[-[¥]A
o | 8| |«ol:0|-0|a|-3[:>NOD| | ¥ |&L|S
00 (O: D[~ |«T |:(0 |0 o0 | O<D [:D |- |:=|¢= | r= |: < o]
N QO] = | 0| +| 3> S| X| > N|~| |2 mm
©|- |o|lQ|lo|o|o+ | DL - Sx—E|lCc|O
wla|[dlec|n|F[D[>[2 x> N[=] /[~ | |
< Q0O 0|W(L|OI(—|"IZZ2|0
Q| |NM |t v [VIIIA|l~
N = [Hee[R(B] [~ —[%[+] 1] >
i =T L T T
OM@Q'OQQ.'@EdQ)EQ
Ol—|aNM (1O~ < oO|0|w|w

158

APPENDIX B

MATHEMATICAL FUNCTIONS

Derived Functions

Functions that are not available in MSX BASIC can be derived by using

the following formulae:

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC
COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

Microsoft BASIC Equivalent

1/COS(X)
1/SIN(X)
1/TAN(X)

= ATN (X/SQP(-X*X + 1))

—ATN (X/SQR(—X*X+1)) + 1.6708
ATN (1/SQR (X*X —1)

+ (SGN(X) — 1)* 15708

ATN (X/SQR (X*X —1)

+ (SGN(X) — 1)*1.5708

—ATN(X) +1.5708

(EXP(X) — EXP (—X))/2

= (EXP(X) + EXP(—X))/2

(EXP(X) — EXP(—X))/(EXP(X) + EXP(—X))
2/(EXP(X) + EXP (—X))

2/(EXP(X) — EXP(—X))

(EXP(X) + EXP(—=X))/(EXP(X) — EXP(=X))
LOG(X + SQR(X*X + 1))

LOG(X +SQR(X*X — 1))

LOG ((1 + X)/(1 — X))/2

LOG ((SQR(—=X*X + 1) + 1)/X)

LOG ({SGN (X)*SQR (X*X + 1) + 1)/X)

LOG ((X + 1)/(X —1))/2

APPENDIX C
ERROR CODES AND ERROR
MESSAGES

Code Message

1

N

w

S

(&)

(=]

NEXT without FOR
A variable in a NEXT statement does not correspond to any
previously executed, unmatched FOR statement variable.

Syntax error

A line is encountered that contains some incorrect sequence of
characters (such as unmatched parentheses, misspelled command
or statement, incorrect punctuation, etc.)

RETURN without GOSUB
A RETURN statement is encountered for which there is no previous,
unmatched GOSUB statement.

Out of DATA
A READ statement is executed when there is no DATA statement
with unread data remaining in the program.

Illegal function call
A parameter that is out of the range is passed to a math or string
function. An FC error may also occur as the result of:

1. anegative or unreasonably large subscript

2. anegative or zero argument with LOG

3. anegative argument to SQR

4, an improper argument to MIDS, LEFTS$, RIGHTS, INP, OUT,
PEEK, POKE, TAB, SPC, STRINGS, SPACES, INSTRS or
ON....GOTO.

Overflow
The result of a calculation is too large to be represented in BASIC's
number format.

159

10

n

12

13

14

15

16

Out of memory

A program is too large, has too many files, has too many FOR loops
or GOSUBs, too many variables or expressions that are too
complicated.

Undefined line number
A line reference ina GOTO, GOSUB, IF ... THEN ... ELSE
is to a nonexistent line.

Subscript out of range
An array element is referenced either with a subscript that is outside
the dimensions of the array, or with the wrong number of subscripts.

Redimensioned array

Two DIM statements are given for the same array, or DIM
statement is given for an array after the default dimension of 10
has been established for that array.

Division by zero
A division by zero is encountered in an expression, or the operation
of involution results in zero being raised to a negative power,

Illegal direct
A statement that is illegal in direct mode is entered as a direct mode
command.

Type mismatch

A string variable name is assigned a numeric value or vice versa;
a function that expects a numeric argument is given a string
argument or vice versa.

Out of string space

String variables have caused BASIC to exceed the amount of free
memory remaining. BASIC will allocate string space dynamically,
until it runs out of memory.

String too long
An attempt is made to create a string more than 255 characters
long.

String formula too complex
A string expression is too long or too complex. The expression
should be broken into smaller expressions.

7 Can’t continue
An attempt is made to continue a program that:
1. has halted due to an error,
2. has been modified during a break in execution, or
3. does not exist.

18 Underfined user function
FN function is called before defining it with the DEF FN
statement.

19 Device 1/O error
An 1/0O error occurred on a cassette, disk drive, printer, or CRT
operation. It is a fatal error;i.e., BASIC cannot recover from
the error.

8

Verify error
The current program is different from the program saved on the
cassette,

21 No RESUME
An error trapping routine is entered but contains no RESUME
statement,

22 Unprintable error
A RESUME statement is encountered before an error trapping
routine is entered.

3

Unprintable error

An error message is not available for the error condition which
exists. This is usually caused by an ERROR with an undefined
error code,

24 Missing operand
An expression contained an operator with no operand
following it.

25 Line buffer overflow
An entered line has too many characters.

26 Unprintable errors
: These codes have no definitions. Should be reserved for future
49 expansion in BASIC.

161

DISK ERRORS

51

52

57

59

60

255

FIELD overflow

A FIELD statement attempts to allocate more bytes than were
specified for the record length of a random file in the OPEN
statement. Or, the end of the FIELD buffer is encountered while
doing sequential 1/0O (PRINT#, INPUT#) to a random file,

Internal error
An internal malfunction has occurred. Report to Microsoft the
conditions under which the message appeared.

Bad file number

A statement or command references a file with a file number

that is not OPEN or is out of the range of file numbers specified by
MAXFILES statement.

File not found
A LOAD, KILL or OPEN statement references a file that does
not exist in the memory.

File already open
A sequential output mode OPEN is issued for a file that is already
open;or a KILL is given for a file that is open.

Input past end

An INPUT statement is executed after all the data in the file has
been INPUT, or for null (empty) file. To avoid this error, use the
EOF function to detect the end of file.

Bad file name
An illegal form is used for the file name with LOAD, SAVE, KILL,
NAME, etc.

Direct statement in file
A direct statement is encountered while LOADing an ASCI|
format file. The LOADing is terminated.

Sequential 1/0 only
A statement to random access is issued for a sequential file.

File not OPEN
The file specified in a PRINT#, INPUT#, etc. hasn’t been OPENed.

Unprintable error
These codes have no definitions. Users may place their own error
code definition at the high end of this range.

162

APPENDIX D

MSX BASIC RESERVED WORDS

BASIC statements and function names are reserved. That is, the key
words cannot be used in variable names. This appendix lists all of the
MSX BASIC language words that are reserved. |f you attempt to use any
of the words listed below as the name of the variable, an error is indicated
by the computer.

ABS
ASC
ATN
AUTO
BASE
BEEP
BIN$
BLOAD
BSAVE
CALL
CDBL
CHRS$
CINT
CIRCLE
CLEAR
CLOAD
CLOAD?
CLOSE
CLS
COLOR
CONT
Cos
CSAVE
CSNG
CSRLIN
DATA
DEF FN
DEFINT

DEFDBL
DEFSNG
DEFSTR
DEFUSR
DELETE
DIM
DRAW
END
EOF
ERASE
ERL
ERR
ERROR
EXP
FIX
FOR
FRE
GOsuB
GOTO
HEXS
IF GOTO
IF THEN
INKEYS
INP
INPUT
INPUTS
INPUT#
INSTR

