MSX-DOS BOOT PROCEDURE

3.4
D

2)

3)

MSX-DOS Boot Procedure
Boot Procedure

When all the buffers for the disk system are successfully
allocated, the disk ROM checks the contents of address OFEDAH
to see if a ROM cartridge has set the hook (H.STKE) to gain
control of the disk system. If the contents is not a 'RET'
instruction (0C9H), the disk ROM sets up environments for disk
BASIC and jumps to this hook.

The disk ROM next checks if there is an existing cartridge
which has a TEXT entry in the cartridge header. 1If such a
cartridge is found, the disk ROM sets up environments for disk
BASIC and executes the BASIC program from the cartridge.

Next, the first sector of a first track (logical sector number
0) is read and transferred to O0COO00H to OCOFFH. If this read
routine fails because of a drive not ready, a read error, or
if the first byte of the boot sector is not OEBH nor OESH,
disk BASIC starts up. :

Next, address OCOLEH is called with the carry flag set. This
routine is provided so as to make game or other application
programs take control of the disk system. The standard boot
sector (provided) will just execute a 'RET' instruction if the
carry flag is reset.

The ROM program next does a non-destructive memory check. If
a 64K-byte RAM is not available, the program transfers control
to disk BASIC.

Next the environments for MSXDOS are set up, and the routine
jumps to OCOlEH with the carry flag set. Our standard boot
sector loads MSXDOS.SYS at 100H and jumps to it. If MSXDOS. SYS
not present, disk BASIC is invoked.

MSXDOS.SYS 1loads COMMAND.COM at 100H and jumps to it. If
COMMAND.COM is not present, the routine prompts the user to
insert a diskette with COMMAND.COM in it.

AUTOEXEC. BAT

When MSXDOS is first booted, it searches for a file named
AUTOEXEC. BAT and executes it as a batch file.

AUTOEXEC. BAS

When MSX disk BASIC is first invoked, it looks for a file
named AUTOEXEC.BAS and executes it as a BASIC program.

255

Scanned and converted to pdf by HansO, 2003

MSX-DOS AND DISK BASIC DISK DRIVER

3.5 MSX-DOS and MSX Disk BASIC Disk Driver

The following values must be defined and declared as PUBLIC by
the person or organization doing the interfacing.

MYSIZE

SECLEN

DEFDPB

Byte size of the work area used by the driver.

The maximum sector size for the media supported by the
driver.

The base address of the DPB (which consists of 18 bytes)
for the media having the largest value for FATSIZ*SECSIZ.

The following subroutines must be provided and declared as PUBLIC
by the person or organization doing the interfacing.

INIHRD Initialize hardware

DRIVES Return number of drives in system

INIENV Initialize work area

DSKIO Read/Write to disk

DSKCHG Get disk change status

GETDPB Get drive parameter block

CHOICE Return character string for disk formatting
DSKFMT Format disk

OEMSTATEMENT (Entry point for use in system expansion)

The following is a detailed description the above routines.

INIHRD

Inputs:
None

Outputs:
None

Registers:
AF, BC, DE, HL, IX, IY may be affected.

This routine initializes the hardware as soon as the

control passes to the cartridge. Note that no work area
is assigned when this routine is initiated.

256

MSX-DOS AND DISK BASIC DISK DRIVER

DRIVES

INIENV

Inputs:

[F1 = The zero flag is reset in <case one
physical drive must act as two logical
drives.

Outputs:
[L1 = Number of drives connected

Registers:
F, HL, IX, IY may be affected.

Before any other processing can be done, the number of
drives connected to the cartridge must be counted.
If more than one drive is detected, or if the =zero flag
passed from the calling routine 1is set, the number of
drives is returned (unmodified).

If only one drive has been detected and the =zero flag
passed is reset, a '2' must be returned as the number of
drives, and the DSKIO and DSKFMT routines must logically
support two drives. Use the PROMPT routine (described
below) when switching drives.

When this routine is entered, the work area for the driver
is already allocated.
Inputs:

None

Outputs:
None

Registers:
AF, BC, DE, HL, IX, IY may be affected.

This entry initializes the work area (environment).