INT
INTERVAL ON
INTERVAL OFF
INTERVAL STOP
KEY

KEY LIST
KEY (n) ON
KEY (n) OFF
KEY (n) STOP
KEY ON

KEY OFF
LEFTS

LEN

LET

LINE

LINE INPUT
LINE INPUT#
LIST

LLIST

LOAD
LOCATE

LOG

LPOS

LPRINT
LPRINT USING
MAXFILES
MERGE

MID$

MOTOR ON
MOTOR OFF

NEW

NEXT

OCT$

ON ERROR GOTO
ON GOsuB

ON GOTO

ON INTERVAL GOSuUB
ON KEY GOsuUB
ON SPRITE GOSUB
ON STOP GOsSuUB
ON STRIG GOsSuUB
OPEN

ouT

PAD

PAINT

PDL

PEEK

PLAY

POINT

POKE

POS

PRESET

PRINT

PRINT USING
PRINT#

PRINT# USING

PSET

PUT SPRITE
READ

REM
RENUM
RESTORE
RESUME NEXT
RESUME O
RETURN
RIGHTS
RND

RUN

SAVE
SCREEN
SGN

SIN

SOUND
SPACES$
SPC

SPRITE ON
SPRITE OFF
SPRITE STOP
SPRITES
SQR

STR$
STICK
STOP
STOP ON
STOP OFF
STOP STOP
STRIG
STRIG ON
STRIG OFF
STRIG STOP
STRINGS
SWAP

TAB
TAN
TIME
TROFF
TRON
USR
VAL
VARPTR
vDP
VPEEK
VPOKE
WIDTH
WAIT

APPENDIX E
MEMORY MAPS & I/0 PINOUTS

MEMORY MAP
bank 0 bank 1 bank 2 bank 3
0000
o USER
(MSX AR
BASIC)
4000
ROM DISK
(MSX %S:: DRIVE
BASIC) ROM
8000
NIzT USER
(g RAM
€000
N'gT USER
ek RAM
FFF
EXPANSION USER GAME EXPANSION
MODULE RAM SLOT SLOT
INTERFACE 64K

T
1/0 EXPANSION MODULE INTERFACE AND GAME SLOT

PIN LAYOUT
PIN NO. | NAME I/0* | PINNO. | NAME | 1/0*
1 (] 2 CS2 o]
3 cs 12 4 SLTSL | O
5 reserved - 6 RFSH O
7 WAIT (note 2) | 8 INT I
9 (VK] 0 10 BUSDIR| |
1 IORQ 0 12 MERQ | O
13 WR 0 14 RD 0
15 RESET (0] 16 reserved [—
17 A9 0 18 A15 o}
19 A 11 0 20 A10 0
21 A7 0 22 A6 0
23 A12 0 24 A8 0
25 A 14 o] 26 A13 0
27 A1 0 28 A0 0
29 A3 0 30 A2 0
31 A5 0 32 A4 0
33 D1 1/0 34 DO 1/0
35 D3 1/0 36 D2 1/0
37 D5 1/0 38 D4 1/0
39 D7 1/0 40 D6 /0
a4 GND = 42 CLOCK | O
43 GND = 44 SW1 -
45 +5V -~ 46 SW 2 -
47 +5V = 58 +12V -
49 SUNDIN [50 =92V | =

Note: (1) Input & output is measured with respect to SV-728.
(2) Open collector output.

R R P T e T ST e T T T A AT e B S R U OS]

SVI-728 EXPANSION MODULE INTERFACE AND GAME
SLOT SIGNAL DESCRIPTION

PIN NO. NAME DESCRIPTION
1 X} ROM 4000 ~ 7FFF select signal
2 Cs2 ROM 8000 ~ BFFF select signal
3 CsS12 ROM 4000 ~ BFFF select signal
4 SLTSL Slot selected signal signal. Fixed select
signal for each slot.
5 Reserved for future use only
6 RFSH Refresh signal
7 WAIT Wait signal to CPU
8 INT Interrupt request signal
9 M1 Fetch cycle signal of CPU
10 BUSDIR | This signal controls the direction of
external data bus buffer when the cartridge
is selected. It is low level when the data is
sent by the cartridge.
11 IORQ 1/0 request signal
12 MERQ Memory request signal
13 WR Write signal
14 RD Read signal
15 RESET System reset signal
16 Reserved for future use only
17~32 AO0~A15 | Address bus
33~40 DO~D7 Data bus
41 GND Ground
42 CLOCK | CPU clock 3579MHz
43 GND Ground
44, 46 SW1, SW2| Insert/remove protect
45, 47 + 5V + 5V power supply
48 + 12V + 12 power supply
49 SUNDIN | Sound input (—5dbm)
50 -12v —12V power supply

168

CASSETTE

PIN

1/0

LAYOUT

0 N O OO A W N

CMTOUT
CMTIN
REM +
REM —
GND

PRINTER

PIN

2
>
=
m
=
o}

LAYOUT

© 0 N OO OO B W N =

- ot =t = =
A W N = O

o
=}
v e)
w

O O O 0O O O O O O

13

12|11|10| 9

KEYBOARD
PIN NAME 1/0 PIN NAME 1/0
1 INPUT 7 I 2 INPUT 6 I
3 INPUT 5 I 4 INPUT 4 I
5 INPUT 3 I 6 INPUT 2 I
7 INPUT 1 I 8 INPUT O [
9 OUTPUT 9 o] 10 OUTPUT 8 0
1 OUTPUT 7 0 12 OUTPUT 6 0]
13 OUTPUT 5 o] 14 OUTPUT 4 0
15 OUTPUT 3 0] 16 OUTPUT 2 o]
17 OUTPUT 1 o] 18 OUTPUT 0 0
19 CAPS o] 20 +5V -
21 GND -
JOYSTICK
PIN NAME 1/0 LAYOUT
1 FORWARD/SCK I
2 | BACKWARD/SI I
3 LEFT/CS I
4 RIGHT/SENCTR I @ @ ® @ ®
5 | +5V -
6 | TRIGGER1 1/0 ® @ ® ©
7 | TRIGGER 2 1/0
8 | OUTPUT o]
9 | GND -

T T T N . T A e g TSy T S 50 5 (ST e MRS T A PO T I

170

TEXT

HIGH AND LOW
RESOLUTION

APPENDIX F
NOTES ON SCREENS

The screen @ command allows the display of
39 characters per line; while the screen 1
command caters for 29 characters. Both screens
hold 24 rows per screen. The default is 29
characters per line. If screen @ is on, by means
of the “WIDTH 4@’ command, 40 characters
per line can be displayed.

The 64 x 48 grid you see in figure 2-3 in
Chapter 5 can be treated as a separate screen.
The 64 by 48 grid is called a “’low resolution
graphics screen’ and the 256 by 192 is called
a “high resolution graphic screen.” Every 4
boxes of the 256 by 192 grid is treated as one
unit on the 64 x 48 grid. The box numbers in
Figure 2 in Chapter 5 should be multiplied by 4
to appear in the proper places on the screens.
This will maintain compatibility between the
low resolution and high resolution screen.

0 1 2 3

Each of the four boxes is treated as an
individual point on a high resolution screen.

The screen 3 command draws on the low
resolution screen, and the screen 2 command
draws on the high resolution screen. Thus if
you PSET one of these four boxes on a high
resolution screen, only that one will be lit up.
But on a low resolution screen, if you turn on
any one of these boxes all of them will be lit.

APPENDIX G
TROUBLE SHOOTING CHART

SYMPTOM POSSIBLE CAUSE REMEDY
NO POWER Power Switch Turn on power switch
not turned ON. on the righthand side
of the machine.
Power cable not Be sure the power cable
connected is connected to the
computer and the wall
sockets.
Blown fuse in the Return the system to an
computer authorized dealer for
replacement.
NO SOUND OR Wrong TV hook up Hook up the computer
PICTURE to the “VHF’’ antenna
terminals.
Loose video cable Be sure all video
cables are securely
fastened.
NO SOUND TV volume too low Adjust the volume
control of TV.
NO COLOR Adjust TV Color

level and fine tune
the TV.

172

APPENDIX H

PROGRAMMABLE
SOUND
GENERATOR (PSG)

Other than the PLAY statement which allows
you to create musical notes, you can use the
SOUND statement to directly control the
various capabilities of the Programmable
Sound Generator which we will refer to as the
PSG.

A PSG SOUND statement take the form of:

SOUND < Register of PSG > < value >

where < register of PSG > is one of the 13
available registers the PSG uses, and

< value > is a number between 1 to 255. The
function of creating a specific sound or sound
effect logically follows the control sequence
listed below:

OPERATION REGISTER FUNCTION

Tone generator control | R@-R5 Program tone periods

Noise generator control | R6 Program noise period

Mixer control R7 Enable tone and or noise on
selected channels

Amplitude control R8-R10 Select ““fixed’’ or “‘envelope
variable’ amplitudes

Envelope generator R11-R13 Program envelope period

control and select envelope pattern

TONE
GENERATOR
CONTROL

The PSG has 3 tone channels A, B and C. The
frequency for each channel is obtained by
counting down the input clock by 16 times the
value of the frequency wanted.

For example:

Desired value = 3579545/ (16 * frequency)
Low register = <Desired value> AND 255

High register = <Desired value> / 256

The high and low registers correspond to the
register pair used by each control.

Channel Register
A 1.0
B 3,2
c 5,4

Program example follow:

10 INPUT “ENTER FREQUENCY"’;A

20 F =3579545 / (16 * A)

3pH=1/256

4P L =F AND 255

50 SOUND P,L

60 SOUND 1,H

70 SOUND 8,15: PRINT” VOLUME
CONTROL OF CHANNEL A"

80 SOUND 7,254 : PRINT” BINARY
1111111 TO ENABLE CHANNEL A”

99 END
AMPLITUDE In the previous example program, you should
CONTROL notice we used register 8 to enable

volume of channel A. The PSG has three
separate registers to control the amplitude
of the different channels.

Channel Register
A 8
B 9
C 19

Each channel can have a volume from @ to 15
with 15 being the loudest.

N 173

For example:

10 SOUND 0, 190

20 SOUND 1,0

30 SOUND 7,254 : REM TURN
ON CHANNEL A (MIXER)

40 FORI1=15TO @ STEP — 1

50 SOUND 8,1

60 FORJ=1TO 200 : NEXT J :
REM DELAY

70 NEXT |

You will hear a high pitched sound fading
away, because we changed the volume of
channel A from 15 through @.

The amplitude control register can also be

used to direct the envelope period of each
channel, by setting the amplitude channel to a
value of 16, the amplitude of the

corresponding channel would be controlled by
register 11, 12 and 13. For more information on
this, refer to Envelope Period Control

Registers.
MIXER The MIXER register, register number 7,
CONTROL controls the three Noise / Tone channels. The

Mixers, as previously described, combine the

noise and tone frequencies for each of the

three channels. The determination of

combining neither, either or both noise and

tone frequencies on each channel is made by

the state of Bit @ — Bit 5 of register # 7. Bit 6 and 7
are for 1/0 ports connected through the PSG,

and these are ignored by BASIC.

REGISTER 7 B7 | B6 | B5 B4 | B3 | B2 B1 | B@

Not used Noise channel Sound channel

111117 | c B A C B | A

Bits logical value
1 if channel is disabled @ if channel is enabled

174 T T S P SN S e L A DA BT T

ENVELOPE
PERIOD
CONTROL
REGISTER

For example:

SOUND 7,&B11111118

will turn on tone channel A.

SOUND 7, &B11110110

will enable both noise and tone channel A.

The generation of fairly complex envelope
patterns can be accomplished by two different
ways in BASIC. First, it is possible to vary the
frequency of the envelope using register 11
and 12 as a 16 bit register ; and second, the
relative shape and cycle of the envelope can be
varied by using register 13.

For example:

< Desired envelope freq > = 3479545/ (256* freq)

Program example:

10 SOUND 0,100
20 SOUND 1,0 : REM Tone channel A
30 SOUND 7, &B11111110: REM Enable A
49 SOUND 8,16 : REM Value of 16 to
enable E/P reg.

50 SOUND 13,14 : REM Shape select
60S=.5:REM.5 Hz
70 K = 3579545
80 L = K/ (256*S) AND 255
90 H = K/ (256*S) /256

100 SOUND 11,L

110 SOUND 12,H

120 END

NOTE: Register 13 is the shape register described
next .

B e .

176

SHAPE
REGISTER

You can select 9 different shapes for the
envelope period output, by programming the
shape register #13.

Selected value Shape

91239 N
4,5,6,715 A
8 NNNINN
19 R Wi
1 N

—> &— Envelope Period

For example:

SOUND 13, 14

will create a tone modulating up and down
according to the envelope period set in
registers 11 and 12, when the enable bit 4 of
register 8 (SOUND 8, 16) is set.

MIXERS
(3)

#\;v{;

CONVERTERS

D/A

3

NOISE
PSG BLOCK DIAGRAM e
REGISTERED ARRAY (14 READ/WRITE CONTROL REGISTERS)
REGISTER BT | 87 | 86 | 85 | B4 | 83 | 82 | B1 | B
Ry _ 8-Bit Fine Tune A A
Ri_| Channel A Tone Period LTI 4 8 Coarse Tune A TONE
R2 5 8-Bit Fine Tune B GENERATOR
i el fomeriod 4 Bit Coarse Tune B @3
R4) 88Bit Fine Tune C
i e 481t Coarse Tune C
R6 | Noise Period 5Bit Period Control
— IN/OUT Noise Tone
RE._| Enable ws WA [c |8] A|cC e]a
R8 [Channel A Amplitude T m sl ol w
R9 | Channel B Amplitude i M 1 Bl e | uflw %
R1§ | Channel C Amplitude A m 1 s e | vl A AN
R11 E Pediod 8 Bit Fine Tune E X AY
R12 : 8 Bit Coarse Tune E Achﬂo:.gtgze - X
R13 | Envelope Shape/Cycle CONT | ATT [ALT [HOLD)
c X
X
Remarks: CONT = Continue
ATT = Attack 3 |e2 |[E EQ
ALT = Alternate
ENVELOPE
GENERATOR

£ A R L o i

ANALOG
4’ CHANNEL C

ANALOG
CHANNEL 8

v

ANALOG
CHANNEL A

i .-qllt;‘m-v:um- A B 1.:»‘.\.«:.\:.’1) m; - ‘r——ﬂbbébﬁusw!'
o - o ST E3 1 IR

B -
A
e
|
- :
. % R

ol A
e AR R TR Ts, o e

178

APPENDIX |
INTRODUCTION TO
BASIC PROGRAMMING
(BASIC GRAPHICS and
BASIC SOUND)

In learning to use your SVI-728 computer, you
use many different commands and
programming techniques. However, if you are
like most people, you would like to be able to
do something NOW to see your computer in
action. To help you do this, we will guide you
through some very simple examples to prepare
you for the things you will be exposed to later
in the user’s manual.

We are going to assume that you have read

the systems overview and set-up procedures in
your SVI1-728 owner’s manual, and have set up
your computer properly. First, turn the
television or monitor on and then turn on you
SVI-728. Watch and you will see that the
SPECTRAVIDEO logo appears on the screen,
changing colors 3 times. The screen then

clears and displays the amount of memory
available. When the square cursor appears
below this information, it is your indication that
the SVI-728 is waiting for your instructions.

The first command that we will explore is one
that controls the color of the screen and the
characters that appear on it.

COLOR This command allows you to vary the colors of
the display in any manner you choose. You
can choose from 16 colors, denoted by the
numbers @ to 15. As an example, type in the
following line:

COLORG, 1

Now press the ENTER key. When you do this,
you will see that the screen will change from its
normal colors of blue background with white
letters to a black screen with orange letters.
You can explore the various colors that are
available by varying the numbers you type
after the “COLOR” command. When you have
completed this exploration, turn the computer
off and then back on. This will clear all the
memory and return the system to its original or
"’default’ condition. There are other ways of
accomplishing this, by the way, and they are
explained in greater depth in the user’s

manual.

CLS Now, let’s program a line in to the computer
that will cause it to print you name on the top
of the screen. Type in the following line:

19 CLS

Now, type RUN and press the ENTER key.
You will see that the screen has cleared and
that the word Ok is printed on line 1 with
the cursor (white square) below. The
command ““CLS’* (Clear Screen) is the
command that clears the screen anytime the
computer finds it in a program.