INIHRD, DRIVES and INIENV are <calleé only =
once during initialization, in the above =
order. =

257

MSX-DOS AND DISK BASIC

DSKIO

Inputs:
[F1]

[A]
[B]
[cl
[DE]
[HL]

Number

Outputs:
I1f successful,
Otherwise,

Registers:

AF, BC, DE, HL,

The drive number

parameter block.
to 255. The

logical sector

The number
logical sector numbers
incremented in ones, so the I/0O system must map these the
numbers

DISK DRIVER

Carry flag reset for read,

set for write

Drive number (starts at 0)

of sectors to read/write

Media descriptor
Logical sector number
Transfer address

(starts at 0)

carry flag cleared.
carry flag set,

error code is placed in [A],
number of remaining sectors
in [Bl.

IX, IY may be affected.

and media descriptor come from the drive
may range from 1
start at zero and is

of sectors

into tracks and sectors.

logical sector 0 corresponds to track 0, sector 1.

The error codes are defined as follows:

Record

HE=0oO&NO

N O

Write protected
Not ready
Data (CRC) error
Seek error

not found

Write fault
Other errors

258

The

MSX-DOS AND DISK BASIC

DSKCHG

£

Inputs:
[Aa]
[B]
[C]
(HL]

Outputs:

DISK DRIVER

Drive number
0

Media descriptor
Base address of DPB

If successful:
Carry flag reset,

[B]

ELSE:

= Disk change status
1 Disk unchanged
0 Unknown
-1 Disk changed

Carry flag set,

Error code in [A]

[NOTE]

If the disk

(Unknown) ,

read the boot sector or the first byte
FAT of the currently inserted disk

(same as DSKIO above)

has or may have been changed
‘of the

and transfer a new DPB

been changed

as with the GETDPB call described below.

Registers:
AF,

BC,

DE, HL,IX, 1Y may be affected.

259

MSX-DOS AND DISK BASIC DISK DRIVER

GETDPB

Inputs:
[Al = Drive number
[BI = First byte of FAT
[C1 = Media descriptor
[HL] = Base address of DPB
Outputs:

[HL+1] .. [HL+18] = DPB for the specified drive
The Drive Descriptor Block (DPB) is defined as follows:

MEDIA Byte Media type

SECSIZ Word Sector size (Must be 2%n)

DIRMSK Byte (SECSIZ/32)~-1

DIRSHFT Byte Number of one bits in DIRMSK

CLUSMSK Byte (Sectors per cluster)-1

CLUSSHFT Byte (Number of one bits in CLUSMSK) +l
FIRFAT Word Logical sector number of first FAT
FATCNT Byte Number of FATs

MAXENT Byte Number of directory entries (Max=254)

FIRREC Word Logical sector number of where the data
area starts
MAXCLUS Word (Number of clusters on drive [not

including reserved sectors, FAT sectors,
or directory sectorsl)+l

FATSIZ Byte Number of sectors used
FIRDIR Word FAT logical sector number of start of
directory

Note that the logical sector number always begins at zero.

260

MSX-DOS AND DISK BASIC DISK DRIVER

CHOICE

iy
©

Returns in [HL] the pointer to the character string
(terminated by a zero) that is used as a user prompt in
menu form by the main code. The simplest form of the
routine be as follows.

CHOISE: LD HL, CHOMSG
RET

I

CHOMSG: DEFB 'l - Single sided, 8 sectors',CR,LF
DEFB '2 - Single sided, 9 sectors',CR,LF
DEFB '3 - Double sided, 8 sectors',CR,LF
DEFB '4 - Double sided, 9 sectors',CR,LF
DEFB 0 .

If there is no choice (i.e., only one format is supported),
return with 0 in [HL] register.

All registers except SP may be affected.

261

MSX-DOS AND DISK BASIC DISK DRIVER

DSKFMT

Formats a disk, both physically and logically. The input
parameters are as follows.

fAa] Choice specified by the user (1 to 9).
Meaningless unless there is a choice.

[D] Drive number, beginning at zero

(HL] Beginning address of the work area which
can be used by the format process.

[BC] Length of the work area described above.

All registers except SP may be affected.
This routine formats all of the disk's tracks physically,
writing the boot sector, and clearing FATs and directory
entries.
'Clearing FATs' means:
Writing the media descriptor byte at the first
byte, writing OFFH at the second and the third
byte, and filling the remainder with 0's
'Clearing directory entries' means:
Filling all bytes with O's
If the format ends successfully, return with carry

flag reset, otherwise return with carry flag set.
The error codes are defined as follows:

0 Write protected

2 Not ready

4 Data (CRC) error

6 Seek error

8 Record not found

10 Write fault

12 Bad parameter

14 Insufficient memory
16 Other errors

[NOTE]

No prompting messages should be generated by this routine.