Now, type this line:

20 PRINT “SPECTRAVIDEO"”

Type RUN and press ENTER again, and you
will see that the word ““SPECTRAVIDEQ" now
appears on the top line of the screen with the
word Ok’ and the cursor below. What you

B e s e

180

have just done is to write a two-line program!
Now, we will edit that program. First, type
LIST and press the ENTER key. This will cause
the program that you just wrote to be
displayed on the screen. Now, using the
joystick cursor control, move the cursor so that
it is placed on the “S"” of “SPECTRAVIDEOQ.”
Presss thellNS/PASTE key on the keyboard and
you will see that the cursor is now only half as
tall as it was. This indicates that it is in the
“INSERT" mode. To begin this edit, simply
type in your name, The line should now look
like this:

20 PRINT “YOUR NAMESPECTRAVIDEO”

The half-height cursor should still be located
over the ’'S” in “SPECTRAVIDEO.” Now,
press thkey once and you will
see that the ‘S’ has disappeared and that the
cursor is now located over the P’ You have
deleted the "’S"’. Do the same thing for all of
the letters remaining until you get to the
quotation mark. When the cursor is located
over this mark, press the ENTER key.

Your edit is now completed. If you have
followed all of the above steps, listing the
program should cause the screen display to
look like this:

10 CLS
20 PRINT “YOUR NAME"

““RUN"" the program and you will see that your
name is now at the top of the screen.
Congratulations! You have created and edited
a program using the built-in editor of your
SVI-728.

T
BASIC GRAPHICS

Another area that will allow you to quickly
explore the power in your SVI-728 is that of
graphics. To see this in action, type in the
following line, pressing ENTER after each is
completed:

10 CLS

20 SCREEN 2

30 CIRCLE (128,80), 60, 11
40 PAINT (128,80), 11

50 GOTO 49

Now, type RUN and you will see a yellow circle
appear on the screen and then it will be filled in
by the SVI-728's yellow paint brush. To
understand how this happens, let’s look at

each line individually.

19 CLS

As explained above, this line clears the screen.
It is a good idea to place this line near the
beginning of any program, so that you begin
with a clean screen.

20 SCREEN 2

This line causes the computer to display its
graphics screen (#2). You always have a
choice of four screens using BASIC and the
screen you were using in the first example was
screen 1. This is the screen that is always
displayed when the computer is turned on
(which is why you didn’t have to add a line
to the first program to use this screen).

30 CIRCLE (128,80), 60, 11

Here, you are telling the computer to draw a
circle at a point that is 128 points from the left
side of the screen, 8@ points down from the
top of the screen, with a radius (distance from
the center of the circle) of 6@ points and with a

e e = A

182

LINE &
BOX
DRAWING

yellow (the number 11) border.

40 PAINT (128, 80), 11

This is the line that tells the SVI-728 to use its
paintbrush to fill in the circle you have just
outlined in line 30. You must use the same
coordinates (128,80) and the same color (11)
as used in the previous line.

50 GOTO 40

The last line in the program causes the
program to repeat line 40 until you stop the
program by pressing the CTRL and STOP keys
at the same time. You will also notice that
when you do this, the screen clears and the
cursor moves to the top left hand corner. This
is because the display has returned to

screen 1 referred to above. You can
experiment with the numbers in this program
to vary the location, size or color of the circle
being painted.

The first number following the “CIRCLE"
command (the X axis) may range from @ to 255
and the second number (the Y axis) may range
from @ to 191,

Now that you have seen what your SVI-728 can
do with circles and its paintbrush, we’ll take a
look at lines and boxes. The computer has the
same simple method for drawing them as it
does for circles. First, type NEW to clear the
memory of the program we were using before,
Now, enter the following lines:

10 CLS

20 SCREEN 2

30 LINE (50,40) — (200, 150)
40 GOTO 40

When you run this program, you will see that a
line has been drawn from high on the left side
of the screen to a low point on the right side of

the screen. The line that causes this to happen
is line 30:

30 LINE (50,40) — (200, 150)

This line tells the computer to draw a line from
a position 50 points from the left margin of the
screen and 40 points down from the top over
to a position that is 200 points from the left
margin and 150 points down from the top.

Now, you can simply convert this same line
into a box command by changing the line to
read as follows:

30 LINE (50,40) — (200, 150), 10,B

By running the program now, you will see a

box on the screen. By adding the **,10"" following
the parentheses, you defined the color of the
box border and the “B” tells the computer to
draw a box at the same coordinates as the line.
To tell the computer to use the paintbrush,
change the line to read:

30 LINE (50,40) — (200, 150), 10,BF

Now you will see that the program draws the
same box and paints the inside with the same
color as the border.

—_— e e

183

184

PLAY

O (OCTAVE)

BASIC MUSIC

There is also a very powerful music synthesizer
built into the SV1-728 that can be easily used,
through simple BASIC commands, to produce
music. The key to this synthesizer is the
BASIC statement:

PLAY “ABC"”

followed by pressing the enter key. This will
produce musical tones from your SVI-728
through the speaker on your television or
monitor. You could achieve similar results

by writing a BASIC program with the following
lines:

20 PLAY "“ABC"”
20 GOTO 10

There are numerous other things that can be
done with sound using the synthesizer in your
SVI-728. We will look at the simple ones in this
section and progress to the more complex

ones in later pages. We will continue to work
with the BASIC program listed above, and
make changes in it as we go along.

First, change line 10 to read:

10 PLAY “O1ABC”

Now, when you run the program, you will
hear that the sounds produced are at a
very low pitch when compared with the
first ones you made. This is because you
have set the OCTAVE by adding the “O1"”
before the “ABC."” This is the command
that allows you to access 8 octaves with
the synthesizer. Now add this line:

11 PLAY “0O4ABC"

T (TEMPO)

L{LENGTH)

When the program is run, you will hear
three low notes followed by three higher
notes. The octaves you can access using
the ““O" command can range from @
(lowest) to 7 (highest).

Now, change line 10 to read:

10 PLAY “T3201ABC”

The program will now play the same note you
heard before but at a much slower rate, What
you did by typing the “T32" before the
““O1ABC’ was to set the TEMPO or speed of
the music. The values for “T*’ can range from
32 (slowest) to 255 (fastest).

You will also notice that the notes in line 11
also play at the slower pace. This is because
the synthesizer will play at whatever tempo
you set until you tell it to play at a different
tempo. To see this in action, change line 11 to
read:

11 PLAY “T25504ABC"

Now, as you can hear, the notes from line 11
play at a much faster pace than those in line

10.

You can also control the length of each note
individually. To see this, change line 1@ to read:

19 PLAY “T25501ABL1C"

This changes the ’C’’ note to a much longer
duration than “A" or “/B’* and also causes the
notes in line 11 to play for a longer time. This
length command can be placed in front of any
note to control the length of the note. The
lengths of the notes can be varied from 1
(longest) to 64 (shortest).

186

S(SHAPE) &
M{TONE)

R (REST)

Y R T SR SR (S A, < A e S VAR R
—_—————— - ——_—

Two other BASIC commands that can be
applied to sounds are the “’S”" command and
the ““M"’ command. These two commands
determine the tonal qualities of the note being
played. As an example of this, the same note
played on a piano and a trumpet may be at the
same pitch but will have two distinctly different
sounds. These two commands allow you to
shape the notes you are creating in the same
way.

The “’S"" command controls the shape of the
note. As an illustration of this, change line 10
to read:

10 PLAY “S104ABC”

and eliminate line 11 by typing 11 and pressing

Now, run the program to see the differences in
the sounds you hear. These shape commands
can be considered the voices of the

synthesizer. There are 14 of them built into the
SVI-728. This means that the number used to
set the "’S” command can range from 1 to 14.

The “M" command controls the tone period or
to be more specific, the amount of time that
you will hear each note based on its tonal
qualities. To see how this works, change line
10 to read:

10 PLAY “S10M500004ABC”

As you will hear, this changes the sound
dramatically. The values used to set “M’* can
range from 1 to 65535.

You can also insert pauses between notes by
using the “R"” command. Change line 10 to
read:

10 PLAY “O4AR1BR1GC”

V (VOLUME)

USING 3
CHANNELS
OF SOUND

This causes the “A’ note to play, followed by
a brief period of silence. Then the ’B" note
plays, then a shorter period of silence, then the
“C" note followed immediately by the A"’
note again.

The final command we will examine in this
section is the V" command. This command
is used to set the volume of the sound being
produced. Change line 16 to read:

10 PLAY “O4V5AV10BV15C”

You will now hear that each note gets louder
than the one before it. You can set the volume
from @ to 15.

So far, we have only used one note at a time to
demonstrate the use of the synthesizer,
However, the SV1-728 has three separate
channels of sound that can be programmed
individually to play together to create chords.
Change line 1@ to read:

10 PLAY “O1ABC”, “O3CDE", “O5FAG"”

What you hear now is three notes being played
in combination to create a chord. You can also
have each channel play something entirely
different from the others to create melody and
harmony parts in the music you create.

These are just a few of the exciting things that
your SV|1-728 Computer System can do for you.
To begin exploring your machine in greater
depth, read each chapter in this user’s

manual and follow the examples. Have Fun

and Good Luck!!!

T M) 2 PR A T T T BT e M N

188

APPENDIX J
GLOSSARY

Although most of the words that appear in the glossary were not used
in this manual, we have included them for your future reference:

access time

accumulator

ALU

alphanumeric

architecture

The time between the instant that an address
is sent to a memory location and the instant
data returns.

One of several registers which temporarily
store, or ““‘accumulate’ the results of various
operations.

The digital number used by the CPU to
specify a location in memory.

Arithmetic Logic Unit. The part of a CPU that
adds, subtracts, shifts, ANDs, ORs and
performs other computational and logical
operations.

A device or a system that includes both
alphabetical and numerical characters.

The organizational structure of a computer
system.

A list of values stored in a series of memory
locations.

American Standard Code for Information
Interchange. Consists of 128 letters, numbers,
punctuation marks, and special symbols. Each
of which consists of a binary pattern that uses
eight digits.

assembler

BASIC

g

ud

boolean logic

bootstrap

branch

A software program which converts symbolic
or mnemonic language into machine.
language.

Beginners All Purpose Symbolic Instruction
Code. A high level programming language
designed for the beginning programmer,

A unit by which signal speeds are measured.
In rﬁicroprocessing_, the baud rate refers to the
number of bits per second.

A numbering system that has 2 as its base, and
that uses only the digits @ and 1. Used by
digital computers to perform the tasks in data
processing.

Binary digit. Single element of a binary
number with a value of either @ or 1.

Mathematical logic processes based on a

system of algebra developed in the early
nineteenth century by an English mathematician
George Boole.

A technique or device for loading the first
instructions or words of a routine into
memory. These instructions are used then to
bring in the rest of the routine.

A way of re-routing a program so that it
branches to another set of instructions to
perform another task.

An error or defect in the hardware or software
of the computer, causing a malfunction.

A set of wires of conductors arranged in
parallel, used to transmit data, signals or
power between parts of a computer system.

A group of eight bits, operated upon as a unit.
A device or circuit that sends out timing

pulses to synchronize the action of the
processor.

190

COBOL Common Business Oriented Language. A
high level language used in many business
applications.

command An instruction to the computer that causes
something to happen.

compiler A program to convert a high level language
into assembler or machine language
(understood by the computer).

controliler An interface which allows the control of an
1/0 device by the central processing unit.

CPU Central Processing Unit. The part of the
computer that controls all execution of
instructions and arithmetic operations.

CRT Cathode Ray Tube. The display on which
information is shown after program execution.

cursor A symbol displayed on the screen indicating
where the next character is to be displayed.

data Essentially, information that is input to the
computer,

data bus An electrical path along which information
passes.

debug To delete any errors in program,

DMA Direct Memory Access. The accessing of
memory without intervention of the central
processing unit.

disk A plate resembling a record album with a
magnetic surface used to store data or
programs. Also known as ““floppy disk”.

DOS Disk Operating System. The program used for
implementation of a disk drive.

dump The transfer of information from one piece of
equipment to another.

e T e e e G i S

editor

execute

expression

fetch

file

firmware

floppy disk drive

flowchart

format

FORTRAN

gate

hardware

A program used for the creating and/or
altering of text in another program.

The final step in running a program. An
execution will perform the operation specified
in the program.

A particular grouping of numbers, letters or
variables that comprise a single quantity.

Refers to the reading out of an
instruction/data from an addressed memory
location.

A collection of organized records that are
usually on one particular subject.

The programs that are built into the ROM of a
microcomputer.

A peripheral device used to store data from
and input data to the computer. It is
an input/output device.

A diagram used in the development of a
computer program. A flowchart shows the
sequence of steps to take.

The particular arrangement or layout of data
on a data medium, such as a screen or a
diskette.

FORmula TRANSslation. A high level language
using algebraic notation.

An electrical signal circuit, with two (or more)
inputs and one output, that behaves as a
switch to create a particular state (either a
binary one or zero).

The physical components that make up a
particular computer system include all the
peripheral devices.

192

hexadecimal

high level language

1/0 devices

instruction

instruction set

interface

interpreter

keyboard

kilobyte or K

library

location

A numbering system used in computers. Use
the digits 3-9 and the letters A-F.

A programming language that is easier to
understand and more convenient for the
programmer. BASIC, FORTRAN, PASCAL
and PL-1 are some examples of high level
languages.

Input/output devices. These would include
the disk drive, data cassette, keyboard,
printer, TV/ monitor, etc.

A command telling the computer to perform a
specific task.

This.is-the set of instructions built into the
firmware of the microcomputer. This
instruction set is used by the programmer.

This is the way in which peripheral devices are
linked to the mainframe console of the
microcomputer,

A program that converts one instruction at a
time into machine language understood by the

computer.

This is the console of the computer through which
data is input to the CPU.

Equivalent to 1024 bytes.

A collection of files or records that a person
can access easily.

To enter a program into a computer’s
memory.

The portion in memory in which a data word
or an instruction is stored.

A particular way of reasoning using thought
processes.

loop A series of instructions that allow the
programmer to repeat a particular sequence of
events in a program.

LS| Large Scale Integration. An integrated circuit
that has thousands of components packed in
one chip.

machine language This is the language of the computer that is

the lowest level the computer itself can accept
as a program. This language is used with
either binary, octal or hexadecimal numbering
systems.

memory The part of the computer that stores data and
instructions. Each instruction uses a particular
address which tells the CPU where to fetch
from.

menu This is a list much like the one in your local
restaurant, except this type of menu lists what
the computer is ready to do for you.

microprocessor This is also known as the Central Processing
Unit. It is comprised of one or more LSI
circuits that control all the processes of the
computer.

mnemonics These are abbreviated terms for instructions
used so that the programmer can easily
remember them.

modem MOdulater DEModulator. This is a device used
to convert data to signals that can be
transmitted over telephone lines and then
back to data again at the receiving end.

octal A numbering system used in computers
employing the digits @-7.

on-line Whenever a peripheral device is interacting
with its host computer, it is said to be “on
line”’. For example, a printer is said to be “on-
line’” when it is doing a computer printout,

e eSS S SS eSS I

operating system

output

page

peripheral

pixel

pointer

program

program counter

prompt

RAM

The “OS"" of a computer system is the
program that directs such things as
input/output, memory allocation, interrupt
processing. It controls the overall operation
of the computer.

When data is said to be “output’’ it usually
refers to the printout from a printer. OQutput
may also be programs or data saved on a
floppy diskette.

A grouping of memory locations by higher
order address bits. In an 8-bit microprocessor,
a page usually has 256 bytes.

Any device external from the host computer
but used in conjunction with the computer to
perform operations such as printouts, data
storage and retrieval, CRT displays,
telecommunications, graphics, etc.

The measurement of one dot on the display
screen. The number and arrangement of
pixels is what determines screen resolution.

This is the register in the CPU that contains
the memory address.

The sequence of instructions that tell the
computer what task to perform.