OEMSTATEMENT

Statement for system expansion for use by OEMs. Af ter
disk BASIC scans its own expanded statements, control is
passed to this entry. The calling sequence is identical
to using a general-purpose expansion statement handler.
If your ROM does not have expansion statements, set the
carry flag and do a 280 'RET' instruction.

262

MSX-DOS

AND DISK BASIC DISK DRIVER

*****************%***********************

*

*

* Some useful external routines *

*

*

kkhkkhkhkhhhkhhkhhkhhkhkhhkhkhkhkhkhhkhkkkkhkkhkkkkkk

PROMPT

SETINT

PRVINT

GETSLOT

GETWRK

DIV16

ENASLT

XFER

Prints a message as follows and waits for the user to
enter a key from the keyboard.

'Insert diskette for drive X:
and strike a key when ready'

The 'X' is the drive name of the current target drive of
your cartridge. ‘

This routine saves a previously set interrupt hook to a
location specific to your cartridge, and sets the new
interrupt hook. The address of the interrupt routine

should be passed via the [HL] register. See DSKDRV. 780
for details.

This routine jumps to the interrupt hook that you might
have overwritten. Requires no argument. See DSKDRV. Z80
for details.

Gets the slot address (i.e., where I am) in [A].
Preserves DE, IX, IY

Gets the base of the work area in [IX] and [HL].
Preserves DE, IY

[BC1=[BCI/IDE], remainder in [HLI].
Preserves DE, IX, IY

Enables a slot at an address specified by I[A] and [HLI,
respectively. Destroys all registers.

Moves [BC] bytes from [HL] to [DEl (i.e., LDIR)
Preserves AF, IX, IY

BC is set to 0, HL, and DE pointing to the next location
of source and destination, respectively.

Use this routine when a read/write operation is requested
to 4000H..7FFFH, and your hardware does not have any
special mechanism to transfer directly to these areas.

263

MSX-DOS AND DISK BASIC DISK DRIVER

khkkhkhhhhkhkkhhhkhhkhhkhhhkhhhkkhkkhkhhhkkhhkdk

*
*
*

*

External variables *
*

Ihkkkhkhkdhhhkhkhhhhkhhhhohhhhkhhkhhdhhhhkhhkhhhdhk

$SECBUF

RAMADO,

RAWFLG

Pointer to a temporary storage which is at least SECLEN
byte 1long. Prepared for use combined with the XFER
Subroutine described above, but can be used TEMPORARILY
for any purpose.

RAMAD1, RAMAD2, RAMAD3
Slot address of RAM (if present) at

0000H..3FFFH, 4000H..7FFFH, 8000H..BFFFH, CO0O0OH.FFFFH
respectively.

Read-After-Write flag. When this byte contains non-0
value, the disk driver should do a read-after-write check.
However, it 1is completely up to the driver whether to do
the check or not. :

264

MSX-DOS AND DISK BASIC DISK DRIVER

a)

b)

c)

d)

How to determine media types
Read the boot sector (track 0, sector 1) of the target drive.

Check if the first byte is either OE9H or OEBH (the JMP
instruction on the 8086)

If step b) fails, the disk is a version prior to MS-DOS 2.0;
therefore, use the first byte of FAT passed from the caller and
make sure it is between O0F8H and OFFH.

If step c) is successful, use this as a media descriptor.
If step c¢) fails, then this disk cannot be read.

If step b) succeeds, read bytes # 0B to # 1D. This 1is the

DPB for MS-DOS, Version 2.0 and above. The DPB for MSXDOS can
be obtained as follows.