This is the register in the CPU that specifies
the address of the next instruction to be
executed.

This is the symbol on the screen which shows
the user that the computer is ready to accept
input from the keyboard.

Random Access Memory. This is the portion
of memory that can be written into and read
from. When the computer’s power is turned
off, anything written will be lost.

register

routine

source program

subroutine

syntax

terminal

time sharing

utility program

A circuit used to store or manipulate bits or
bytes of data in the CPU.

Read Only Memory. This is the part of
memory that may only be read from. It is said
to be ““non-volatile”, meaning that when power
is turned off the ROM retains its information.

A specific program designed to do a particular
function.

Software pertains to the programs that are
input to the computer by the user,

A program written in a language that is easily
understood.

This is a shape designed by the programmer
when using a computer’s graphic capabilities.

A routine in a program may be used again
to perform a specific function.

The rules governing a command line. If the
command line is not in proper syntax, a
“syntax error’’ message will occur.

An input/output device usually consisting of a
keyboard, CRT and printer used as a work
station.

The process of (more than one user) sharing
the use of a CPU via time robin.

A truth table shows the different values that
an AND, OR, NAND, NOR or other logic
gate will have, according to two select inputs.

This is a program that helps the user perform
various specific utility functions, such as a
debug program to find mistakes in programs.

variable A variable is any number or set of numbers,
assigned a particular value, that is to be
operated upon in a program.

volatile storage The type of storage which, when power is
removed, the program or data in memory is

lost. RAM is said to be volatile,

windows Several smaller screens displayed on one CRT
screen at the same time,

I T T I S T R A AR T SR8 T L M G 40 R ST T TS,

197

198

INDEX

A

Amplitude Control

Arithmetic Operation

Array
AUTO

Blank Move
Box
Box Fill

C

Channel
CLEAR
CIRCLE
CLOAD”
CLS
COLOR
CONT
Containers
CTRL-STOP

D

DATA
DEL
DIM
DRAW

E

END
ENTER

Envelope Period Control

ESC

GOSUB ...RETURN

GOTO

173
107
119
27,113

143
138
139

154,187

112

132

27

31,179
27,62,65,179
27

07072

30

109
32

118
140

77
31
175
32

74

104
27

MID$
Mixer Control

o

Octave
Output

P

PAINT
PLAY
PRESET
PRINT
PSET

R

READ
Register
REM

Rest
RESTORE
RIGHTS
RND
RUN

91

108
69, 125
45

102

126

127
152,185
73

137
27,58
27

142

126
174

151, 184
108

133
151, 184
81

97

61

109

172

86

152, 186
13

126

102

27

S

SCALE
SCREEN
Shape
SPRITES
STEP
STOP
String

T

TAB

Tempo

TIME

Tone

Tone Generator Control

vV

Variables
Volume

141

60

153,176, 186
143

84

30

125

98

152, 185
102
153, 186
172

70
154,187

199

200

SVI-728 MSX COMPUTER
QUICK REFERENCE CARD

FORMAT NOTATION
The following rules apply to the format of a statement or command:
1. ltems in capital must be input as shown.
2. Items in lower case letters enclosed in bracker < > sre 10 be
3. ltems n square brackets | | are optional.
4. Mlmwmlmummmwuu fie.
hypens, equal signs] must be

. | may be repeated any number of
line).
6. “string” means & sinng expression.

Xp~ Means a numenc expression, either constant or varable.
ne” and “line number” both means line number

10. “x, y” denotes x, y :-;m-; of the screen

VARIABLE TYPE DECLARATION CHARACTER

Variable Range No. of

$ String 0 10 255 characrers 3+ No.of characters
% Integer -32768 w 32767 2

1 Single precision 7 10 1 digit floating integer 4

Double precision 16 to 8 digit floabng point 8

Others:

&8 Binary figure

&BH Hexadecimal figure
80 Ocal figure

CHARACTER SET

Apart from the alphabet (A 10 Z . a 1o 2] and numeric (0 to 9) characters,
other special characters are tabulated:

Number sign or double precison declaration characler
Dolar or stnng vanable sign
Exclamation point or single precision declsraton
Left bracket
Right bracket

omma
Period or decimsl pont
Singie quotstion mark (apostrophe) or same as REM
Semicolon
Colon or used to ser
same line
Ampersand
Quesvon mark or command PRINT
Less than
Greater than
At sign

Underscore

Delete last characrer typed

Escape

Move print position 1o next wb stop (TAB s10ps are set
every esght columns)

Terminate input of a e

Move cursor 10 hofe position

Clear screen and move cursor to home Position
Delete character at cursor

Toggle unim mode

Toggle program

JOYSTICK/CURSOR CONTROL PAD
There are eight possible movements for both joystick and cursor keys

1
8 2
S

o/ 1™\
5

For directions 2. 4. 6 and B, 8 combinaiion of two cursor keys should be
pressed.

PROGRAMMABLE FUNCTION KEY

———eeR=>~ s 40
g g

f

i

H

e statements typed on the

gaREES 4R9IevaT

Key Number Initial Defigition
F1 color
F2 auto (10, 10}
F3 goto
Fa list
£5 o [ENTER]
8 color 16, 4, 7 [ENTER]
F7 closd”
F8 cont
F9 Jist.

€18 o

CONTROL CHARACTER

The ASCIl control lov 15 entered by pressing the key while holding
down the [CTRL] Key.

Hex. Control Special Function

Code Koy Koy

o’ A

o2 * B Move cursor to start of previous word

03 * c Break whan BASIC 1 waiting for input

04 * 4] Ignored

05 * E Truncate line (clear text to end of
logical line)

06 * F Move cursor to stant of next word

or* G Boep

08 H &= Delete characters passed over

09 *] =] Move to next TAB stop

0A * J Une feed

o8 * K HM Move cursor to home positon

oc * L s Cloar screen

oo * L ENTER Enter current logical lne

OF * N Append to end of line

OF * 0 Ignored

10" P Ignored

LK P Q Ignored

12:* R INS Toggle insert/typecver mode

13° s Ignored

14 T ignored

15 ° v Clear logical line

18 \' Ignored

17" w Ignored

18" X SELECT Only function for word processor

19 ° Y ignored

1A * 4 ignored

18 | ESC Ignored

162 N Cursor right

10] Cursor left

1€ * -~ Cursor up

1F * . Cursor down

" DEL DEL Delete character at cumsor

Note: Those keys marked with asterisk cancel insert mode when editor
18 In insen mode

BASIC COMMAND
AUTO [< fine number > | [. < increment > |
line 3

BEEP
Make & beep sound

BLOAD “ [< device descriptor > | | < filename > | “[. R]
[.<load address > |
Load program ¥
device.

he -

BSAVE ~ | < device descriptor > | <filename > ~, < start address > ,

< end address > [, < execution address > |
Save a memory image at the specified memory location 10 the
dewice.

CLEAR [< string spece > [. < highest location >] |
Set all numenc vanables 10 2ero, all string vanables 1o null and
close all open files and optionally, set the end of memory.

CLOAD [“ < filerame > " |
Load a BASIC program file from the cassette.

CLOAD? [< filename >
Venfy a BASIC program on cassefie with one in memory

COLOR [< 9 > < >][. < border > |
Set colors for the screen display
CONT

Continue program execution after break or stop.

CSAVE “ < filename >
Save a BASIC program currently resided in memory 10 the
cassette tape.

DELETE [< line number > | [~ < line number > |
Delete program lines.

KEY < function key # > , “ < string > ~
Set a sting 10 a function key.

KEY LIST
Ust the

KEY ON
Tum on function key display on the 24th line of text screen.

LIST [< line number >] [-~ < line number > |
Ust all or part of the program on the screen.

LUIST [< line number >] [~ < line number > |
List all or part of the progem on the printer.

LOAD " [< device descriptor > | < filename > *
Load a BASIC program (an ASCII file) from the device.

of ol the

function keys.

MAXFILES = n
Specify the maximum number of files opened at s time

MERGE ~ [< device descriptor > | < filename >

Merge the lines from an ASCH program into the program
curmently in memory.

201

MOTOR ON/OFF
Tum cessette motor on or off.

NEW
Delete entire program from working memory and reset all
verebles,

RENUM [< new number > | [, < old number > |
[. < increment >
program lines.

RUN [< line number > |
Execute a program.

SAVE “ < device descriptor > < filename >
Save the program in memory with name filename as an
ASCII tile.

SOUND ON/OFF
Tum sound of the cassette audio on or off.

TRON
Tum on trace for program execution.

TROFF
Tum wace oM

WIDTH n
Set the display width on screen during text mode. n may be

1w

BASIC STATEMENT

CLOSE [# | < Slenumber > [, < flenumber > . . . |
Close the channel and release the buffer associated with it.

DATA < list of constants >
Store the numeric and/or string constants that are accessed
by the READ statement(s)

DEF FN < name > [< parameter list > | = < function
definition >
Define and name an arithmetic or string function

DEF USR n = < sddress >
Define the entry address for the nth machine langusge routine

DEFINT < ranges of letters >
DEFSNG < ranges of letters >
DEFSTR < ranges of letters >
Deciare variable type as integer, s ngle precision. double
precision or string.

DIM < Nist of subscripted variables >
Spacify the maximum values for amay vansble subscripts and
allocate storage accordingly.

DRAW < string >
Draw » figure according to the Graphic Macro Language

END
Terminate program execution. ciose all files and retum 1o
command level.

ERASE < list of array variables >
Elminate armays from a progrem

ERROR n
Generate ermor message of code n.

FOR < varsble > = x TO y [STEP 2 |

NEXT | < variable > |
Allow # series of instructions 10 be performed in a loop 8 given
number of times.

GOSUB < line number >
RETURN [< line number > |
Branch 10 3 subroutine and then retum from it. i < line
number > after RETURN is not specified. retum routine to the
statement following the last GOSUB executed.
GOTO < line number >
Branch out of the normal program sequence to the specified
line number.

fine > | ELSE < finve > |

IF < oxp > THEN <
Ma program flow based on the result

ke a decision regarding
returned by an expression.

LET < variable > = < axp >
Assign value of an expression 10 a vanable. LET may be
omitted.

INPUT [” < prompt string > * ; | < list of variables >
Allow input from keyboard dunng program execution.

INPUT # < Blenumber > . < variable list >
Read data items from the specified channel and assign them
to program veriables.

INPUT S (n . [#] < filenumber >)
Retumn a string of n characters, ead from the file

LINE INPUT [“ < prompt string > “ ; | < string variable >

Input an entire line {up to 264 characters) to a string vanable,

LINE INPUT # < filenumber > , < string variable >
Read an entie line (up to 254 chamcters) from a sequential
file to a string vanable.

LPRINT [< list of axp >]
Print data at the printer.

LPRINT USING “ < string >~ ; < list d_alp >
Print data at the printer using & specified format.

MIDS (<string >, n [. m])= < string >
Rwhcnnpotmdh.ﬁmlmngmommlhoncmdm
exp starting in the first string’s nth character with m number
of characters.

OPEN ~ < device descriptor > < filename > “ [FOR < mode > |
AS [# |< filenumber >
.mmmmmmmcmmuw

ix

POKE < memory address > . < byte >
Write » byte into a memory location.

PRINT [< exp > |
Output dats to the terminal

PRINT # < filenumber > . < exp >
Write data 1o the specified channel.

PRINT USING ~ < string > “ : < list of exp >
Print numeric or string expression using » specified format.

PRINT # < filonumber > . USING ~ < string > " ; < list of exp >
Write data 10 the specified channel using a specified format.

READ < list of variables >
Read velues from a DATA statement and assign them to vanables.

REM < remark >
Allow explanatory remark to be inserted in a program.

RESTORE [< line number > |
Allow DATA statements to be reread from a specified line.

RESUME [0)
Resume execution at the statement Causing an eror.

RESUME < line number >
Resume executon at the specified line number.

RESUME NEXT
Resume 3t the i the
one causing an error

SOUND < register of PSG > . < value >
Put » value o @ register to control the Programmable Sound
Generator

sTOP
Terminate program execution snd retumn 1o command level
The "Bresk in < hne number >~ message is printed.

SWAP < variable > . < variable >
Exchange the value of two vanables.

WAIT < port > , < mask > [, < select > |
nd program execution read input at port until [<mput brt >XOR
< solect > AND < mask >| retums a non-zero value.

INTERRUPT CONTROL COMMAND AND STATEMENT
INTERVAL ON/OFF/STOP
To enable. disable. or terminate the BASIC timer interrupt
wapping.

KEY n ON/OFF/STOP
To enable, disable, or terminate interrupts caused by a function
key.

ON ERROR GOSUB < linenumber >
Define the line number of the subroutine to execute when an error
has been detected.

ON ERROR GOTO < linenumber >
Enable eror trapping and specity the lirst line of the error handling
subroutine.

ON < exp > GOTO < list of linenumbers >

ON < exp > GOSUB < list of linenumbers >
Branch to one of several hne b on
the value returned when an expression i evaluated.

ON INTERVAL = < oxp > GOSUB < list of linenumbers >
Set the line numbaer to execute at every other machine interrupt
cycle (B0 per second) specified by < exp >

ON KEY [n) GOSUB < list of linenumbers >
Specify the line number corresponding to the fine offset nin the
statement to execute whenever a function key number n has been
depressed.

ON STRIG GOSUSB < linenumber >
Define the starting line of the subroutine employed when any of
the joystick button i1s depressed. (O for space bar, 1 for Joystick
1 or 2 for Joystick 2)
201A

ON SPRITE GOSUB < linenumber >
Define jump addrss when sprites collision occurs

ON STOP GOSUB < linenumber

>
Define jump address when the CTRL + STOP keys sre pressed.

STOP ON/OFF/STOP
To enable. disable. or terminate CTRAL + STOP trapping

STRIG ON/OFF/STOP
To enable. disable. or lerminate joystick button Or space bar
trapping.

SPRITE ON/OFF/STOP
To enable. cksable, or
wo of more sprtes colkde

g&»mc COMMAND AND STATEMENT

Clear graphic screen.

CIRCLE (x. y). < radius > [, <color > [, <start > , < end > |
[. < aspect ratio > |

Draw an ellipse with 3 center, mdius, foreground color, starting
and ending angles. height to width ratio as specified.

COLOR | < >1|< >). [< border > |
Set colors for the sc

DRAW < string >
Draw figure on the screen according 1o the Graphic Macro
Language.

hold the data
LINE [(x1, ynl-uv‘-’)l [<color>][.B[F])
Draw straight lin 9 the two pairs

orfB[F|is puum drm or fill rectangle.

LOCATE x. y
Position the graphic cursor to the stanting coordiants pointed
to by x. y. can used with LINE, POINT, PRINT.

PAINT (x. y) [. < color > [, < low res mode border attribute > | |
Fill in an arbitrary graphic figure of the specified fill color
Paint must not have border for high res. while border must
be specified in low res.

POINT (x, y)
Read the color of a pixel in the graphic mode.

Pl!'l'(: ¥) [. < color > |
Draw a dot at the assigned position on the screen using
the foreground color or < color > if specified.

PRESET (x, y) [. < color >)
Same as PSET except draw In background color If <color >
not specified.

PUT (x, y). < arvayname > [, < operstion > |

Output graphic pattems in the array to assigned position

on the screen, operstion can be:

PSET: output pattern as Is

PRESET reverse pattern foreground/background color

AND: combine graphic pettern color with screen pattem

OR: graphic pattern overlapping the screen date

XOR: perform XOR with scrmen data: if the matching pixel
from the array and the screen are the same then that
pixel will be displayed in background color else it
will be displayed in background color else it will be
displayed in the foreground color

PUT SPRITE < sprite plane > . (x, y) [, < color > |
[. < pattemn no > |

Use < exp 1 > 10 selec

Retum either an 8 byte character string or 32 byte chémcier
string of the sprite number n depending on the size of
sprite selected.