Contents of MS-DOS boot sector

+00 OE9H,XX,XX or OEBH,XX, XX
+03 ASCII string of OEM name

+0B Bytes per sector (low)
+0C (high)
+0D Sectors per cluster

+0E Number of reserved sectors (low)
+0F (high)
+10 Number of FATs

+11 Number of directory entries (low)
+12 : (high)
+13 Total number of sectors in the media (low)
+14 (high)
+15 Media descriptor

+16 Number of sectors per FAT (low)
+17 (high)
+18 Sectors per track (low)
+19 (high)
+1A Number of heads (low)
+1B (high)
+1C Number of hidden sectors (low)
+1D (high)

265

MSX-DOS AND DISK BASIC DISK DRIVER

MS-DOS Disk formats

For 3, 3.5, and 5 inch disks (IBM PC format)

First digit : track number 8=80, 4=40
l[—-Second digit: Sector count 8 or 9

Third digit : Head count 1l or 2
o s —— —————— i abekadents ket e okt o sebbedens nhdenke it kbt |
| | 8911 8921 8811 88211 491! 4921 4811 482}|
T B it e e e th & ittt andadnted ettt Sob el
IRoot directory | 1121 112} 1121 11211 64} 1121 641 112]
lentry | ! | I 1 | | |]
e L ettt el e et & Ll e e e et

IMedia descriptor | OF8HIOF9HIOFAH|OFBHI| [OFCH|OFDH | OFEH | OFFH |
Ibyte (FATID) [| | | N | [| |
b e s E e e ettt oL S

ISectors per FAT | 21 31 1l 211 21 21 1] 11
Frm et B e e et T S S
|Sectors/track I 91 9l 8l 811 9l 91 8l 81
b B ettt B e e s e S e S
INo. of sides | 1] 21 1l 211 11 21 1l 2]
e L L T e e e et 2 ST S e |
ITracks/side I 801 80! 80l 801l 401 401 401 40!
b BT i emanatrt S e Sttt L T
IBytes/sector | 5121 5121 5121 512!} 5121 5121 5121 5121
b Bt e e B e e it ettt
INo. of FATs | 21 21 21 211 21 21 21 2|
b B il Tl e N Attt STl
[Sectors/cluster | 21 21 21 211 1! 21 1| 2]
b e e e o s e e = - B e o B e S B)

266

MSX-DOS SYSTEM CALLS

3.6 MSX-DOS System Calls

1) File Control Block (FCB) and Directory Entry

User-set record size (Default=128 bytes)--
|

~— Drive name (0=default, 1=A:) Current block == |

| | File name | | |
R U ST ST HI TSR et Ll Sbtel sl stk st

+16

S S B BT SR it aattt bt oDl el stk atdeds bt
| File size | Date | Time |] | | | |

Directory location -

First cluster of a file -

b oo e e o - ——

Last cluster accessed -

L o e e e e - ——

Last cluster (relative to the beginning of a file) accessed

r— Current record

+32
[T =g
| | Random record |
D e it
| I |
| «—valid—>| : ¢—— If record size is greater than 63
|
| Valid | If record size is less than 64

File attributes =
|

i File name i | |
Fom em e o em oo = e o o e e o - pm o o e — = =

+16

T s e e e e e e el Aol At
| | Time | Date | First | File size |
g A e At e - A o e B

First cluster of a file --

267

MSX-DOS SYSTEM CALLS

2) Drive Parameter Block (DBP)

Drive number

——
| r—— Media ID byte
| | r-— Sector size
| | | r—— Directory mask
| | | | —= Directory shift
| | | | | r—— Cluster mask
| | | | | | r-— Cluster shift
| | | ! | | | ~—— First FAT sector
I I | I | I | I —- # of FATs
| | | I | I I ! ! r—— # of directory
+00 | { | | I | | | | entries
Dintenienis ddh et nbadhsbonindundesd T T T T T T T T e T ——— T
| I ! | i I I I I I I
e it e e e et ant e e B R
+12
k-——+———+———+———+-——T———+———T—-—+—--T———+———+--—4
| | I
O S L ————— e - ————— e —— i —— J
| I | | |
| | | | —— Pointer to FAT
| | | —— First directory sector
| | t-— # of sectors per FAT
| t—— # of clusters + 1
t—-- First data sector
3) File Allocation Table (FAT)
MSB LSB
P e e e e e e e e —————— bl
0 107 06 05 04 03 02 01 00 | «— Base of FAT
o e 1 | <€— FAT O
1 :03 02 01 00 111 10 09 08 |
e e e e 4
2 111 10 09 08 07 06 05 04 | <«— FAT 1
e i e 4
3 107 06 05 04 03 02 01 00 |
e e 1 | €&— FAT 2
4 103 02 01 00 I11 10 09 08 |
I b +
5 111 10 09 08 07 06 05 04 | <&— FAT 3

268