VPEEK { < wam address > |
Retum byte value from the specified location in video ram.

GRAPHIC MACRO LANGUAGE (GML)

The re used in with DRAW command. “n” is
number.

U n Move up

D n Move down

L on Move left

Move
Move diagonally up and right
Move

;
3
3

plotting
X ¥ Move sbsolute or relative distance. if x has a
mlwl-f)wammwl-)mhomd-l

»2z
3

C n
X <stning>

Set color number
Execute string. must be terminated by a
semicolon.

SOUND COMMAND AND STATEMENT

SOUND statement is used to directly control the vanous capabilities of

the Programmable Sound Generator [PSG). It tskes the form of:
SOUND <register of PSG> | < value >

The functions of the 13 PSG regesters are given below.

PSG Register Function

Tone of channel A
Tone of channel 8
Tone of channel C
Noise generator
Mixer

)
oW -

87| 86| B5] 84| 83| B2[B1[BO

Not used | Noise Channel | Tone Channel

CIBlAlcC[B]A

Bit logical value: 1 to disable and O to
enable

8 Bit 0 10 3amphtude control of channel A
Bit 4: fixed amplitude control

a9 Bit 0 to 3:amplitude control of channel B
Bit 4: fixed amplitude control

10 Bit 0 to 3:amplitude control of channel C
Bit 4: fixed amplitude control

14)2 Envelope period control range

13 Envelope cycle/shape control
0-3. 9 N\ 47,16 A
8NN NAA
nONTTe AW
BT AAS

& €«
ENVELOPE ENVELOPE
PERIOD PERIOD

MUSIC MACRO LANGUAGE
The PLAY 18 used in
stnng to play a melody.

with the

String
AtoG (# or 4+ |-] Phy the indicated note in the current octave
A number sign { #) or plus sign (+) afterwards

indicates a sharp. a8 minus sign { —) indicates a
flat.

,_
E]

Set the length of the note. n may range from
110 64.

n Modulation sets period of envelope. n may
range from 1 1o 65535

n Play note n. n may range from O to 96 in 7
octaves 7. n = 0 means rest.

Octave. Set the octave of the notes to be played.
Defoult is 4.

Pause or rest. n may range 1 to 64.

n Set shape of noise output n can be 0 to 15,
Tempo. Set the number of quarter notes n a
minute. n ranges from 32 to 255. Defaulvis 120.
Volume. Set the volume of outpul. n may range
from O to 15. The default is 8.

Dot or period after each note causes it to be
played 3/2 times the period determined by L
times T.

x Execute specihed string.

PRINT USING FORMAT FIELD SPECIFIER

String of numeric expression can be printed using 3 specified
format.

-“v® O z 2
2 9

<
E]

Specifier Possible Fisld Definition
Digit

NUMERIC

. 1 1 Numeric fieid
o 1 Decimal point

+ o 1 Print leading or trailing sign
Positive numbers will have "+,
negative numbers will have “#°.

- o 1 Trailing sign. Pant "=~ of
negative. otherwise blank.

= 2 2 Leading asterisk

$s 1 2 Flosung dollar sign. $ is placed
in front of the leading digit.

s 2 3 Asterisk and floating dollar sign

1 1 Use comma every three digits
(feft of decimal point only).

AAAAN o 4 Exponential format. Number is
akgned so leading digit is
non-zero.

—_— o 1 Next character literal

STRING

| Single character

/ 7/ < 2 + number of spaces >
character field

a8 Vanable length field.

BASIC FUNCTION

Function
ASC (< string >)
BINS in)
CHRS 1)

FRE (< exp >)

HEXS (< exp >)
INKEYS

INPUTS (length
[(#jm])

LEFTS (< string >,
< length >)

LEN { < sting >)
MIDS$ [< string >

< start > [,
<length > |)

OCTS (< exp >)

RIGHTS | < string > .
< length >)

SPACES (1}
STRS (<exp >)

STRINGS (< length >,

< string >)

STRINGS (< length>,
ih

VAL (< string >)

VI (< sting >)
CVS { < string > |

CVD (< string >)

MKIS (< value >)

MKSS (<value >)

MKDS | < value > |}

BASE n)
CSRUN
EOF | < filenumber >

ERL
ERR
PAD i)

Action
Retum the ASCII value of the first
character of string.

Retum a string which represents the
binary value of n.

Retum a character having the ASCII
code |I.

Returns remaining memory free space.

Convert a number to a hexadecimal
string.

Return a one character string input from
keyboard or null string if no input.

Retum a string having specified length
read from the console or a file,

Retum a length of leftmost chamacters
of the string expression.

Retum the number of characters in string.
Retum characters from the middle of the
string starting at the position specified
to the end of the string or for the
specified length.

Convert a number to an octal string.

Retum rightmost characters of the string
expression .

Retum a string of | spaces.
Convert a numeric expression to a string .

Retum a string with specified length
containing first character of string .

Retumn string with specified length
containing first character with ASCIl code |.

Convert the string representation of a number
10 its numenc value.

Convert a 2character string to an integer.

Convert a 4character string to a single
precision number.

Convert an 8-character string 10 a double
precision number.

Convert an integer to 8 2-charscter string.
Convert a single precision velue 0 »
4character string.

Convert a double precision value 10 an
B-character stnng

Current base address for each table.
Retum the vertical coordinate of the cursor,

Ilnmk!]‘ﬂnonddnmldﬁb
has been reached. Otherwise. retum {0).

Emor line number.
Emor code number.

Retum vanous status of 1ouch pad.

PEEK (1)
POS In)

SPC M)
STICK (n}
STRIG (n)

TAB B)

TIME

USR | < digit > |

| srgument }
VARPTR

{ < vanable >)
VARPTR

{® < filenumber >)
VOP {n)

<.
€,€>,><

Read a byte from memory location |.
wmmtwmdw
N s 8 dummy srgument

Print | blanks on the screen.

Retumn the diwection of a joystick

Retum the status of » tngger button of a
joystick

Space 1o position | on the console.
An unsigned integer generated from the
system intemal nmer.

Call the user's machine language subroutne
with the specified argument

Retum the address of the first bywe of data
identified with < vanable > .

For n = 0 to 7. this specifies the current
value of VOP's write only register

For n = 8, n-uemummummo‘
VOP

Additlon or sting concatenation

Multipiciation or asterisk

Division (floating point result)
ymbol

Bitwise axclusively OR
Bitwise equivalance

Bitwise m\olk:lm
Relational tests (result is either true (~1)
of false (0))

1) (8)

2) Euaonc»llnlon {9) NOT
(3) Negation {10) AND
4) Multiplication or Division (11) OR
5 Inhqor Division (12) XOR
(8) (13) 1mpP
(7) Mdhlon or Subtraction (14) EQV

ARITHMETIC FUNCTION

Function
ABS (< oxp >)
ATN | < exp > |

COBL | < exp >)

CINT (< exp >)
COS (< exp >)
CSNG (< exp > |}

EXP (< exp >)

FIX | <exp >)
FRE (<exp >}

INT (<exp >)

LOG (< exp >}

AND ([<exp >)

SGN [< exp >}

SIN { <exp >)
SOR (< exp >)

TAN { < exp >)

Action

Absolute value of expression,
Arctangent of the expression.

Convert the
number,

to # double

Convert the expression to an integer.
Cosine of the expression (in adians).

Convent the expression to & single precision
number

Raise the constant e 1o the power of
oxpression.

Retum truncated integer of expression.

Give memory free space not used by BASIC.

Evaluste the expression for the largest integer

celculated .

Give the natural logarthm of the

expression.

Generste 3 rendom number

{<ewp >)< 0 Seed new sequence

[<op>|=0 Retum previous random
number

(2o >]| >00r Retum new random

omitted number

1 # expression > O

O it expression = 0

=1 expression < 0

Sine of the expression in radians)

Square root of expression

Tangent of the expression in radians)

Angle is expressed or retumed in radians.

SvI

SPECTRAVIDEO
© 1984 SPECTRAVIDEO INTERNATIONAL LTD

SVI-728-UM-1 PRINTED IN HONG KONG

